| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Generic show_mem() implementation | 
 |  * | 
 |  * Copyright (C) 2008 Johannes Weiner <hannes@saeurebad.de> | 
 |  */ | 
 |  | 
 | #include <linux/blkdev.h> | 
 | #include <linux/cma.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/vmstat.h> | 
 |  | 
 | #include "internal.h" | 
 | #include "swap.h" | 
 |  | 
 | atomic_long_t _totalram_pages __read_mostly; | 
 | EXPORT_SYMBOL(_totalram_pages); | 
 | unsigned long totalreserve_pages __read_mostly; | 
 | unsigned long totalcma_pages __read_mostly; | 
 |  | 
 | static inline void show_node(struct zone *zone) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_NUMA)) | 
 | 		printk("Node %d ", zone_to_nid(zone)); | 
 | } | 
 |  | 
 | long si_mem_available(void) | 
 | { | 
 | 	long available; | 
 | 	unsigned long pagecache; | 
 | 	unsigned long wmark_low = 0; | 
 | 	unsigned long reclaimable; | 
 | 	struct zone *zone; | 
 |  | 
 | 	for_each_zone(zone) | 
 | 		wmark_low += low_wmark_pages(zone); | 
 |  | 
 | 	/* | 
 | 	 * Estimate the amount of memory available for userspace allocations, | 
 | 	 * without causing swapping or OOM. | 
 | 	 */ | 
 | 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; | 
 |  | 
 | 	/* | 
 | 	 * Not all the page cache can be freed, otherwise the system will | 
 | 	 * start swapping or thrashing. Assume at least half of the page | 
 | 	 * cache, or the low watermark worth of cache, needs to stay. | 
 | 	 */ | 
 | 	pagecache = global_node_page_state(NR_ACTIVE_FILE) + | 
 | 		global_node_page_state(NR_INACTIVE_FILE); | 
 | 	pagecache -= min(pagecache / 2, wmark_low); | 
 | 	available += pagecache; | 
 |  | 
 | 	/* | 
 | 	 * Part of the reclaimable slab and other kernel memory consists of | 
 | 	 * items that are in use, and cannot be freed. Cap this estimate at the | 
 | 	 * low watermark. | 
 | 	 */ | 
 | 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + | 
 | 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); | 
 | 	reclaimable -= min(reclaimable / 2, wmark_low); | 
 | 	available += reclaimable; | 
 |  | 
 | 	if (available < 0) | 
 | 		available = 0; | 
 | 	return available; | 
 | } | 
 | EXPORT_SYMBOL_GPL(si_mem_available); | 
 |  | 
 | void si_meminfo(struct sysinfo *val) | 
 | { | 
 | 	val->totalram = totalram_pages(); | 
 | 	val->sharedram = global_node_page_state(NR_SHMEM); | 
 | 	val->freeram = global_zone_page_state(NR_FREE_PAGES); | 
 | 	val->bufferram = nr_blockdev_pages(); | 
 | 	val->totalhigh = totalhigh_pages(); | 
 | 	val->freehigh = nr_free_highpages(); | 
 | 	val->mem_unit = PAGE_SIZE; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(si_meminfo); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | void si_meminfo_node(struct sysinfo *val, int nid) | 
 | { | 
 | 	int zone_type;		/* needs to be signed */ | 
 | 	unsigned long managed_pages = 0; | 
 | 	unsigned long managed_highpages = 0; | 
 | 	unsigned long free_highpages = 0; | 
 | 	pg_data_t *pgdat = NODE_DATA(nid); | 
 |  | 
 | 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { | 
 | 		struct zone *zone = &pgdat->node_zones[zone_type]; | 
 | 		managed_pages += zone_managed_pages(zone); | 
 | 		if (is_highmem(zone)) { | 
 | 			managed_highpages += zone_managed_pages(zone); | 
 | 			free_highpages += zone_page_state(zone, NR_FREE_PAGES); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	val->totalram = managed_pages; | 
 | 	val->sharedram = node_page_state(pgdat, NR_SHMEM); | 
 | 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); | 
 | 	val->totalhigh = managed_highpages; | 
 | 	val->freehigh = free_highpages; | 
 | 	val->mem_unit = PAGE_SIZE; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Determine whether the node should be displayed or not, depending on whether | 
 |  * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). | 
 |  */ | 
 | static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) | 
 | { | 
 | 	if (!(flags & SHOW_MEM_FILTER_NODES)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * no node mask - aka implicit memory numa policy. Do not bother with | 
 | 	 * the synchronization - read_mems_allowed_begin - because we do not | 
 | 	 * have to be precise here. | 
 | 	 */ | 
 | 	if (!nodemask) | 
 | 		nodemask = &cpuset_current_mems_allowed; | 
 |  | 
 | 	return !node_isset(nid, *nodemask); | 
 | } | 
 |  | 
 | static void show_migration_types(unsigned char type) | 
 | { | 
 | 	static const char types[MIGRATE_TYPES] = { | 
 | 		[MIGRATE_UNMOVABLE]	= 'U', | 
 | 		[MIGRATE_MOVABLE]	= 'M', | 
 | 		[MIGRATE_RECLAIMABLE]	= 'E', | 
 | 		[MIGRATE_HIGHATOMIC]	= 'H', | 
 | #ifdef CONFIG_CMA | 
 | 		[MIGRATE_CMA]		= 'C', | 
 | #endif | 
 | #ifdef CONFIG_MEMORY_ISOLATION | 
 | 		[MIGRATE_ISOLATE]	= 'I', | 
 | #endif | 
 | 	}; | 
 | 	char tmp[MIGRATE_TYPES + 1]; | 
 | 	char *p = tmp; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < MIGRATE_TYPES; i++) { | 
 | 		if (type & (1 << i)) | 
 | 			*p++ = types[i]; | 
 | 	} | 
 |  | 
 | 	*p = '\0'; | 
 | 	printk(KERN_CONT "(%s) ", tmp); | 
 | } | 
 |  | 
 | static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx) | 
 | { | 
 | 	int zone_idx; | 
 | 	for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++) | 
 | 		if (zone_managed_pages(pgdat->node_zones + zone_idx)) | 
 | 			return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Show free area list (used inside shift_scroll-lock stuff) | 
 |  * We also calculate the percentage fragmentation. We do this by counting the | 
 |  * memory on each free list with the exception of the first item on the list. | 
 |  * | 
 |  * Bits in @filter: | 
 |  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's | 
 |  *   cpuset. | 
 |  */ | 
 | static void show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx) | 
 | { | 
 | 	unsigned long free_pcp = 0; | 
 | 	int cpu, nid; | 
 | 	struct zone *zone; | 
 | 	pg_data_t *pgdat; | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 | 		if (zone_idx(zone) > max_zone_idx) | 
 | 			continue; | 
 | 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) | 
 | 			continue; | 
 |  | 
 | 		for_each_online_cpu(cpu) | 
 | 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; | 
 | 	} | 
 |  | 
 | 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" | 
 | 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n" | 
 | 		" unevictable:%lu dirty:%lu writeback:%lu\n" | 
 | 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n" | 
 | 		" mapped:%lu shmem:%lu pagetables:%lu\n" | 
 | 		" sec_pagetables:%lu bounce:%lu\n" | 
 | 		" kernel_misc_reclaimable:%lu\n" | 
 | 		" free:%lu free_pcp:%lu free_cma:%lu\n", | 
 | 		global_node_page_state(NR_ACTIVE_ANON), | 
 | 		global_node_page_state(NR_INACTIVE_ANON), | 
 | 		global_node_page_state(NR_ISOLATED_ANON), | 
 | 		global_node_page_state(NR_ACTIVE_FILE), | 
 | 		global_node_page_state(NR_INACTIVE_FILE), | 
 | 		global_node_page_state(NR_ISOLATED_FILE), | 
 | 		global_node_page_state(NR_UNEVICTABLE), | 
 | 		global_node_page_state(NR_FILE_DIRTY), | 
 | 		global_node_page_state(NR_WRITEBACK), | 
 | 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), | 
 | 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), | 
 | 		global_node_page_state(NR_FILE_MAPPED), | 
 | 		global_node_page_state(NR_SHMEM), | 
 | 		global_node_page_state(NR_PAGETABLE), | 
 | 		global_node_page_state(NR_SECONDARY_PAGETABLE), | 
 | 		0UL, | 
 | 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), | 
 | 		global_zone_page_state(NR_FREE_PAGES), | 
 | 		free_pcp, | 
 | 		global_zone_page_state(NR_FREE_CMA_PAGES)); | 
 |  | 
 | 	for_each_online_pgdat(pgdat) { | 
 | 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) | 
 | 			continue; | 
 | 		if (!node_has_managed_zones(pgdat, max_zone_idx)) | 
 | 			continue; | 
 |  | 
 | 		printk("Node %d" | 
 | 			" active_anon:%lukB" | 
 | 			" inactive_anon:%lukB" | 
 | 			" active_file:%lukB" | 
 | 			" inactive_file:%lukB" | 
 | 			" unevictable:%lukB" | 
 | 			" isolated(anon):%lukB" | 
 | 			" isolated(file):%lukB" | 
 | 			" mapped:%lukB" | 
 | 			" dirty:%lukB" | 
 | 			" writeback:%lukB" | 
 | 			" shmem:%lukB" | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 			" shmem_thp:%lukB" | 
 | 			" shmem_pmdmapped:%lukB" | 
 | 			" anon_thp:%lukB" | 
 | #endif | 
 | 			" kernel_stack:%lukB" | 
 | #ifdef CONFIG_SHADOW_CALL_STACK | 
 | 			" shadow_call_stack:%lukB" | 
 | #endif | 
 | 			" pagetables:%lukB" | 
 | 			" sec_pagetables:%lukB" | 
 | 			" all_unreclaimable? %s" | 
 | 			" Balloon:%lukB" | 
 | 			"\n", | 
 | 			pgdat->node_id, | 
 | 			K(node_page_state(pgdat, NR_ACTIVE_ANON)), | 
 | 			K(node_page_state(pgdat, NR_INACTIVE_ANON)), | 
 | 			K(node_page_state(pgdat, NR_ACTIVE_FILE)), | 
 | 			K(node_page_state(pgdat, NR_INACTIVE_FILE)), | 
 | 			K(node_page_state(pgdat, NR_UNEVICTABLE)), | 
 | 			K(node_page_state(pgdat, NR_ISOLATED_ANON)), | 
 | 			K(node_page_state(pgdat, NR_ISOLATED_FILE)), | 
 | 			K(node_page_state(pgdat, NR_FILE_MAPPED)), | 
 | 			K(node_page_state(pgdat, NR_FILE_DIRTY)), | 
 | 			K(node_page_state(pgdat, NR_WRITEBACK)), | 
 | 			K(node_page_state(pgdat, NR_SHMEM)), | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 			K(node_page_state(pgdat, NR_SHMEM_THPS)), | 
 | 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), | 
 | 			K(node_page_state(pgdat, NR_ANON_THPS)), | 
 | #endif | 
 | 			node_page_state(pgdat, NR_KERNEL_STACK_KB), | 
 | #ifdef CONFIG_SHADOW_CALL_STACK | 
 | 			node_page_state(pgdat, NR_KERNEL_SCS_KB), | 
 | #endif | 
 | 			K(node_page_state(pgdat, NR_PAGETABLE)), | 
 | 			K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)), | 
 | 			str_yes_no(atomic_read(&pgdat->kswapd_failures) >= | 
 | 				   MAX_RECLAIM_RETRIES), | 
 | 			K(node_page_state(pgdat, NR_BALLOON_PAGES))); | 
 | 	} | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 | 		int i; | 
 |  | 
 | 		if (zone_idx(zone) > max_zone_idx) | 
 | 			continue; | 
 | 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) | 
 | 			continue; | 
 |  | 
 | 		free_pcp = 0; | 
 | 		for_each_online_cpu(cpu) | 
 | 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; | 
 |  | 
 | 		show_node(zone); | 
 | 		printk(KERN_CONT | 
 | 			"%s" | 
 | 			" free:%lukB" | 
 | 			" boost:%lukB" | 
 | 			" min:%lukB" | 
 | 			" low:%lukB" | 
 | 			" high:%lukB" | 
 | 			" reserved_highatomic:%luKB" | 
 | 			" free_highatomic:%luKB" | 
 | 			" active_anon:%lukB" | 
 | 			" inactive_anon:%lukB" | 
 | 			" active_file:%lukB" | 
 | 			" inactive_file:%lukB" | 
 | 			" unevictable:%lukB" | 
 | 			" writepending:%lukB" | 
 | 			" zspages:%lukB" | 
 | 			" present:%lukB" | 
 | 			" managed:%lukB" | 
 | 			" mlocked:%lukB" | 
 | 			" bounce:%lukB" | 
 | 			" free_pcp:%lukB" | 
 | 			" local_pcp:%ukB" | 
 | 			" free_cma:%lukB" | 
 | 			"\n", | 
 | 			zone->name, | 
 | 			K(zone_page_state(zone, NR_FREE_PAGES)), | 
 | 			K(zone->watermark_boost), | 
 | 			K(min_wmark_pages(zone)), | 
 | 			K(low_wmark_pages(zone)), | 
 | 			K(high_wmark_pages(zone)), | 
 | 			K(zone->nr_reserved_highatomic), | 
 | 			K(zone->nr_free_highatomic), | 
 | 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), | 
 | 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), | 
 | 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), | 
 | 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), | 
 | 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), | 
 | 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), | 
 | #if IS_ENABLED(CONFIG_ZSMALLOC) | 
 | 			K(zone_page_state(zone, NR_ZSPAGES)), | 
 | #else | 
 | 			0UL, | 
 | #endif | 
 | 			K(zone->present_pages), | 
 | 			K(zone_managed_pages(zone)), | 
 | 			K(zone_page_state(zone, NR_MLOCK)), | 
 | 			0UL, | 
 | 			K(free_pcp), | 
 | 			K(this_cpu_read(zone->per_cpu_pageset->count)), | 
 | 			K(zone_page_state(zone, NR_FREE_CMA_PAGES))); | 
 | 		printk("lowmem_reserve[]:"); | 
 | 		for (i = 0; i < MAX_NR_ZONES; i++) | 
 | 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); | 
 | 		printk(KERN_CONT "\n"); | 
 | 	} | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 | 		unsigned int order; | 
 | 		unsigned long nr[NR_PAGE_ORDERS], flags, total = 0; | 
 | 		unsigned char types[NR_PAGE_ORDERS]; | 
 |  | 
 | 		if (zone_idx(zone) > max_zone_idx) | 
 | 			continue; | 
 | 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) | 
 | 			continue; | 
 | 		show_node(zone); | 
 | 		printk(KERN_CONT "%s: ", zone->name); | 
 |  | 
 | 		spin_lock_irqsave(&zone->lock, flags); | 
 | 		for (order = 0; order < NR_PAGE_ORDERS; order++) { | 
 | 			struct free_area *area = &zone->free_area[order]; | 
 | 			int type; | 
 |  | 
 | 			nr[order] = area->nr_free; | 
 | 			total += nr[order] << order; | 
 |  | 
 | 			types[order] = 0; | 
 | 			for (type = 0; type < MIGRATE_TYPES; type++) { | 
 | 				if (!free_area_empty(area, type)) | 
 | 					types[order] |= 1 << type; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock_irqrestore(&zone->lock, flags); | 
 | 		for (order = 0; order < NR_PAGE_ORDERS; order++) { | 
 | 			printk(KERN_CONT "%lu*%lukB ", | 
 | 			       nr[order], K(1UL) << order); | 
 | 			if (nr[order]) | 
 | 				show_migration_types(types[order]); | 
 | 		} | 
 | 		printk(KERN_CONT "= %lukB\n", K(total)); | 
 | 	} | 
 |  | 
 | 	for_each_online_node(nid) { | 
 | 		if (show_mem_node_skip(filter, nid, nodemask)) | 
 | 			continue; | 
 | 		hugetlb_show_meminfo_node(nid); | 
 | 	} | 
 |  | 
 | 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); | 
 |  | 
 | 	show_swap_cache_info(); | 
 | } | 
 |  | 
 | void __show_mem(unsigned int filter, nodemask_t *nodemask, int max_zone_idx) | 
 | { | 
 | 	unsigned long total = 0, reserved = 0, highmem = 0; | 
 | 	struct zone *zone; | 
 |  | 
 | 	printk("Mem-Info:\n"); | 
 | 	show_free_areas(filter, nodemask, max_zone_idx); | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 |  | 
 | 		total += zone->present_pages; | 
 | 		reserved += zone->present_pages - zone_managed_pages(zone); | 
 |  | 
 | 		if (is_highmem(zone)) | 
 | 			highmem += zone->present_pages; | 
 | 	} | 
 |  | 
 | 	printk("%lu pages RAM\n", total); | 
 | 	printk("%lu pages HighMem/MovableOnly\n", highmem); | 
 | 	printk("%lu pages reserved\n", reserved); | 
 | #ifdef CONFIG_CMA | 
 | 	printk("%lu pages cma reserved\n", totalcma_pages); | 
 | #endif | 
 | #ifdef CONFIG_MEMORY_FAILURE | 
 | 	printk("%lu pages hwpoisoned\n", atomic_long_read(&num_poisoned_pages)); | 
 | #endif | 
 | #ifdef CONFIG_MEM_ALLOC_PROFILING | 
 | 	static DEFINE_SPINLOCK(mem_alloc_profiling_spinlock); | 
 |  | 
 | 	if (spin_trylock(&mem_alloc_profiling_spinlock)) { | 
 | 		struct codetag_bytes tags[10]; | 
 | 		size_t i, nr; | 
 |  | 
 | 		nr = alloc_tag_top_users(tags, ARRAY_SIZE(tags), false); | 
 | 		if (nr) { | 
 | 			pr_notice("Memory allocations (profiling is currently turned %s):\n", | 
 | 				mem_alloc_profiling_enabled() ? "on" : "off"); | 
 | 			for (i = 0; i < nr; i++) { | 
 | 				struct codetag *ct = tags[i].ct; | 
 | 				struct alloc_tag *tag = ct_to_alloc_tag(ct); | 
 | 				struct alloc_tag_counters counter = alloc_tag_read(tag); | 
 | 				char bytes[10]; | 
 |  | 
 | 				string_get_size(counter.bytes, 1, STRING_UNITS_2, bytes, sizeof(bytes)); | 
 |  | 
 | 				/* Same as alloc_tag_to_text() but w/o intermediate buffer */ | 
 | 				if (ct->modname) | 
 | 					pr_notice("%12s %8llu %s:%u [%s] func:%s\n", | 
 | 						  bytes, counter.calls, ct->filename, | 
 | 						  ct->lineno, ct->modname, ct->function); | 
 | 				else | 
 | 					pr_notice("%12s %8llu %s:%u func:%s\n", | 
 | 						  bytes, counter.calls, ct->filename, | 
 | 						  ct->lineno, ct->function); | 
 | 			} | 
 | 		} | 
 | 		spin_unlock(&mem_alloc_profiling_spinlock); | 
 | 	} | 
 | #endif | 
 | } |