blob: 6642d11a18ad6b3f1688e31e0b7529134e94609f [file] [log] [blame]
/*
* hazptrtorture..h: simple user-level performance/stress test of hazard
* pointers.
*
* Usage:
* ./hazptr <nreaders> rperf [ <cpustride> ]
* Run a read-side performance test with the specified
* number of readers spaced by <cpustride>.
* Thus "./hazptr 16 rperf 2" would run 16 readers on
* even-numbered CPUs from 0 to 30.
* ./hazptr <nupdaters> uperf [ <cpustride> ]
* Run an update-side performance test with the specified
* number of updaters and specified CPU spacing.
* ./hazptr <nreaders> perf [ <cpustride> ]
* Run a combined read/update performance test with the specified
* number of readers and one updater and specified CPU spacing.
* The readers run on the low-numbered CPUs and the updater
* of the highest-numbered CPU.
*
* The above tests produce output as follows:
*
* n_reads: 46008000 n_updates: 146026 nreaders: 2 nupdaters: 1 duration: 1
* ns/read: 43.4707 ns/update: 6848.1
*
* The first line lists the total number of hazard-pointer reads and
* updates executed during the test, the number of reader threads, the
* number of updater threads, and the duration of the test in seconds.
* The second line lists the average duration of each type of operation
* in nanoseconds, or "nan" if the corresponding type of operation was
* not performed.
*
* ./hazptr <nreaders> stress
* Run a stress test with the specified number of readers and
* one updater. None of the threads are affinitied to any
* particular CPU.
*
* This test produces output as follows:
*
* n_reads: 114633217 n_updates: 3903415 n_mberror: 0
* hazptr_stress_count: 114618391 14826
*
* The first line lists the number of hazard-pointer read and update
* operations executed, followed by the number of memory-ordering violations
* (which will be zero in a correct hazard-pointer implementation).
* The second line lists the number of readers observing progressively
* more stale data. A correct hazard-pointer implementation will have
* only the first two numbers, while a buggy implementation will have
* additional fields of the form "2:15" where the number before the colon
* is the pipe stage and the number after the colon is the count.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (c) 2008 Paul E. McKenney, IBM Corporation.
*/
/*
* Test variables.
*/
DEFINE_PER_THREAD(long long, n_reads_pt);
DEFINE_PER_THREAD(long long, n_updates_pt);
long long n_reads = 0LL;
long n_updates = 0L;
atomic_t nthreadsrunning;
char argsbuf[64];
#define GOFLAG_INIT 0
#define GOFLAG_RUN 1
#define GOFLAG_STOP 2
int goflag __attribute__((__aligned__(CACHE_LINE_SIZE))) = GOFLAG_INIT;
#define HAZPTR_READ_RUN 1000
#ifndef NEED_REGISTER_THREAD
#define hazptr_register_thread() do ; while (0)
#define hazptr_unregister_thread() do ; while (0)
#endif /* #ifndef NEED_REGISTER_THREAD */
/*
* Performance test.
*/
void *hazptr_read_perf_test(void *arg)
{
int i;
int me = (long)arg;
int base = me * K;
long long n_reads_local = 0;
hazptr_head_t hh;
hazptr_head_t *hhp = &hh;
run_on(me);
hazptr_register_thread();
atomic_inc(&nthreadsrunning);
while (goflag == GOFLAG_INIT)
poll(NULL, 0, 1);
while (goflag == GOFLAG_RUN) {
for (i = 0; i < HAZPTR_READ_RUN; i++) {
hp_record((void *)&hhp, &HP[base]);
}
n_reads_local += HAZPTR_READ_RUN;
}
hp_clear(&HP[base]);
__get_thread_var(n_reads_pt) += n_reads_local;
hazptr_thread_exit();
hazptr_unregister_thread();
return (NULL);
}
void *hazptr_update_perf_test(void *arg)
{
long long n_updates_local = 0;
hazptr_register_thread();
atomic_inc(&nthreadsrunning);
while (goflag == GOFLAG_INIT)
poll(NULL, 0, 1);
while (goflag == GOFLAG_RUN) {
hazptr_scan();
n_updates_local++;
}
__get_thread_var(n_updates_pt) += n_updates_local;
hazptr_unregister_thread();
return NULL;
}
void perftestinit(void)
{
init_per_thread(n_reads_pt, 0LL);
init_per_thread(n_updates_pt, 0LL);
atomic_set(&nthreadsrunning, 0);
}
void perftestrun(int nthreads, int nreaders, int nupdaters)
{
int t;
int duration = 1;
smp_mb();
while (atomic_read(&nthreadsrunning) < nthreads)
poll(NULL, 0, 1);
goflag = GOFLAG_RUN;
smp_mb();
sleep(duration);
smp_mb();
goflag = GOFLAG_STOP;
smp_mb();
wait_all_threads();
for_each_thread(t) {
n_reads += per_thread(n_reads_pt, t);
n_updates += per_thread(n_updates_pt, t);
}
printf("n_reads: %lld n_updates: %ld nreaders: %d nupdaters: %d duration: %d\n",
n_reads, n_updates, nreaders, nupdaters, duration);
printf("ns/read: %g ns/update: %g\n",
((duration * 1000*1000*1000.*(double)nreaders) /
(double)n_reads),
((duration * 1000*1000*1000.*(double)nupdaters) /
(double)n_updates));
exit(0);
}
void perftest(int nreaders, int cpustride)
{
int i;
long arg;
perftestinit();
for (i = 0; i < nreaders; i++) {
arg = (long)(i * cpustride);
create_thread(hazptr_read_perf_test, (void *)arg);
}
arg = (long)(i * cpustride);
create_thread(hazptr_update_perf_test, (void *)arg);
perftestrun(i + 1, nreaders, 1);
}
void rperftest(int nreaders, int cpustride)
{
int i;
long arg;
perftestinit();
init_per_thread(n_reads_pt, 0LL);
for (i = 0; i < nreaders; i++) {
arg = (long)(i * cpustride);
create_thread(hazptr_read_perf_test, (void *)arg);
}
perftestrun(i, nreaders, 0);
}
void uperftest(int nupdaters, int cpustride)
{
int i;
long arg;
perftestinit();
init_per_thread(n_reads_pt, 0LL);
for (i = 0; i < nupdaters; i++) {
arg = (long)(i * cpustride);
create_thread(hazptr_update_perf_test, (void *)arg);
}
perftestrun(i, 0, nupdaters);
}
/*
* Stress test.
*/
#define HAZPTR_STRESS_PIPE_LEN (R * (NR_THREADS + 1))
struct hazptr_stress {
hazptr_head_t hh;
int inuse;
int pipe_count;
int mbtest;
};
struct hazptr_stress hazptr_stress_array[HAZPTR_STRESS_PIPE_LEN] = { 0 };
struct hazptr_stress *hazptr_stress_current;
int hazptr_stress_idx = 0;
int n_mberror = 0;
DEFINE_PER_THREAD(long long [HAZPTR_STRESS_PIPE_LEN + 1], hazptr_stress_count);
void *hazptr_read_stress_test(void *arg)
{
int i;
int itercnt = 0;
int me = (int)(long)arg;
int base = me * K;
struct hazptr_stress *p;
int pc;
while (goflag == GOFLAG_INIT)
poll(NULL, 0, 1);
hazptr_register_thread();
while (goflag == GOFLAG_RUN) {
p = hp_record((void *)&hazptr_stress_current, &HP[base]);
if (p->mbtest == 0)
n_mberror++;
pc = p->pipe_count;
hp_clear(&HP[base]);
if ((pc > HAZPTR_STRESS_PIPE_LEN) || (pc < 0))
pc = HAZPTR_STRESS_PIPE_LEN;
__get_thread_var(hazptr_stress_count)[pc]++;
__get_thread_var(n_reads_pt)++;
}
hazptr_thread_exit();
hazptr_unregister_thread();
return NULL;
}
void hazptr_free(void *ptr)
{
struct hazptr_stress *p = (struct hazptr_stress *)ptr;
p->inuse = 0;
}
void *hazptr_update_stress_test(void *arg)
{
int i;
struct hazptr_stress *p;
int sum;
while (goflag == GOFLAG_INIT)
poll(NULL, 0, 1);
hazptr_register_thread();
while (goflag == GOFLAG_RUN) {
i = hazptr_stress_idx + 1;
if (i >= HAZPTR_STRESS_PIPE_LEN)
i = 0;
p = &hazptr_stress_array[i];
if (ACCESS_ONCE(p->inuse)) {
hazptr_stress_idx = i;
continue;
}
p->pipe_count = 0;
ACCESS_ONCE(p->inuse) = 1;
p->mbtest = 0;
smp_mb();
p->mbtest = 1;
smp_mb();
ACCESS_ONCE(hazptr_stress_current) = p;
hazptr_stress_idx = i;
for (i = 0; i < HAZPTR_STRESS_PIPE_LEN; i++)
if (!hazptr_stress_array[i].inuse) {
smp_mb();
hazptr_stress_array[i].pipe_count++;
}
hazptr_free_later(&p->hh);
p->pipe_count++;
n_updates++;
}
poll(NULL, 0, 100);
hazptr_scan();
sum = 0;
for (i = 0; i < HAZPTR_STRESS_PIPE_LEN; i++)
if (hazptr_stress_array[i].inuse) {
sum++;
}
if (sum != 0)
printf("%d of %d hazard pointers in use!\n", sum, HAZPTR_STRESS_PIPE_LEN);
hazptr_unregister_thread();
return NULL;
}
void stresstest(int nreaders)
{
int i;
int t;
long long *p;
long long sum;
init_per_thread(n_reads_pt, 0LL);
for_each_thread(t) {
p = &per_thread(hazptr_stress_count,t)[0];
for (i = 0; i <= HAZPTR_STRESS_PIPE_LEN; i++)
p[i] = 0LL;
}
hazptr_stress_current = &hazptr_stress_array[0];
hazptr_stress_current->pipe_count = 0;
hazptr_stress_current->mbtest = 1;
for (i = 0; i < nreaders; i++)
create_thread(hazptr_read_stress_test, NULL);
create_thread(hazptr_update_stress_test, NULL);
smp_mb();
goflag = GOFLAG_RUN;
smp_mb();
sleep(10);
smp_mb();
goflag = GOFLAG_STOP;
smp_mb();
wait_all_threads();
for_each_thread(t)
n_reads += per_thread(n_reads_pt, t);
printf("n_reads: %lld n_updates: %ld n_mberror: %d\n",
n_reads, n_updates, n_mberror);
printf("hazptr_stress_count:");
for (i = 0; i <= HAZPTR_STRESS_PIPE_LEN; i++) {
sum = 0LL;
for_each_thread(t) {
sum += per_thread(hazptr_stress_count, t)[i];
}
if (i <= 1)
printf(" %lld", sum);
else if (sum != 0)
printf(" %d:%lld", i, sum);
}
printf("\n");
exit(0);
}
/*
* Mainprogram.
*/
void usage(int argc, char *argv[])
{
fprintf(stderr, "Usage: %s [nreaders [ perf | stress ] ]\n", argv[0]);
exit(-1);
}
int main(int argc, char *argv[])
{
int nreaders = 1;
int cpustride = 1;
smp_init();
hazptr_init();
if (argc > 1) {
nreaders = strtoul(argv[1], NULL, 0);
if (argc == 2)
perftest(nreaders, cpustride);
if (argc > 3)
cpustride = strtoul(argv[3], NULL, 0);
if (strcmp(argv[2], "perf") == 0)
perftest(nreaders, cpustride);
else if (strcmp(argv[2], "rperf") == 0)
rperftest(nreaders, cpustride);
else if (strcmp(argv[2], "uperf") == 0)
uperftest(nreaders, cpustride);
else if (strcmp(argv[2], "stress") == 0)
stresstest(nreaders);
usage(argc, argv);
}
perftest(nreaders, cpustride);
}