blob: 97394f1c6e7bd4fa82e63d8fa4f98810cd75271e [file] [log] [blame]
/*
* rcutorture.h: simple user-level performance/stress test of RCU.
*
* Usage:
* ./rcu <nreaders> rperf [ <cpustride> ]
* Run a read-side performance test with the specified
* number of readers spaced by <cpustride>.
* Thus "./rcu 16 rperf 2" would run 16 readers on even-numbered
* CPUs from 0 to 30.
* ./rcu <nupdaters> uperf [ <cpustride> ]
* Run an update-side performance test with the specified
* number of updaters and specified CPU spacing.
* ./rcu <nreaders> perf [ <cpustride> ]
* Run a combined read/update performance test with the specified
* number of readers and one updater and specified CPU spacing.
* The readers run on the low-numbered CPUs and the updater
* of the highest-numbered CPU.
*
* The above tests produce output as follows:
*
* n_reads: 46008000 n_updates: 146026 nreaders: 2 nupdaters: 1 duration: 1
* ns/read: 43.4707 ns/update: 6848.1
*
* The first line lists the total number of RCU reads and updates executed
* during the test, the number of reader threads, the number of updater
* threads, and the duration of the test in seconds. The second line
* lists the average duration of each type of operation in nanoseconds,
* or "nan" if the corresponding type of operation was not performed.
*
* ./rcu <nreaders> stress
* Run a stress test with the specified number of readers and
* one updater. None of the threads are affinitied to any
* particular CPU.
*
* This test produces output as follows:
*
* n_reads: 114633217 n_updates: 3903415 n_mberror: 0
* rcu_stress_count: 114618391 14826 0 0 0 0 0 0 0 0 0
*
* The first line lists the number of RCU read and update operations
* executed, followed by the number of memory-ordering violations
* (which will be zero in a correct RCU implementation). The second
* line lists the number of readers observing progressively more stale
* data. A correct RCU implementation will have all but the first two
* numbers non-zero.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (c) 2008 Paul E. McKenney, IBM Corporation.
*/
/*
* Test variables.
*/
DEFINE_PER_THREAD(long long, n_reads_pt);
DEFINE_PER_THREAD(long long, n_updates_pt);
long long n_reads = 0LL;
long n_updates = 0L;
atomic_t nthreadsrunning;
char argsbuf[64];
#define GOFLAG_INIT 0
#define GOFLAG_RUN 1
#define GOFLAG_STOP 2
int goflag __attribute__((__aligned__(CACHE_LINE_SIZE))) = GOFLAG_INIT;
#define RCU_READ_RUN 1000
#ifdef RCU_READ_NESTABLE
#define rcu_read_lock_nest() rcu_read_lock()
#define rcu_read_unlock_nest() rcu_read_unlock()
#else /* #ifdef RCU_READ_NESTABLE */
#define rcu_read_lock_nest()
#define rcu_read_unlock_nest()
#endif /* #else #ifdef RCU_READ_NESTABLE */
#ifndef mark_rcu_quiescent_state
#define mark_rcu_quiescent_state() do ; while (0)
#endif /* #ifdef mark_rcu_quiescent_state */
#ifndef put_thread_offline
#define put_thread_offline() do ; while (0)
#define put_thread_online() do ; while (0)
#define put_thread_online_delay() do ; while (0)
#else /* #ifndef put_thread_offline */
#define put_thread_online_delay() synchronize_rcu()
#endif /* #else #ifndef put_thread_offline */
#ifndef NEED_REGISTER_THREAD
#define rcu_register_thread() do ; while (0)
#define rcu_unregister_thread() do ; while (0)
#endif /* #ifndef NEED_REGISTER_THREAD */
/*
* Performance test.
*/
void *rcu_read_perf_test(void *arg)
{
int i;
int me = (long)arg;
long long n_reads_local = 0;
run_on(me);
rcu_register_thread();
atomic_inc(&nthreadsrunning);
while (goflag == GOFLAG_INIT)
poll(NULL, 0, 1);
mark_rcu_quiescent_state();
while (goflag == GOFLAG_RUN) {
for (i = 0; i < RCU_READ_RUN; i++) {
rcu_read_lock();
/* rcu_read_lock_nest(); */
/* rcu_read_unlock_nest(); */
rcu_read_unlock();
}
n_reads_local += RCU_READ_RUN;
mark_rcu_quiescent_state();
}
__get_thread_var(n_reads_pt) += n_reads_local;
put_thread_offline();
rcu_unregister_thread();
return (NULL);
}
void *rcu_update_perf_test(void *arg)
{
long long n_updates_local = 0;
rcu_register_thread();
atomic_inc(&nthreadsrunning);
while (goflag == GOFLAG_INIT)
poll(NULL, 0, 1);
while (goflag == GOFLAG_RUN) {
synchronize_rcu();
n_updates_local++;
}
__get_thread_var(n_updates_pt) += n_updates_local;
rcu_unregister_thread();
return NULL;
}
void perftestinit(void)
{
init_per_thread(n_reads_pt, 0LL);
init_per_thread(n_updates_pt, 0LL);
atomic_set(&nthreadsrunning, 0);
}
void perftestrun(int nthreads, int nreaders, int nupdaters)
{
int t;
int duration = 1;
smp_mb();
while (atomic_read(&nthreadsrunning) < nthreads)
poll(NULL, 0, 1);
goflag = GOFLAG_RUN;
smp_mb();
sleep(duration);
smp_mb();
goflag = GOFLAG_STOP;
smp_mb();
wait_all_threads();
for_each_thread(t) {
n_reads += per_thread(n_reads_pt, t);
n_updates += per_thread(n_updates_pt, t);
}
printf("n_reads: %lld n_updates: %ld nreaders: %d nupdaters: %d duration: %d\n",
n_reads, n_updates, nreaders, nupdaters, duration);
printf("ns/read: %g ns/update: %g\n",
((duration * 1000*1000*1000.*(double)nreaders) /
(double)n_reads),
((duration * 1000*1000*1000.*(double)nupdaters) /
(double)n_updates));
exit(0);
}
void perftest(int nreaders, int cpustride)
{
int i;
long arg;
perftestinit();
for (i = 0; i < nreaders; i++) {
arg = (long)(i * cpustride);
create_thread(rcu_read_perf_test, (void *)arg);
}
arg = (long)(i * cpustride);
create_thread(rcu_update_perf_test, (void *)arg);
perftestrun(i + 1, nreaders, 1);
}
void rperftest(int nreaders, int cpustride)
{
int i;
long arg;
perftestinit();
init_per_thread(n_reads_pt, 0LL);
for (i = 0; i < nreaders; i++) {
arg = (long)(i * cpustride);
create_thread(rcu_read_perf_test, (void *)arg);
}
perftestrun(i, nreaders, 0);
}
void uperftest(int nupdaters, int cpustride)
{
int i;
long arg;
perftestinit();
init_per_thread(n_reads_pt, 0LL);
for (i = 0; i < nupdaters; i++) {
arg = (long)(i * cpustride);
create_thread(rcu_update_perf_test, (void *)arg);
}
perftestrun(i, 0, nupdaters);
}
/*
* Stress test.
*/
#define RCU_STRESS_PIPE_LEN 10
struct rcu_stress {
int pipe_count;
int mbtest;
};
struct rcu_stress rcu_stress_array[RCU_STRESS_PIPE_LEN] = { 0 };
struct rcu_stress *rcu_stress_current;
int rcu_stress_idx = 0;
int n_mberror = 0;
DEFINE_PER_THREAD(long long [RCU_STRESS_PIPE_LEN + 1], rcu_stress_count);
int garbage = 0;
void *rcu_read_stress_test(void *arg)
{
int i;
int itercnt = 0;
struct rcu_stress *p;
int pc;
while (goflag == GOFLAG_INIT)
poll(NULL, 0, 1);
rcu_register_thread();
mark_rcu_quiescent_state();
while (goflag == GOFLAG_RUN) {
rcu_read_lock();
p = rcu_dereference(rcu_stress_current);
if (p->mbtest == 0)
n_mberror++;
rcu_read_lock_nest();
for (i = 0; i < 100; i++)
garbage++;
rcu_read_unlock_nest();
pc = p->pipe_count;
rcu_read_unlock();
if ((pc > RCU_STRESS_PIPE_LEN) || (pc < 0))
pc = RCU_STRESS_PIPE_LEN;
__get_thread_var(rcu_stress_count)[pc]++;
__get_thread_var(n_reads_pt)++;
mark_rcu_quiescent_state();
if ((++itercnt % 0x1000) == 0) {
put_thread_offline();
put_thread_online_delay();
put_thread_online();
}
}
put_thread_offline();
rcu_unregister_thread();
return (NULL);
}
void *rcu_update_stress_test(void *arg)
{
int i;
struct rcu_stress *p;
while (goflag == GOFLAG_INIT)
poll(NULL, 0, 1);
rcu_register_thread();
while (goflag == GOFLAG_RUN) {
i = rcu_stress_idx + 1;
if (i >= RCU_STRESS_PIPE_LEN)
i = 0;
p = &rcu_stress_array[i];
p->mbtest = 0;
smp_mb();
p->pipe_count = 0;
p->mbtest = 1;
rcu_assign_pointer(rcu_stress_current, p);
rcu_stress_idx = i;
for (i = 0; i < RCU_STRESS_PIPE_LEN; i++)
if (i != rcu_stress_idx)
rcu_stress_array[i].pipe_count++;
synchronize_rcu();
n_updates++;
}
rcu_unregister_thread();
return NULL;
}
void *rcu_fake_update_stress_test(void *arg)
{
while (goflag == GOFLAG_INIT)
poll(NULL, 0, 1);
rcu_register_thread();
while (goflag == GOFLAG_RUN) {
synchronize_rcu();
poll(NULL, 0, 1);
}
rcu_unregister_thread();
return NULL;
}
void stresstest(int nreaders)
{
int i;
int t;
long long *p;
long long sum;
init_per_thread(n_reads_pt, 0LL);
for_each_thread(t) {
p = &per_thread(rcu_stress_count,t)[0];
for (i = 0; i <= RCU_STRESS_PIPE_LEN; i++)
p[i] = 0LL;
}
rcu_stress_current = &rcu_stress_array[0];
rcu_stress_current->pipe_count = 0;
rcu_stress_current->mbtest = 1;
for (i = 0; i < nreaders; i++)
create_thread(rcu_read_stress_test, NULL);
create_thread(rcu_update_stress_test, NULL);
for (i = 0; i < 5; i++)
create_thread(rcu_fake_update_stress_test, NULL);
smp_mb();
goflag = GOFLAG_RUN;
smp_mb();
sleep(10);
smp_mb();
goflag = GOFLAG_STOP;
smp_mb();
wait_all_threads();
for_each_thread(t)
n_reads += per_thread(n_reads_pt, t);
printf("n_reads: %lld n_updates: %ld n_mberror: %d\n",
n_reads, n_updates, n_mberror);
printf("rcu_stress_count:");
for (i = 0; i <= RCU_STRESS_PIPE_LEN; i++) {
sum = 0LL;
for_each_thread(t) {
sum += per_thread(rcu_stress_count, t)[i];
}
printf(" %lld", sum);
}
printf("\n");
exit(0);
}
/*
* Mainprogram.
*/
void usage(int argc, char *argv[])
{
fprintf(stderr, "Usage: %s [nreaders [ perf | stress ] ]\n", argv[0]);
exit(-1);
}
int main(int argc, char *argv[])
{
int nreaders = 1;
int cpustride = 1;
smp_init();
rcu_init();
if (argc > 1) {
nreaders = strtoul(argv[1], NULL, 0);
if (argc == 2)
perftest(nreaders, cpustride);
if (argc > 3)
cpustride = strtoul(argv[3], NULL, 0);
if (strcmp(argv[2], "perf") == 0)
perftest(nreaders, cpustride);
else if (strcmp(argv[2], "rperf") == 0)
rperftest(nreaders, cpustride);
else if (strcmp(argv[2], "uperf") == 0)
uperftest(nreaders, cpustride);
else if (strcmp(argv[2], "stress") == 0)
stresstest(nreaders);
usage(argc, argv);
}
perftest(nreaders, cpustride);
}