| /* |
| * Disk Array driver for HP Smart Array controllers. |
| * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; version 2 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| * 02111-1307, USA. |
| * |
| * Questions/Comments/Bugfixes to iss_storagedev@hp.com |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <linux/pci-aspm.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/major.h> |
| #include <linux/fs.h> |
| #include <linux/bio.h> |
| #include <linux/blkpg.h> |
| #include <linux/timer.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/init.h> |
| #include <linux/jiffies.h> |
| #include <linux/hdreg.h> |
| #include <linux/spinlock.h> |
| #include <linux/compat.h> |
| #include <linux/mutex.h> |
| #include <linux/bitmap.h> |
| #include <linux/io.h> |
| #include <linux/uaccess.h> |
| |
| #include <linux/dma-mapping.h> |
| #include <linux/blkdev.h> |
| #include <linux/genhd.h> |
| #include <linux/completion.h> |
| #include <scsi/scsi.h> |
| #include <scsi/sg.h> |
| #include <scsi/scsi_ioctl.h> |
| #include <scsi/scsi_request.h> |
| #include <linux/cdrom.h> |
| #include <linux/scatterlist.h> |
| #include <linux/kthread.h> |
| |
| #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin)) |
| #define DRIVER_NAME "HP CISS Driver (v 3.6.26)" |
| #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26) |
| |
| /* Embedded module documentation macros - see modules.h */ |
| MODULE_AUTHOR("Hewlett-Packard Company"); |
| MODULE_DESCRIPTION("Driver for HP Smart Array Controllers"); |
| MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); |
| MODULE_VERSION("3.6.26"); |
| MODULE_LICENSE("GPL"); |
| static int cciss_tape_cmds = 6; |
| module_param(cciss_tape_cmds, int, 0644); |
| MODULE_PARM_DESC(cciss_tape_cmds, |
| "number of commands to allocate for tape devices (default: 6)"); |
| static int cciss_simple_mode; |
| module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR); |
| MODULE_PARM_DESC(cciss_simple_mode, |
| "Use 'simple mode' rather than 'performant mode'"); |
| |
| static int cciss_allow_hpsa; |
| module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR); |
| MODULE_PARM_DESC(cciss_allow_hpsa, |
| "Prevent cciss driver from accessing hardware known to be " |
| " supported by the hpsa driver"); |
| |
| static DEFINE_MUTEX(cciss_mutex); |
| static struct proc_dir_entry *proc_cciss; |
| |
| #include "cciss_cmd.h" |
| #include "cciss.h" |
| #include <linux/cciss_ioctl.h> |
| |
| /* define the PCI info for the cards we can control */ |
| static const struct pci_device_id cciss_pci_device_id[] = { |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070}, |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080}, |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082}, |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083}, |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091}, |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A}, |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B}, |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C}, |
| {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237}, |
| {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D}, |
| {0,} |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, cciss_pci_device_id); |
| |
| /* board_id = Subsystem Device ID & Vendor ID |
| * product = Marketing Name for the board |
| * access = Address of the struct of function pointers |
| */ |
| static struct board_type products[] = { |
| {0x40700E11, "Smart Array 5300", &SA5_access}, |
| {0x40800E11, "Smart Array 5i", &SA5B_access}, |
| {0x40820E11, "Smart Array 532", &SA5B_access}, |
| {0x40830E11, "Smart Array 5312", &SA5B_access}, |
| {0x409A0E11, "Smart Array 641", &SA5_access}, |
| {0x409B0E11, "Smart Array 642", &SA5_access}, |
| {0x409C0E11, "Smart Array 6400", &SA5_access}, |
| {0x409D0E11, "Smart Array 6400 EM", &SA5_access}, |
| {0x40910E11, "Smart Array 6i", &SA5_access}, |
| {0x3225103C, "Smart Array P600", &SA5_access}, |
| {0x3223103C, "Smart Array P800", &SA5_access}, |
| {0x3234103C, "Smart Array P400", &SA5_access}, |
| {0x3235103C, "Smart Array P400i", &SA5_access}, |
| {0x3211103C, "Smart Array E200i", &SA5_access}, |
| {0x3212103C, "Smart Array E200", &SA5_access}, |
| {0x3213103C, "Smart Array E200i", &SA5_access}, |
| {0x3214103C, "Smart Array E200i", &SA5_access}, |
| {0x3215103C, "Smart Array E200i", &SA5_access}, |
| {0x3237103C, "Smart Array E500", &SA5_access}, |
| {0x323D103C, "Smart Array P700m", &SA5_access}, |
| }; |
| |
| /* How long to wait (in milliseconds) for board to go into simple mode */ |
| #define MAX_CONFIG_WAIT 30000 |
| #define MAX_IOCTL_CONFIG_WAIT 1000 |
| |
| /*define how many times we will try a command because of bus resets */ |
| #define MAX_CMD_RETRIES 3 |
| |
| #define MAX_CTLR 32 |
| |
| /* Originally cciss driver only supports 8 major numbers */ |
| #define MAX_CTLR_ORIG 8 |
| |
| static ctlr_info_t *hba[MAX_CTLR]; |
| |
| static struct task_struct *cciss_scan_thread; |
| static DEFINE_MUTEX(scan_mutex); |
| static LIST_HEAD(scan_q); |
| |
| static void do_cciss_request(struct request_queue *q); |
| static irqreturn_t do_cciss_intx(int irq, void *dev_id); |
| static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id); |
| static int cciss_open(struct block_device *bdev, fmode_t mode); |
| static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode); |
| static void cciss_release(struct gendisk *disk, fmode_t mode); |
| static int cciss_ioctl(struct block_device *bdev, fmode_t mode, |
| unsigned int cmd, unsigned long arg); |
| static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo); |
| |
| static int cciss_revalidate(struct gendisk *disk); |
| static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl); |
| static int deregister_disk(ctlr_info_t *h, int drv_index, |
| int clear_all, int via_ioctl); |
| |
| static void cciss_read_capacity(ctlr_info_t *h, int logvol, |
| sector_t *total_size, unsigned int *block_size); |
| static void cciss_read_capacity_16(ctlr_info_t *h, int logvol, |
| sector_t *total_size, unsigned int *block_size); |
| static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol, |
| sector_t total_size, |
| unsigned int block_size, InquiryData_struct *inq_buff, |
| drive_info_struct *drv); |
| static void cciss_interrupt_mode(ctlr_info_t *); |
| static int cciss_enter_simple_mode(struct ctlr_info *h); |
| static void start_io(ctlr_info_t *h); |
| static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size, |
| __u8 page_code, unsigned char scsi3addr[], |
| int cmd_type); |
| static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c, |
| int attempt_retry); |
| static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c); |
| |
| static int add_to_scan_list(struct ctlr_info *h); |
| static int scan_thread(void *data); |
| static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c); |
| static void cciss_hba_release(struct device *dev); |
| static void cciss_device_release(struct device *dev); |
| static void cciss_free_gendisk(ctlr_info_t *h, int drv_index); |
| static void cciss_free_drive_info(ctlr_info_t *h, int drv_index); |
| static inline u32 next_command(ctlr_info_t *h); |
| static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, |
| u32 *cfg_base_addr, u64 *cfg_base_addr_index, |
| u64 *cfg_offset); |
| static int cciss_pci_find_memory_BAR(struct pci_dev *pdev, |
| unsigned long *memory_bar); |
| static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag); |
| static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable); |
| |
| /* performant mode helper functions */ |
| static void calc_bucket_map(int *bucket, int num_buckets, int nsgs, |
| int *bucket_map); |
| static void cciss_put_controller_into_performant_mode(ctlr_info_t *h); |
| |
| #ifdef CONFIG_PROC_FS |
| static void cciss_procinit(ctlr_info_t *h); |
| #else |
| static void cciss_procinit(ctlr_info_t *h) |
| { |
| } |
| #endif /* CONFIG_PROC_FS */ |
| |
| #ifdef CONFIG_COMPAT |
| static int cciss_compat_ioctl(struct block_device *, fmode_t, |
| unsigned, unsigned long); |
| #endif |
| |
| static const struct block_device_operations cciss_fops = { |
| .owner = THIS_MODULE, |
| .open = cciss_unlocked_open, |
| .release = cciss_release, |
| .ioctl = cciss_ioctl, |
| .getgeo = cciss_getgeo, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = cciss_compat_ioctl, |
| #endif |
| .revalidate_disk = cciss_revalidate, |
| }; |
| |
| /* set_performant_mode: Modify the tag for cciss performant |
| * set bit 0 for pull model, bits 3-1 for block fetch |
| * register number |
| */ |
| static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c) |
| { |
| if (likely(h->transMethod & CFGTBL_Trans_Performant)) |
| c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); |
| } |
| |
| /* |
| * Enqueuing and dequeuing functions for cmdlists. |
| */ |
| static inline void addQ(struct list_head *list, CommandList_struct *c) |
| { |
| list_add_tail(&c->list, list); |
| } |
| |
| static inline void removeQ(CommandList_struct *c) |
| { |
| /* |
| * After kexec/dump some commands might still |
| * be in flight, which the firmware will try |
| * to complete. Resetting the firmware doesn't work |
| * with old fw revisions, so we have to mark |
| * them off as 'stale' to prevent the driver from |
| * falling over. |
| */ |
| if (WARN_ON(list_empty(&c->list))) { |
| c->cmd_type = CMD_MSG_STALE; |
| return; |
| } |
| |
| list_del_init(&c->list); |
| } |
| |
| static void enqueue_cmd_and_start_io(ctlr_info_t *h, |
| CommandList_struct *c) |
| { |
| unsigned long flags; |
| set_performant_mode(h, c); |
| spin_lock_irqsave(&h->lock, flags); |
| addQ(&h->reqQ, c); |
| h->Qdepth++; |
| if (h->Qdepth > h->maxQsinceinit) |
| h->maxQsinceinit = h->Qdepth; |
| start_io(h); |
| spin_unlock_irqrestore(&h->lock, flags); |
| } |
| |
| static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list, |
| int nr_cmds) |
| { |
| int i; |
| |
| if (!cmd_sg_list) |
| return; |
| for (i = 0; i < nr_cmds; i++) { |
| kfree(cmd_sg_list[i]); |
| cmd_sg_list[i] = NULL; |
| } |
| kfree(cmd_sg_list); |
| } |
| |
| static SGDescriptor_struct **cciss_allocate_sg_chain_blocks( |
| ctlr_info_t *h, int chainsize, int nr_cmds) |
| { |
| int j; |
| SGDescriptor_struct **cmd_sg_list; |
| |
| if (chainsize <= 0) |
| return NULL; |
| |
| cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL); |
| if (!cmd_sg_list) |
| return NULL; |
| |
| /* Build up chain blocks for each command */ |
| for (j = 0; j < nr_cmds; j++) { |
| /* Need a block of chainsized s/g elements. */ |
| cmd_sg_list[j] = kmalloc((chainsize * |
| sizeof(*cmd_sg_list[j])), GFP_KERNEL); |
| if (!cmd_sg_list[j]) { |
| dev_err(&h->pdev->dev, "Cannot get memory " |
| "for s/g chains.\n"); |
| goto clean; |
| } |
| } |
| return cmd_sg_list; |
| clean: |
| cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds); |
| return NULL; |
| } |
| |
| static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c) |
| { |
| SGDescriptor_struct *chain_sg; |
| u64bit temp64; |
| |
| if (c->Header.SGTotal <= h->max_cmd_sgentries) |
| return; |
| |
| chain_sg = &c->SG[h->max_cmd_sgentries - 1]; |
| temp64.val32.lower = chain_sg->Addr.lower; |
| temp64.val32.upper = chain_sg->Addr.upper; |
| pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE); |
| } |
| |
| static int cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c, |
| SGDescriptor_struct *chain_block, int len) |
| { |
| SGDescriptor_struct *chain_sg; |
| u64bit temp64; |
| |
| chain_sg = &c->SG[h->max_cmd_sgentries - 1]; |
| chain_sg->Ext = CCISS_SG_CHAIN; |
| chain_sg->Len = len; |
| temp64.val = pci_map_single(h->pdev, chain_block, len, |
| PCI_DMA_TODEVICE); |
| if (dma_mapping_error(&h->pdev->dev, temp64.val)) { |
| dev_warn(&h->pdev->dev, |
| "%s: error mapping chain block for DMA\n", |
| __func__); |
| return -1; |
| } |
| chain_sg->Addr.lower = temp64.val32.lower; |
| chain_sg->Addr.upper = temp64.val32.upper; |
| |
| return 0; |
| } |
| |
| #include "cciss_scsi.c" /* For SCSI tape support */ |
| |
| static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", |
| "UNKNOWN" |
| }; |
| #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1) |
| |
| #ifdef CONFIG_PROC_FS |
| |
| /* |
| * Report information about this controller. |
| */ |
| #define ENG_GIG 1000000000 |
| #define ENG_GIG_FACTOR (ENG_GIG/512) |
| #define ENGAGE_SCSI "engage scsi" |
| |
| static void cciss_seq_show_header(struct seq_file *seq) |
| { |
| ctlr_info_t *h = seq->private; |
| |
| seq_printf(seq, "%s: HP %s Controller\n" |
| "Board ID: 0x%08lx\n" |
| "Firmware Version: %c%c%c%c\n" |
| "IRQ: %d\n" |
| "Logical drives: %d\n" |
| "Current Q depth: %d\n" |
| "Current # commands on controller: %d\n" |
| "Max Q depth since init: %d\n" |
| "Max # commands on controller since init: %d\n" |
| "Max SG entries since init: %d\n", |
| h->devname, |
| h->product_name, |
| (unsigned long)h->board_id, |
| h->firm_ver[0], h->firm_ver[1], h->firm_ver[2], |
| h->firm_ver[3], (unsigned int)h->intr[h->intr_mode], |
| h->num_luns, |
| h->Qdepth, h->commands_outstanding, |
| h->maxQsinceinit, h->max_outstanding, h->maxSG); |
| |
| #ifdef CONFIG_CISS_SCSI_TAPE |
| cciss_seq_tape_report(seq, h); |
| #endif /* CONFIG_CISS_SCSI_TAPE */ |
| } |
| |
| static void *cciss_seq_start(struct seq_file *seq, loff_t *pos) |
| { |
| ctlr_info_t *h = seq->private; |
| unsigned long flags; |
| |
| /* prevent displaying bogus info during configuration |
| * or deconfiguration of a logical volume |
| */ |
| spin_lock_irqsave(&h->lock, flags); |
| if (h->busy_configuring) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return ERR_PTR(-EBUSY); |
| } |
| h->busy_configuring = 1; |
| spin_unlock_irqrestore(&h->lock, flags); |
| |
| if (*pos == 0) |
| cciss_seq_show_header(seq); |
| |
| return pos; |
| } |
| |
| static int cciss_seq_show(struct seq_file *seq, void *v) |
| { |
| sector_t vol_sz, vol_sz_frac; |
| ctlr_info_t *h = seq->private; |
| unsigned ctlr = h->ctlr; |
| loff_t *pos = v; |
| drive_info_struct *drv = h->drv[*pos]; |
| |
| if (*pos > h->highest_lun) |
| return 0; |
| |
| if (drv == NULL) /* it's possible for h->drv[] to have holes. */ |
| return 0; |
| |
| if (drv->heads == 0) |
| return 0; |
| |
| vol_sz = drv->nr_blocks; |
| vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR); |
| vol_sz_frac *= 100; |
| sector_div(vol_sz_frac, ENG_GIG_FACTOR); |
| |
| if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN) |
| drv->raid_level = RAID_UNKNOWN; |
| seq_printf(seq, "cciss/c%dd%d:" |
| "\t%4u.%02uGB\tRAID %s\n", |
| ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac, |
| raid_label[drv->raid_level]); |
| return 0; |
| } |
| |
| static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| ctlr_info_t *h = seq->private; |
| |
| if (*pos > h->highest_lun) |
| return NULL; |
| *pos += 1; |
| |
| return pos; |
| } |
| |
| static void cciss_seq_stop(struct seq_file *seq, void *v) |
| { |
| ctlr_info_t *h = seq->private; |
| |
| /* Only reset h->busy_configuring if we succeeded in setting |
| * it during cciss_seq_start. */ |
| if (v == ERR_PTR(-EBUSY)) |
| return; |
| |
| h->busy_configuring = 0; |
| } |
| |
| static const struct seq_operations cciss_seq_ops = { |
| .start = cciss_seq_start, |
| .show = cciss_seq_show, |
| .next = cciss_seq_next, |
| .stop = cciss_seq_stop, |
| }; |
| |
| static int cciss_seq_open(struct inode *inode, struct file *file) |
| { |
| int ret = seq_open(file, &cciss_seq_ops); |
| struct seq_file *seq = file->private_data; |
| |
| if (!ret) |
| seq->private = PDE_DATA(inode); |
| |
| return ret; |
| } |
| |
| static ssize_t |
| cciss_proc_write(struct file *file, const char __user *buf, |
| size_t length, loff_t *ppos) |
| { |
| int err; |
| char *buffer; |
| |
| #ifndef CONFIG_CISS_SCSI_TAPE |
| return -EINVAL; |
| #endif |
| |
| if (!buf || length > PAGE_SIZE - 1) |
| return -EINVAL; |
| |
| buffer = memdup_user_nul(buf, length); |
| if (IS_ERR(buffer)) |
| return PTR_ERR(buffer); |
| |
| #ifdef CONFIG_CISS_SCSI_TAPE |
| if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) { |
| struct seq_file *seq = file->private_data; |
| ctlr_info_t *h = seq->private; |
| |
| err = cciss_engage_scsi(h); |
| if (err == 0) |
| err = length; |
| } else |
| #endif /* CONFIG_CISS_SCSI_TAPE */ |
| err = -EINVAL; |
| /* might be nice to have "disengage" too, but it's not |
| safely possible. (only 1 module use count, lock issues.) */ |
| |
| kfree(buffer); |
| return err; |
| } |
| |
| static const struct file_operations cciss_proc_fops = { |
| .owner = THIS_MODULE, |
| .open = cciss_seq_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release, |
| .write = cciss_proc_write, |
| }; |
| |
| static void cciss_procinit(ctlr_info_t *h) |
| { |
| struct proc_dir_entry *pde; |
| |
| if (proc_cciss == NULL) |
| proc_cciss = proc_mkdir("driver/cciss", NULL); |
| if (!proc_cciss) |
| return; |
| pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP | |
| S_IROTH, proc_cciss, |
| &cciss_proc_fops, h); |
| } |
| #endif /* CONFIG_PROC_FS */ |
| |
| #define MAX_PRODUCT_NAME_LEN 19 |
| |
| #define to_hba(n) container_of(n, struct ctlr_info, dev) |
| #define to_drv(n) container_of(n, drive_info_struct, dev) |
| |
| /* List of controllers which cannot be hard reset on kexec with reset_devices */ |
| static u32 unresettable_controller[] = { |
| 0x3223103C, /* Smart Array P800 */ |
| 0x3234103C, /* Smart Array P400 */ |
| 0x3235103C, /* Smart Array P400i */ |
| 0x3211103C, /* Smart Array E200i */ |
| 0x3212103C, /* Smart Array E200 */ |
| 0x3213103C, /* Smart Array E200i */ |
| 0x3214103C, /* Smart Array E200i */ |
| 0x3215103C, /* Smart Array E200i */ |
| 0x3237103C, /* Smart Array E500 */ |
| 0x323D103C, /* Smart Array P700m */ |
| 0x40800E11, /* Smart Array 5i */ |
| 0x409C0E11, /* Smart Array 6400 */ |
| 0x409D0E11, /* Smart Array 6400 EM */ |
| 0x40700E11, /* Smart Array 5300 */ |
| 0x40820E11, /* Smart Array 532 */ |
| 0x40830E11, /* Smart Array 5312 */ |
| 0x409A0E11, /* Smart Array 641 */ |
| 0x409B0E11, /* Smart Array 642 */ |
| 0x40910E11, /* Smart Array 6i */ |
| }; |
| |
| /* List of controllers which cannot even be soft reset */ |
| static u32 soft_unresettable_controller[] = { |
| 0x40800E11, /* Smart Array 5i */ |
| 0x40700E11, /* Smart Array 5300 */ |
| 0x40820E11, /* Smart Array 532 */ |
| 0x40830E11, /* Smart Array 5312 */ |
| 0x409A0E11, /* Smart Array 641 */ |
| 0x409B0E11, /* Smart Array 642 */ |
| 0x40910E11, /* Smart Array 6i */ |
| /* Exclude 640x boards. These are two pci devices in one slot |
| * which share a battery backed cache module. One controls the |
| * cache, the other accesses the cache through the one that controls |
| * it. If we reset the one controlling the cache, the other will |
| * likely not be happy. Just forbid resetting this conjoined mess. |
| */ |
| 0x409C0E11, /* Smart Array 6400 */ |
| 0x409D0E11, /* Smart Array 6400 EM */ |
| }; |
| |
| static int ctlr_is_hard_resettable(u32 board_id) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++) |
| if (unresettable_controller[i] == board_id) |
| return 0; |
| return 1; |
| } |
| |
| static int ctlr_is_soft_resettable(u32 board_id) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++) |
| if (soft_unresettable_controller[i] == board_id) |
| return 0; |
| return 1; |
| } |
| |
| static int ctlr_is_resettable(u32 board_id) |
| { |
| return ctlr_is_hard_resettable(board_id) || |
| ctlr_is_soft_resettable(board_id); |
| } |
| |
| static ssize_t host_show_resettable(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct ctlr_info *h = to_hba(dev); |
| |
| return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); |
| } |
| static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL); |
| |
| static ssize_t host_store_rescan(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct ctlr_info *h = to_hba(dev); |
| |
| add_to_scan_list(h); |
| wake_up_process(cciss_scan_thread); |
| wait_for_completion_interruptible(&h->scan_wait); |
| |
| return count; |
| } |
| static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); |
| |
| static ssize_t host_show_transport_mode(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct ctlr_info *h = to_hba(dev); |
| |
| return snprintf(buf, 20, "%s\n", |
| h->transMethod & CFGTBL_Trans_Performant ? |
| "performant" : "simple"); |
| } |
| static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL); |
| |
| static ssize_t dev_show_unique_id(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| drive_info_struct *drv = to_drv(dev); |
| struct ctlr_info *h = to_hba(drv->dev.parent); |
| __u8 sn[16]; |
| unsigned long flags; |
| int ret = 0; |
| |
| spin_lock_irqsave(&h->lock, flags); |
| if (h->busy_configuring) |
| ret = -EBUSY; |
| else |
| memcpy(sn, drv->serial_no, sizeof(sn)); |
| spin_unlock_irqrestore(&h->lock, flags); |
| |
| if (ret) |
| return ret; |
| else |
| return snprintf(buf, 16 * 2 + 2, |
| "%02X%02X%02X%02X%02X%02X%02X%02X" |
| "%02X%02X%02X%02X%02X%02X%02X%02X\n", |
| sn[0], sn[1], sn[2], sn[3], |
| sn[4], sn[5], sn[6], sn[7], |
| sn[8], sn[9], sn[10], sn[11], |
| sn[12], sn[13], sn[14], sn[15]); |
| } |
| static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL); |
| |
| static ssize_t dev_show_vendor(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| drive_info_struct *drv = to_drv(dev); |
| struct ctlr_info *h = to_hba(drv->dev.parent); |
| char vendor[VENDOR_LEN + 1]; |
| unsigned long flags; |
| int ret = 0; |
| |
| spin_lock_irqsave(&h->lock, flags); |
| if (h->busy_configuring) |
| ret = -EBUSY; |
| else |
| memcpy(vendor, drv->vendor, VENDOR_LEN + 1); |
| spin_unlock_irqrestore(&h->lock, flags); |
| |
| if (ret) |
| return ret; |
| else |
| return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor); |
| } |
| static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL); |
| |
| static ssize_t dev_show_model(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| drive_info_struct *drv = to_drv(dev); |
| struct ctlr_info *h = to_hba(drv->dev.parent); |
| char model[MODEL_LEN + 1]; |
| unsigned long flags; |
| int ret = 0; |
| |
| spin_lock_irqsave(&h->lock, flags); |
| if (h->busy_configuring) |
| ret = -EBUSY; |
| else |
| memcpy(model, drv->model, MODEL_LEN + 1); |
| spin_unlock_irqrestore(&h->lock, flags); |
| |
| if (ret) |
| return ret; |
| else |
| return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model); |
| } |
| static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL); |
| |
| static ssize_t dev_show_rev(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| drive_info_struct *drv = to_drv(dev); |
| struct ctlr_info *h = to_hba(drv->dev.parent); |
| char rev[REV_LEN + 1]; |
| unsigned long flags; |
| int ret = 0; |
| |
| spin_lock_irqsave(&h->lock, flags); |
| if (h->busy_configuring) |
| ret = -EBUSY; |
| else |
| memcpy(rev, drv->rev, REV_LEN + 1); |
| spin_unlock_irqrestore(&h->lock, flags); |
| |
| if (ret) |
| return ret; |
| else |
| return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev); |
| } |
| static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL); |
| |
| static ssize_t cciss_show_lunid(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| drive_info_struct *drv = to_drv(dev); |
| struct ctlr_info *h = to_hba(drv->dev.parent); |
| unsigned long flags; |
| unsigned char lunid[8]; |
| |
| spin_lock_irqsave(&h->lock, flags); |
| if (h->busy_configuring) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return -EBUSY; |
| } |
| if (!drv->heads) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return -ENOTTY; |
| } |
| memcpy(lunid, drv->LunID, sizeof(lunid)); |
| spin_unlock_irqrestore(&h->lock, flags); |
| return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", |
| lunid[0], lunid[1], lunid[2], lunid[3], |
| lunid[4], lunid[5], lunid[6], lunid[7]); |
| } |
| static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL); |
| |
| static ssize_t cciss_show_raid_level(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| drive_info_struct *drv = to_drv(dev); |
| struct ctlr_info *h = to_hba(drv->dev.parent); |
| int raid; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&h->lock, flags); |
| if (h->busy_configuring) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return -EBUSY; |
| } |
| raid = drv->raid_level; |
| spin_unlock_irqrestore(&h->lock, flags); |
| if (raid < 0 || raid > RAID_UNKNOWN) |
| raid = RAID_UNKNOWN; |
| |
| return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n", |
| raid_label[raid]); |
| } |
| static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL); |
| |
| static ssize_t cciss_show_usage_count(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| drive_info_struct *drv = to_drv(dev); |
| struct ctlr_info *h = to_hba(drv->dev.parent); |
| unsigned long flags; |
| int count; |
| |
| spin_lock_irqsave(&h->lock, flags); |
| if (h->busy_configuring) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return -EBUSY; |
| } |
| count = drv->usage_count; |
| spin_unlock_irqrestore(&h->lock, flags); |
| return snprintf(buf, 20, "%d\n", count); |
| } |
| static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL); |
| |
| static struct attribute *cciss_host_attrs[] = { |
| &dev_attr_rescan.attr, |
| &dev_attr_resettable.attr, |
| &dev_attr_transport_mode.attr, |
| NULL |
| }; |
| |
| static struct attribute_group cciss_host_attr_group = { |
| .attrs = cciss_host_attrs, |
| }; |
| |
| static const struct attribute_group *cciss_host_attr_groups[] = { |
| &cciss_host_attr_group, |
| NULL |
| }; |
| |
| static struct device_type cciss_host_type = { |
| .name = "cciss_host", |
| .groups = cciss_host_attr_groups, |
| .release = cciss_hba_release, |
| }; |
| |
| static struct attribute *cciss_dev_attrs[] = { |
| &dev_attr_unique_id.attr, |
| &dev_attr_model.attr, |
| &dev_attr_vendor.attr, |
| &dev_attr_rev.attr, |
| &dev_attr_lunid.attr, |
| &dev_attr_raid_level.attr, |
| &dev_attr_usage_count.attr, |
| NULL |
| }; |
| |
| static struct attribute_group cciss_dev_attr_group = { |
| .attrs = cciss_dev_attrs, |
| }; |
| |
| static const struct attribute_group *cciss_dev_attr_groups[] = { |
| &cciss_dev_attr_group, |
| NULL |
| }; |
| |
| static struct device_type cciss_dev_type = { |
| .name = "cciss_device", |
| .groups = cciss_dev_attr_groups, |
| .release = cciss_device_release, |
| }; |
| |
| static struct bus_type cciss_bus_type = { |
| .name = "cciss", |
| }; |
| |
| /* |
| * cciss_hba_release is called when the reference count |
| * of h->dev goes to zero. |
| */ |
| static void cciss_hba_release(struct device *dev) |
| { |
| /* |
| * nothing to do, but need this to avoid a warning |
| * about not having a release handler from lib/kref.c. |
| */ |
| } |
| |
| /* |
| * Initialize sysfs entry for each controller. This sets up and registers |
| * the 'cciss#' directory for each individual controller under |
| * /sys/bus/pci/devices/<dev>/. |
| */ |
| static int cciss_create_hba_sysfs_entry(struct ctlr_info *h) |
| { |
| device_initialize(&h->dev); |
| h->dev.type = &cciss_host_type; |
| h->dev.bus = &cciss_bus_type; |
| dev_set_name(&h->dev, "%s", h->devname); |
| h->dev.parent = &h->pdev->dev; |
| |
| return device_add(&h->dev); |
| } |
| |
| /* |
| * Remove sysfs entries for an hba. |
| */ |
| static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h) |
| { |
| device_del(&h->dev); |
| put_device(&h->dev); /* final put. */ |
| } |
| |
| /* cciss_device_release is called when the reference count |
| * of h->drv[x]dev goes to zero. |
| */ |
| static void cciss_device_release(struct device *dev) |
| { |
| drive_info_struct *drv = to_drv(dev); |
| kfree(drv); |
| } |
| |
| /* |
| * Initialize sysfs for each logical drive. This sets up and registers |
| * the 'c#d#' directory for each individual logical drive under |
| * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from |
| * /sys/block/cciss!c#d# to this entry. |
| */ |
| static long cciss_create_ld_sysfs_entry(struct ctlr_info *h, |
| int drv_index) |
| { |
| struct device *dev; |
| |
| if (h->drv[drv_index]->device_initialized) |
| return 0; |
| |
| dev = &h->drv[drv_index]->dev; |
| device_initialize(dev); |
| dev->type = &cciss_dev_type; |
| dev->bus = &cciss_bus_type; |
| dev_set_name(dev, "c%dd%d", h->ctlr, drv_index); |
| dev->parent = &h->dev; |
| h->drv[drv_index]->device_initialized = 1; |
| return device_add(dev); |
| } |
| |
| /* |
| * Remove sysfs entries for a logical drive. |
| */ |
| static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index, |
| int ctlr_exiting) |
| { |
| struct device *dev = &h->drv[drv_index]->dev; |
| |
| /* special case for c*d0, we only destroy it on controller exit */ |
| if (drv_index == 0 && !ctlr_exiting) |
| return; |
| |
| device_del(dev); |
| put_device(dev); /* the "final" put. */ |
| h->drv[drv_index] = NULL; |
| } |
| |
| /* |
| * For operations that cannot sleep, a command block is allocated at init, |
| * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track |
| * which ones are free or in use. |
| */ |
| static CommandList_struct *cmd_alloc(ctlr_info_t *h) |
| { |
| CommandList_struct *c; |
| int i; |
| u64bit temp64; |
| dma_addr_t cmd_dma_handle, err_dma_handle; |
| |
| do { |
| i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); |
| if (i == h->nr_cmds) |
| return NULL; |
| } while (test_and_set_bit(i, h->cmd_pool_bits) != 0); |
| c = h->cmd_pool + i; |
| memset(c, 0, sizeof(CommandList_struct)); |
| cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct); |
| c->err_info = h->errinfo_pool + i; |
| memset(c->err_info, 0, sizeof(ErrorInfo_struct)); |
| err_dma_handle = h->errinfo_pool_dhandle |
| + i * sizeof(ErrorInfo_struct); |
| h->nr_allocs++; |
| |
| c->cmdindex = i; |
| |
| INIT_LIST_HEAD(&c->list); |
| c->busaddr = (__u32) cmd_dma_handle; |
| temp64.val = (__u64) err_dma_handle; |
| c->ErrDesc.Addr.lower = temp64.val32.lower; |
| c->ErrDesc.Addr.upper = temp64.val32.upper; |
| c->ErrDesc.Len = sizeof(ErrorInfo_struct); |
| |
| c->ctlr = h->ctlr; |
| return c; |
| } |
| |
| /* allocate a command using pci_alloc_consistent, used for ioctls, |
| * etc., not for the main i/o path. |
| */ |
| static CommandList_struct *cmd_special_alloc(ctlr_info_t *h) |
| { |
| CommandList_struct *c; |
| u64bit temp64; |
| dma_addr_t cmd_dma_handle, err_dma_handle; |
| |
| c = pci_zalloc_consistent(h->pdev, sizeof(CommandList_struct), |
| &cmd_dma_handle); |
| if (c == NULL) |
| return NULL; |
| |
| c->cmdindex = -1; |
| |
| c->err_info = pci_zalloc_consistent(h->pdev, sizeof(ErrorInfo_struct), |
| &err_dma_handle); |
| |
| if (c->err_info == NULL) { |
| pci_free_consistent(h->pdev, |
| sizeof(CommandList_struct), c, cmd_dma_handle); |
| return NULL; |
| } |
| |
| INIT_LIST_HEAD(&c->list); |
| c->busaddr = (__u32) cmd_dma_handle; |
| temp64.val = (__u64) err_dma_handle; |
| c->ErrDesc.Addr.lower = temp64.val32.lower; |
| c->ErrDesc.Addr.upper = temp64.val32.upper; |
| c->ErrDesc.Len = sizeof(ErrorInfo_struct); |
| |
| c->ctlr = h->ctlr; |
| return c; |
| } |
| |
| static void cmd_free(ctlr_info_t *h, CommandList_struct *c) |
| { |
| int i; |
| |
| i = c - h->cmd_pool; |
| clear_bit(i, h->cmd_pool_bits); |
| h->nr_frees++; |
| } |
| |
| static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c) |
| { |
| u64bit temp64; |
| |
| temp64.val32.lower = c->ErrDesc.Addr.lower; |
| temp64.val32.upper = c->ErrDesc.Addr.upper; |
| pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct), |
| c->err_info, (dma_addr_t) temp64.val); |
| pci_free_consistent(h->pdev, sizeof(CommandList_struct), c, |
| (dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr)); |
| } |
| |
| static inline ctlr_info_t *get_host(struct gendisk *disk) |
| { |
| return disk->queue->queuedata; |
| } |
| |
| static inline drive_info_struct *get_drv(struct gendisk *disk) |
| { |
| return disk->private_data; |
| } |
| |
| /* |
| * Open. Make sure the device is really there. |
| */ |
| static int cciss_open(struct block_device *bdev, fmode_t mode) |
| { |
| ctlr_info_t *h = get_host(bdev->bd_disk); |
| drive_info_struct *drv = get_drv(bdev->bd_disk); |
| |
| dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name); |
| if (drv->busy_configuring) |
| return -EBUSY; |
| /* |
| * Root is allowed to open raw volume zero even if it's not configured |
| * so array config can still work. Root is also allowed to open any |
| * volume that has a LUN ID, so it can issue IOCTL to reread the |
| * disk information. I don't think I really like this |
| * but I'm already using way to many device nodes to claim another one |
| * for "raw controller". |
| */ |
| if (drv->heads == 0) { |
| if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */ |
| /* if not node 0 make sure it is a partition = 0 */ |
| if (MINOR(bdev->bd_dev) & 0x0f) { |
| return -ENXIO; |
| /* if it is, make sure we have a LUN ID */ |
| } else if (memcmp(drv->LunID, CTLR_LUNID, |
| sizeof(drv->LunID))) { |
| return -ENXIO; |
| } |
| } |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| } |
| drv->usage_count++; |
| h->usage_count++; |
| return 0; |
| } |
| |
| static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode) |
| { |
| int ret; |
| |
| mutex_lock(&cciss_mutex); |
| ret = cciss_open(bdev, mode); |
| mutex_unlock(&cciss_mutex); |
| |
| return ret; |
| } |
| |
| /* |
| * Close. Sync first. |
| */ |
| static void cciss_release(struct gendisk *disk, fmode_t mode) |
| { |
| ctlr_info_t *h; |
| drive_info_struct *drv; |
| |
| mutex_lock(&cciss_mutex); |
| h = get_host(disk); |
| drv = get_drv(disk); |
| dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name); |
| drv->usage_count--; |
| h->usage_count--; |
| mutex_unlock(&cciss_mutex); |
| } |
| |
| #ifdef CONFIG_COMPAT |
| |
| static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode, |
| unsigned cmd, unsigned long arg); |
| static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode, |
| unsigned cmd, unsigned long arg); |
| |
| static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode, |
| unsigned cmd, unsigned long arg) |
| { |
| switch (cmd) { |
| case CCISS_GETPCIINFO: |
| case CCISS_GETINTINFO: |
| case CCISS_SETINTINFO: |
| case CCISS_GETNODENAME: |
| case CCISS_SETNODENAME: |
| case CCISS_GETHEARTBEAT: |
| case CCISS_GETBUSTYPES: |
| case CCISS_GETFIRMVER: |
| case CCISS_GETDRIVVER: |
| case CCISS_REVALIDVOLS: |
| case CCISS_DEREGDISK: |
| case CCISS_REGNEWDISK: |
| case CCISS_REGNEWD: |
| case CCISS_RESCANDISK: |
| case CCISS_GETLUNINFO: |
| return cciss_ioctl(bdev, mode, cmd, arg); |
| |
| case CCISS_PASSTHRU32: |
| return cciss_ioctl32_passthru(bdev, mode, cmd, arg); |
| case CCISS_BIG_PASSTHRU32: |
| return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg); |
| |
| default: |
| return -ENOIOCTLCMD; |
| } |
| } |
| |
| static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode, |
| unsigned cmd, unsigned long arg) |
| { |
| IOCTL32_Command_struct __user *arg32 = |
| (IOCTL32_Command_struct __user *) arg; |
| IOCTL_Command_struct arg64; |
| IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); |
| int err; |
| u32 cp; |
| |
| memset(&arg64, 0, sizeof(arg64)); |
| err = 0; |
| err |= |
| copy_from_user(&arg64.LUN_info, &arg32->LUN_info, |
| sizeof(arg64.LUN_info)); |
| err |= |
| copy_from_user(&arg64.Request, &arg32->Request, |
| sizeof(arg64.Request)); |
| err |= |
| copy_from_user(&arg64.error_info, &arg32->error_info, |
| sizeof(arg64.error_info)); |
| err |= get_user(arg64.buf_size, &arg32->buf_size); |
| err |= get_user(cp, &arg32->buf); |
| arg64.buf = compat_ptr(cp); |
| err |= copy_to_user(p, &arg64, sizeof(arg64)); |
| |
| if (err) |
| return -EFAULT; |
| |
| err = cciss_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p); |
| if (err) |
| return err; |
| err |= |
| copy_in_user(&arg32->error_info, &p->error_info, |
| sizeof(arg32->error_info)); |
| if (err) |
| return -EFAULT; |
| return err; |
| } |
| |
| static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode, |
| unsigned cmd, unsigned long arg) |
| { |
| BIG_IOCTL32_Command_struct __user *arg32 = |
| (BIG_IOCTL32_Command_struct __user *) arg; |
| BIG_IOCTL_Command_struct arg64; |
| BIG_IOCTL_Command_struct __user *p = |
| compat_alloc_user_space(sizeof(arg64)); |
| int err; |
| u32 cp; |
| |
| memset(&arg64, 0, sizeof(arg64)); |
| err = 0; |
| err |= |
| copy_from_user(&arg64.LUN_info, &arg32->LUN_info, |
| sizeof(arg64.LUN_info)); |
| err |= |
| copy_from_user(&arg64.Request, &arg32->Request, |
| sizeof(arg64.Request)); |
| err |= |
| copy_from_user(&arg64.error_info, &arg32->error_info, |
| sizeof(arg64.error_info)); |
| err |= get_user(arg64.buf_size, &arg32->buf_size); |
| err |= get_user(arg64.malloc_size, &arg32->malloc_size); |
| err |= get_user(cp, &arg32->buf); |
| arg64.buf = compat_ptr(cp); |
| err |= copy_to_user(p, &arg64, sizeof(arg64)); |
| |
| if (err) |
| return -EFAULT; |
| |
| err = cciss_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p); |
| if (err) |
| return err; |
| err |= |
| copy_in_user(&arg32->error_info, &p->error_info, |
| sizeof(arg32->error_info)); |
| if (err) |
| return -EFAULT; |
| return err; |
| } |
| #endif |
| |
| static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo) |
| { |
| drive_info_struct *drv = get_drv(bdev->bd_disk); |
| |
| if (!drv->cylinders) |
| return -ENXIO; |
| |
| geo->heads = drv->heads; |
| geo->sectors = drv->sectors; |
| geo->cylinders = drv->cylinders; |
| return 0; |
| } |
| |
| static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c) |
| { |
| if (c->err_info->CommandStatus == CMD_TARGET_STATUS && |
| c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) |
| (void)check_for_unit_attention(h, c); |
| } |
| |
| static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp) |
| { |
| cciss_pci_info_struct pciinfo; |
| |
| if (!argp) |
| return -EINVAL; |
| pciinfo.domain = pci_domain_nr(h->pdev->bus); |
| pciinfo.bus = h->pdev->bus->number; |
| pciinfo.dev_fn = h->pdev->devfn; |
| pciinfo.board_id = h->board_id; |
| if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int cciss_getintinfo(ctlr_info_t *h, void __user *argp) |
| { |
| cciss_coalint_struct intinfo; |
| unsigned long flags; |
| |
| if (!argp) |
| return -EINVAL; |
| spin_lock_irqsave(&h->lock, flags); |
| intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay); |
| intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount); |
| spin_unlock_irqrestore(&h->lock, flags); |
| if (copy_to_user |
| (argp, &intinfo, sizeof(cciss_coalint_struct))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int cciss_setintinfo(ctlr_info_t *h, void __user *argp) |
| { |
| cciss_coalint_struct intinfo; |
| unsigned long flags; |
| int i; |
| |
| if (!argp) |
| return -EINVAL; |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| if (copy_from_user(&intinfo, argp, sizeof(intinfo))) |
| return -EFAULT; |
| if ((intinfo.delay == 0) && (intinfo.count == 0)) |
| return -EINVAL; |
| spin_lock_irqsave(&h->lock, flags); |
| /* Update the field, and then ring the doorbell */ |
| writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay)); |
| writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount)); |
| writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
| |
| for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) { |
| if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) |
| break; |
| udelay(1000); /* delay and try again */ |
| } |
| spin_unlock_irqrestore(&h->lock, flags); |
| if (i >= MAX_IOCTL_CONFIG_WAIT) |
| return -EAGAIN; |
| return 0; |
| } |
| |
| static int cciss_getnodename(ctlr_info_t *h, void __user *argp) |
| { |
| NodeName_type NodeName; |
| unsigned long flags; |
| int i; |
| |
| if (!argp) |
| return -EINVAL; |
| spin_lock_irqsave(&h->lock, flags); |
| for (i = 0; i < 16; i++) |
| NodeName[i] = readb(&h->cfgtable->ServerName[i]); |
| spin_unlock_irqrestore(&h->lock, flags); |
| if (copy_to_user(argp, NodeName, sizeof(NodeName_type))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int cciss_setnodename(ctlr_info_t *h, void __user *argp) |
| { |
| NodeName_type NodeName; |
| unsigned long flags; |
| int i; |
| |
| if (!argp) |
| return -EINVAL; |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| if (copy_from_user(NodeName, argp, sizeof(NodeName_type))) |
| return -EFAULT; |
| spin_lock_irqsave(&h->lock, flags); |
| /* Update the field, and then ring the doorbell */ |
| for (i = 0; i < 16; i++) |
| writeb(NodeName[i], &h->cfgtable->ServerName[i]); |
| writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
| for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) { |
| if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) |
| break; |
| udelay(1000); /* delay and try again */ |
| } |
| spin_unlock_irqrestore(&h->lock, flags); |
| if (i >= MAX_IOCTL_CONFIG_WAIT) |
| return -EAGAIN; |
| return 0; |
| } |
| |
| static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp) |
| { |
| Heartbeat_type heartbeat; |
| unsigned long flags; |
| |
| if (!argp) |
| return -EINVAL; |
| spin_lock_irqsave(&h->lock, flags); |
| heartbeat = readl(&h->cfgtable->HeartBeat); |
| spin_unlock_irqrestore(&h->lock, flags); |
| if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int cciss_getbustypes(ctlr_info_t *h, void __user *argp) |
| { |
| BusTypes_type BusTypes; |
| unsigned long flags; |
| |
| if (!argp) |
| return -EINVAL; |
| spin_lock_irqsave(&h->lock, flags); |
| BusTypes = readl(&h->cfgtable->BusTypes); |
| spin_unlock_irqrestore(&h->lock, flags); |
| if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int cciss_getfirmver(ctlr_info_t *h, void __user *argp) |
| { |
| FirmwareVer_type firmware; |
| |
| if (!argp) |
| return -EINVAL; |
| memcpy(firmware, h->firm_ver, 4); |
| |
| if (copy_to_user |
| (argp, firmware, sizeof(FirmwareVer_type))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int cciss_getdrivver(ctlr_info_t *h, void __user *argp) |
| { |
| DriverVer_type DriverVer = DRIVER_VERSION; |
| |
| if (!argp) |
| return -EINVAL; |
| if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int cciss_getluninfo(ctlr_info_t *h, |
| struct gendisk *disk, void __user *argp) |
| { |
| LogvolInfo_struct luninfo; |
| drive_info_struct *drv = get_drv(disk); |
| |
| if (!argp) |
| return -EINVAL; |
| memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID)); |
| luninfo.num_opens = drv->usage_count; |
| luninfo.num_parts = 0; |
| if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int cciss_passthru(ctlr_info_t *h, void __user *argp) |
| { |
| IOCTL_Command_struct iocommand; |
| CommandList_struct *c; |
| char *buff = NULL; |
| u64bit temp64; |
| DECLARE_COMPLETION_ONSTACK(wait); |
| |
| if (!argp) |
| return -EINVAL; |
| |
| if (!capable(CAP_SYS_RAWIO)) |
| return -EPERM; |
| |
| if (copy_from_user |
| (&iocommand, argp, sizeof(IOCTL_Command_struct))) |
| return -EFAULT; |
| if ((iocommand.buf_size < 1) && |
| (iocommand.Request.Type.Direction != XFER_NONE)) { |
| return -EINVAL; |
| } |
| if (iocommand.buf_size > 0) { |
| buff = kmalloc(iocommand.buf_size, GFP_KERNEL); |
| if (buff == NULL) |
| return -EFAULT; |
| } |
| if (iocommand.Request.Type.Direction == XFER_WRITE) { |
| /* Copy the data into the buffer we created */ |
| if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) { |
| kfree(buff); |
| return -EFAULT; |
| } |
| } else { |
| memset(buff, 0, iocommand.buf_size); |
| } |
| c = cmd_special_alloc(h); |
| if (!c) { |
| kfree(buff); |
| return -ENOMEM; |
| } |
| /* Fill in the command type */ |
| c->cmd_type = CMD_IOCTL_PEND; |
| /* Fill in Command Header */ |
| c->Header.ReplyQueue = 0; /* unused in simple mode */ |
| if (iocommand.buf_size > 0) { /* buffer to fill */ |
| c->Header.SGList = 1; |
| c->Header.SGTotal = 1; |
| } else { /* no buffers to fill */ |
| c->Header.SGList = 0; |
| c->Header.SGTotal = 0; |
| } |
| c->Header.LUN = iocommand.LUN_info; |
| /* use the kernel address the cmd block for tag */ |
| c->Header.Tag.lower = c->busaddr; |
| |
| /* Fill in Request block */ |
| c->Request = iocommand.Request; |
| |
| /* Fill in the scatter gather information */ |
| if (iocommand.buf_size > 0) { |
| temp64.val = pci_map_single(h->pdev, buff, |
| iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); |
| c->SG[0].Addr.lower = temp64.val32.lower; |
| c->SG[0].Addr.upper = temp64.val32.upper; |
| c->SG[0].Len = iocommand.buf_size; |
| c->SG[0].Ext = 0; /* we are not chaining */ |
| } |
| c->waiting = &wait; |
| |
| enqueue_cmd_and_start_io(h, c); |
| wait_for_completion(&wait); |
| |
| /* unlock the buffers from DMA */ |
| temp64.val32.lower = c->SG[0].Addr.lower; |
| temp64.val32.upper = c->SG[0].Addr.upper; |
| pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size, |
| PCI_DMA_BIDIRECTIONAL); |
| check_ioctl_unit_attention(h, c); |
| |
| /* Copy the error information out */ |
| iocommand.error_info = *(c->err_info); |
| if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) { |
| kfree(buff); |
| cmd_special_free(h, c); |
| return -EFAULT; |
| } |
| |
| if (iocommand.Request.Type.Direction == XFER_READ) { |
| /* Copy the data out of the buffer we created */ |
| if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { |
| kfree(buff); |
| cmd_special_free(h, c); |
| return -EFAULT; |
| } |
| } |
| kfree(buff); |
| cmd_special_free(h, c); |
| return 0; |
| } |
| |
| static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp) |
| { |
| BIG_IOCTL_Command_struct *ioc; |
| CommandList_struct *c; |
| unsigned char **buff = NULL; |
| int *buff_size = NULL; |
| u64bit temp64; |
| BYTE sg_used = 0; |
| int status = 0; |
| int i; |
| DECLARE_COMPLETION_ONSTACK(wait); |
| __u32 left; |
| __u32 sz; |
| BYTE __user *data_ptr; |
| |
| if (!argp) |
| return -EINVAL; |
| if (!capable(CAP_SYS_RAWIO)) |
| return -EPERM; |
| ioc = kmalloc(sizeof(*ioc), GFP_KERNEL); |
| if (!ioc) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| if (copy_from_user(ioc, argp, sizeof(*ioc))) { |
| status = -EFAULT; |
| goto cleanup1; |
| } |
| if ((ioc->buf_size < 1) && |
| (ioc->Request.Type.Direction != XFER_NONE)) { |
| status = -EINVAL; |
| goto cleanup1; |
| } |
| /* Check kmalloc limits using all SGs */ |
| if (ioc->malloc_size > MAX_KMALLOC_SIZE) { |
| status = -EINVAL; |
| goto cleanup1; |
| } |
| if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) { |
| status = -EINVAL; |
| goto cleanup1; |
| } |
| buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL); |
| if (!buff) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL); |
| if (!buff_size) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| left = ioc->buf_size; |
| data_ptr = ioc->buf; |
| while (left) { |
| sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; |
| buff_size[sg_used] = sz; |
| buff[sg_used] = kmalloc(sz, GFP_KERNEL); |
| if (buff[sg_used] == NULL) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| if (ioc->Request.Type.Direction == XFER_WRITE) { |
| if (copy_from_user(buff[sg_used], data_ptr, sz)) { |
| status = -EFAULT; |
| goto cleanup1; |
| } |
| } else { |
| memset(buff[sg_used], 0, sz); |
| } |
| left -= sz; |
| data_ptr += sz; |
| sg_used++; |
| } |
| c = cmd_special_alloc(h); |
| if (!c) { |
| status = -ENOMEM; |
| goto cleanup1; |
| } |
| c->cmd_type = CMD_IOCTL_PEND; |
| c->Header.ReplyQueue = 0; |
| c->Header.SGList = sg_used; |
| c->Header.SGTotal = sg_used; |
| c->Header.LUN = ioc->LUN_info; |
| c->Header.Tag.lower = c->busaddr; |
| |
| c->Request = ioc->Request; |
| for (i = 0; i < sg_used; i++) { |
| temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i], |
| PCI_DMA_BIDIRECTIONAL); |
| c->SG[i].Addr.lower = temp64.val32.lower; |
| c->SG[i].Addr.upper = temp64.val32.upper; |
| c->SG[i].Len = buff_size[i]; |
| c->SG[i].Ext = 0; /* we are not chaining */ |
| } |
| c->waiting = &wait; |
| enqueue_cmd_and_start_io(h, c); |
| wait_for_completion(&wait); |
| /* unlock the buffers from DMA */ |
| for (i = 0; i < sg_used; i++) { |
| temp64.val32.lower = c->SG[i].Addr.lower; |
| temp64.val32.upper = c->SG[i].Addr.upper; |
| pci_unmap_single(h->pdev, |
| (dma_addr_t) temp64.val, buff_size[i], |
| PCI_DMA_BIDIRECTIONAL); |
| } |
| check_ioctl_unit_attention(h, c); |
| /* Copy the error information out */ |
| ioc->error_info = *(c->err_info); |
| if (copy_to_user(argp, ioc, sizeof(*ioc))) { |
| cmd_special_free(h, c); |
| status = -EFAULT; |
| goto cleanup1; |
| } |
| if (ioc->Request.Type.Direction == XFER_READ) { |
| /* Copy the data out of the buffer we created */ |
| BYTE __user *ptr = ioc->buf; |
| for (i = 0; i < sg_used; i++) { |
| if (copy_to_user(ptr, buff[i], buff_size[i])) { |
| cmd_special_free(h, c); |
| status = -EFAULT; |
| goto cleanup1; |
| } |
| ptr += buff_size[i]; |
| } |
| } |
| cmd_special_free(h, c); |
| status = 0; |
| cleanup1: |
| if (buff) { |
| for (i = 0; i < sg_used; i++) |
| kfree(buff[i]); |
| kfree(buff); |
| } |
| kfree(buff_size); |
| kfree(ioc); |
| return status; |
| } |
| |
| static int cciss_ioctl(struct block_device *bdev, fmode_t mode, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct gendisk *disk = bdev->bd_disk; |
| ctlr_info_t *h = get_host(disk); |
| void __user *argp = (void __user *)arg; |
| |
| dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n", |
| cmd, arg); |
| switch (cmd) { |
| case CCISS_GETPCIINFO: |
| return cciss_getpciinfo(h, argp); |
| case CCISS_GETINTINFO: |
| return cciss_getintinfo(h, argp); |
| case CCISS_SETINTINFO: |
| return cciss_setintinfo(h, argp); |
| case CCISS_GETNODENAME: |
| return cciss_getnodename(h, argp); |
| case CCISS_SETNODENAME: |
| return cciss_setnodename(h, argp); |
| case CCISS_GETHEARTBEAT: |
| return cciss_getheartbeat(h, argp); |
| case CCISS_GETBUSTYPES: |
| return cciss_getbustypes(h, argp); |
| case CCISS_GETFIRMVER: |
| return cciss_getfirmver(h, argp); |
| case CCISS_GETDRIVVER: |
| return cciss_getdrivver(h, argp); |
| case CCISS_DEREGDISK: |
| case CCISS_REGNEWD: |
| case CCISS_REVALIDVOLS: |
| return rebuild_lun_table(h, 0, 1); |
| case CCISS_GETLUNINFO: |
| return cciss_getluninfo(h, disk, argp); |
| case CCISS_PASSTHRU: |
| return cciss_passthru(h, argp); |
| case CCISS_BIG_PASSTHRU: |
| return cciss_bigpassthru(h, argp); |
| |
| /* scsi_cmd_blk_ioctl handles these, below, though some are not */ |
| /* very meaningful for cciss. SG_IO is the main one people want. */ |
| |
| case SG_GET_VERSION_NUM: |
| case SG_SET_TIMEOUT: |
| case SG_GET_TIMEOUT: |
| case SG_GET_RESERVED_SIZE: |
| case SG_SET_RESERVED_SIZE: |
| case SG_EMULATED_HOST: |
| case SG_IO: |
| case SCSI_IOCTL_SEND_COMMAND: |
| return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp); |
| |
| /* scsi_cmd_blk_ioctl would normally handle these, below, but */ |
| /* they aren't a good fit for cciss, as CD-ROMs are */ |
| /* not supported, and we don't have any bus/target/lun */ |
| /* which we present to the kernel. */ |
| |
| case CDROM_SEND_PACKET: |
| case CDROMCLOSETRAY: |
| case CDROMEJECT: |
| case SCSI_IOCTL_GET_IDLUN: |
| case SCSI_IOCTL_GET_BUS_NUMBER: |
| default: |
| return -ENOTTY; |
| } |
| } |
| |
| static void cciss_check_queues(ctlr_info_t *h) |
| { |
| int start_queue = h->next_to_run; |
| int i; |
| |
| /* check to see if we have maxed out the number of commands that can |
| * be placed on the queue. If so then exit. We do this check here |
| * in case the interrupt we serviced was from an ioctl and did not |
| * free any new commands. |
| */ |
| if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) |
| return; |
| |
| /* We have room on the queue for more commands. Now we need to queue |
| * them up. We will also keep track of the next queue to run so |
| * that every queue gets a chance to be started first. |
| */ |
| for (i = 0; i < h->highest_lun + 1; i++) { |
| int curr_queue = (start_queue + i) % (h->highest_lun + 1); |
| /* make sure the disk has been added and the drive is real |
| * because this can be called from the middle of init_one. |
| */ |
| if (!h->drv[curr_queue]) |
| continue; |
| if (!(h->drv[curr_queue]->queue) || |
| !(h->drv[curr_queue]->heads)) |
| continue; |
| blk_start_queue(h->gendisk[curr_queue]->queue); |
| |
| /* check to see if we have maxed out the number of commands |
| * that can be placed on the queue. |
| */ |
| if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) { |
| if (curr_queue == start_queue) { |
| h->next_to_run = |
| (start_queue + 1) % (h->highest_lun + 1); |
| break; |
| } else { |
| h->next_to_run = curr_queue; |
| break; |
| } |
| } |
| } |
| } |
| |
| static void cciss_softirq_done(struct request *rq) |
| { |
| CommandList_struct *c = rq->completion_data; |
| ctlr_info_t *h = hba[c->ctlr]; |
| SGDescriptor_struct *curr_sg = c->SG; |
| u64bit temp64; |
| unsigned long flags; |
| int i, ddir; |
| int sg_index = 0; |
| |
| if (c->Request.Type.Direction == XFER_READ) |
| ddir = PCI_DMA_FROMDEVICE; |
| else |
| ddir = PCI_DMA_TODEVICE; |
| |
| /* command did not need to be retried */ |
| /* unmap the DMA mapping for all the scatter gather elements */ |
| for (i = 0; i < c->Header.SGList; i++) { |
| if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) { |
| cciss_unmap_sg_chain_block(h, c); |
| /* Point to the next block */ |
| curr_sg = h->cmd_sg_list[c->cmdindex]; |
| sg_index = 0; |
| } |
| temp64.val32.lower = curr_sg[sg_index].Addr.lower; |
| temp64.val32.upper = curr_sg[sg_index].Addr.upper; |
| pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len, |
| ddir); |
| ++sg_index; |
| } |
| |
| dev_dbg(&h->pdev->dev, "Done with %p\n", rq); |
| |
| /* set the residual count for pc requests */ |
| if (blk_rq_is_passthrough(rq)) |
| scsi_req(rq)->resid_len = c->err_info->ResidualCnt; |
| blk_end_request_all(rq, scsi_req(rq)->result ? -EIO : 0); |
| |
| spin_lock_irqsave(&h->lock, flags); |
| cmd_free(h, c); |
| cciss_check_queues(h); |
| spin_unlock_irqrestore(&h->lock, flags); |
| } |
| |
| static inline void log_unit_to_scsi3addr(ctlr_info_t *h, |
| unsigned char scsi3addr[], uint32_t log_unit) |
| { |
| memcpy(scsi3addr, h->drv[log_unit]->LunID, |
| sizeof(h->drv[log_unit]->LunID)); |
| } |
| |
| /* This function gets the SCSI vendor, model, and revision of a logical drive |
| * via the inquiry page 0. Model, vendor, and rev are set to empty strings if |
| * they cannot be read. |
| */ |
| static void cciss_get_device_descr(ctlr_info_t *h, int logvol, |
| char *vendor, char *model, char *rev) |
| { |
| int rc; |
| InquiryData_struct *inq_buf; |
| unsigned char scsi3addr[8]; |
| |
| *vendor = '\0'; |
| *model = '\0'; |
| *rev = '\0'; |
| |
| inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL); |
| if (!inq_buf) |
| return; |
| |
| log_unit_to_scsi3addr(h, scsi3addr, logvol); |
| rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0, |
| scsi3addr, TYPE_CMD); |
| if (rc == IO_OK) { |
| memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN); |
| vendor[VENDOR_LEN] = '\0'; |
| memcpy(model, &inq_buf->data_byte[16], MODEL_LEN); |
| model[MODEL_LEN] = '\0'; |
| memcpy(rev, &inq_buf->data_byte[32], REV_LEN); |
| rev[REV_LEN] = '\0'; |
| } |
| |
| kfree(inq_buf); |
| return; |
| } |
| |
| /* This function gets the serial number of a logical drive via |
| * inquiry page 0x83. Serial no. is 16 bytes. If the serial |
| * number cannot be had, for whatever reason, 16 bytes of 0xff |
| * are returned instead. |
| */ |
| static void cciss_get_serial_no(ctlr_info_t *h, int logvol, |
| unsigned char *serial_no, int buflen) |
| { |
| #define PAGE_83_INQ_BYTES 64 |
| int rc; |
| unsigned char *buf; |
| unsigned char scsi3addr[8]; |
| |
| if (buflen > 16) |
| buflen = 16; |
| memset(serial_no, 0xff, buflen); |
| buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL); |
| if (!buf) |
| return; |
| memset(serial_no, 0, buflen); |
| log_unit_to_scsi3addr(h, scsi3addr, logvol); |
| rc = sendcmd_withirq(h, CISS_INQUIRY, buf, |
| PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD); |
| if (rc == IO_OK) |
| memcpy(serial_no, &buf[8], buflen); |
| kfree(buf); |
| return; |
| } |
| |
| /* |
| * cciss_add_disk sets up the block device queue for a logical drive |
| */ |
| static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk, |
| int drv_index) |
| { |
| disk->queue = blk_alloc_queue(GFP_KERNEL); |
| if (!disk->queue) |
| goto init_queue_failure; |
| |
| disk->queue->cmd_size = sizeof(struct scsi_request); |
| disk->queue->request_fn = do_cciss_request; |
| disk->queue->queue_lock = &h->lock; |
| if (blk_init_allocated_queue(disk->queue) < 0) |
| goto cleanup_queue; |
| |
| sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index); |
| disk->major = h->major; |
| disk->first_minor = drv_index << NWD_SHIFT; |
| disk->fops = &cciss_fops; |
| if (cciss_create_ld_sysfs_entry(h, drv_index)) |
| goto cleanup_queue; |
| disk->private_data = h->drv[drv_index]; |
| |
| /* Set up queue information */ |
| blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask); |
| |
| /* This is a hardware imposed limit. */ |
| blk_queue_max_segments(disk->queue, h->maxsgentries); |
| |
| blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors); |
| |
| blk_queue_softirq_done(disk->queue, cciss_softirq_done); |
| |
| disk->queue->queuedata = h; |
| |
| blk_queue_logical_block_size(disk->queue, |
| h->drv[drv_index]->block_size); |
| |
| /* Make sure all queue data is written out before */ |
| /* setting h->drv[drv_index]->queue, as setting this */ |
| /* allows the interrupt handler to start the queue */ |
| wmb(); |
| h->drv[drv_index]->queue = disk->queue; |
| device_add_disk(&h->drv[drv_index]->dev, disk); |
| return 0; |
| |
| cleanup_queue: |
| blk_cleanup_queue(disk->queue); |
| disk->queue = NULL; |
| init_queue_failure: |
| return -1; |
| } |
| |
| /* This function will check the usage_count of the drive to be updated/added. |
| * If the usage_count is zero and it is a heretofore unknown drive, or, |
| * the drive's capacity, geometry, or serial number has changed, |
| * then the drive information will be updated and the disk will be |
| * re-registered with the kernel. If these conditions don't hold, |
| * then it will be left alone for the next reboot. The exception to this |
| * is disk 0 which will always be left registered with the kernel since it |
| * is also the controller node. Any changes to disk 0 will show up on |
| * the next reboot. |
| */ |
| static void cciss_update_drive_info(ctlr_info_t *h, int drv_index, |
| int first_time, int via_ioctl) |
| { |
| struct gendisk *disk; |
| InquiryData_struct *inq_buff = NULL; |
| unsigned int block_size; |
| sector_t total_size; |
| unsigned long flags = 0; |
| int ret = 0; |
| drive_info_struct *drvinfo; |
| |
| /* Get information about the disk and modify the driver structure */ |
| inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL); |
| drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL); |
| if (inq_buff == NULL || drvinfo == NULL) |
| goto mem_msg; |
| |
| /* testing to see if 16-byte CDBs are already being used */ |
| if (h->cciss_read == CCISS_READ_16) { |
| cciss_read_capacity_16(h, drv_index, |
| &total_size, &block_size); |
| |
| } else { |
| cciss_read_capacity(h, drv_index, &total_size, &block_size); |
| /* if read_capacity returns all F's this volume is >2TB */ |
| /* in size so we switch to 16-byte CDB's for all */ |
| /* read/write ops */ |
| if (total_size == 0xFFFFFFFFULL) { |
| cciss_read_capacity_16(h, drv_index, |
| &total_size, &block_size); |
| h->cciss_read = CCISS_READ_16; |
| h->cciss_write = CCISS_WRITE_16; |
| } else { |
| h->cciss_read = CCISS_READ_10; |
| h->cciss_write = CCISS_WRITE_10; |
| } |
| } |
| |
| cciss_geometry_inquiry(h, drv_index, total_size, block_size, |
| inq_buff, drvinfo); |
| drvinfo->block_size = block_size; |
| drvinfo->nr_blocks = total_size + 1; |
| |
| cciss_get_device_descr(h, drv_index, drvinfo->vendor, |
| drvinfo->model, drvinfo->rev); |
| cciss_get_serial_no(h, drv_index, drvinfo->serial_no, |
| sizeof(drvinfo->serial_no)); |
| /* Save the lunid in case we deregister the disk, below. */ |
| memcpy(drvinfo->LunID, h->drv[drv_index]->LunID, |
| sizeof(drvinfo->LunID)); |
| |
| /* Is it the same disk we already know, and nothing's changed? */ |
| if (h->drv[drv_index]->raid_level != -1 && |
| ((memcmp(drvinfo->serial_no, |
| h->drv[drv_index]->serial_no, 16) == 0) && |
| drvinfo->block_size == h->drv[drv_index]->block_size && |
| drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks && |
| drvinfo->heads == h->drv[drv_index]->heads && |
| drvinfo->sectors == h->drv[drv_index]->sectors && |
| drvinfo->cylinders == h->drv[drv_index]->cylinders)) |
| /* The disk is unchanged, nothing to update */ |
| goto freeret; |
| |
| /* If we get here it's not the same disk, or something's changed, |
| * so we need to * deregister it, and re-register it, if it's not |
| * in use. |
| * If the disk already exists then deregister it before proceeding |
| * (unless it's the first disk (for the controller node). |
| */ |
| if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) { |
| dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index); |
| spin_lock_irqsave(&h->lock, flags); |
| h->drv[drv_index]->busy_configuring = 1; |
| spin_unlock_irqrestore(&h->lock, flags); |
| |
| /* deregister_disk sets h->drv[drv_index]->queue = NULL |
| * which keeps the interrupt handler from starting |
| * the queue. |
| */ |
| ret = deregister_disk(h, drv_index, 0, via_ioctl); |
| } |
| |
| /* If the disk is in use return */ |
| if (ret) |
| goto freeret; |
| |
| /* Save the new information from cciss_geometry_inquiry |
| * and serial number inquiry. If the disk was deregistered |
| * above, then h->drv[drv_index] will be NULL. |
| */ |
| if (h->drv[drv_index] == NULL) { |
| drvinfo->device_initialized = 0; |
| h->drv[drv_index] = drvinfo; |
| drvinfo = NULL; /* so it won't be freed below. */ |
| } else { |
| /* special case for cxd0 */ |
| h->drv[drv_index]->block_size = drvinfo->block_size; |
| h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks; |
| h->drv[drv_index]->heads = drvinfo->heads; |
| h->drv[drv_index]->sectors = drvinfo->sectors; |
| h->drv[drv_index]->cylinders = drvinfo->cylinders; |
| h->drv[drv_index]->raid_level = drvinfo->raid_level; |
| memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16); |
| memcpy(h->drv[drv_index]->vendor, drvinfo->vendor, |
| VENDOR_LEN + 1); |
| memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1); |
| memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1); |
| } |
| |
| ++h->num_luns; |
| disk = h->gendisk[drv_index]; |
| set_capacity(disk, h->drv[drv_index]->nr_blocks); |
| |
| /* If it's not disk 0 (drv_index != 0) |
| * or if it was disk 0, but there was previously |
| * no actual corresponding configured logical drive |
| * (raid_leve == -1) then we want to update the |
| * logical drive's information. |
| */ |
| if (drv_index || first_time) { |
| if (cciss_add_disk(h, disk, drv_index) != 0) { |
| cciss_free_gendisk(h, drv_index); |
| cciss_free_drive_info(h, drv_index); |
| dev_warn(&h->pdev->dev, "could not update disk %d\n", |
| drv_index); |
| --h->num_luns; |
| } |
| } |
| |
| freeret: |
| kfree(inq_buff); |
| kfree(drvinfo); |
| return; |
| mem_msg: |
| dev_err(&h->pdev->dev, "out of memory\n"); |
| goto freeret; |
| } |
| |
| /* This function will find the first index of the controllers drive array |
| * that has a null drv pointer and allocate the drive info struct and |
| * will return that index This is where new drives will be added. |
| * If the index to be returned is greater than the highest_lun index for |
| * the controller then highest_lun is set * to this new index. |
| * If there are no available indexes or if tha allocation fails, then -1 |
| * is returned. * "controller_node" is used to know if this is a real |
| * logical drive, or just the controller node, which determines if this |
| * counts towards highest_lun. |
| */ |
| static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node) |
| { |
| int i; |
| drive_info_struct *drv; |
| |
| /* Search for an empty slot for our drive info */ |
| for (i = 0; i < CISS_MAX_LUN; i++) { |
| |
| /* if not cxd0 case, and it's occupied, skip it. */ |
| if (h->drv[i] && i != 0) |
| continue; |
| /* |
| * If it's cxd0 case, and drv is alloc'ed already, and a |
| * disk is configured there, skip it. |
| */ |
| if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1) |
| continue; |
| |
| /* |
| * We've found an empty slot. Update highest_lun |
| * provided this isn't just the fake cxd0 controller node. |
| */ |
| if (i > h->highest_lun && !controller_node) |
| h->highest_lun = i; |
| |
| /* If adding a real disk at cxd0, and it's already alloc'ed */ |
| if (i == 0 && h->drv[i] != NULL) |
| return i; |
| |
| /* |
| * Found an empty slot, not already alloc'ed. Allocate it. |
| * Mark it with raid_level == -1, so we know it's new later on. |
| */ |
| drv = kzalloc(sizeof(*drv), GFP_KERNEL); |
| if (!drv) |
| return -1; |
| drv->raid_level = -1; /* so we know it's new */ |
| h->drv[i] = drv; |
| return i; |
| } |
| return -1; |
| } |
| |
| static void cciss_free_drive_info(ctlr_info_t *h, int drv_index) |
| { |
| kfree(h->drv[drv_index]); |
| h->drv[drv_index] = NULL; |
| } |
| |
| static void cciss_free_gendisk(ctlr_info_t *h, int drv_index) |
| { |
| put_disk(h->gendisk[drv_index]); |
| h->gendisk[drv_index] = NULL; |
| } |
| |
| /* cciss_add_gendisk finds a free hba[]->drv structure |
| * and allocates a gendisk if needed, and sets the lunid |
| * in the drvinfo structure. It returns the index into |
| * the ->drv[] array, or -1 if none are free. |
| * is_controller_node indicates whether highest_lun should |
| * count this disk, or if it's only being added to provide |
| * a means to talk to the controller in case no logical |
| * drives have yet been configured. |
| */ |
| static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[], |
| int controller_node) |
| { |
| int drv_index; |
| |
| drv_index = cciss_alloc_drive_info(h, controller_node); |
| if (drv_index == -1) |
| return -1; |
| |
| /*Check if the gendisk needs to be allocated */ |
| if (!h->gendisk[drv_index]) { |
| h->gendisk[drv_index] = |
| alloc_disk(1 << NWD_SHIFT); |
| if (!h->gendisk[drv_index]) { |
| dev_err(&h->pdev->dev, |
| "could not allocate a new disk %d\n", |
| drv_index); |
| goto err_free_drive_info; |
| } |
| } |
| memcpy(h->drv[drv_index]->LunID, lunid, |
| sizeof(h->drv[drv_index]->LunID)); |
| if (cciss_create_ld_sysfs_entry(h, drv_index)) |
| goto err_free_disk; |
| /* Don't need to mark this busy because nobody */ |
| /* else knows about this disk yet to contend */ |
| /* for access to it. */ |
| h->drv[drv_index]->busy_configuring = 0; |
| wmb(); |
| return drv_index; |
| |
| err_free_disk: |
| cciss_free_gendisk(h, drv_index); |
| err_free_drive_info: |
| cciss_free_drive_info(h, drv_index); |
| return -1; |
| } |
| |
| /* This is for the special case of a controller which |
| * has no logical drives. In this case, we still need |
| * to register a disk so the controller can be accessed |
| * by the Array Config Utility. |
| */ |
| static void cciss_add_controller_node(ctlr_info_t *h) |
| { |
| struct gendisk *disk; |
| int drv_index; |
| |
| if (h->gendisk[0] != NULL) /* already did this? Then bail. */ |
| return; |
| |
| drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1); |
| if (drv_index == -1) |
| goto error; |
| h->drv[drv_index]->block_size = 512; |
| h->drv[drv_index]->nr_blocks = 0; |
| h->drv[drv_index]->heads = 0; |
| h->drv[drv_index]->sectors = 0; |
| h->drv[drv_index]->cylinders = 0; |
| h->drv[drv_index]->raid_level = -1; |
| memset(h->drv[drv_index]->serial_no, 0, 16); |
| disk = h->gendisk[drv_index]; |
| if (cciss_add_disk(h, disk, drv_index) == 0) |
| return; |
| cciss_free_gendisk(h, drv_index); |
| cciss_free_drive_info(h, drv_index); |
| error: |
| dev_warn(&h->pdev->dev, "could not add disk 0.\n"); |
| return; |
| } |
| |
| /* This function will add and remove logical drives from the Logical |
| * drive array of the controller and maintain persistency of ordering |
| * so that mount points are preserved until the next reboot. This allows |
| * for the removal of logical drives in the middle of the drive array |
| * without a re-ordering of those drives. |
| * INPUT |
| * h = The controller to perform the operations on |
| */ |
| static int rebuild_lun_table(ctlr_info_t *h, int first_time, |
| int via_ioctl) |
| { |
| int num_luns; |
| ReportLunData_struct *ld_buff = NULL; |
| int return_code; |
| int listlength = 0; |
| int i; |
| int drv_found; |
| int drv_index = 0; |
| unsigned char lunid[8] = CTLR_LUNID; |
| unsigned long flags; |
| |
| if (!capable(CAP_SYS_RAWIO)) |
| return -EPERM; |
| |
| /* Set busy_configuring flag for this operation */ |
| spin_lock_irqsave(&h->lock, flags); |
| if (h->busy_configuring) { |
| spin_unlock_irqrestore(&h->lock, flags); |
| return -EBUSY; |
| } |
| h->busy_configuring = 1; |
| spin_unlock_irqrestore(&h->lock, flags); |
| |
| ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL); |
| if (ld_buff == NULL) |
| goto mem_msg; |
| |
| return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff, |
| sizeof(ReportLunData_struct), |
| 0, CTLR_LUNID, TYPE_CMD); |
| |
| if (return_code == IO_OK) |
| listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength); |
| else { /* reading number of logical volumes failed */ |
| dev_warn(&h->pdev->dev, |
| "report logical volume command failed\n"); |
| listlength = 0; |
| goto freeret; |
| } |
| |
| num_luns = listlength / 8; /* 8 bytes per entry */ |
| if (num_luns > CISS_MAX_LUN) { |
| num_luns = CISS_MAX_LUN; |
| dev_warn(&h->pdev->dev, "more luns configured" |
| " on controller than can be handled by" |
| " this driver.\n"); |
| } |
| |
| if (num_luns == 0) |
| cciss_add_controller_node(h); |
| |
| /* Compare controller drive array to driver's drive array |
| * to see if any drives are missing on the controller due |
| * to action of Array Config Utility (user deletes drive) |
| * and deregister logical drives which have disappeared. |
| */ |
| for (i = 0; i <= h->highest_lun; i++) { |
| int j; |
| drv_found = 0; |
| |
| /* skip holes in the array from already deleted drives */ |
| if (h->drv[i] == NULL) |
| continue; |
| |
| for (j = 0; j < num_luns; j++) { |
| memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid)); |
| if (memcmp(h->drv[i]->LunID, lunid, |
| sizeof(lunid)) == 0) { |
| drv_found = 1; |
| break; |
| } |
| } |
| if (!drv_found) { |
| /* Deregister it from the OS, it's gone. */ |
| spin_lock_irqsave(&h->lock, flags); |
| h->drv[i]->busy_configuring = 1; |
| spin_unlock_irqrestore(&h->lock, flags); |
| return_code = deregister_disk(h, i, 1, via_ioctl); |
| if (h->drv[i] != NULL) |
| h->drv[i]->busy_configuring = 0; |
| } |
| } |
| |
| /* Compare controller drive array to driver's drive array. |
| * Check for updates in the drive information and any new drives |
| * on the controller due to ACU adding logical drives, or changing |
| * a logical drive's size, etc. Reregister any new/changed drives |
| */ |
| for (i = 0; i < num_luns; i++) { |
| int j; |
| |
| drv_found = 0; |
| |
| memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid)); |
| /* Find if the LUN is already in the drive array |
| * of the driver. If so then update its info |
| * if not in use. If it does not exist then find |
| * the first free index and add it. |
| */ |
| for (j = 0; j <= h->highest_lun; j++) { |
| if (h->drv[j] != NULL && |
| memcmp(h->drv[j]->LunID, lunid, |
| sizeof(h->drv[j]->LunID)) == 0) { |
| drv_index = j; |
| drv_found = 1; |
| break; |
| } |
| } |
| |
| /* check if the drive was found already in the array */ |
| if (!drv_found) { |
| drv_index = cciss_add_gendisk(h, lunid, 0); |
| if (drv_index == -1) |
| goto freeret; |
| } |
| cciss_update_drive_info(h, drv_index, first_time, via_ioctl); |
| } /* end for */ |
| |
| freeret: |
| kfree(ld_buff); |
| h->busy_configuring = 0; |
| /* We return -1 here to tell the ACU that we have registered/updated |
| * all of the drives that we can and to keep it from calling us |
| * additional times. |
| */ |
| return -1; |
| mem_msg: |
| dev_err(&h->pdev->dev, "out of memory\n"); |
| h->busy_configuring = 0; |
| goto freeret; |
| } |
| |
| static void cciss_clear_drive_info(drive_info_struct *drive_info) |
| { |
| /* zero out the disk size info */ |
| drive_info->nr_blocks = 0; |
| drive_info->block_size = 0; |
| drive_info->heads = 0; |
| drive_info->sectors = 0; |
| drive_info->cylinders = 0; |
| drive_info->raid_level = -1; |
| memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no)); |
| memset(drive_info->model, 0, sizeof(drive_info->model)); |
| memset(drive_info->rev, 0, sizeof(drive_info->rev)); |
| memset(drive_info->vendor, 0, sizeof(drive_info->vendor)); |
| /* |
| * don't clear the LUNID though, we need to remember which |
| * one this one is. |
| */ |
| } |
| |
| /* This function will deregister the disk and it's queue from the |
| * kernel. It must be called with the controller lock held and the |
| * drv structures busy_configuring flag set. It's parameters are: |
| * |
| * disk = This is the disk to be deregistered |
| * drv = This is the drive_info_struct associated with the disk to be |
| * deregistered. It contains information about the disk used |
| * by the driver. |
| * clear_all = This flag determines whether or not the disk information |
| * is going to be completely cleared out and the highest_lun |
| * reset. Sometimes we want to clear out information about |
| * the disk in preparation for re-adding it. In this case |
| * the highest_lun should be left unchanged and the LunID |
| * should not be cleared. |
| * via_ioctl |
| * This indicates whether we've reached this path via ioctl. |
| * This affects the maximum usage count allowed for c0d0 to be messed with. |
| * If this path is reached via ioctl(), then the max_usage_count will |
| * be 1, as the process calling ioctl() has got to have the device open. |
| * If we get here via sysfs, then the max usage count will be zero. |
| */ |
| static int deregister_disk(ctlr_info_t *h, int drv_index, |
| int clear_all, int via_ioctl) |
| { |
| int i; |
| struct gendisk *disk; |
| drive_info_struct *drv; |
| int recalculate_highest_lun; |
| |
| if (!capable(CAP_SYS_RAWIO)) |
| return -EPERM; |
| |
| drv = h->drv[drv_index]; |
| disk = h->gendisk[drv_index]; |
| |
| /* make sure logical volume is NOT is use */ |
| if (clear_all || (h->gendisk[0] == disk)) { |
| if (drv->usage_count > via_ioctl) |
| return -EBUSY; |
| } else if (drv->usage_count > 0) |
| return -EBUSY; |
| |
| recalculate_highest_lun = (drv == h->drv[h->highest_lun]); |
| |
| /* invalidate the devices and deregister the disk. If it is disk |
| * zero do not deregister it but just zero out it's values. This |
| * allows us to delete disk zero but keep the controller registered. |
| */ |
| if (h->gendisk[0] != disk) { |
| struct request_queue *q = disk->queue; |
| if (disk->flags & GENHD_FL_UP) { |
| cciss_destroy_ld_sysfs_entry(h, drv_index, 0); |
| del_gendisk(disk); |
| } |
| if (q) |
| blk_cleanup_queue(q); |
| /* If clear_all is set then we are deleting the logical |
| * drive, not just refreshing its info. For drives |
| * other than disk 0 we will call put_disk. We do not |
| * do this for disk 0 as we need it to be able to |
| * configure the controller. |
| */ |
| if (clear_all){ |
| /* This isn't pretty, but we need to find the |
| * disk in our array and NULL our the pointer. |
| * This is so that we will call alloc_disk if |
| * this index is used again later. |
| */ |
| for (i=0; i < CISS_MAX_LUN; i++){ |
| if (h->gendisk[i] == disk) { |
| h->gendisk[i] = NULL; |
| break; |
| } |
| } |
| put_disk(disk); |
| } |
| } else { |
| set_capacity(disk, 0); |
| cciss_clear_drive_info(drv); |
| } |
| |
| --h->num_luns; |
| |
| /* if it was the last disk, find the new hightest lun */ |
| if (clear_all && recalculate_highest_lun) { |
| int newhighest = -1; |
| for (i = 0; i <= h->highest_lun; i++) { |
| /* if the disk has size > 0, it is available */ |
| if (h->drv[i] && h->drv[i]->heads) |
| newhighest = i; |
| } |
| h->highest_lun = newhighest; |
| } |
| return 0; |
| } |
| |
| static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff, |
| size_t size, __u8 page_code, unsigned char *scsi3addr, |
| int cmd_type) |
| { |
| u64bit buff_dma_handle; |
| int status = IO_OK; |
| |
| c->cmd_type = CMD_IOCTL_PEND; |
| c->Header.ReplyQueue = 0; |
| if (buff != NULL) { |
| c->Header.SGList = 1; |
| c->Header.SGTotal = 1; |
| } else { |
| c->Header.SGList = 0; |
| c->Header.SGTotal = 0; |
| } |
| c->Header.Tag.lower = c->busaddr; |
| memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); |
| |
| c->Request.Type.Type = cmd_type; |
| if (cmd_type == TYPE_CMD) { |
| switch (cmd) { |
| case CISS_INQUIRY: |
| /* are we trying to read a vital product page */ |
| if (page_code != 0) { |
| c->Request.CDB[1] = 0x01; |
| c->Request.CDB[2] = page_code; |
| } |
| c->Request.CDBLen = 6; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_READ; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = CISS_INQUIRY; |
| c->Request.CDB[4] = size & 0xFF; |
| break; |
| case CISS_REPORT_LOG: |
| case CISS_REPORT_PHYS: |
| /* Talking to controller so It's a physical command |
| mode = 00 target = 0. Nothing to write. |
| */ |
| c->Request.CDBLen = 12; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_READ; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = cmd; |
| c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ |
| c->Request.CDB[7] = (size >> 16) & 0xFF; |
| c->Request.CDB[8] = (size >> 8) & 0xFF; |
| c->Request.CDB[9] = size & 0xFF; |
| break; |
| |
| case CCISS_READ_CAPACITY: |
| c->Request.CDBLen = 10; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_READ; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = cmd; |
| break; |
| case CCISS_READ_CAPACITY_16: |
| c->Request.CDBLen = 16; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_READ; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = cmd; |
| c->Request.CDB[1] = 0x10; |
| c->Request.CDB[10] = (size >> 24) & 0xFF; |
| c->Request.CDB[11] = (size >> 16) & 0xFF; |
| c->Request.CDB[12] = (size >> 8) & 0xFF; |
| c->Request.CDB[13] = size & 0xFF; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = cmd; |
| break; |
| case CCISS_CACHE_FLUSH: |
| c->Request.CDBLen = 12; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_WRITE; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = BMIC_WRITE; |
| c->Request.CDB[6] = BMIC_CACHE_FLUSH; |
| c->Request.CDB[7] = (size >> 8) & 0xFF; |
| c->Request.CDB[8] = size & 0xFF; |
| break; |
| case TEST_UNIT_READY: |
| c->Request.CDBLen = 6; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_NONE; |
| c->Request.Timeout = 0; |
| break; |
| default: |
| dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd); |
| return IO_ERROR; |
| } |
| } else if (cmd_type == TYPE_MSG) { |
| switch (cmd) { |
| case CCISS_ABORT_MSG: |
| c->Request.CDBLen = 12; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_WRITE; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = cmd; /* abort */ |
| c->Request.CDB[1] = 0; /* abort a command */ |
| /* buff contains the tag of the command to abort */ |
| memcpy(&c->Request.CDB[4], buff, 8); |
| break; |
| case CCISS_RESET_MSG: |
| c->Request.CDBLen = 16; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_NONE; |
| c->Request.Timeout = 0; |
| memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); |
| c->Request.CDB[0] = cmd; /* reset */ |
| c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET; |
| break; |
| case CCISS_NOOP_MSG: |
| c->Request.CDBLen = 1; |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = XFER_WRITE; |
| c->Request.Timeout = 0; |
| c->Request.CDB[0] = cmd; |
| break; |
| default: |
| dev_warn(&h->pdev->dev, |
| "unknown message type %d\n", cmd); |
| return IO_ERROR; |
| } |
| } else { |
| dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); |
| return IO_ERROR; |
| } |
| /* Fill in the scatter gather information */ |
| if (size > 0) { |
| buff_dma_handle.val = (__u64) pci_map_single(h->pdev, |
| buff, size, |
| PCI_DMA_BIDIRECTIONAL); |
| c->SG[0].Addr.lower = buff_dma_handle.val32.lower; |
| c->SG[0].Addr.upper = buff_dma_handle.val32.upper; |
| c->SG[0].Len = size; |
| c->SG[0].Ext = 0; /* we are not chaining */ |
| } |
| return status; |
| } |
| |
| static int cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr, |
| u8 reset_type) |
| { |
| CommandList_struct *c; |
| int return_status; |
| |
| c = cmd_alloc(h); |
| if (!c) |
| return -ENOMEM; |
| return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0, |
| CTLR_LUNID, TYPE_MSG); |
| c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ |
| if (return_status != IO_OK) { |
| cmd_special_free(h, c); |
| return return_status; |
| } |
| c->waiting = NULL; |
| enqueue_cmd_and_start_io(h, c); |
| /* Don't wait for completion, the reset won't complete. Don't free |
| * the command either. This is the last command we will send before |
| * re-initializing everything, so it doesn't matter and won't leak. |
| */ |
| return 0; |
| } |
| |
| static int check_target_status(ctlr_info_t *h, CommandList_struct *c) |
| { |
| switch (c->err_info->ScsiStatus) { |
| case SAM_STAT_GOOD: |
| return IO_OK; |
| case SAM_STAT_CHECK_CONDITION: |
| switch (0xf & c->err_info->SenseInfo[2]) { |
| case 0: return IO_OK; /* no sense */ |
| case 1: return IO_OK; /* recovered error */ |
| default: |
| if (check_for_unit_attention(h, c)) |
| return IO_NEEDS_RETRY; |
| dev_warn(&h->pdev->dev, "cmd 0x%02x " |
| "check condition, sense key = 0x%02x\n", |
| c->Request.CDB[0], c->err_info->SenseInfo[2]); |
| } |
| break; |
| default: |
| dev_warn(&h->pdev->dev, "cmd 0x%02x" |
| "scsi status = 0x%02x\n", |
| c->Request.CDB[0], c->err_info->ScsiStatus); |
| break; |
| } |
| return IO_ERROR; |
| } |
| |
| static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c) |
| { |
| int return_status = IO_OK; |
| |
| if (c->err_info->CommandStatus == CMD_SUCCESS) |
| return IO_OK; |
| |
| switch (c->err_info->CommandStatus) { |
| case CMD_TARGET_STATUS: |
| return_status = check_target_status(h, c); |
| break; |
| case CMD_DATA_UNDERRUN: |
| case CMD_DATA_OVERRUN: |
| /* expected for inquiry and report lun commands */ |
| break; |
| case CMD_INVALID: |
| dev_warn(&h->pdev->dev, "cmd 0x%02x is " |
| "reported invalid\n", c->Request.CDB[0]); |
| return_status = IO_ERROR; |
| break; |
| case CMD_PROTOCOL_ERR: |
| dev_warn(&h->pdev->dev, "cmd 0x%02x has " |
| "protocol error\n", c->Request.CDB[0]); |
| return_status = IO_ERROR; |
| break; |
| case CMD_HARDWARE_ERR: |
| dev_warn(&h->pdev->dev, "cmd 0x%02x had " |
| " hardware error\n", c->Request.CDB[0]); |
| return_status = IO_ERROR; |
| break; |
| case CMD_CONNECTION_LOST: |
| dev_warn(&h->pdev->dev, "cmd 0x%02x had " |
| "connection lost\n", c->Request.CDB[0]); |
| return_status = IO_ERROR; |
| break; |
| case CMD_ABORTED: |
| dev_warn(&h->pdev->dev, "cmd 0x%02x was " |
| "aborted\n", c->Request.CDB[0]); |
| return_status = IO_ERROR; |
| break; |
| case CMD_ABORT_FAILED: |
| dev_warn(&h->pdev->dev, "cmd 0x%02x reports " |
| "abort failed\n", c->Request.CDB[0]); |
| return_status = IO_ERROR; |
| break; |
| case CMD_UNSOLICITED_ABORT: |
| dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n", |
| c->Request.CDB[0]); |
| return_status = IO_NEEDS_RETRY; |
| break; |
| case CMD_UNABORTABLE: |
| dev_warn(&h->pdev->dev, "cmd unabortable\n"); |
| return_status = IO_ERROR; |
| break; |
| default: |
| dev_warn(&h->pdev->dev, "cmd 0x%02x returned " |
| "unknown status %x\n", c->Request.CDB[0], |
| c->err_info->CommandStatus); |
| return_status = IO_ERROR; |
| } |
| return return_status; |
| } |
| |
| static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c, |
| int attempt_retry) |
| { |
| DECLARE_COMPLETION_ONSTACK(wait); |
| u64bit buff_dma_handle; |
| int return_status = IO_OK; |
| |
| resend_cmd2: |
| c->waiting = &wait; |
| enqueue_cmd_and_start_io(h, c); |
| |
| wait_for_completion(&wait); |
| |
| if (c->err_info->CommandStatus == 0 || !attempt_retry) |
| goto command_done; |
| |
| return_status = process_sendcmd_error(h, c); |
| |
| if (return_status == IO_NEEDS_RETRY && |
| c->retry_count < MAX_CMD_RETRIES) { |
| dev_warn(&h->pdev->dev, "retrying 0x%02x\n", |
| c->Request.CDB[0]); |
| c->retry_count++; |
| /* erase the old error information */ |
| memset(c->err_info, 0, sizeof(ErrorInfo_struct)); |
| return_status = IO_OK; |
| reinit_completion(&wait); |
| goto resend_cmd2; |
| } |
| |
| command_done: |
| /* unlock the buffers from DMA */ |
| buff_dma_handle.val32.lower = c->SG[0].Addr.lower; |
| buff_dma_handle.val32.upper = c->SG[0].Addr.upper; |
| pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val, |
| c->SG[0].Len, PCI_DMA_BIDIRECTIONAL); |
| return return_status; |
| } |
| |
| static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size, |
| __u8 page_code, unsigned char scsi3addr[], |
| int cmd_type) |
| { |
| CommandList_struct *c; |
| int return_status; |
| |
| c = cmd_special_alloc(h); |
| if (!c) |
| return -ENOMEM; |
| return_status = fill_cmd(h, c, cmd, buff, size, page_code, |
| scsi3addr, cmd_type); |
| if (return_status == IO_OK) |
| return_status = sendcmd_withirq_core(h, c, 1); |
| |
| cmd_special_free(h, c); |
| return return_status; |
| } |
| |
| static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol, |
| sector_t total_size, |
| unsigned int block_size, |
| InquiryData_struct *inq_buff, |
| drive_info_struct *drv) |
| { |
| int return_code; |
| unsigned long t; |
| unsigned char scsi3addr[8]; |
| |
| memset(inq_buff, 0, sizeof(InquiryData_struct)); |
| log_unit_to_scsi3addr(h, scsi3addr, logvol); |
| return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff, |
| sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD); |
| if (return_code == IO_OK) { |
| if (inq_buff->data_byte[8] == 0xFF) { |
| dev_warn(&h->pdev->dev, |
| "reading geometry failed, volume " |
| "does not support reading geometry\n"); |
| drv->heads = 255; |
| drv->sectors = 32; /* Sectors per track */ |
| drv->cylinders = total_size + 1; |
| drv->raid_level = RAID_UNKNOWN; |
| } else { |
| drv->heads = inq_buff->data_byte[6]; |
| drv->sectors = inq_buff->data_byte[7]; |
| drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8; |
| drv->cylinders += inq_buff->data_byte[5]; |
| drv->raid_level = inq_buff->data_byte[8]; |
| } |
| drv->block_size = block_size; |
| drv->nr_blocks = total_size + 1; |
| t = drv->heads * drv->sectors; |
| if (t > 1) { |
| sector_t real_size = total_size + 1; |
| unsigned long rem = sector_div(real_size, t); |
| if (rem) |
| real_size++; |
| drv->cylinders = real_size; |
| } |
| } else { /* Get geometry failed */ |
| dev_warn(&h->pdev->dev, "reading geometry failed\n"); |
| } |
| } |
| |
| static void |
| cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size, |
| unsigned int *block_size) |
| { |
| ReadCapdata_struct *buf; |
| int return_code; |
| unsigned char scsi3addr[8]; |
| |
| buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL); |
| if (!buf) { |
| dev_warn(&h->pdev->dev, "out of memory\n"); |
| return; |
| } |
| |
| log_unit_to_scsi3addr(h, scsi3addr, logvol); |
| return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf, |
| sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD); |
| if (return_code == IO_OK) { |
| *total_size = be32_to_cpu(*(__be32 *) buf->total_size); |
| *block_size = be32_to_cpu(*(__be32 *) buf->block_size); |
| } else { /* read capacity command failed */ |
| dev_warn(&h->pdev->dev, "read capacity failed\n"); |
| *total_size = 0; |
| *block_size = BLOCK_SIZE; |
| } |
| kfree(buf); |
| } |
| |
| static void cciss_read_capacity_16(ctlr_info_t *h, int logvol, |
| sector_t *total_size, unsigned int *block_size) |
| { |
| ReadCapdata_struct_16 *buf; |
| int return_code; |
| unsigned char scsi3addr[8]; |
| |
| buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL); |
| if (!buf) { |
| dev_warn(&h->pdev->dev, "out of memory\n"); |
| return; |
| } |
| |
| log_unit_to_scsi3addr(h, scsi3addr, logvol); |
| return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16, |
| buf, sizeof(ReadCapdata_struct_16), |
| 0, scsi3addr, TYPE_CMD); |
| if (return_code == IO_OK) { |
| *total_size = be64_to_cpu(*(__be64 *) buf->total_size); |
| *block_size = be32_to_cpu(*(__be32 *) buf->block_size); |
| } else { /* read capacity command failed */ |
| dev_warn(&h->pdev->dev, "read capacity failed\n"); |
| *total_size = 0; |
| *block_size = BLOCK_SIZE; |
| } |
| dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n", |
| (unsigned long long)*total_size+1, *block_size); |
| kfree(buf); |
| } |
| |
| static int cciss_revalidate(struct gendisk *disk) |
| { |
| ctlr_info_t *h = get_host(disk); |
| drive_info_struct *drv = get_drv(disk); |
| int logvol; |
| int FOUND = 0; |
| unsigned int block_size; |
| sector_t total_size; |
| InquiryData_struct *inq_buff = NULL; |
| |
| for (logvol = 0; logvol <= h->highest_lun; logvol++) { |
| if (!h->drv[logvol]) |
| continue; |
| if (memcmp(h->drv[logvol]->LunID, drv->LunID, |
| sizeof(drv->LunID)) == 0) { |
| FOUND = 1; |
| break; |
| } |
| } |
| |
| if (!FOUND) |
| return 1; |
| |
| inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL); |
| if (inq_buff == NULL) { |
| dev_warn(&h->pdev->dev, "out of memory\n"); |
| return 1; |
| } |
| if (h->cciss_read == CCISS_READ_10) { |
| cciss_read_capacity(h, logvol, |
| &total_size, &block_size); |
| } else { |
| cciss_read_capacity_16(h, logvol, |
| &total_size, &block_size); |
| } |
| cciss_geometry_inquiry(h, logvol, total_size, block_size, |
| inq_buff, drv); |
| |
| blk_queue_logical_block_size(drv->queue, drv->block_size); |
| set_capacity(disk, drv->nr_blocks); |
| |
| kfree(inq_buff); |
| return 0; |
| } |
| |
| /* |
| * Map (physical) PCI mem into (virtual) kernel space |
| */ |
| static void __iomem *remap_pci_mem(ulong base, ulong size) |
| { |
| ulong page_base = ((ulong) base) & PAGE_MASK; |
| ulong page_offs = ((ulong) base) - page_base; |
| void __iomem *page_remapped = ioremap(page_base, page_offs + size); |
| |
| return page_remapped ? (page_remapped + page_offs) : NULL; |
| } |
| |
| /* |
| * Takes jobs of the Q and sends them to the hardware, then puts it on |
| * the Q to wait for completion. |
| */ |
| static void start_io(ctlr_info_t *h) |
| { |
| CommandList_struct *c; |
| |
| while (!list_empty(&h->reqQ)) { |
| c = list_entry(h->reqQ.next, CommandList_struct, list); |
| /* can't do anything if fifo is full */ |
| if ((h->access.fifo_full(h))) { |
| dev_warn(&h->pdev->dev, "fifo full\n"); |
| break; |
| } |
| |
| /* Get the first entry from the Request Q */ |
| removeQ(c); |
| h->Qdepth--; |
| |
| /* Tell the controller execute command */ |
| h->access.submit_command(h, c); |
| |
| /* Put job onto the completed Q */ |
| addQ(&h->cmpQ, c); |
| } |
| } |
| |
| /* Assumes that h->lock is held. */ |
| /* Zeros out the error record and then resends the command back */ |
| /* to the controller */ |
| static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c) |
| { |
| /* erase the old error information */ |
| memset(c->err_info, 0, sizeof(ErrorInfo_struct)); |
| |
| /* add it to software queue and then send it to the controller */ |
| addQ(&h->reqQ, c); |
| h->Qdepth++; |
| if (h->Qdepth > h->maxQsinceinit) |
| h->maxQsinceinit = h->Qdepth; |
| |
| start_io(h); |
| } |
| |
| static inline unsigned int make_status_bytes(unsigned int scsi_status_byte, |
| unsigned int msg_byte, unsigned int host_byte, |
| unsigned int driver_byte) |
| { |
| /* inverse of macros in scsi.h */ |
| return (scsi_status_byte & 0xff) | |
| ((msg_byte & 0xff) << 8) | |
| ((host_byte & 0xff) << 16) | |
| ((driver_byte & 0xff) << 24); |
| } |
| |
| static inline int evaluate_target_status(ctlr_info_t *h, |
| CommandList_struct *cmd, int *retry_cmd) |
| { |
| unsigned char sense_key; |
| unsigned char status_byte, msg_byte, host_byte, driver_byte; |
| int error_value; |
| |
| *retry_cmd = 0; |
| /* If we get in here, it means we got "target status", that is, scsi status */ |
| status_byte = cmd->err_info->ScsiStatus; |
| driver_byte = DRIVER_OK; |
| msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */ |
| |
| if (blk_rq_is_passthrough(cmd->rq)) |
| host_byte = DID_PASSTHROUGH; |
| else |
| host_byte = DID_OK; |
| |
| error_value = make_status_bytes(status_byte, msg_byte, |
| host_byte, driver_byte); |
| |
| if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) { |
| if (!blk_rq_is_passthrough(cmd->rq)) |
| dev_warn(&h->pdev->dev, "cmd %p " |
| "has SCSI Status 0x%x\n", |
| cmd, cmd->err_info->ScsiStatus); |
| return error_value; |
| } |
| |
| /* check the sense key */ |
| sense_key = 0xf & cmd->err_info->SenseInfo[2]; |
| /* no status or recovered error */ |
| if (((sense_key == 0x0) || (sense_key == 0x1)) && |
| !blk_rq_is_passthrough(cmd->rq)) |
| error_value = 0; |
| |
| if (check_for_unit_attention(h, cmd)) { |
| *retry_cmd = !blk_rq_is_passthrough(cmd->rq); |
| return 0; |
| } |
| |
| /* Not SG_IO or similar? */ |
| if (!blk_rq_is_passthrough(cmd->rq)) { |
| if (error_value != 0) |
| dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION" |
| " sense key = 0x%x\n", cmd, sense_key); |
| return error_value; |
| } |
| |
| scsi_req(cmd->rq)->sense_len = cmd->err_info->SenseLen; |
| return error_value; |
| } |
| |
| /* checks the status of the job and calls complete buffers to mark all |
| * buffers for the completed job. Note that this function does not need |
| * to hold the hba/queue lock. |
| */ |
| static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd, |
| int timeout) |
| { |
| int retry_cmd = 0; |
| struct request *rq = cmd->rq; |
| struct scsi_request *sreq = scsi_req(rq); |
| |
| sreq->result = 0; |
| |
| if (timeout) |
| sreq->result = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT); |
| |
| if (cmd->err_info->CommandStatus == 0) /* no error has occurred */ |
| goto after_error_processing; |
| |
| switch (cmd->err_info->CommandStatus) { |
| case CMD_TARGET_STATUS: |
| sreq->result = evaluate_target_status(h, cmd, &retry_cmd); |
| break; |
| case CMD_DATA_UNDERRUN: |
| if (!blk_rq_is_passthrough(cmd->rq)) { |
| dev_warn(&h->pdev->dev, "cmd %p has" |
| " completed with data underrun " |
| "reported\n", cmd); |
| } |
| break; |
| case CMD_DATA_OVERRUN: |
| if (!blk_rq_is_passthrough(cmd->rq)) |
| dev_warn(&h->pdev->dev, "cciss: cmd %p has" |
| " completed with data overrun " |
| "reported\n", cmd); |
| break; |
| case CMD_INVALID: |
| dev_warn(&h->pdev->dev, "cciss: cmd %p is " |
| "reported invalid\n", cmd); |
| sreq->result = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_rq_is_passthrough(cmd->rq) ? |
| DID_PASSTHROUGH : DID_ERROR); |
| break; |
| case CMD_PROTOCOL_ERR: |
| dev_warn(&h->pdev->dev, "cciss: cmd %p has " |
| "protocol error\n", cmd); |
| sreq->result = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_rq_is_passthrough(cmd->rq) ? |
| DID_PASSTHROUGH : DID_ERROR); |
| break; |
| case CMD_HARDWARE_ERR: |
| dev_warn(&h->pdev->dev, "cciss: cmd %p had " |
| " hardware error\n", cmd); |
| sreq->result = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_rq_is_passthrough(cmd->rq) ? |
| DID_PASSTHROUGH : DID_ERROR); |
| break; |
| case CMD_CONNECTION_LOST: |
| dev_warn(&h->pdev->dev, "cciss: cmd %p had " |
| "connection lost\n", cmd); |
| sreq->result = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_rq_is_passthrough(cmd->rq) ? |
| DID_PASSTHROUGH : DID_ERROR); |
| break; |
| case CMD_ABORTED: |
| dev_warn(&h->pdev->dev, "cciss: cmd %p was " |
| "aborted\n", cmd); |
| sreq->result = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_rq_is_passthrough(cmd->rq) ? |
| DID_PASSTHROUGH : DID_ABORT); |
| break; |
| case CMD_ABORT_FAILED: |
| dev_warn(&h->pdev->dev, "cciss: cmd %p reports " |
| "abort failed\n", cmd); |
| sreq->result = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_rq_is_passthrough(cmd->rq) ? |
| DID_PASSTHROUGH : DID_ERROR); |
| break; |
| case CMD_UNSOLICITED_ABORT: |
| dev_warn(&h->pdev->dev, "cciss%d: unsolicited " |
| "abort %p\n", h->ctlr, cmd); |
| if (cmd->retry_count < MAX_CMD_RETRIES) { |
| retry_cmd = 1; |
| dev_warn(&h->pdev->dev, "retrying %p\n", cmd); |
| cmd->retry_count++; |
| } else |
| dev_warn(&h->pdev->dev, |
| "%p retried too many times\n", cmd); |
| sreq->result = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_rq_is_passthrough(cmd->rq) ? |
| DID_PASSTHROUGH : DID_ABORT); |
| break; |
| case CMD_TIMEOUT: |
| dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd); |
| sreq->result = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_rq_is_passthrough(cmd->rq) ? |
| DID_PASSTHROUGH : DID_ERROR); |
| break; |
| case CMD_UNABORTABLE: |
| dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd); |
| sreq->result = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_rq_is_passthrough(cmd->rq) ? |
| DID_PASSTHROUGH : DID_ERROR); |
| break; |
| default: |
| dev_warn(&h->pdev->dev, "cmd %p returned " |
| "unknown status %x\n", cmd, |
| cmd->err_info->CommandStatus); |
| sreq->result = make_status_bytes(SAM_STAT_GOOD, |
| cmd->err_info->CommandStatus, DRIVER_OK, |
| blk_rq_is_passthrough(cmd->rq) ? |
| DID_PASSTHROUGH : DID_ERROR); |
| } |
| |
| after_error_processing: |
| |
| /* We need to return this command */ |
| if (retry_cmd) { |
| resend_cciss_cmd(h, cmd); |
| return; |
| } |
| cmd->rq->completion_data = cmd; |
| blk_complete_request(cmd->rq); |
| } |
| |
| static inline u32 cciss_tag_contains_index(u32 tag) |
| { |
| #define DIRECT_LOOKUP_BIT 0x10 |
| return tag & DIRECT_LOOKUP_BIT; |
| } |
| |
| static inline u32 cciss_tag_to_index(u32 tag) |
| { |
| #define DIRECT_LOOKUP_SHIFT 5 |
| return tag >> DIRECT_LOOKUP_SHIFT; |
| } |
| |
| static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag) |
| { |
| #define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1) |
| #define CCISS_SIMPLE_ERROR_BITS 0x03 |
| if (likely(h->transMethod & CFGTBL_Trans_Performant)) |
| return tag & ~CCISS_PERF_ERROR_BITS; |
| return tag & ~CCISS_SIMPLE_ERROR_BITS; |
| } |
| |
| static inline void cciss_mark_tag_indexed(u32 *tag) |
| { |
| *tag |= DIRECT_LOOKUP_BIT; |
| } |
| |
| static inline void cciss_set_tag_index(u32 *tag, u32 index) |
| { |
| *tag |= (index << DIRECT_LOOKUP_SHIFT); |
| } |
| |
| /* |
| * Get a request and submit it to the controller. |
| */ |
| static void do_cciss_request(struct request_queue *q) |
| { |
| ctlr_info_t *h = q->queuedata; |
| CommandList_struct *c; |
| sector_t start_blk; |
| int seg; |
| struct request *creq; |
| u64bit temp64; |
| struct scatterlist *tmp_sg; |
| SGDescriptor_struct *curr_sg; |
| drive_info_struct *drv; |
| int i, dir; |
| int sg_index = 0; |
| int chained = 0; |
| |
| queue: |
| creq = blk_peek_request(q); |
| if (!creq) |
| goto startio; |
| |
| BUG_ON(creq->nr_phys_segments > h->maxsgentries); |
| |
| c = cmd_alloc(h); |
| if (!c) |
| goto full; |
| |
| blk_start_request(creq); |
| |
| tmp_sg = h->scatter_list[c->cmdindex]; |
| spin_unlock_irq(q->queue_lock); |
| |
| c->cmd_type = CMD_RWREQ; |
| c->rq = creq; |
| |
| /* fill in the request */ |
| drv = creq->rq_disk->private_data; |
| c->Header.ReplyQueue = 0; /* unused in simple mode */ |
| /* got command from pool, so use the command block index instead */ |
| /* for direct lookups. */ |
| /* The first 2 bits are reserved for controller error reporting. */ |
| cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex); |
| cciss_mark_tag_indexed(&c->Header.Tag.lower); |
| memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID)); |
| c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */ |
| c->Request.Type.Type = TYPE_CMD; /* It is a command. */ |
| c->Request.Type.Attribute = ATTR_SIMPLE; |
| c->Request.Type.Direction = |
| (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE; |
| c->Request.Timeout = 0; /* Don't time out */ |
| c->Request.CDB[0] = |
| (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write; |
| start_blk = blk_rq_pos(creq); |
| dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n", |
| (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq)); |
| sg_init_table(tmp_sg, h->maxsgentries); |
| seg = blk_rq_map_sg(q, creq, tmp_sg); |
| |
| /* get the DMA records for the setup */ |
| if (c->Request.Type.Direction == XFER_READ) |
| dir = PCI_DMA_FROMDEVICE; |
| else |
| dir = PCI_DMA_TODEVICE; |
| |
| curr_sg = c->SG; |
| sg_index = 0; |
| chained = 0; |
| |
| for (i = 0; i < seg; i++) { |
| if (((sg_index+1) == (h->max_cmd_sgentries)) && |
| !chained && ((seg - i) > 1)) { |
| /* Point to next chain block. */ |
| curr_sg = h->cmd_sg_list[c->cmdindex]; |
| sg_index = 0; |
| chained = 1; |
| } |
| curr_sg[sg_index].Len = tmp_sg[i].length; |
| temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]), |
| tmp_sg[i].offset, |
| tmp_sg[i].length, dir); |
| if (dma_mapping_error(&h->pdev->dev, temp64.val)) { |
| dev_warn(&h->pdev->dev, |
| "%s: error mapping page for DMA\n", __func__); |
| scsi_req(creq)->result = |
| make_status_bytes(SAM_STAT_GOOD, 0, DRIVER_OK, |
| DID_SOFT_ERROR); |
| cmd_free(h, c); |
| return; |
| } |
| curr_sg[sg_index].Addr.lower = temp64.val32.lower; |
| curr_sg[sg_index].Addr.upper = temp64.val32.upper; |
| curr_sg[sg_index].Ext = 0; /* we are not chaining */ |
| ++sg_index; |
| } |
| if (chained) { |
| if (cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex], |
| (seg - (h->max_cmd_sgentries - 1)) * |
| sizeof(SGDescriptor_struct))) { |
| scsi_req(creq)->result = |
| make_status_bytes(SAM_STAT_GOOD, 0, DRIVER_OK, |
| DID_SOFT_ERROR); |
| cmd_free(h, c); |
| return; |
| } |
| } |
| |
| /* track how many SG entries we are using */ |
| if (seg > h->maxSG) |
| h->maxSG = seg; |
| |
| dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments " |
| "chained[%d]\n", |
| blk_rq_sectors(creq), seg, chained); |
| |
| c->Header.SGTotal = seg + chained; |
| if (seg <= h->max_cmd_sgentries) |
| c->Header.SGList = c->Header.SGTotal; |
| else |
| c->Header.SGList = h->max_cmd_sgentries; |
| set_performant_mode(h, c); |
| |
| switch (req_op(creq)) { |
| case REQ_OP_READ: |
| case REQ_OP_WRITE: |
| if(h->cciss_read == CCISS_READ_10) { |
| c->Request.CDB[1] = 0; |
| c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */ |
| c->Request.CDB[3] = (start_blk >> 16) & 0xff; |
| c->Request.CDB[4] = (start_blk >> 8) & 0xff; |
| c->Request.CDB[5] = start_blk & 0xff; |
| c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */ |
| c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff; |
| c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff; |
| c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0; |
| } else { |
| u32 upper32 = upper_32_bits(start_blk); |
| |
| c->Request.CDBLen = 16; |
| c->Request.CDB[1]= 0; |
| c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */ |
| c->Request.CDB[3]= (upper32 >> 16) & 0xff; |
| c->Request.CDB[4]= (upper32 >> 8) & 0xff; |
| c->Request.CDB[5]= upper32 & 0xff; |
| c->Request.CDB[6]= (start_blk >> 24) & 0xff; |
| c->Request.CDB[7]= (start_blk >> 16) & 0xff; |
| c->Request.CDB[8]= (start_blk >> 8) & 0xff; |
| c->Request.CDB[9]= start_blk & 0xff; |
| c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff; |
| c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff; |
| c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff; |
| c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff; |
| c->Request.CDB[14] = c->Request.CDB[15] = 0; |
| } |
| break; |
| case REQ_OP_SCSI_IN: |
| case REQ_OP_SCSI_OUT: |
| c->Request.CDBLen = scsi_req(creq)->cmd_len; |
| memcpy(c->Request.CDB, scsi_req(creq)->cmd, BLK_MAX_CDB); |
| scsi_req(creq)->sense = c->err_info->SenseInfo; |
| break; |
| default: |
| dev_warn(&h->pdev->dev, "bad request type %d\n", |
| creq->cmd_flags); |
| BUG(); |
| } |
| |
| spin_lock_irq(q->queue_lock); |
| |
| addQ(&h->reqQ, c); |
| h->Qdepth++; |
| if (h->Qdepth > h->maxQsinceinit) |
| h->maxQsinceinit = h->Qdepth; |
| |
| goto queue; |
| full: |
| blk_stop_queue(q); |
| startio: |
| /* We will already have the driver lock here so not need |
| * to lock it. |
| */ |
| start_io(h); |
| } |
| |
| static inline unsigned long get_next_completion(ctlr_info_t *h) |
| { |
| return h->access.command_completed(h); |
| } |
| |
| static inline int interrupt_pending(ctlr_info_t *h) |
| { |
| return h->access.intr_pending(h); |
| } |
| |
| static inline long interrupt_not_for_us(ctlr_info_t *h) |
| { |
| return ((h->access.intr_pending(h) == 0) || |
| (h->interrupts_enabled == 0)); |
| } |
| |
| static inline int bad_tag(ctlr_info_t *h, u32 tag_index, |
| u32 raw_tag) |
| { |
| if (unlikely(tag_index >= h->nr_cmds)) { |
| dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c, |
| u32 raw_tag) |
| { |
| removeQ(c); |
| if (likely(c->cmd_type == CMD_RWREQ)) |
| complete_command(h, c, 0); |
| else if (c->cmd_type == CMD_IOCTL_PEND) |
| complete(c->waiting); |
| #ifdef CONFIG_CISS_SCSI_TAPE |
| else if (c->cmd_type == CMD_SCSI) |
| complete_scsi_command(c, 0, raw_tag); |
| #endif |
| } |
| |
| static inline u32 next_command(ctlr_info_t *h) |
| { |
| u32 a; |
| |
| if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) |
| return h->access.command_completed(h); |
| |
| if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) { |
| a = *(h->reply_pool_head); /* Next cmd in ring buffer */ |
| (h->reply_pool_head)++; |
| h->commands_outstanding--; |
| } else { |
| a = FIFO_EMPTY; |
| } |
| /* Check for wraparound */ |
| if (h->reply_pool_head == (h->reply_pool + h->max_commands)) { |
| h->reply_pool_head = h->reply_pool; |
| h->reply_pool_wraparound ^= 1; |
| } |
| return a; |
| } |
| |
| /* process completion of an indexed ("direct lookup") command */ |
| static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag) |
| { |
| u32 tag_index; |
| CommandList_struct *c; |
| |
| tag_index = cciss_tag_to_index(raw_tag); |
| if (bad_tag(h, tag_index, raw_tag)) |
| return next_command(h); |
| c = h->cmd_pool + tag_index; |
| finish_cmd(h, c, raw_tag); |
| return next_command(h); |
| } |
| |
| /* process completion of a non-indexed command */ |
| static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag) |
| { |
| CommandList_struct *c = NULL; |
| __u32 busaddr_masked, tag_masked; |
| |
| tag_masked = cciss_tag_discard_error_bits(h, raw_tag); |
| list_for_each_entry(c, &h->cmpQ, list) { |
| busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr); |
| if (busaddr_masked == tag_masked) { |
| finish_cmd(h, c, raw_tag); |
| return next_command(h); |
| } |
| } |
| bad_tag(h, h->nr_cmds + 1, raw_tag); |
| return next_command(h); |
| } |
| |
| /* Some controllers, like p400, will give us one interrupt |
| * after a soft reset, even if we turned interrupts off. |
| * Only need to check for this in the cciss_xxx_discard_completions |
| * functions. |
| */ |
| static int ignore_bogus_interrupt(ctlr_info_t *h) |
| { |
| if (likely(!reset_devices)) |
| return 0; |
| |
| if (likely(h->interrupts_enabled)) |
| return 0; |
| |
| dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " |
| "(known firmware bug.) Ignoring.\n"); |
| |
| return 1; |
| } |
| |
| static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id) |
| { |
| ctlr_info_t *h = dev_id; |
| unsigned long flags; |
| u32 raw_tag; |
| |
| if (ignore_bogus_interrupt(h)) |
| return IRQ_NONE; |
| |
| if (interrupt_not_for_us(h)) |
| return IRQ_NONE; |
| spin_lock_irqsave(&h->lock, flags); |
| while (interrupt_pending(h)) { |
| raw_tag = get_next_completion(h); |
| while (raw_tag != FIFO_EMPTY) |
| raw_tag = next_command(h); |
| } |
| spin_unlock_irqrestore(&h->lock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id) |
| { |
| ctlr_info_t *h = dev_id; |
| unsigned long flags; |
| u32 raw_tag; |
| |
| if (ignore_bogus_interrupt(h)) |
| return IRQ_NONE; |
| |
| spin_lock_irqsave(&h->lock, flags); |
| raw_tag = get_next_completion(h); |
| while (raw_tag != FIFO_EMPTY) |
| raw_tag = next_command(h); |
| spin_unlock_irqrestore(&h->lock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t do_cciss_intx(int irq, void *dev_id) |
| { |
| ctlr_info_t *h = dev_id; |
| unsigned long flags; |
| u32 raw_tag; |
| |
| if (interrupt_not_for_us(h)) |
| return IRQ_NONE; |
| spin_lock_irqsave(&h->lock, flags); |
| while (interrupt_pending(h)) { |
| raw_tag = get_next_completion(h); |
| while (raw_tag != FIFO_EMPTY) { |
| if (cciss_tag_contains_index(raw_tag)) |
| raw_tag = process_indexed_cmd(h, raw_tag); |
| else |
| raw_tag = process_nonindexed_cmd(h, raw_tag); |
| } |
| } |
| spin_unlock_irqrestore(&h->lock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never |
| * check the interrupt pending register because it is not set. |
| */ |
| static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id) |
| { |
| ctlr_info_t *h = dev_id; |
| unsigned long flags; |
| u32 raw_tag; |
| |
| spin_lock_irqsave(&h->lock, flags); |
| raw_tag = get_next_completion(h); |
| while (raw_tag != FIFO_EMPTY) { |
| if (cciss_tag_contains_index(raw_tag)) |
| raw_tag = process_indexed_cmd(h, raw_tag); |
| else |
| raw_tag = process_nonindexed_cmd(h, raw_tag); |
| } |
| spin_unlock_irqrestore(&h->lock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * add_to_scan_list() - add controller to rescan queue |
| * @h: Pointer to the controller. |
| * |
| * Adds the controller to the rescan queue if not already on the queue. |
| * |
| * returns 1 if added to the queue, 0 if skipped (could be on the |
| * queue already, or the controller could be initializing or shutting |
| * down). |
| **/ |
| static int add_to_scan_list(struct ctlr_info *h) |
| { |
| struct ctlr_info *test_h; |
| int found = 0; |
| int ret = 0; |
| |
| if (h->busy_initializing) |
| return 0; |
| |
| if (!mutex_trylock(&h->busy_shutting_down)) |
| return 0; |
| |
| mutex_lock(&scan_mutex); |
| list_for_each_entry(test_h, &scan_q, scan_list) { |
| if (test_h == h) { |
| found = 1; |
| break; |
| } |
| } |
| if (!found && !h->busy_scanning) { |
| reinit_completion(&h->scan_wait); |
| list_add_tail(&h->scan_list, &scan_q); |
| ret = 1; |
| } |
| mutex_unlock(&scan_mutex); |
| mutex_unlock(&h->busy_shutting_down); |
| |
| return ret; |
| } |
| |
| /** |
| * remove_from_scan_list() - remove controller from rescan queue |
| * @h: Pointer to the controller. |
| * |
| * Removes the controller from the rescan queue if present. Blocks if |
| * the controller is currently conducting a rescan. The controller |
| * can be in one of three states: |
| * 1. Doesn't need a scan |
| * 2. On the scan list, but not scanning yet (we remove it) |
| * 3. Busy scanning (and not on the list). In this case we want to wait for |
| * the scan to complete to make sure the scanning thread for this |
| * controller is completely idle. |
| **/ |
| static void remove_from_scan_list(struct ctlr_info *h) |
| { |
| struct ctlr_info *test_h, *tmp_h; |
| |
| mutex_lock(&scan_mutex); |
| list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) { |
| if (test_h == h) { /* state 2. */ |
| list_del(&h->scan_list); |
| complete_all(&h->scan_wait); |
| mutex_unlock(&scan_mutex); |
| return; |
| } |
| } |
| if (h->busy_scanning) { /* state 3. */ |
| mutex_unlock(&scan_mutex); |
| wait_for_completion(&h->scan_wait); |
| } else { /* state 1, nothing to do. */ |
| mutex_unlock(&scan_mutex); |
| } |
| } |
| |
| /** |
| * scan_thread() - kernel thread used to rescan controllers |
| * @data: Ignored. |
| * |
| * A kernel thread used scan for drive topology changes on |
| * controllers. The thread processes only one controller at a time |
| * using a queue. Controllers are added to the queue using |
| * add_to_scan_list() and removed from the queue either after done |
| * processing or using remove_from_scan_list(). |
| * |
| * returns 0. |
| **/ |
| static int scan_thread(void *data) |
| { |
| struct ctlr_info *h; |
| |
| while (1) { |
| set_current_state(TASK_INTERRUPTIBLE); |
| schedule(); |
| if (kthread_should_stop()) |
| break; |
| |
| while (1) { |
| mutex_lock(&scan_mutex); |
| if (list_empty(&scan_q)) { |
| mutex_unlock(&scan_mutex); |
| break; |
| } |
| |
| h = list_entry(scan_q.next, |
| struct ctlr_info, |
| scan_list); |
| list_del(&h->scan_list); |
| h->busy_scanning = 1; |
| mutex_unlock(&scan_mutex); |
| |
| rebuild_lun_table(h, 0, 0); |
| complete_all(&h->scan_wait); |
| mutex_lock(&scan_mutex); |
| h->busy_scanning = 0; |
| mutex_unlock(&scan_mutex); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c) |
| { |
| if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) |
| return 0; |
| |
| switch (c->err_info->SenseInfo[12]) { |
| case STATE_CHANGED: |
| dev_warn(&h->pdev->dev, "a state change " |
| "detected, command retried\n"); |
| return 1; |
| break; |
| case LUN_FAILED: |
| dev_warn(&h->pdev->dev, "LUN failure " |
| "detected, action required\n"); |
| return 1; |
| break; |
| case REPORT_LUNS_CHANGED: |
| dev_warn(&h->pdev->dev, "report LUN data changed\n"); |
| /* |
| * Here, we could call add_to_scan_list and wake up the scan thread, |
| * except that it's quite likely that we will get more than one |
| * REPORT_LUNS_CHANGED condition in quick succession, which means |
| * that those which occur after the first one will likely happen |
| * *during* the scan_thread's rescan. And the rescan code is not |
| * robust enough to restart in the middle, undoing what it has already |
| * done, and it's not clear that it's even possible to do this, since |
| * part of what it does is notify the block layer, which starts |
| * doing it's own i/o to read partition tables and so on, and the |
| * driver doesn't have visibility to know what might need undoing. |
| * In any event, if possible, it is horribly complicated to get right |
| * so we just don't do it for now. |
| * |
| * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012. |
| */ |
| return 1; |
| break; |
| case POWER_OR_RESET: |
| dev_warn(&h->pdev->dev, |
| "a power on or device reset detected\n"); |
| return 1; |
| break; |
| case UNIT_ATTENTION_CLEARED: |
| dev_warn(&h->pdev->dev, |
| "unit attention cleared by another initiator\n"); |
| return 1; |
| break; |
| default: |
| dev_warn(&h->pdev->dev, "unknown unit attention detected\n"); |
| return 1; |
| } |
| } |
| |
| /* |
| * We cannot read the structure directly, for portability we must use |
| * the io functions. |
| * This is for debug only. |
| */ |
| static void print_cfg_table(ctlr_info_t *h) |
| { |
| int i; |
| char temp_name[17]; |
| CfgTable_struct *tb = h->cfgtable; |
| |
| dev_dbg(&h->pdev->dev, "Controller Configuration information\n"); |
| dev_dbg(&h->pdev->dev, "------------------------------------\n"); |
| for (i = 0; i < 4; i++) |
| temp_name[i] = readb(&(tb->Signature[i])); |
| temp_name[4] = '\0'; |
| dev_dbg(&h->pdev->dev, " Signature = %s\n", temp_name); |
| dev_dbg(&h->pdev->dev, " Spec Number = %d\n", |
| readl(&(tb->SpecValence))); |
| dev_dbg(&h->pdev->dev, " Transport methods supported = 0x%x\n", |
| readl(&(tb->TransportSupport))); |
| dev_dbg(&h->pdev->dev, " Transport methods active = 0x%x\n", |
| readl(&(tb->TransportActive))); |
| dev_dbg(&h->pdev->dev, " Requested transport Method = 0x%x\n", |
| readl(&(tb->HostWrite.TransportRequest))); |
| dev_dbg(&h->pdev->dev, " Coalesce Interrupt Delay = 0x%x\n", |
| readl(&(tb->HostWrite.CoalIntDelay))); |
| dev_dbg(&h->pdev->dev, " Coalesce Interrupt Count = 0x%x\n", |
| readl(&(tb->HostWrite.CoalIntCount))); |
| dev_dbg(&h->pdev->dev, " Max outstanding commands = 0x%x\n", |
| readl(&(tb->CmdsOutMax))); |
| dev_dbg(&h->pdev->dev, " Bus Types = 0x%x\n", |
| readl(&(tb->BusTypes))); |
| for (i = 0; i < 16; i++) |
| temp_name[i] = readb(&(tb->ServerName[i])); |
| temp_name[16] = '\0'; |
| dev_dbg(&h->pdev->dev, " Server Name = %s\n", temp_name); |
| dev_dbg(&h->pdev->dev, " Heartbeat Counter = 0x%x\n\n\n", |
| readl(&(tb->HeartBeat))); |
| } |
| |
| static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) |
| { |
| int i, offset, mem_type, bar_type; |
| if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ |
| return 0; |
| offset = 0; |
| for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { |
| bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; |
| if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) |
| offset += 4; |
| else { |
| mem_type = pci_resource_flags(pdev, i) & |
| PCI_BASE_ADDRESS_MEM_TYPE_MASK; |
| switch (mem_type) { |
| case PCI_BASE_ADDRESS_MEM_TYPE_32: |
| case PCI_BASE_ADDRESS_MEM_TYPE_1M: |
| offset += 4; /* 32 bit */ |
| break; |
| case PCI_BASE_ADDRESS_MEM_TYPE_64: |
| offset += 8; |
| break; |
| default: /* reserved in PCI 2.2 */ |
| dev_warn(&pdev->dev, |
| "Base address is invalid\n"); |
| return -1; |
| break; |
| } |
| } |
| if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) |
| return i + 1; |
| } |
| return -1; |
| } |
| |
| /* Fill in bucket_map[], given nsgs (the max number of |
| * scatter gather elements supported) and bucket[], |
| * which is an array of 8 integers. The bucket[] array |
| * contains 8 different DMA transfer sizes (in 16 |
| * byte increments) which the controller uses to fetch |
| * commands. This function fills in bucket_map[], which |
| * maps a given number of scatter gather elements to one of |
| * the 8 DMA transfer sizes. The point of it is to allow the |
| * controller to only do as much DMA as needed to fetch the |
| * command, with the DMA transfer size encoded in the lower |
| * bits of the command address. |
| */ |
| static void calc_bucket_map(int bucket[], int num_buckets, |
| int nsgs, int *bucket_map) |
| { |
| int i, j, b, size; |
| |
| /* even a command with 0 SGs requires 4 blocks */ |
| #define MINIMUM_TRANSFER_BLOCKS 4 |
| #define NUM_BUCKETS 8 |
| /* Note, bucket_map must have nsgs+1 entries. */ |
| for (i = 0; i <= nsgs; i++) { |
| /* Compute size of a command with i SG entries */ |
| size = i + MINIMUM_TRANSFER_BLOCKS; |
| b = num_buckets; /* Assume the biggest bucket */ |
| /* Find the bucket that is just big enough */ |
| for (j = 0; j < 8; j++) { |
| if (bucket[j] >= size) { |
| b = j; |
| break; |
| } |
| } |
| /* for a command with i SG entries, use bucket b. */ |
| bucket_map[i] = b; |
| } |
| } |
| |
| static void cciss_wait_for_mode_change_ack(ctlr_info_t *h) |
| { |
| int i; |
| |
| /* under certain very rare conditions, this can take awhile. |
| * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right |
| * as we enter this code.) */ |
| for (i = 0; i < MAX_CONFIG_WAIT; i++) { |
| if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) |
| break; |
| usleep_range(10000, 20000); |
| } |
| } |
| |
| static void cciss_enter_performant_mode(ctlr_info_t *h, u32 use_short_tags) |
| { |
| /* This is a bit complicated. There are 8 registers on |
| * the controller which we write to to tell it 8 different |
| * sizes of commands which there may be. It's a way of |
| * reducing the DMA done to fetch each command. Encoded into |
| * each command's tag are 3 bits which communicate to the controller |
| * which of the eight sizes that command fits within. The size of |
| * each command depends on how many scatter gather entries there are. |
| * Each SG entry requires 16 bytes. The eight registers are programmed |
| * with the number of 16-byte blocks a command of that size requires. |
| * The smallest command possible requires 5 such 16 byte blocks. |
| * the largest command possible requires MAXSGENTRIES + 4 16-byte |
| * blocks. Note, this only extends to the SG entries contained |
| * within the command block, and does not extend to chained blocks |
| * of SG elements. bft[] contains the eight values we write to |
| * the registers. They are not evenly distributed, but have more |
| * sizes for small commands, and fewer sizes for larger commands. |
| */ |
| __u32 trans_offset; |
| int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4}; |
| /* |
| * 5 = 1 s/g entry or 4k |
| * 6 = 2 s/g entry or 8k |
| * 8 = 4 s/g entry or 16k |
| * 10 = 6 s/g entry or 24k |
| */ |
| unsigned long register_value; |
| BUILD_BUG_ON(28 > MAXSGENTRIES + 4); |
| |
| h->reply_pool_wraparound = 1; /* spec: init to 1 */ |
| |
| /* Controller spec: zero out this buffer. */ |
| memset(h->reply_pool, 0, h->max_commands * sizeof(__u64)); |
| h->reply_pool_head = h->reply_pool; |
| |
| trans_offset = readl(&(h->cfgtable->TransMethodOffset)); |
| calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries, |
| h->blockFetchTable); |
| writel(bft[0], &h->transtable->BlockFetch0); |
| writel(bft[1], &h->transtable->BlockFetch1); |
| writel(bft[2], &h->transtable->BlockFetch2); |
| writel(bft[3], &h->transtable->BlockFetch3); |
| writel(bft[4], &h->transtable->BlockFetch4); |
| writel(bft[5], &h->transtable->BlockFetch5); |
| writel(bft[6], &h->transtable->BlockFetch6); |
| writel(bft[7], &h->transtable->BlockFetch7); |
| |
| /* size of controller ring buffer */ |
| writel(h->max_commands, &h->transtable->RepQSize); |
| writel(1, &h->transtable->RepQCount); |
| writel(0, &h->transtable->RepQCtrAddrLow32); |
| writel(0, &h->transtable->RepQCtrAddrHigh32); |
| writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32); |
| writel(0, &h->transtable->RepQAddr0High32); |
| writel(CFGTBL_Trans_Performant | use_short_tags, |
| &(h->cfgtable->HostWrite.TransportRequest)); |
| |
| writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
| cciss_wait_for_mode_change_ack(h); |
| register_value = readl(&(h->cfgtable->TransportActive)); |
| if (!(register_value & CFGTBL_Trans_Performant)) |
| dev_warn(&h->pdev->dev, "cciss: unable to get board into" |
| " performant mode\n"); |
| } |
| |
| static void cciss_put_controller_into_performant_mode(ctlr_info_t *h) |
| { |
| __u32 trans_support; |
| |
| if (cciss_simple_mode) |
| return; |
| |
| dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n"); |
| /* Attempt to put controller into performant mode if supported */ |
| /* Does board support performant mode? */ |
| trans_support = readl(&(h->cfgtable->TransportSupport)); |
| if (!(trans_support & PERFORMANT_MODE)) |
| return; |
| |
| dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n"); |
| /* Performant mode demands commands on a 32 byte boundary |
| * pci_alloc_consistent aligns on page boundarys already. |
| * Just need to check if divisible by 32 |
| */ |
| if ((sizeof(CommandList_struct) % 32) != 0) { |
| dev_warn(&h->pdev->dev, "%s %d %s\n", |
| "cciss info: command size[", |
| (int)sizeof(CommandList_struct), |
| "] not divisible by 32, no performant mode..\n"); |
| return; |
| } |
| |
| /* Performant mode ring buffer and supporting data structures */ |
| h->reply_pool = (__u64 *)pci_alloc_consistent( |
| h->pdev, h->max_commands * sizeof(__u64), |
| &(h->reply_pool_dhandle)); |
| |
| /* Need a block fetch table for performant mode */ |
| h->blockFetchTable = kmalloc(((h->maxsgentries+1) * |
| sizeof(__u32)), GFP_KERNEL); |
| |
| if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL)) |
| goto clean_up; |
| |
| cciss_enter_performant_mode(h, |
| trans_support & CFGTBL_Trans_use_short_tags); |
| |
| /* Change the access methods to the performant access methods */ |
| h->access = SA5_performant_access; |
| h->transMethod = CFGTBL_Trans_Performant; |
| |
| return; |
| clean_up: |
| kfree(h->blockFetchTable); |
| if (h->reply_pool) |
| pci_free_consistent(h->pdev, |
| h->max_commands * sizeof(__u64), |
| h->reply_pool, |
| h->reply_pool_dhandle); |
| return; |
| |
| } /* cciss_put_controller_into_performant_mode */ |
| |
| /* If MSI/MSI-X is supported by the kernel we will try to enable it on |
| * controllers that are capable. If not, we use IO-APIC mode. |
| */ |
| |
| static void cciss_interrupt_mode(ctlr_info_t *h) |
| { |
| int ret; |
| |
| /* Some boards advertise MSI but don't really support it */ |
| if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || |
| (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) |
| goto default_int_mode; |
| |
| ret = pci_alloc_irq_vectors(h->pdev, 4, 4, PCI_IRQ_MSIX); |
| if (ret >= 0) { |
| h->intr[0] = pci_irq_vector(h->pdev, 0); |
| h->intr[1] = pci_irq_vector(h->pdev, 1); |
| h->intr[2] = pci_irq_vector(h->pdev, 2); |
| h->intr[3] = pci_irq_vector(h->pdev, 3); |
| return; |
| } |
| |
| ret = pci_alloc_irq_vectors(h->pdev, 1, 1, PCI_IRQ_MSI); |
| |
| default_int_mode: |
| /* if we get here we're going to use the default interrupt mode */ |
| h->intr[h->intr_mode] = pci_irq_vector(h->pdev, 0); |
| return; |
| } |
| |
| static int cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id) |
| { |
| int i; |
| u32 subsystem_vendor_id, subsystem_device_id; |
| |
| subsystem_vendor_id = pdev->subsystem_vendor; |
| subsystem_device_id = pdev->subsystem_device; |
| *board_id = ((subsystem_device_id << 16) & 0xffff0000) | |
| subsystem_vendor_id; |
| |
| for (i = 0; i < ARRAY_SIZE(products); i++) { |
| /* Stand aside for hpsa driver on request */ |
| if (cciss_allow_hpsa) |
| return -ENODEV; |
| if (*board_id == products[i].board_id) |
| return i; |
| } |
| dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n", |
| *board_id); |
| return -ENODEV; |
| } |
| |
| static inline bool cciss_board_disabled(ctlr_info_t *h) |
| { |
| u16 command; |
| |
| (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command); |
| return ((command & PCI_COMMAND_MEMORY) == 0); |
| } |
| |
| static int cciss_pci_find_memory_BAR(struct pci_dev *pdev, |
| unsigned long *memory_bar) |
| { |
| int i; |
| |
| for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) |
| if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { |
| /* addressing mode bits already removed */ |
| *memory_bar = pci_resource_start(pdev, i); |
| dev_dbg(&pdev->dev, "memory BAR = %lx\n", |
| *memory_bar); |
| return 0; |
| } |
| dev_warn(&pdev->dev, "no memory BAR found\n"); |
| return -ENODEV; |
| } |
| |
| static int cciss_wait_for_board_state(struct pci_dev *pdev, |
| void __iomem *vaddr, int wait_for_ready) |
| #define BOARD_READY 1 |
| #define BOARD_NOT_READY 0 |
| { |
| int i, iterations; |
| u32 scratchpad; |
| |
| if (wait_for_ready) |
| iterations = CCISS_BOARD_READY_ITERATIONS; |
| else |
| iterations = CCISS_BOARD_NOT_READY_ITERATIONS; |
| |
| for (i = 0; i < iterations; i++) { |
| scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); |
| if (wait_for_ready) { |
| if (scratchpad == CCISS_FIRMWARE_READY) |
| return 0; |
| } else { |
| if (scratchpad != CCISS_FIRMWARE_READY) |
| return 0; |
| } |
| msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS); |
| } |
| dev_warn(&pdev->dev, "board not ready, timed out.\n"); |
| return -ENODEV; |
| } |
| |
| static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, |
| u32 *cfg_base_addr, u64 *cfg_base_addr_index, |
| u64 *cfg_offset) |
| { |
| *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); |
| *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); |
| *cfg_base_addr &= (u32) 0x0000ffff; |
| *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); |
| if (*cfg_base_addr_index == -1) { |
| dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, " |
| "*cfg_base_addr = 0x%08x\n", *cfg_base_addr); |
| return -ENODEV; |
| } |
| return 0; |
| } |
| |
| static int cciss_find_cfgtables(ctlr_info_t *h) |
| { |
| u64 cfg_offset; |
| u32 cfg_base_addr; |
| u64 cfg_base_addr_index; |
| u32 trans_offset; |
| int rc; |
| |
| rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, |
| &cfg_base_addr_index, &cfg_offset); |
| if (rc) |
| return rc; |
| h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, |
| cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); |
| if (!h->cfgtable) |
| return -ENOMEM; |
| rc = write_driver_ver_to_cfgtable(h->cfgtable); |
| if (rc) |
| return rc; |
| /* Find performant mode table. */ |
| trans_offset = readl(&h->cfgtable->TransMethodOffset); |
| h->transtable = remap_pci_mem(pci_resource_start(h->pdev, |
| cfg_base_addr_index)+cfg_offset+trans_offset, |
| sizeof(*h->transtable)); |
| if (!h->transtable) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static void cciss_get_max_perf_mode_cmds(struct ctlr_info *h) |
| { |
| h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); |
| |
| /* Limit commands in memory limited kdump scenario. */ |
| if (reset_devices && h->max_commands > 32) |
| h->max_commands = 32; |
| |
| if (h->max_commands < 16) { |
| dev_warn(&h->pdev->dev, "Controller reports " |
| "max supported commands of %d, an obvious lie. " |
| "Using 16. Ensure that firmware is up to date.\n", |
| h->max_commands); |
| h->max_commands = 16; |
| } |
| } |
| |
| /* Interrogate the hardware for some limits: |
| * max commands, max SG elements without chaining, and with chaining, |
| * SG chain block size, etc. |
| */ |
| static void cciss_find_board_params(ctlr_info_t *h) |
| { |
| cciss_get_max_perf_mode_cmds(h); |
| h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds; |
| h->maxsgentries = readl(&(h->cfgtable->MaxSGElements)); |
| /* |
| * The P600 may exhibit poor performnace under some workloads |
| * if we use the value in the configuration table. Limit this |
| * controller to MAXSGENTRIES (32) instead. |
| */ |
| if (h->board_id == 0x3225103C) |
| h->maxsgentries = MAXSGENTRIES; |
| /* |
| * Limit in-command s/g elements to 32 save dma'able memory. |
| * Howvever spec says if 0, use 31 |
| */ |
| h->max_cmd_sgentries = 31; |
| if (h->maxsgentries > 512) { |
| h->max_cmd_sgentries = 32; |
| h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1; |
| h->maxsgentries--; /* save one for chain pointer */ |
| } else { |
| h->maxsgentries = 31; /* default to traditional values */ |
| h->chainsize = 0; |
| } |
| } |
| |
| static inline bool CISS_signature_present(ctlr_info_t *h) |
| { |
| if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { |
| dev_warn(&h->pdev->dev, "not a valid CISS config table\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| /* Need to enable prefetch in the SCSI core for 6400 in x86 */ |
| static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h) |
| { |
| #ifdef CONFIG_X86 |
| u32 prefetch; |
| |
| prefetch = readl(&(h->cfgtable->SCSI_Prefetch)); |
| prefetch |= 0x100; |
| writel(prefetch, &(h->cfgtable->SCSI_Prefetch)); |
| #endif |
| } |
| |
| /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result |
| * in a prefetch beyond physical memory. |
| */ |
| static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h) |
| { |
| u32 dma_prefetch; |
| __u32 dma_refetch; |
| |
| if (h->board_id != 0x3225103C) |
| return; |
| dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); |
| dma_prefetch |= 0x8000; |
| writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); |
| pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch); |
| dma_refetch |= 0x1; |
| pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch); |
| } |
| |
| static int cciss_pci_init(ctlr_info_t *h) |
| { |
| int prod_index, err; |
| |
| prod_index = cciss_lookup_board_id(h->pdev, &h->board_id); |
| if (prod_index < 0) |
| return -ENODEV; |
| h->product_name = products[prod_index].product_name; |
| h->access = *(products[prod_index].access); |
| |
| if (cciss_board_disabled(h)) { |
| dev_warn(&h->pdev->dev, "controller appears to be disabled\n"); |
| return -ENODEV; |
| } |
| |
| pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | |
| PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); |
| |
| err = pci_enable_device(h->pdev); |
| if (err) { |
| dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n"); |
| return err; |
| } |
| |
| err = pci_request_regions(h->pdev, "cciss"); |
| if (err) { |
| dev_warn(&h->pdev->dev, |
| "Cannot obtain PCI resources, aborting\n"); |
| return err; |
| } |
| |
| dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq); |
| dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id); |
| |
| /* If the kernel supports MSI/MSI-X we will try to enable that functionality, |
| * else we use the IO-APIC interrupt assigned to us by system ROM. |
| */ |
| cciss_interrupt_mode(h); |
| err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr); |
| if (err) |
| goto err_out_free_res; |
| h->vaddr = remap_pci_mem(h->paddr, 0x250); |
| if (!h->vaddr) { |
| err = -ENOMEM; |
| goto err_out_free_res; |
| } |
| err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); |
| if (err) |
| goto err_out_free_res; |
| err = cciss_find_cfgtables(h); |
| if (err) |
| goto err_out_free_res; |
| print_cfg_table(h); |
| cciss_find_board_params(h); |
| |
| if (!CISS_signature_present(h)) { |
| err = -ENODEV; |
| goto err_out_free_res; |
| } |
| cciss_enable_scsi_prefetch(h); |
| cciss_p600_dma_prefetch_quirk(h); |
| err = cciss_enter_simple_mode(h); |
| if (err) |
| goto err_out_free_res; |
| cciss_put_controller_into_performant_mode(h); |
| return 0; |
| |
| err_out_free_res: |
| /* |
| * Deliberately omit pci_disable_device(): it does something nasty to |
| * Smart Array controllers that pci_enable_device does not undo |
| */ |
| if (h->transtable) |
| iounmap(h->transtable); |
| if (h->cfgtable) |
| iounmap(h->cfgtable); |
| if (h->vaddr) |
| iounmap(h->vaddr); |
| pci_release_regions(h->pdev); |
| return err; |
| } |
| |
| /* Function to find the first free pointer into our hba[] array |
| * Returns -1 if no free entries are left. |
| */ |
| static int alloc_cciss_hba(struct pci_dev *pdev) |
| { |
| int i; |
| |
| for (i = 0; i < MAX_CTLR; i++) { |
| if (!hba[i]) { |
| ctlr_info_t *h; |
| |
| h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL); |
| if (!h) |
| goto Enomem; |
| hba[i] = h; |
| return i; |
| } |
| } |
| dev_warn(&pdev->dev, "This driver supports a maximum" |
| " of %d controllers.\n", MAX_CTLR); |
| return -1; |
| Enomem: |
| dev_warn(&pdev->dev, "out of memory.\n"); |
| return -1; |
| } |
| |
| static void free_hba(ctlr_info_t *h) |
| { |
| int i; |
| |
| hba[h->ctlr] = NULL; |
| for (i = 0; i < h->highest_lun + 1; i++) |
| if (h->gendisk[i] != NULL) |
| put_disk(h->gendisk[i]); |
| kfree(h); |
| } |
| |
| /* Send a message CDB to the firmware. */ |
| static int cciss_message(struct pci_dev *pdev, unsigned char opcode, |
| unsigned char type) |
| { |
| typedef struct { |
| CommandListHeader_struct CommandHeader; |
| RequestBlock_struct Request; |
| ErrDescriptor_struct ErrorDescriptor; |
| } Command; |
| static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct); |
| Command *cmd; |
| dma_addr_t paddr64; |
| uint32_t paddr32, tag; |
| void __iomem *vaddr; |
| int i, err; |
| |
| vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); |
| if (vaddr == NULL) |
| return -ENOMEM; |
| |
| /* The Inbound Post Queue only accepts 32-bit physical addresses for the |
| CCISS commands, so they must be allocated from the lower 4GiB of |
| memory. */ |
| err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); |
| if (err) { |
| iounmap(vaddr); |
| return -ENOMEM; |
| } |
| |
| cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); |
| if (cmd == NULL) { |
| iounmap(vaddr); |
| return -ENOMEM; |
| } |
| |
| /* This must fit, because of the 32-bit consistent DMA mask. Also, |
| although there's no guarantee, we assume that the address is at |
| least 4-byte aligned (most likely, it's page-aligned). */ |
| paddr32 = paddr64; |
| |
| cmd->CommandHeader.ReplyQueue = 0; |
| cmd->CommandHeader.SGList = 0; |
| cmd->CommandHeader.SGTotal = 0; |
| cmd->CommandHeader.Tag.lower = paddr32; |
| cmd->CommandHeader.Tag.upper = 0; |
| memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); |
| |
| cmd->Request.CDBLen = 16; |
| cmd->Request.Type.Type = TYPE_MSG; |
| cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; |
| cmd->Request.Type.Direction = XFER_NONE; |
| cmd->Request.Timeout = 0; /* Don't time out */ |
| cmd->Request.CDB[0] = opcode; |
| cmd->Request.CDB[1] = type; |
| memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */ |
| |
| cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command); |
| cmd->ErrorDescriptor.Addr.upper = 0; |
| cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct); |
| |
| writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); |
| |
| for (i = 0; i < 10; i++) { |
| tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); |
| if ((tag & ~3) == paddr32) |
| break; |
| msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS); |
| } |
| |
| iounmap(vaddr); |
| |
| /* we leak the DMA buffer here ... no choice since the controller could |
| still complete the command. */ |
| if (i == 10) { |
| dev_err(&pdev->dev, |
| "controller message %02x:%02x timed out\n", |
| opcode, type); |
| return -ETIMEDOUT; |
| } |
| |
| pci_free_consistent(pdev, cmd_sz, cmd, paddr64); |
| |
| if (tag & 2) { |
| dev_err(&pdev->dev, "controller message %02x:%02x failed\n", |
| opcode, type); |
| return -EIO; |
| } |
| |
| dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", |
| opcode, type); |
| return 0; |
| } |
| |
| #define cciss_noop(p) cciss_message(p, 3, 0) |
| |
| static int cciss_controller_hard_reset(struct pci_dev *pdev, |
| void * __iomem vaddr, u32 use_doorbell) |
| { |
| u16 pmcsr; |
| int pos; |
| |
| if (use_doorbell) { |
| /* For everything after the P600, the PCI power state method |
| * of resetting the controller doesn't work, so we have this |
| * other way using the doorbell register. |
| */ |
| dev_info(&pdev->dev, "using doorbell to reset controller\n"); |
| writel(use_doorbell, vaddr + SA5_DOORBELL); |
| } else { /* Try to do it the PCI power state way */ |
| |
| /* Quoting from the Open CISS Specification: "The Power |
| * Management Control/Status Register (CSR) controls the power |
| * state of the device. The normal operating state is D0, |
| * CSR=00h. The software off state is D3, CSR=03h. To reset |
| * the controller, place the interface device in D3 then to D0, |
| * this causes a secondary PCI reset which will reset the |
| * controller." */ |
| |
| pos = pci_find_capability(pdev, PCI_CAP_ID_PM); |
| if (pos == 0) { |
| dev_err(&pdev->dev, |
| "cciss_controller_hard_reset: " |
| "PCI PM not supported\n"); |
| return -ENODEV; |
| } |
| dev_info(&pdev->dev, "using PCI PM to reset controller\n"); |
| /* enter the D3hot power management state */ |
| pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); |
| pmcsr &= ~PCI_PM_CTRL_STATE_MASK; |
| pmcsr |= PCI_D3hot; |
| pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); |
| |
| msleep(500); |
| |
| /* enter the D0 power management state */ |
| pmcsr &= ~PCI_PM_CTRL_STATE_MASK; |
| pmcsr |= PCI_D0; |
| pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); |
| |
| /* |
| * The P600 requires a small delay when changing states. |
| * Otherwise we may think the board did not reset and we bail. |
| * This for kdump only and is particular to the P600. |
| */ |
| msleep(500); |
| } |
| return 0; |
| } |
| |
| static void init_driver_version(char *driver_version, int len) |
| { |
| memset(driver_version, 0, len); |
| strncpy(driver_version, "cciss " DRIVER_NAME, len - 1); |
| } |
| |
| static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable) |
| { |
| char *driver_version; |
| int i, size = sizeof(cfgtable->driver_version); |
| |
| driver_version = kmalloc(size, GFP_KERNEL); |
| if (!driver_version) |
| return -ENOMEM; |
| |
| init_driver_version(driver_version, size); |
| for (i = 0; i < size; i++) |
| writeb(driver_version[i], &cfgtable->driver_version[i]); |
| kfree(driver_version); |
| return 0; |
| } |
| |
| static void read_driver_ver_from_cfgtable(CfgTable_struct __iomem *cfgtable, |
| unsigned char *driver_ver) |
| { |
| int i; |
| |
| for (i = 0; i < sizeof(cfgtable->driver_version); i++) |
| driver_ver[i] = readb(&cfgtable->driver_version[i]); |
| } |
| |
| static int controller_reset_failed(CfgTable_struct __iomem *cfgtable) |
| { |
| |
| char *driver_ver, *old_driver_ver; |
| int rc, size = sizeof(cfgtable->driver_version); |
| |
| old_driver_ver = kmalloc(2 * size, GFP_KERNEL); |
| if (!old_driver_ver) |
| return -ENOMEM; |
| driver_ver = old_driver_ver + size; |
| |
| /* After a reset, the 32 bytes of "driver version" in the cfgtable |
| * should have been changed, otherwise we know the reset failed. |
| */ |
| init_driver_version(old_driver_ver, size); |
| read_driver_ver_from_cfgtable(cfgtable, driver_ver); |
| rc = !memcmp(driver_ver, old_driver_ver, size); |
| kfree(old_driver_ver); |
| return rc; |
| } |
| |
| /* This does a hard reset of the controller using PCI power management |
| * states or using the doorbell register. */ |
| static int cciss_kdump_hard_reset_controller(struct pci_dev *pdev) |
| { |
| u64 cfg_offset; |
| u32 cfg_base_addr; |
| u64 cfg_base_addr_index; |
| void __iomem *vaddr; |
| unsigned long paddr; |
| u32 misc_fw_support; |
| int rc; |
| CfgTable_struct __iomem *cfgtable; |
| u32 use_doorbell; |
| u32 board_id; |
| u16 command_register; |
| |
| /* For controllers as old a the p600, this is very nearly |
| * the same thing as |
| * |
| * pci_save_state(pci_dev); |
| * pci_set_power_state(pci_dev, PCI_D3hot); |
| * pci_set_power_state(pci_dev, PCI_D0); |
| * pci_restore_state(pci_dev); |
| * |
| * For controllers newer than the P600, the pci power state |
| * method of resetting doesn't work so we have another way |
| * using the doorbell register. |
| */ |
| |
| /* Exclude 640x boards. These are two pci devices in one slot |
| * which share a battery backed cache module. One controls the |
| * cache, the other accesses the cache through the one that controls |
| * it. If we reset the one controlling the cache, the other will |
| * likely not be happy. Just forbid resetting this conjoined mess. |
| */ |
| cciss_lookup_board_id(pdev, &board_id); |
| if (!ctlr_is_resettable(board_id)) { |
| dev_warn(&pdev->dev, "Controller not resettable\n"); |
| return -ENODEV; |
| } |
| |
| /* if controller is soft- but not hard resettable... */ |
| if (!ctlr_is_hard_resettable(board_id)) |
| return -ENOTSUPP; /* try soft reset later. */ |
| |
| /* Save the PCI command register */ |
| pci_read_config_word(pdev, 4, &command_register); |
| /* Turn the board off. This is so that later pci_restore_state() |
| * won't turn the board on before the rest of config space is ready. |
| */ |
| pci_disable_device(pdev); |
| pci_save_state(pdev); |
| |
| /* find the first memory BAR, so we can find the cfg table */ |
| rc = cciss_pci_find_memory_BAR(pdev, &paddr); |
| if (rc) |
| return rc; |
| vaddr = remap_pci_mem(paddr, 0x250); |
| if (!vaddr) |
| return -ENOMEM; |
| |
| /* find cfgtable in order to check if reset via doorbell is supported */ |
| rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, |
| &cfg_base_addr_index, &cfg_offset); |
| if (rc) |
| goto unmap_vaddr; |
| cfgtable = remap_pci_mem(pci_resource_start(pdev, |
| cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); |
| if (!cfgtable) { |
| rc = -ENOMEM; |
| goto unmap_vaddr; |
| } |
| rc = write_driver_ver_to_cfgtable(cfgtable); |
| if (rc) |
| goto unmap_vaddr; |
| |
| /* If reset via doorbell register is supported, use that. |
| * There are two such methods. Favor the newest method. |
| */ |
| misc_fw_support = readl(&cfgtable->misc_fw_support); |
| use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; |
| if (use_doorbell) { |
| use_doorbell = DOORBELL_CTLR_RESET2; |
| } else { |
| use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; |
| if (use_doorbell) { |
| dev_warn(&pdev->dev, "Controller claims that " |
| "'Bit 2 doorbell reset' is " |
| "supported, but not 'bit 5 doorbell reset'. " |
| "Firmware update is recommended.\n"); |
| rc = -ENOTSUPP; /* use the soft reset */ |
| goto unmap_cfgtable; |
| } |
| } |
| |
| rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell); |
| if (rc) |
| goto unmap_cfgtable; |
| pci_restore_state(pdev); |
| rc = pci_enable_device(pdev); |
| if (rc) { |
| dev_warn(&pdev->dev, "failed to enable device.\n"); |
| goto unmap_cfgtable; |
| } |
| pci_write_config_word(pdev, 4, command_register); |
| |
| /* Some devices (notably the HP Smart Array 5i Controller) |
| need a little pause here */ |
| msleep(CCISS_POST_RESET_PAUSE_MSECS); |
| |
| /* Wait for board to become not ready, then ready. */ |
| dev_info(&pdev->dev, "Waiting for board to reset.\n"); |
| rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY); |
| if (rc) { |
| dev_warn(&pdev->dev, "Failed waiting for board to hard reset." |
| " Will try soft reset.\n"); |
| rc = -ENOTSUPP; /* Not expected, but try soft reset later */ |
| goto unmap_cfgtable; |
| } |
| rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY); |
| if (rc) { |
| dev_warn(&pdev->dev, |
| "failed waiting for board to become ready " |
| "after hard reset\n"); |
| goto unmap_cfgtable; |
| } |
| |
| rc = controller_reset_failed(vaddr); |
| if (rc < 0) |
| goto unmap_cfgtable; |
| if (rc) { |
| dev_warn(&pdev->dev, "Unable to successfully hard reset " |
| "controller. Will try soft reset.\n"); |
| rc = -ENOTSUPP; /* Not expected, but try soft reset later */ |
| } else { |
| dev_info(&pdev->dev, "Board ready after hard reset.\n"); |
| } |
| |
| unmap_cfgtable: |
| iounmap(cfgtable); |
| |
| unmap_vaddr: |
| iounmap(vaddr); |
| return rc; |
| } |
| |
| static int cciss_init_reset_devices(struct pci_dev *pdev) |
| { |
| int rc, i; |
| |
| if (!reset_devices) |
| return 0; |
| |
| /* Reset the controller with a PCI power-cycle or via doorbell */ |
| rc = cciss_kdump_hard_reset_controller(pdev); |
| |
| /* -ENOTSUPP here means we cannot reset the controller |
| * but it's already (and still) up and running in |
| * "performant mode". Or, it might be 640x, which can't reset |
| * due to concerns about shared bbwc between 6402/6404 pair. |
| */ |
| if (rc == -ENOTSUPP) |
| return rc; /* just try to do the kdump anyhow. */ |
| if (rc) |
| return -ENODEV; |
| |
| /* Now try to get the controller to respond to a no-op */ |
| dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n"); |
| for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) { |
| if (cciss_noop(pdev) == 0) |
| break; |
| else |
| dev_warn(&pdev->dev, "no-op failed%s\n", |
| (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ? |
| "; re-trying" : "")); |
| msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS); |
| } |
| return 0; |
| } |
| |
| static int cciss_allocate_cmd_pool(ctlr_info_t *h) |
| { |
| h->cmd_pool_bits = kmalloc(BITS_TO_LONGS(h->nr_cmds) * |
| sizeof(unsigned long), GFP_KERNEL); |
| h->cmd_pool = pci_alloc_consistent(h->pdev, |
| h->nr_cmds * sizeof(CommandList_struct), |
| &(h->cmd_pool_dhandle)); |
| h->errinfo_pool = pci_alloc_consistent(h->pdev, |
| h->nr_cmds * sizeof(ErrorInfo_struct), |
| &(h->errinfo_pool_dhandle)); |
| if ((h->cmd_pool_bits == NULL) |
| || (h->cmd_pool == NULL) |
| || (h->errinfo_pool == NULL)) { |
| dev_err(&h->pdev->dev, "out of memory"); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static int cciss_allocate_scatterlists(ctlr_info_t *h) |
| { |
| int i; |
| |
| /* zero it, so that on free we need not know how many were alloc'ed */ |
| h->scatter_list = kzalloc(h->max_commands * |
| sizeof(struct scatterlist *), GFP_KERNEL); |
| if (!h->scatter_list) |
| return -ENOMEM; |
| |
| for (i = 0; i < h->nr_cmds; i++) { |
| h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) * |
| h->maxsgentries, GFP_KERNEL); |
| if (h->scatter_list[i] == NULL) { |
| dev_err(&h->pdev->dev, "could not allocate " |
| "s/g lists\n"); |
| return -ENOMEM; |
| } |
| } |
| return 0; |
| } |
| |
| static void cciss_free_scatterlists(ctlr_info_t *h) |
| { |
| int i; |
| |
| if (h->scatter_list) { |
| for (i = 0; i < h->nr_cmds; i++) |
| kfree(h->scatter_list[i]); |
| kfree(h->scatter_list); |
| } |
| } |
| |
| static void cciss_free_cmd_pool(ctlr_info_t *h) |
| { |
| kfree(h->cmd_pool_bits); |
| if (h->cmd_pool) |
| pci_free_consistent(h->pdev, |
| h->nr_cmds * sizeof(CommandList_struct), |
| h->cmd_pool, h->cmd_pool_dhandle); |
| if (h->errinfo_pool) |
| pci_free_consistent(h->pdev, |
| h->nr_cmds * sizeof(ErrorInfo_struct), |
| h->errinfo_pool, h->errinfo_pool_dhandle); |
| } |
| |
| static int cciss_request_irq(ctlr_info_t *h, |
| irqreturn_t (*msixhandler)(int, void *), |
| irqreturn_t (*intxhandler)(int, void *)) |
| { |
| if (h->pdev->msi_enabled || h->pdev->msix_enabled) { |
| if (!request_irq(h->intr[h->intr_mode], msixhandler, |
| 0, h->devname, h)) |
| return 0; |
| dev_err(&h->pdev->dev, "Unable to get msi irq %d" |
| " for %s\n", h->intr[h->intr_mode], |
| h->devname); |
| return -1; |
| } |
| |
| if (!request_irq(h->intr[h->intr_mode], intxhandler, |
| IRQF_SHARED, h->devname, h)) |
| return 0; |
| dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n", |
| h->intr[h->intr_mode], h->devname); |
| return -1; |
| } |
| |
| static int cciss_kdump_soft_reset(ctlr_info_t *h) |
| { |
| if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) { |
| dev_warn(&h->pdev->dev, "Resetting array controller failed.\n"); |
| return -EIO; |
| } |
| |
| dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); |
| if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) { |
| dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); |
| return -1; |
| } |
| |
| dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); |
| if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) { |
| dev_warn(&h->pdev->dev, "Board failed to become ready " |
| "after soft reset.\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h) |
| { |
| int ctlr = h->ctlr; |
| |
| free_irq(h->intr[h->intr_mode], h); |
| pci_free_irq_vectors(h->pdev); |
| cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds); |
| cciss_free_scatterlists(h); |
| cciss_free_cmd_pool(h); |
| kfree(h->blockFetchTable); |
| if (h->reply_pool) |
| pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64), |
| h->reply_pool, h->reply_pool_dhandle); |
| if (h->transtable) |
| iounmap(h->transtable); |
| if (h->cfgtable) |
| iounmap(h->cfgtable); |
| if (h->vaddr) |
| iounmap(h->vaddr); |
| unregister_blkdev(h->major, h->devname); |
| cciss_destroy_hba_sysfs_entry(h); |
| pci_release_regions(h->pdev); |
| kfree(h); |
| hba[ctlr] = NULL; |
| } |
| |
| /* |
| * This is it. Find all the controllers and register them. I really hate |
| * stealing all these major device numbers. |
| * returns the number of block devices registered. |
| */ |
| static int cciss_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
| { |
| int i; |
| int j = 0; |
| int rc; |
| int try_soft_reset = 0; |
| int dac, return_code; |
| InquiryData_struct *inq_buff; |
| ctlr_info_t *h; |
| unsigned long flags; |
| |
| /* |
| * By default the cciss driver is used for all older HP Smart Array |
| * controllers. There are module paramaters that allow a user to |
| * override this behavior and instead use the hpsa SCSI driver. If |
| * this is the case cciss may be loaded first from the kdump initrd |
| * image and cause a kernel panic. So if reset_devices is true and |
| * cciss_allow_hpsa is set just bail. |
| */ |
| if ((reset_devices) && (cciss_allow_hpsa == 1)) |
| return -ENODEV; |
| rc = cciss_init_reset_devices(pdev); |
| if (rc) { |
| if (rc != -ENOTSUPP) |
| return rc; |
| /* If the reset fails in a particular way (it has no way to do |
| * a proper hard reset, so returns -ENOTSUPP) we can try to do |
| * a soft reset once we get the controller configured up to the |
| * point that it can accept a command. |
| */ |
| try_soft_reset = 1; |
| rc = 0; |
| } |
| |
| reinit_after_soft_reset: |
| |
| i = alloc_cciss_hba(pdev); |
| if (i < 0) |
| return -ENOMEM; |
| |
| h = hba[i]; |
| h->pdev = pdev; |
| h->busy_initializing = 1; |
| h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; |
| INIT_LIST_HEAD(&h->cmpQ); |
| INIT_LIST_HEAD(&h->reqQ); |
| mutex_init(&h->busy_shutting_down); |
| |
| if (cciss_pci_init(h) != 0) |
| goto clean_no_release_regions; |
| |
| sprintf(h->devname, "cciss%d", i); |
| h->ctlr = i; |
| |
| if (cciss_tape_cmds < 2) |
| cciss_tape_cmds = 2; |
| if (cciss_tape_cmds > 16) |
| cciss_tape_cmds = 16; |
| |
| init_completion(&h->scan_wait); |
| |
| if (cciss_create_hba_sysfs_entry(h)) |
| goto clean0; |
| |
| /* configure PCI DMA stuff */ |
| if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) |
| dac = 1; |
| else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) |
| dac = 0; |
| else { |
| dev_err(&h->pdev->dev, "no suitable DMA available\n"); |
| goto clean1; |
| } |
| |
| /* |
| * register with the major number, or get a dynamic major number |
| * by passing 0 as argument. This is done for greater than |
| * 8 controller support. |
| */ |
| if (i < MAX_CTLR_ORIG) |
| h->major = COMPAQ_CISS_MAJOR + i; |
| rc = register_blkdev(h->major, h->devname); |
| if (rc == -EBUSY || rc == -EINVAL) { |
| dev_err(&h->pdev->dev, |
| "Unable to get major number %d for %s " |
| "on hba %d\n", h->major, h->devname, i); |
| goto clean1; |
| } else { |
| if (i >= MAX_CTLR_ORIG) |
| h->major = rc; |
| } |
| |
| /* make sure the board interrupts are off */ |
| h->access.set_intr_mask(h, CCISS_INTR_OFF); |
| rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx); |
| if (rc) |
| goto clean2; |
| |
| dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n", |
| h->devname, pdev->device, pci_name(pdev), |
| h->intr[h->intr_mode], dac ? "" : " not"); |
| |
| if (cciss_allocate_cmd_pool(h)) |
| goto clean4; |
| |
| if (cciss_allocate_scatterlists(h)) |
| goto clean4; |
| |
| h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h, |
| h->chainsize, h->nr_cmds); |
| if (!h->cmd_sg_list && h->chainsize > 0) |
| goto clean4; |
| |
| spin_lock_init(&h->lock); |
| |
| /* Initialize the pdev driver private data. |
| have it point to h. */ |
| pci_set_drvdata(pdev, h); |
| /* command and error info recs zeroed out before |
| they are used */ |
| bitmap_zero(h->cmd_pool_bits, h->nr_cmds); |
| |
| h->num_luns = 0; |
| h->highest_lun = -1; |
| for (j = 0; j < CISS_MAX_LUN; j++) { |
| h->drv[j] = NULL; |
| h->gendisk[j] = NULL; |
| } |
| |
| /* At this point, the controller is ready to take commands. |
| * Now, if reset_devices and the hard reset didn't work, try |
| * the soft reset and see if that works. |
| */ |
| if (try_soft_reset) { |
| |
| /* This is kind of gross. We may or may not get a completion |
| * from the soft reset command, and if we do, then the value |
| * from the fifo may or may not be valid. So, we wait 10 secs |
| * after the reset throwing away any completions we get during |
| * that time. Unregister the interrupt handler and register |
| * fake ones to scoop up any residual completions. |
| */ |
| spin_lock_irqsave(&h->lock, flags); |
| h->access.set_intr_mask(h, CCISS_INTR_OFF); |
| spin_unlock_irqrestore(&h->lock, flags); |
| free_irq(h->intr[h->intr_mode], h); |
| rc = cciss_request_irq(h, cciss_msix_discard_completions, |
| cciss_intx_discard_completions); |
| if (rc) { |
| dev_warn(&h->pdev->dev, "Failed to request_irq after " |
| "soft reset.\n"); |
| goto clean4; |
| } |
| |
| rc = cciss_kdump_soft_reset(h); |
| if (rc) { |
| dev_warn(&h->pdev->dev, "Soft reset failed.\n"); |
| goto clean4; |
| } |
| |
| dev_info(&h->pdev->dev, "Board READY.\n"); |
| dev_info(&h->pdev->dev, |
| "Waiting for stale completions to drain.\n"); |
| h->access.set_intr_mask(h, CCISS_INTR_ON); |
| msleep(10000); |
| h->access.set_intr_mask(h, CCISS_INTR_OFF); |
| |
| rc = controller_reset_failed(h->cfgtable); |
| if (rc) |
| dev_info(&h->pdev->dev, |
| "Soft reset appears to have failed.\n"); |
| |
| /* since the controller's reset, we have to go back and re-init |
| * everything. Easiest to just forget what we've done and do it |
| * all over again. |
| */ |
| cciss_undo_allocations_after_kdump_soft_reset(h); |
| try_soft_reset = 0; |
| if (rc) |
| /* don't go to clean4, we already unallocated */ |
| return -ENODEV; |
| |
| goto reinit_after_soft_reset; |
| } |
| |
| cciss_scsi_setup(h); |
| |
| /* Turn the interrupts on so we can service requests */ |
| h->access.set_intr_mask(h, CCISS_INTR_ON); |
| |
| /* Get the firmware version */ |
| inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL); |
| if (inq_buff == NULL) { |
| dev_err(&h->pdev->dev, "out of memory\n"); |
| goto clean4; |
| } |
| |
| return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff, |
| sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD); |
| if (return_code == IO_OK) { |
| h->firm_ver[0] = inq_buff->data_byte[32]; |
| h->firm_ver[1] = inq_buff->data_byte[33]; |
| h->firm_ver[2] = inq_buff->data_byte[34]; |
| h->firm_ver[3] = inq_buff->data_byte[35]; |
| } else { /* send command failed */ |
| dev_warn(&h->pdev->dev, "unable to determine firmware" |
| " version of controller\n"); |
| } |
| kfree(inq_buff); |
| |
| cciss_procinit(h); |
| |
| h->cciss_max_sectors = 8192; |
| |
| rebuild_lun_table(h, 1, 0); |
| cciss_engage_scsi(h); |
| h->busy_initializing = 0; |
| return 0; |
| |
| clean4: |
| cciss_free_cmd_pool(h); |
| cciss_free_scatterlists(h); |
| cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds); |
| free_irq(h->intr[h->intr_mode], h); |
| clean2: |
| unregister_blkdev(h->major, h->devname); |
| clean1: |
| cciss_destroy_hba_sysfs_entry(h); |
| clean0: |
| pci_release_regions(pdev); |
| clean_no_release_regions: |
| h->busy_initializing = 0; |
| |
| /* |
| * Deliberately omit pci_disable_device(): it does something nasty to |
| * Smart Array controllers that pci_enable_device does not undo |
| */ |
| pci_set_drvdata(pdev, NULL); |
| free_hba(h); |
| return -ENODEV; |
| } |
| |
| static void cciss_shutdown(struct pci_dev *pdev) |
| { |
| ctlr_info_t *h; |
| char *flush_buf; |
| int return_code; |
| |
| h = pci_get_drvdata(pdev); |
| flush_buf = kzalloc(4, GFP_KERNEL); |
| if (!flush_buf) { |
| dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n"); |
| return; |
| } |
| /* write all data in the battery backed cache to disk */ |
| return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf, |
| 4, 0, CTLR_LUNID, TYPE_CMD); |
| kfree(flush_buf); |
| if (return_code != IO_OK) |
| dev_warn(&h->pdev->dev, "Error flushing cache\n"); |
| h->access.set_intr_mask(h, CCISS_INTR_OFF); |
| free_irq(h->intr[h->intr_mode], h); |
| } |
| |
| static int cciss_enter_simple_mode(struct ctlr_info *h) |
| { |
| u32 trans_support; |
| |
| trans_support = readl(&(h->cfgtable->TransportSupport)); |
| if (!(trans_support & SIMPLE_MODE)) |
| return -ENOTSUPP; |
| |
| h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); |
| writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); |
| writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
| cciss_wait_for_mode_change_ack(h); |
| print_cfg_table(h); |
| if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { |
| dev_warn(&h->pdev->dev, "unable to get board into simple mode\n"); |
| return -ENODEV; |
| } |
| h->transMethod = CFGTBL_Trans_Simple; |
| return 0; |
| } |
| |
| |
| static void cciss_remove_one(struct pci_dev *pdev) |
| { |
| ctlr_info_t *h; |
| int i, j; |
| |
| if (pci_get_drvdata(pdev) == NULL) { |
| dev_err(&pdev->dev, "Unable to remove device\n"); |
| return; |
| } |
| |
| h = pci_get_drvdata(pdev); |
| i = h->ctlr; |
| if (hba[i] == NULL) { |
| dev_err(&pdev->dev, "device appears to already be removed\n"); |
| return; |
| } |
| |
| mutex_lock(&h->busy_shutting_down); |
| |
| remove_from_scan_list(h); |
| remove_proc_entry(h->devname, proc_cciss); |
| unregister_blkdev(h->major, h->devname); |
| |
| /* remove it from the disk list */ |
| for (j = 0; j < CISS_MAX_LUN; j++) { |
| struct gendisk *disk = h->gendisk[j]; |
| if (disk) { |
| struct request_queue *q = disk->queue; |
| |
| if (disk->flags & GENHD_FL_UP) { |
| cciss_destroy_ld_sysfs_entry(h, j, 1); |
| del_gendisk(disk); |
| } |
| if (q) |
| blk_cleanup_queue(q); |
| } |
| } |
| |
| #ifdef CONFIG_CISS_SCSI_TAPE |
| cciss_unregister_scsi(h); /* unhook from SCSI subsystem */ |
| #endif |
| |
| cciss_shutdown(pdev); |
| |
| pci_free_irq_vectors(h->pdev); |
| |
| iounmap(h->transtable); |
| iounmap(h->cfgtable); |
| iounmap(h->vaddr); |
| |
| cciss_free_cmd_pool(h); |
| /* Free up sg elements */ |
| for (j = 0; j < h->nr_cmds; j++) |
| kfree(h->scatter_list[j]); |
| kfree(h->scatter_list); |
| cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds); |
| kfree(h->blockFetchTable); |
| if (h->reply_pool) |
| pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64), |
| h->reply_pool, h->reply_pool_dhandle); |
| /* |
| * Deliberately omit pci_disable_device(): it does something nasty to |
| * Smart Array controllers that pci_enable_device does not undo |
| */ |
| pci_release_regions(pdev); |
| pci_set_drvdata(pdev, NULL); |
| cciss_destroy_hba_sysfs_entry(h); |
| mutex_unlock(&h->busy_shutting_down); |
| free_hba(h); |
| } |
| |
| static struct pci_driver cciss_pci_driver = { |
| .name = "cciss", |
| .probe = cciss_init_one, |
| .remove = cciss_remove_one, |
| .id_table = cciss_pci_device_id, /* id_table */ |
| .shutdown = cciss_shutdown, |
| }; |
| |
| /* |
| * This is it. Register the PCI driver information for the cards we control |
| * the OS will call our registered routines when it finds one of our cards. |
| */ |
| static int __init cciss_init(void) |
| { |
| int err; |
| |
| /* |
| * The hardware requires that commands are aligned on a 64-bit |
| * boundary. Given that we use pci_alloc_consistent() to allocate an |
| * array of them, the size must be a multiple of 8 bytes. |
| */ |
| BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT); |
| printk(KERN_INFO DRIVER_NAME "\n"); |
| |
| err = bus_register(&cciss_bus_type); |
| if (err) |
| return err; |
| |
| /* Start the scan thread */ |
| cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan"); |
| if (IS_ERR(cciss_scan_thread)) { |
| err = PTR_ERR(cciss_scan_thread); |
| goto err_bus_unregister; |
| } |
| |
| /* Register for our PCI devices */ |
| err = pci_register_driver(&cciss_pci_driver); |
| if (err) |
| goto err_thread_stop; |
| |
| return err; |
| |
| err_thread_stop: |
| kthread_stop(cciss_scan_thread); |
| err_bus_unregister: |
| bus_unregister(&cciss_bus_type); |
| |
| return err; |
| } |
| |
| static void __exit cciss_cleanup(void) |
| { |
| int i; |
| |
| pci_unregister_driver(&cciss_pci_driver); |
| /* double check that all controller entrys have been removed */ |
| for (i = 0; i < MAX_CTLR; i++) { |
| if (hba[i] != NULL) { |
| dev_warn(&hba[i]->pdev->dev, |
| "had to remove controller\n"); |
| cciss_remove_one(hba[i]->pdev); |
| } |
| } |
| kthread_stop(cciss_scan_thread); |
| if (proc_cciss) |
| remove_proc_entry("driver/cciss", NULL); |
| bus_unregister(&cciss_bus_type); |
| } |
| |
| module_init(cciss_init); |
| module_exit(cciss_cleanup); |