|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | *  linux/fs/super.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | * | 
|  | *  super.c contains code to handle: - mount structures | 
|  | *                                   - super-block tables | 
|  | *                                   - filesystem drivers list | 
|  | *                                   - mount system call | 
|  | *                                   - umount system call | 
|  | *                                   - ustat system call | 
|  | * | 
|  | * GK 2/5/95  -  Changed to support mounting the root fs via NFS | 
|  | * | 
|  | *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall | 
|  | *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96 | 
|  | *  Added options to /proc/mounts: | 
|  | *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. | 
|  | *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 | 
|  | *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 | 
|  | */ | 
|  |  | 
|  | #include <linux/export.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/writeback.h>		/* for the emergency remount stuff */ | 
|  | #include <linux/idr.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/rculist_bl.h> | 
|  | #include <linux/fscrypt.h> | 
|  | #include <linux/fsnotify.h> | 
|  | #include <linux/lockdep.h> | 
|  | #include <linux/user_namespace.h> | 
|  | #include <linux/fs_context.h> | 
|  | #include <uapi/linux/mount.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | static int thaw_super_locked(struct super_block *sb, enum freeze_holder who, | 
|  | const void *freeze_owner); | 
|  |  | 
|  | static LIST_HEAD(super_blocks); | 
|  | static DEFINE_SPINLOCK(sb_lock); | 
|  |  | 
|  | static char *sb_writers_name[SB_FREEZE_LEVELS] = { | 
|  | "sb_writers", | 
|  | "sb_pagefaults", | 
|  | "sb_internal", | 
|  | }; | 
|  |  | 
|  | static inline void __super_lock(struct super_block *sb, bool excl) | 
|  | { | 
|  | if (excl) | 
|  | down_write(&sb->s_umount); | 
|  | else | 
|  | down_read(&sb->s_umount); | 
|  | } | 
|  |  | 
|  | static inline void super_unlock(struct super_block *sb, bool excl) | 
|  | { | 
|  | if (excl) | 
|  | up_write(&sb->s_umount); | 
|  | else | 
|  | up_read(&sb->s_umount); | 
|  | } | 
|  |  | 
|  | static inline void __super_lock_excl(struct super_block *sb) | 
|  | { | 
|  | __super_lock(sb, true); | 
|  | } | 
|  |  | 
|  | static inline void super_unlock_excl(struct super_block *sb) | 
|  | { | 
|  | super_unlock(sb, true); | 
|  | } | 
|  |  | 
|  | static inline void super_unlock_shared(struct super_block *sb) | 
|  | { | 
|  | super_unlock(sb, false); | 
|  | } | 
|  |  | 
|  | static bool super_flags(const struct super_block *sb, unsigned int flags) | 
|  | { | 
|  | /* | 
|  | * Pairs with smp_store_release() in super_wake() and ensures | 
|  | * that we see @flags after we're woken. | 
|  | */ | 
|  | return smp_load_acquire(&sb->s_flags) & flags; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * super_lock - wait for superblock to become ready and lock it | 
|  | * @sb: superblock to wait for | 
|  | * @excl: whether exclusive access is required | 
|  | * | 
|  | * If the superblock has neither passed through vfs_get_tree() or | 
|  | * generic_shutdown_super() yet wait for it to happen. Either superblock | 
|  | * creation will succeed and SB_BORN is set by vfs_get_tree() or we're | 
|  | * woken and we'll see SB_DYING. | 
|  | * | 
|  | * The caller must have acquired a temporary reference on @sb->s_count. | 
|  | * | 
|  | * Return: The function returns true if SB_BORN was set and with | 
|  | *         s_umount held. The function returns false if SB_DYING was | 
|  | *         set and without s_umount held. | 
|  | */ | 
|  | static __must_check bool super_lock(struct super_block *sb, bool excl) | 
|  | { | 
|  | lockdep_assert_not_held(&sb->s_umount); | 
|  |  | 
|  | /* wait until the superblock is ready or dying */ | 
|  | wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING)); | 
|  |  | 
|  | /* Don't pointlessly acquire s_umount. */ | 
|  | if (super_flags(sb, SB_DYING)) | 
|  | return false; | 
|  |  | 
|  | __super_lock(sb, excl); | 
|  |  | 
|  | /* | 
|  | * Has gone through generic_shutdown_super() in the meantime. | 
|  | * @sb->s_root is NULL and @sb->s_active is 0. No one needs to | 
|  | * grab a reference to this. Tell them so. | 
|  | */ | 
|  | if (sb->s_flags & SB_DYING) { | 
|  | super_unlock(sb, excl); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(!(sb->s_flags & SB_BORN)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* wait and try to acquire read-side of @sb->s_umount */ | 
|  | static inline bool super_lock_shared(struct super_block *sb) | 
|  | { | 
|  | return super_lock(sb, false); | 
|  | } | 
|  |  | 
|  | /* wait and try to acquire write-side of @sb->s_umount */ | 
|  | static inline bool super_lock_excl(struct super_block *sb) | 
|  | { | 
|  | return super_lock(sb, true); | 
|  | } | 
|  |  | 
|  | /* wake waiters */ | 
|  | #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD) | 
|  | static void super_wake(struct super_block *sb, unsigned int flag) | 
|  | { | 
|  | WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS)); | 
|  | WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1); | 
|  |  | 
|  | /* | 
|  | * Pairs with smp_load_acquire() in super_lock() to make sure | 
|  | * all initializations in the superblock are seen by the user | 
|  | * seeing SB_BORN sent. | 
|  | */ | 
|  | smp_store_release(&sb->s_flags, sb->s_flags | flag); | 
|  | /* | 
|  | * Pairs with the barrier in prepare_to_wait_event() to make sure | 
|  | * ___wait_var_event() either sees SB_BORN set or | 
|  | * waitqueue_active() check in wake_up_var() sees the waiter. | 
|  | */ | 
|  | smp_mb(); | 
|  | wake_up_var(&sb->s_flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * One thing we have to be careful of with a per-sb shrinker is that we don't | 
|  | * drop the last active reference to the superblock from within the shrinker. | 
|  | * If that happens we could trigger unregistering the shrinker from within the | 
|  | * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we | 
|  | * take a passive reference to the superblock to avoid this from occurring. | 
|  | */ | 
|  | static unsigned long super_cache_scan(struct shrinker *shrink, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | struct super_block *sb; | 
|  | long	fs_objects = 0; | 
|  | long	total_objects; | 
|  | long	freed = 0; | 
|  | long	dentries; | 
|  | long	inodes; | 
|  |  | 
|  | sb = shrink->private_data; | 
|  |  | 
|  | /* | 
|  | * Deadlock avoidance.  We may hold various FS locks, and we don't want | 
|  | * to recurse into the FS that called us in clear_inode() and friends.. | 
|  | */ | 
|  | if (!(sc->gfp_mask & __GFP_FS)) | 
|  | return SHRINK_STOP; | 
|  |  | 
|  | if (!super_trylock_shared(sb)) | 
|  | return SHRINK_STOP; | 
|  |  | 
|  | if (sb->s_op->nr_cached_objects) | 
|  | fs_objects = sb->s_op->nr_cached_objects(sb, sc); | 
|  |  | 
|  | inodes = list_lru_shrink_count(&sb->s_inode_lru, sc); | 
|  | dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc); | 
|  | total_objects = dentries + inodes + fs_objects; | 
|  | if (!total_objects) | 
|  | total_objects = 1; | 
|  |  | 
|  | /* proportion the scan between the caches */ | 
|  | dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); | 
|  | inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); | 
|  | fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); | 
|  |  | 
|  | /* | 
|  | * prune the dcache first as the icache is pinned by it, then | 
|  | * prune the icache, followed by the filesystem specific caches | 
|  | * | 
|  | * Ensure that we always scan at least one object - memcg kmem | 
|  | * accounting uses this to fully empty the caches. | 
|  | */ | 
|  | sc->nr_to_scan = dentries + 1; | 
|  | freed = prune_dcache_sb(sb, sc); | 
|  | sc->nr_to_scan = inodes + 1; | 
|  | freed += prune_icache_sb(sb, sc); | 
|  |  | 
|  | if (fs_objects) { | 
|  | sc->nr_to_scan = fs_objects + 1; | 
|  | freed += sb->s_op->free_cached_objects(sb, sc); | 
|  | } | 
|  |  | 
|  | super_unlock_shared(sb); | 
|  | return freed; | 
|  | } | 
|  |  | 
|  | static unsigned long super_cache_count(struct shrinker *shrink, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | struct super_block *sb; | 
|  | long	total_objects = 0; | 
|  |  | 
|  | sb = shrink->private_data; | 
|  |  | 
|  | /* | 
|  | * We don't call super_trylock_shared() here as it is a scalability | 
|  | * bottleneck, so we're exposed to partial setup state. The shrinker | 
|  | * rwsem does not protect filesystem operations backing | 
|  | * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can | 
|  | * change between super_cache_count and super_cache_scan, so we really | 
|  | * don't need locks here. | 
|  | * | 
|  | * However, if we are currently mounting the superblock, the underlying | 
|  | * filesystem might be in a state of partial construction and hence it | 
|  | * is dangerous to access it.  super_trylock_shared() uses a SB_BORN check | 
|  | * to avoid this situation, so do the same here. The memory barrier is | 
|  | * matched with the one in mount_fs() as we don't hold locks here. | 
|  | */ | 
|  | if (!(sb->s_flags & SB_BORN)) | 
|  | return 0; | 
|  | smp_rmb(); | 
|  |  | 
|  | if (sb->s_op && sb->s_op->nr_cached_objects) | 
|  | total_objects = sb->s_op->nr_cached_objects(sb, sc); | 
|  |  | 
|  | total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc); | 
|  | total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc); | 
|  |  | 
|  | if (!total_objects) | 
|  | return SHRINK_EMPTY; | 
|  |  | 
|  | total_objects = vfs_pressure_ratio(total_objects); | 
|  | return total_objects; | 
|  | } | 
|  |  | 
|  | static void destroy_super_work(struct work_struct *work) | 
|  | { | 
|  | struct super_block *s = container_of(work, struct super_block, | 
|  | destroy_work); | 
|  | fsnotify_sb_free(s); | 
|  | security_sb_free(s); | 
|  | put_user_ns(s->s_user_ns); | 
|  | kfree(s->s_subtype); | 
|  | for (int i = 0; i < SB_FREEZE_LEVELS; i++) | 
|  | percpu_free_rwsem(&s->s_writers.rw_sem[i]); | 
|  | kfree(s); | 
|  | } | 
|  |  | 
|  | static void destroy_super_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct super_block *s = container_of(head, struct super_block, rcu); | 
|  | INIT_WORK(&s->destroy_work, destroy_super_work); | 
|  | schedule_work(&s->destroy_work); | 
|  | } | 
|  |  | 
|  | /* Free a superblock that has never been seen by anyone */ | 
|  | static void destroy_unused_super(struct super_block *s) | 
|  | { | 
|  | if (!s) | 
|  | return; | 
|  | super_unlock_excl(s); | 
|  | list_lru_destroy(&s->s_dentry_lru); | 
|  | list_lru_destroy(&s->s_inode_lru); | 
|  | shrinker_free(s->s_shrink); | 
|  | /* no delays needed */ | 
|  | destroy_super_work(&s->destroy_work); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	alloc_super	-	create new superblock | 
|  | *	@type:	filesystem type superblock should belong to | 
|  | *	@flags: the mount flags | 
|  | *	@user_ns: User namespace for the super_block | 
|  | * | 
|  | *	Allocates and initializes a new &struct super_block.  alloc_super() | 
|  | *	returns a pointer new superblock or %NULL if allocation had failed. | 
|  | */ | 
|  | static struct super_block *alloc_super(struct file_system_type *type, int flags, | 
|  | struct user_namespace *user_ns) | 
|  | { | 
|  | struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL); | 
|  | static const struct super_operations default_op; | 
|  | int i; | 
|  |  | 
|  | if (!s) | 
|  | return NULL; | 
|  |  | 
|  | INIT_LIST_HEAD(&s->s_mounts); | 
|  | s->s_user_ns = get_user_ns(user_ns); | 
|  | init_rwsem(&s->s_umount); | 
|  | lockdep_set_class(&s->s_umount, &type->s_umount_key); | 
|  | /* | 
|  | * sget() can have s_umount recursion. | 
|  | * | 
|  | * When it cannot find a suitable sb, it allocates a new | 
|  | * one (this one), and tries again to find a suitable old | 
|  | * one. | 
|  | * | 
|  | * In case that succeeds, it will acquire the s_umount | 
|  | * lock of the old one. Since these are clearly distrinct | 
|  | * locks, and this object isn't exposed yet, there's no | 
|  | * risk of deadlocks. | 
|  | * | 
|  | * Annotate this by putting this lock in a different | 
|  | * subclass. | 
|  | */ | 
|  | down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | if (security_sb_alloc(s)) | 
|  | goto fail; | 
|  |  | 
|  | for (i = 0; i < SB_FREEZE_LEVELS; i++) { | 
|  | if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], | 
|  | sb_writers_name[i], | 
|  | &type->s_writers_key[i])) | 
|  | goto fail; | 
|  | } | 
|  | s->s_bdi = &noop_backing_dev_info; | 
|  | s->s_flags = flags; | 
|  | if (s->s_user_ns != &init_user_ns) | 
|  | s->s_iflags |= SB_I_NODEV; | 
|  | INIT_HLIST_NODE(&s->s_instances); | 
|  | INIT_HLIST_BL_HEAD(&s->s_roots); | 
|  | mutex_init(&s->s_sync_lock); | 
|  | INIT_LIST_HEAD(&s->s_inodes); | 
|  | spin_lock_init(&s->s_inode_list_lock); | 
|  | INIT_LIST_HEAD(&s->s_inodes_wb); | 
|  | spin_lock_init(&s->s_inode_wblist_lock); | 
|  |  | 
|  | s->s_count = 1; | 
|  | atomic_set(&s->s_active, 1); | 
|  | mutex_init(&s->s_vfs_rename_mutex); | 
|  | lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); | 
|  | init_rwsem(&s->s_dquot.dqio_sem); | 
|  | s->s_maxbytes = MAX_NON_LFS; | 
|  | s->s_op = &default_op; | 
|  | s->s_time_gran = 1000000000; | 
|  | s->s_time_min = TIME64_MIN; | 
|  | s->s_time_max = TIME64_MAX; | 
|  |  | 
|  | s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, | 
|  | "sb-%s", type->name); | 
|  | if (!s->s_shrink) | 
|  | goto fail; | 
|  |  | 
|  | s->s_shrink->scan_objects = super_cache_scan; | 
|  | s->s_shrink->count_objects = super_cache_count; | 
|  | s->s_shrink->batch = 1024; | 
|  | s->s_shrink->private_data = s; | 
|  |  | 
|  | if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink)) | 
|  | goto fail; | 
|  | if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink)) | 
|  | goto fail; | 
|  | return s; | 
|  |  | 
|  | fail: | 
|  | destroy_unused_super(s); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Superblock refcounting  */ | 
|  |  | 
|  | /* | 
|  | * Drop a superblock's refcount.  The caller must hold sb_lock. | 
|  | */ | 
|  | static void __put_super(struct super_block *s) | 
|  | { | 
|  | if (!--s->s_count) { | 
|  | list_del_init(&s->s_list); | 
|  | WARN_ON(s->s_dentry_lru.node); | 
|  | WARN_ON(s->s_inode_lru.node); | 
|  | WARN_ON(!list_empty(&s->s_mounts)); | 
|  | call_rcu(&s->rcu, destroy_super_rcu); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	put_super	-	drop a temporary reference to superblock | 
|  | *	@sb: superblock in question | 
|  | * | 
|  | *	Drops a temporary reference, frees superblock if there's no | 
|  | *	references left. | 
|  | */ | 
|  | void put_super(struct super_block *sb) | 
|  | { | 
|  | spin_lock(&sb_lock); | 
|  | __put_super(sb); | 
|  | spin_unlock(&sb_lock); | 
|  | } | 
|  |  | 
|  | static void kill_super_notify(struct super_block *sb) | 
|  | { | 
|  | lockdep_assert_not_held(&sb->s_umount); | 
|  |  | 
|  | /* already notified earlier */ | 
|  | if (sb->s_flags & SB_DEAD) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Remove it from @fs_supers so it isn't found by new | 
|  | * sget{_fc}() walkers anymore. Any concurrent mounter still | 
|  | * managing to grab a temporary reference is guaranteed to | 
|  | * already see SB_DYING and will wait until we notify them about | 
|  | * SB_DEAD. | 
|  | */ | 
|  | spin_lock(&sb_lock); | 
|  | hlist_del_init(&sb->s_instances); | 
|  | spin_unlock(&sb_lock); | 
|  |  | 
|  | /* | 
|  | * Let concurrent mounts know that this thing is really dead. | 
|  | * We don't need @sb->s_umount here as every concurrent caller | 
|  | * will see SB_DYING and either discard the superblock or wait | 
|  | * for SB_DEAD. | 
|  | */ | 
|  | super_wake(sb, SB_DEAD); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	deactivate_locked_super	-	drop an active reference to superblock | 
|  | *	@s: superblock to deactivate | 
|  | * | 
|  | *	Drops an active reference to superblock, converting it into a temporary | 
|  | *	one if there is no other active references left.  In that case we | 
|  | *	tell fs driver to shut it down and drop the temporary reference we | 
|  | *	had just acquired. | 
|  | * | 
|  | *	Caller holds exclusive lock on superblock; that lock is released. | 
|  | */ | 
|  | void deactivate_locked_super(struct super_block *s) | 
|  | { | 
|  | struct file_system_type *fs = s->s_type; | 
|  | if (atomic_dec_and_test(&s->s_active)) { | 
|  | shrinker_free(s->s_shrink); | 
|  | fs->kill_sb(s); | 
|  |  | 
|  | kill_super_notify(s); | 
|  |  | 
|  | /* | 
|  | * Since list_lru_destroy() may sleep, we cannot call it from | 
|  | * put_super(), where we hold the sb_lock. Therefore we destroy | 
|  | * the lru lists right now. | 
|  | */ | 
|  | list_lru_destroy(&s->s_dentry_lru); | 
|  | list_lru_destroy(&s->s_inode_lru); | 
|  |  | 
|  | put_filesystem(fs); | 
|  | put_super(s); | 
|  | } else { | 
|  | super_unlock_excl(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(deactivate_locked_super); | 
|  |  | 
|  | /** | 
|  | *	deactivate_super	-	drop an active reference to superblock | 
|  | *	@s: superblock to deactivate | 
|  | * | 
|  | *	Variant of deactivate_locked_super(), except that superblock is *not* | 
|  | *	locked by caller.  If we are going to drop the final active reference, | 
|  | *	lock will be acquired prior to that. | 
|  | */ | 
|  | void deactivate_super(struct super_block *s) | 
|  | { | 
|  | if (!atomic_add_unless(&s->s_active, -1, 1)) { | 
|  | __super_lock_excl(s); | 
|  | deactivate_locked_super(s); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(deactivate_super); | 
|  |  | 
|  | /** | 
|  | * grab_super - acquire an active reference to a superblock | 
|  | * @sb: superblock to acquire | 
|  | * | 
|  | * Acquire a temporary reference on a superblock and try to trade it for | 
|  | * an active reference. This is used in sget{_fc}() to wait for a | 
|  | * superblock to either become SB_BORN or for it to pass through | 
|  | * sb->kill() and be marked as SB_DEAD. | 
|  | * | 
|  | * Return: This returns true if an active reference could be acquired, | 
|  | *         false if not. | 
|  | */ | 
|  | static bool grab_super(struct super_block *sb) | 
|  | { | 
|  | bool locked; | 
|  |  | 
|  | sb->s_count++; | 
|  | spin_unlock(&sb_lock); | 
|  | locked = super_lock_excl(sb); | 
|  | if (locked) { | 
|  | if (atomic_inc_not_zero(&sb->s_active)) { | 
|  | put_super(sb); | 
|  | return true; | 
|  | } | 
|  | super_unlock_excl(sb); | 
|  | } | 
|  | wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD)); | 
|  | put_super(sb); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	super_trylock_shared - try to grab ->s_umount shared | 
|  | *	@sb: reference we are trying to grab | 
|  | * | 
|  | *	Try to prevent fs shutdown.  This is used in places where we | 
|  | *	cannot take an active reference but we need to ensure that the | 
|  | *	filesystem is not shut down while we are working on it. It returns | 
|  | *	false if we cannot acquire s_umount or if we lose the race and | 
|  | *	filesystem already got into shutdown, and returns true with the s_umount | 
|  | *	lock held in read mode in case of success. On successful return, | 
|  | *	the caller must drop the s_umount lock when done. | 
|  | * | 
|  | *	Note that unlike get_super() et.al. this one does *not* bump ->s_count. | 
|  | *	The reason why it's safe is that we are OK with doing trylock instead | 
|  | *	of down_read().  There's a couple of places that are OK with that, but | 
|  | *	it's very much not a general-purpose interface. | 
|  | */ | 
|  | bool super_trylock_shared(struct super_block *sb) | 
|  | { | 
|  | if (down_read_trylock(&sb->s_umount)) { | 
|  | if (!(sb->s_flags & SB_DYING) && sb->s_root && | 
|  | (sb->s_flags & SB_BORN)) | 
|  | return true; | 
|  | super_unlock_shared(sb); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	retire_super	-	prevents superblock from being reused | 
|  | *	@sb: superblock to retire | 
|  | * | 
|  | *	The function marks superblock to be ignored in superblock test, which | 
|  | *	prevents it from being reused for any new mounts.  If the superblock has | 
|  | *	a private bdi, it also unregisters it, but doesn't reduce the refcount | 
|  | *	of the superblock to prevent potential races.  The refcount is reduced | 
|  | *	by generic_shutdown_super().  The function can not be called | 
|  | *	concurrently with generic_shutdown_super().  It is safe to call the | 
|  | *	function multiple times, subsequent calls have no effect. | 
|  | * | 
|  | *	The marker will affect the re-use only for block-device-based | 
|  | *	superblocks.  Other superblocks will still get marked if this function | 
|  | *	is used, but that will not affect their reusability. | 
|  | */ | 
|  | void retire_super(struct super_block *sb) | 
|  | { | 
|  | WARN_ON(!sb->s_bdev); | 
|  | __super_lock_excl(sb); | 
|  | if (sb->s_iflags & SB_I_PERSB_BDI) { | 
|  | bdi_unregister(sb->s_bdi); | 
|  | sb->s_iflags &= ~SB_I_PERSB_BDI; | 
|  | } | 
|  | sb->s_iflags |= SB_I_RETIRED; | 
|  | super_unlock_excl(sb); | 
|  | } | 
|  | EXPORT_SYMBOL(retire_super); | 
|  |  | 
|  | /** | 
|  | *	generic_shutdown_super	-	common helper for ->kill_sb() | 
|  | *	@sb: superblock to kill | 
|  | * | 
|  | *	generic_shutdown_super() does all fs-independent work on superblock | 
|  | *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects | 
|  | *	that need destruction out of superblock, call generic_shutdown_super() | 
|  | *	and release aforementioned objects.  Note: dentries and inodes _are_ | 
|  | *	taken care of and do not need specific handling. | 
|  | * | 
|  | *	Upon calling this function, the filesystem may no longer alter or | 
|  | *	rearrange the set of dentries belonging to this super_block, nor may it | 
|  | *	change the attachments of dentries to inodes. | 
|  | */ | 
|  | void generic_shutdown_super(struct super_block *sb) | 
|  | { | 
|  | const struct super_operations *sop = sb->s_op; | 
|  |  | 
|  | if (sb->s_root) { | 
|  | shrink_dcache_for_umount(sb); | 
|  | sync_filesystem(sb); | 
|  | sb->s_flags &= ~SB_ACTIVE; | 
|  |  | 
|  | cgroup_writeback_umount(sb); | 
|  |  | 
|  | /* Evict all inodes with zero refcount. */ | 
|  | evict_inodes(sb); | 
|  |  | 
|  | /* | 
|  | * Clean up and evict any inodes that still have references due | 
|  | * to fsnotify or the security policy. | 
|  | */ | 
|  | fsnotify_sb_delete(sb); | 
|  | security_sb_delete(sb); | 
|  |  | 
|  | if (sb->s_dio_done_wq) { | 
|  | destroy_workqueue(sb->s_dio_done_wq); | 
|  | sb->s_dio_done_wq = NULL; | 
|  | } | 
|  |  | 
|  | if (sop->put_super) | 
|  | sop->put_super(sb); | 
|  |  | 
|  | /* | 
|  | * Now that all potentially-encrypted inodes have been evicted, | 
|  | * the fscrypt keyring can be destroyed. | 
|  | */ | 
|  | fscrypt_destroy_keyring(sb); | 
|  |  | 
|  | if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), NULL, | 
|  | "VFS: Busy inodes after unmount of %s (%s)", | 
|  | sb->s_id, sb->s_type->name)) { | 
|  | /* | 
|  | * Adding a proper bailout path here would be hard, but | 
|  | * we can at least make it more likely that a later | 
|  | * iput_final() or such crashes cleanly. | 
|  | */ | 
|  | struct inode *inode; | 
|  |  | 
|  | spin_lock(&sb->s_inode_list_lock); | 
|  | list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { | 
|  | inode->i_op = VFS_PTR_POISON; | 
|  | inode->i_sb = VFS_PTR_POISON; | 
|  | inode->i_mapping = VFS_PTR_POISON; | 
|  | } | 
|  | spin_unlock(&sb->s_inode_list_lock); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Broadcast to everyone that grabbed a temporary reference to this | 
|  | * superblock before we removed it from @fs_supers that the superblock | 
|  | * is dying. Every walker of @fs_supers outside of sget{_fc}() will now | 
|  | * discard this superblock and treat it as dead. | 
|  | * | 
|  | * We leave the superblock on @fs_supers so it can be found by | 
|  | * sget{_fc}() until we passed sb->kill_sb(). | 
|  | */ | 
|  | super_wake(sb, SB_DYING); | 
|  | super_unlock_excl(sb); | 
|  | if (sb->s_bdi != &noop_backing_dev_info) { | 
|  | if (sb->s_iflags & SB_I_PERSB_BDI) | 
|  | bdi_unregister(sb->s_bdi); | 
|  | bdi_put(sb->s_bdi); | 
|  | sb->s_bdi = &noop_backing_dev_info; | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(generic_shutdown_super); | 
|  |  | 
|  | bool mount_capable(struct fs_context *fc) | 
|  | { | 
|  | if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) | 
|  | return capable(CAP_SYS_ADMIN); | 
|  | else | 
|  | return ns_capable(fc->user_ns, CAP_SYS_ADMIN); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sget_fc - Find or create a superblock | 
|  | * @fc:	Filesystem context. | 
|  | * @test: Comparison callback | 
|  | * @set: Setup callback | 
|  | * | 
|  | * Create a new superblock or find an existing one. | 
|  | * | 
|  | * The @test callback is used to find a matching existing superblock. | 
|  | * Whether or not the requested parameters in @fc are taken into account | 
|  | * is specific to the @test callback that is used. They may even be | 
|  | * completely ignored. | 
|  | * | 
|  | * If an extant superblock is matched, it will be returned unless: | 
|  | * | 
|  | * (1) the namespace the filesystem context @fc and the extant | 
|  | *     superblock's namespace differ | 
|  | * | 
|  | * (2) the filesystem context @fc has requested that reusing an extant | 
|  | *     superblock is not allowed | 
|  | * | 
|  | * In both cases EBUSY will be returned. | 
|  | * | 
|  | * If no match is made, a new superblock will be allocated and basic | 
|  | * initialisation will be performed (s_type, s_fs_info and s_id will be | 
|  | * set and the @set callback will be invoked), the superblock will be | 
|  | * published and it will be returned in a partially constructed state | 
|  | * with SB_BORN and SB_ACTIVE as yet unset. | 
|  | * | 
|  | * Return: On success, an extant or newly created superblock is | 
|  | *         returned. On failure an error pointer is returned. | 
|  | */ | 
|  | struct super_block *sget_fc(struct fs_context *fc, | 
|  | int (*test)(struct super_block *, struct fs_context *), | 
|  | int (*set)(struct super_block *, struct fs_context *)) | 
|  | { | 
|  | struct super_block *s = NULL; | 
|  | struct super_block *old; | 
|  | struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * Never allow s_user_ns != &init_user_ns when FS_USERNS_MOUNT is | 
|  | * not set, as the filesystem is likely unprepared to handle it. | 
|  | * This can happen when fsconfig() is called from init_user_ns with | 
|  | * an fs_fd opened in another user namespace. | 
|  | */ | 
|  | if (user_ns != &init_user_ns && !(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) { | 
|  | errorfc(fc, "VFS: Mounting from non-initial user namespace is not allowed"); | 
|  | return ERR_PTR(-EPERM); | 
|  | } | 
|  |  | 
|  | retry: | 
|  | spin_lock(&sb_lock); | 
|  | if (test) { | 
|  | hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { | 
|  | if (test(old, fc)) | 
|  | goto share_extant_sb; | 
|  | } | 
|  | } | 
|  | if (!s) { | 
|  | spin_unlock(&sb_lock); | 
|  | s = alloc_super(fc->fs_type, fc->sb_flags, user_ns); | 
|  | if (!s) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | s->s_fs_info = fc->s_fs_info; | 
|  | err = set(s, fc); | 
|  | if (err) { | 
|  | s->s_fs_info = NULL; | 
|  | spin_unlock(&sb_lock); | 
|  | destroy_unused_super(s); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | fc->s_fs_info = NULL; | 
|  | s->s_type = fc->fs_type; | 
|  | s->s_iflags |= fc->s_iflags; | 
|  | strscpy(s->s_id, s->s_type->name, sizeof(s->s_id)); | 
|  | /* | 
|  | * Make the superblock visible on @super_blocks and @fs_supers. | 
|  | * It's in a nascent state and users should wait on SB_BORN or | 
|  | * SB_DYING to be set. | 
|  | */ | 
|  | list_add_tail(&s->s_list, &super_blocks); | 
|  | hlist_add_head(&s->s_instances, &s->s_type->fs_supers); | 
|  | spin_unlock(&sb_lock); | 
|  | get_filesystem(s->s_type); | 
|  | shrinker_register(s->s_shrink); | 
|  | return s; | 
|  |  | 
|  | share_extant_sb: | 
|  | if (user_ns != old->s_user_ns || fc->exclusive) { | 
|  | spin_unlock(&sb_lock); | 
|  | destroy_unused_super(s); | 
|  | if (fc->exclusive) | 
|  | warnfc(fc, "reusing existing filesystem not allowed"); | 
|  | else | 
|  | warnfc(fc, "reusing existing filesystem in another namespace not allowed"); | 
|  | return ERR_PTR(-EBUSY); | 
|  | } | 
|  | if (!grab_super(old)) | 
|  | goto retry; | 
|  | destroy_unused_super(s); | 
|  | return old; | 
|  | } | 
|  | EXPORT_SYMBOL(sget_fc); | 
|  |  | 
|  | /** | 
|  | *	sget	-	find or create a superblock | 
|  | *	@type:	  filesystem type superblock should belong to | 
|  | *	@test:	  comparison callback | 
|  | *	@set:	  setup callback | 
|  | *	@flags:	  mount flags | 
|  | *	@data:	  argument to each of them | 
|  | */ | 
|  | struct super_block *sget(struct file_system_type *type, | 
|  | int (*test)(struct super_block *,void *), | 
|  | int (*set)(struct super_block *,void *), | 
|  | int flags, | 
|  | void *data) | 
|  | { | 
|  | struct user_namespace *user_ns = current_user_ns(); | 
|  | struct super_block *s = NULL; | 
|  | struct super_block *old; | 
|  | int err; | 
|  |  | 
|  | retry: | 
|  | spin_lock(&sb_lock); | 
|  | if (test) { | 
|  | hlist_for_each_entry(old, &type->fs_supers, s_instances) { | 
|  | if (!test(old, data)) | 
|  | continue; | 
|  | if (user_ns != old->s_user_ns) { | 
|  | spin_unlock(&sb_lock); | 
|  | destroy_unused_super(s); | 
|  | return ERR_PTR(-EBUSY); | 
|  | } | 
|  | if (!grab_super(old)) | 
|  | goto retry; | 
|  | destroy_unused_super(s); | 
|  | return old; | 
|  | } | 
|  | } | 
|  | if (!s) { | 
|  | spin_unlock(&sb_lock); | 
|  | s = alloc_super(type, flags, user_ns); | 
|  | if (!s) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | err = set(s, data); | 
|  | if (err) { | 
|  | spin_unlock(&sb_lock); | 
|  | destroy_unused_super(s); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | s->s_type = type; | 
|  | strscpy(s->s_id, type->name, sizeof(s->s_id)); | 
|  | list_add_tail(&s->s_list, &super_blocks); | 
|  | hlist_add_head(&s->s_instances, &type->fs_supers); | 
|  | spin_unlock(&sb_lock); | 
|  | get_filesystem(type); | 
|  | shrinker_register(s->s_shrink); | 
|  | return s; | 
|  | } | 
|  | EXPORT_SYMBOL(sget); | 
|  |  | 
|  | void drop_super(struct super_block *sb) | 
|  | { | 
|  | super_unlock_shared(sb); | 
|  | put_super(sb); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(drop_super); | 
|  |  | 
|  | void drop_super_exclusive(struct super_block *sb) | 
|  | { | 
|  | super_unlock_excl(sb); | 
|  | put_super(sb); | 
|  | } | 
|  | EXPORT_SYMBOL(drop_super_exclusive); | 
|  |  | 
|  | enum super_iter_flags_t { | 
|  | SUPER_ITER_EXCL		= (1U << 0), | 
|  | SUPER_ITER_UNLOCKED	= (1U << 1), | 
|  | SUPER_ITER_REVERSE	= (1U << 2), | 
|  | }; | 
|  |  | 
|  | static inline struct super_block *first_super(enum super_iter_flags_t flags) | 
|  | { | 
|  | if (flags & SUPER_ITER_REVERSE) | 
|  | return list_last_entry(&super_blocks, struct super_block, s_list); | 
|  | return list_first_entry(&super_blocks, struct super_block, s_list); | 
|  | } | 
|  |  | 
|  | static inline struct super_block *next_super(struct super_block *sb, | 
|  | enum super_iter_flags_t flags) | 
|  | { | 
|  | if (flags & SUPER_ITER_REVERSE) | 
|  | return list_prev_entry(sb, s_list); | 
|  | return list_next_entry(sb, s_list); | 
|  | } | 
|  |  | 
|  | static void __iterate_supers(void (*f)(struct super_block *, void *), void *arg, | 
|  | enum super_iter_flags_t flags) | 
|  | { | 
|  | struct super_block *sb, *p = NULL; | 
|  | bool excl = flags & SUPER_ITER_EXCL; | 
|  |  | 
|  | guard(spinlock)(&sb_lock); | 
|  |  | 
|  | for (sb = first_super(flags); | 
|  | !list_entry_is_head(sb, &super_blocks, s_list); | 
|  | sb = next_super(sb, flags)) { | 
|  | if (super_flags(sb, SB_DYING)) | 
|  | continue; | 
|  | sb->s_count++; | 
|  | spin_unlock(&sb_lock); | 
|  |  | 
|  | if (flags & SUPER_ITER_UNLOCKED) { | 
|  | f(sb, arg); | 
|  | } else if (super_lock(sb, excl)) { | 
|  | f(sb, arg); | 
|  | super_unlock(sb, excl); | 
|  | } | 
|  |  | 
|  | spin_lock(&sb_lock); | 
|  | if (p) | 
|  | __put_super(p); | 
|  | p = sb; | 
|  | } | 
|  | if (p) | 
|  | __put_super(p); | 
|  | } | 
|  |  | 
|  | void iterate_supers(void (*f)(struct super_block *, void *), void *arg) | 
|  | { | 
|  | __iterate_supers(f, arg, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	iterate_supers_type - call function for superblocks of given type | 
|  | *	@type: fs type | 
|  | *	@f: function to call | 
|  | *	@arg: argument to pass to it | 
|  | * | 
|  | *	Scans the superblock list and calls given function, passing it | 
|  | *	locked superblock and given argument. | 
|  | */ | 
|  | void iterate_supers_type(struct file_system_type *type, | 
|  | void (*f)(struct super_block *, void *), void *arg) | 
|  | { | 
|  | struct super_block *sb, *p = NULL; | 
|  |  | 
|  | spin_lock(&sb_lock); | 
|  | hlist_for_each_entry(sb, &type->fs_supers, s_instances) { | 
|  | bool locked; | 
|  |  | 
|  | if (super_flags(sb, SB_DYING)) | 
|  | continue; | 
|  |  | 
|  | sb->s_count++; | 
|  | spin_unlock(&sb_lock); | 
|  |  | 
|  | locked = super_lock_shared(sb); | 
|  | if (locked) { | 
|  | f(sb, arg); | 
|  | super_unlock_shared(sb); | 
|  | } | 
|  |  | 
|  | spin_lock(&sb_lock); | 
|  | if (p) | 
|  | __put_super(p); | 
|  | p = sb; | 
|  | } | 
|  | if (p) | 
|  | __put_super(p); | 
|  | spin_unlock(&sb_lock); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(iterate_supers_type); | 
|  |  | 
|  | struct super_block *user_get_super(dev_t dev, bool excl) | 
|  | { | 
|  | struct super_block *sb; | 
|  |  | 
|  | spin_lock(&sb_lock); | 
|  | list_for_each_entry(sb, &super_blocks, s_list) { | 
|  | bool locked; | 
|  |  | 
|  | if (sb->s_dev != dev) | 
|  | continue; | 
|  |  | 
|  | sb->s_count++; | 
|  | spin_unlock(&sb_lock); | 
|  |  | 
|  | locked = super_lock(sb, excl); | 
|  | if (locked) | 
|  | return sb; | 
|  |  | 
|  | spin_lock(&sb_lock); | 
|  | __put_super(sb); | 
|  | break; | 
|  | } | 
|  | spin_unlock(&sb_lock); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * reconfigure_super - asks filesystem to change superblock parameters | 
|  | * @fc: The superblock and configuration | 
|  | * | 
|  | * Alters the configuration parameters of a live superblock. | 
|  | */ | 
|  | int reconfigure_super(struct fs_context *fc) | 
|  | { | 
|  | struct super_block *sb = fc->root->d_sb; | 
|  | int retval; | 
|  | bool remount_ro = false; | 
|  | bool remount_rw = false; | 
|  | bool force = fc->sb_flags & SB_FORCE; | 
|  |  | 
|  | if (fc->sb_flags_mask & ~MS_RMT_MASK) | 
|  | return -EINVAL; | 
|  | if (sb->s_writers.frozen != SB_UNFROZEN) | 
|  | return -EBUSY; | 
|  |  | 
|  | retval = security_sb_remount(sb, fc->security); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | if (fc->sb_flags_mask & SB_RDONLY) { | 
|  | #ifdef CONFIG_BLOCK | 
|  | if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && | 
|  | bdev_read_only(sb->s_bdev)) | 
|  | return -EACCES; | 
|  | #endif | 
|  | remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb); | 
|  | remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); | 
|  | } | 
|  |  | 
|  | if (remount_ro) { | 
|  | if (!hlist_empty(&sb->s_pins)) { | 
|  | super_unlock_excl(sb); | 
|  | group_pin_kill(&sb->s_pins); | 
|  | __super_lock_excl(sb); | 
|  | if (!sb->s_root) | 
|  | return 0; | 
|  | if (sb->s_writers.frozen != SB_UNFROZEN) | 
|  | return -EBUSY; | 
|  | remount_ro = !sb_rdonly(sb); | 
|  | } | 
|  | } | 
|  | shrink_dcache_sb(sb); | 
|  |  | 
|  | /* If we are reconfiguring to RDONLY and current sb is read/write, | 
|  | * make sure there are no files open for writing. | 
|  | */ | 
|  | if (remount_ro) { | 
|  | if (force) { | 
|  | sb_start_ro_state_change(sb); | 
|  | } else { | 
|  | retval = sb_prepare_remount_readonly(sb); | 
|  | if (retval) | 
|  | return retval; | 
|  | } | 
|  | } else if (remount_rw) { | 
|  | /* | 
|  | * Protect filesystem's reconfigure code from writes from | 
|  | * userspace until reconfigure finishes. | 
|  | */ | 
|  | sb_start_ro_state_change(sb); | 
|  | } | 
|  |  | 
|  | if (fc->ops->reconfigure) { | 
|  | retval = fc->ops->reconfigure(fc); | 
|  | if (retval) { | 
|  | if (!force) | 
|  | goto cancel_readonly; | 
|  | /* If forced remount, go ahead despite any errors */ | 
|  | WARN(1, "forced remount of a %s fs returned %i\n", | 
|  | sb->s_type->name, retval); | 
|  | } | 
|  | } | 
|  |  | 
|  | WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | | 
|  | (fc->sb_flags & fc->sb_flags_mask))); | 
|  | sb_end_ro_state_change(sb); | 
|  |  | 
|  | /* | 
|  | * Some filesystems modify their metadata via some other path than the | 
|  | * bdev buffer cache (eg. use a private mapping, or directories in | 
|  | * pagecache, etc). Also file data modifications go via their own | 
|  | * mappings. So If we try to mount readonly then copy the filesystem | 
|  | * from bdev, we could get stale data, so invalidate it to give a best | 
|  | * effort at coherency. | 
|  | */ | 
|  | if (remount_ro && sb->s_bdev) | 
|  | invalidate_bdev(sb->s_bdev); | 
|  | return 0; | 
|  |  | 
|  | cancel_readonly: | 
|  | sb_end_ro_state_change(sb); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void do_emergency_remount_callback(struct super_block *sb, void *unused) | 
|  | { | 
|  | if (sb->s_bdev && !sb_rdonly(sb)) { | 
|  | struct fs_context *fc; | 
|  |  | 
|  | fc = fs_context_for_reconfigure(sb->s_root, | 
|  | SB_RDONLY | SB_FORCE, SB_RDONLY); | 
|  | if (!IS_ERR(fc)) { | 
|  | if (parse_monolithic_mount_data(fc, NULL) == 0) | 
|  | (void)reconfigure_super(fc); | 
|  | put_fs_context(fc); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_emergency_remount(struct work_struct *work) | 
|  | { | 
|  | __iterate_supers(do_emergency_remount_callback, NULL, | 
|  | SUPER_ITER_EXCL | SUPER_ITER_REVERSE); | 
|  | kfree(work); | 
|  | printk("Emergency Remount complete\n"); | 
|  | } | 
|  |  | 
|  | void emergency_remount(void) | 
|  | { | 
|  | struct work_struct *work; | 
|  |  | 
|  | work = kmalloc(sizeof(*work), GFP_ATOMIC); | 
|  | if (work) { | 
|  | INIT_WORK(work, do_emergency_remount); | 
|  | schedule_work(work); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_thaw_all_callback(struct super_block *sb, void *unused) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_BLOCK)) | 
|  | while (sb->s_bdev && !bdev_thaw(sb->s_bdev)) | 
|  | pr_warn("Emergency Thaw on %pg\n", sb->s_bdev); | 
|  | thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE, NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void do_thaw_all(struct work_struct *work) | 
|  | { | 
|  | __iterate_supers(do_thaw_all_callback, NULL, SUPER_ITER_EXCL); | 
|  | kfree(work); | 
|  | printk(KERN_WARNING "Emergency Thaw complete\n"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * emergency_thaw_all -- forcibly thaw every frozen filesystem | 
|  | * | 
|  | * Used for emergency unfreeze of all filesystems via SysRq | 
|  | */ | 
|  | void emergency_thaw_all(void) | 
|  | { | 
|  | struct work_struct *work; | 
|  |  | 
|  | work = kmalloc(sizeof(*work), GFP_ATOMIC); | 
|  | if (work) { | 
|  | INIT_WORK(work, do_thaw_all); | 
|  | schedule_work(work); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline bool get_active_super(struct super_block *sb) | 
|  | { | 
|  | bool active = false; | 
|  |  | 
|  | if (super_lock_excl(sb)) { | 
|  | active = atomic_inc_not_zero(&sb->s_active); | 
|  | super_unlock_excl(sb); | 
|  | } | 
|  | return active; | 
|  | } | 
|  |  | 
|  | static const char *filesystems_freeze_ptr = "filesystems_freeze"; | 
|  |  | 
|  | static void filesystems_freeze_callback(struct super_block *sb, void *unused) | 
|  | { | 
|  | if (!sb->s_op->freeze_fs && !sb->s_op->freeze_super) | 
|  | return; | 
|  |  | 
|  | if (!get_active_super(sb)) | 
|  | return; | 
|  |  | 
|  | if (sb->s_op->freeze_super) | 
|  | sb->s_op->freeze_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL, | 
|  | filesystems_freeze_ptr); | 
|  | else | 
|  | freeze_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL, | 
|  | filesystems_freeze_ptr); | 
|  |  | 
|  | deactivate_super(sb); | 
|  | } | 
|  |  | 
|  | void filesystems_freeze(void) | 
|  | { | 
|  | __iterate_supers(filesystems_freeze_callback, NULL, | 
|  | SUPER_ITER_UNLOCKED | SUPER_ITER_REVERSE); | 
|  | } | 
|  |  | 
|  | static void filesystems_thaw_callback(struct super_block *sb, void *unused) | 
|  | { | 
|  | if (!sb->s_op->freeze_fs && !sb->s_op->freeze_super) | 
|  | return; | 
|  |  | 
|  | if (!get_active_super(sb)) | 
|  | return; | 
|  |  | 
|  | if (sb->s_op->thaw_super) | 
|  | sb->s_op->thaw_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL, | 
|  | filesystems_freeze_ptr); | 
|  | else | 
|  | thaw_super(sb, FREEZE_EXCL | FREEZE_HOLDER_KERNEL, | 
|  | filesystems_freeze_ptr); | 
|  |  | 
|  | deactivate_super(sb); | 
|  | } | 
|  |  | 
|  | void filesystems_thaw(void) | 
|  | { | 
|  | __iterate_supers(filesystems_thaw_callback, NULL, SUPER_ITER_UNLOCKED); | 
|  | } | 
|  |  | 
|  | static DEFINE_IDA(unnamed_dev_ida); | 
|  |  | 
|  | /** | 
|  | * get_anon_bdev - Allocate a block device for filesystems which don't have one. | 
|  | * @p: Pointer to a dev_t. | 
|  | * | 
|  | * Filesystems which don't use real block devices can call this function | 
|  | * to allocate a virtual block device. | 
|  | * | 
|  | * Context: Any context.  Frequently called while holding sb_lock. | 
|  | * Return: 0 on success, -EMFILE if there are no anonymous bdevs left | 
|  | * or -ENOMEM if memory allocation failed. | 
|  | */ | 
|  | int get_anon_bdev(dev_t *p) | 
|  | { | 
|  | int dev; | 
|  |  | 
|  | /* | 
|  | * Many userspace utilities consider an FSID of 0 invalid. | 
|  | * Always return at least 1 from get_anon_bdev. | 
|  | */ | 
|  | dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1, | 
|  | GFP_ATOMIC); | 
|  | if (dev == -ENOSPC) | 
|  | dev = -EMFILE; | 
|  | if (dev < 0) | 
|  | return dev; | 
|  |  | 
|  | *p = MKDEV(0, dev); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(get_anon_bdev); | 
|  |  | 
|  | void free_anon_bdev(dev_t dev) | 
|  | { | 
|  | ida_free(&unnamed_dev_ida, MINOR(dev)); | 
|  | } | 
|  | EXPORT_SYMBOL(free_anon_bdev); | 
|  |  | 
|  | int set_anon_super(struct super_block *s, void *data) | 
|  | { | 
|  | return get_anon_bdev(&s->s_dev); | 
|  | } | 
|  | EXPORT_SYMBOL(set_anon_super); | 
|  |  | 
|  | void kill_anon_super(struct super_block *sb) | 
|  | { | 
|  | dev_t dev = sb->s_dev; | 
|  | generic_shutdown_super(sb); | 
|  | kill_super_notify(sb); | 
|  | free_anon_bdev(dev); | 
|  | } | 
|  | EXPORT_SYMBOL(kill_anon_super); | 
|  |  | 
|  | void kill_litter_super(struct super_block *sb) | 
|  | { | 
|  | if (sb->s_root) | 
|  | d_genocide(sb->s_root); | 
|  | kill_anon_super(sb); | 
|  | } | 
|  | EXPORT_SYMBOL(kill_litter_super); | 
|  |  | 
|  | int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) | 
|  | { | 
|  | return set_anon_super(sb, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(set_anon_super_fc); | 
|  |  | 
|  | static int test_keyed_super(struct super_block *sb, struct fs_context *fc) | 
|  | { | 
|  | return sb->s_fs_info == fc->s_fs_info; | 
|  | } | 
|  |  | 
|  | static int test_single_super(struct super_block *s, struct fs_context *fc) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int vfs_get_super(struct fs_context *fc, | 
|  | int (*test)(struct super_block *, struct fs_context *), | 
|  | int (*fill_super)(struct super_block *sb, | 
|  | struct fs_context *fc)) | 
|  | { | 
|  | struct super_block *sb; | 
|  | int err; | 
|  |  | 
|  | sb = sget_fc(fc, test, set_anon_super_fc); | 
|  | if (IS_ERR(sb)) | 
|  | return PTR_ERR(sb); | 
|  |  | 
|  | if (!sb->s_root) { | 
|  | err = fill_super(sb, fc); | 
|  | if (err) | 
|  | goto error; | 
|  |  | 
|  | sb->s_flags |= SB_ACTIVE; | 
|  | } | 
|  |  | 
|  | fc->root = dget(sb->s_root); | 
|  | return 0; | 
|  |  | 
|  | error: | 
|  | deactivate_locked_super(sb); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int get_tree_nodev(struct fs_context *fc, | 
|  | int (*fill_super)(struct super_block *sb, | 
|  | struct fs_context *fc)) | 
|  | { | 
|  | return vfs_get_super(fc, NULL, fill_super); | 
|  | } | 
|  | EXPORT_SYMBOL(get_tree_nodev); | 
|  |  | 
|  | int get_tree_single(struct fs_context *fc, | 
|  | int (*fill_super)(struct super_block *sb, | 
|  | struct fs_context *fc)) | 
|  | { | 
|  | return vfs_get_super(fc, test_single_super, fill_super); | 
|  | } | 
|  | EXPORT_SYMBOL(get_tree_single); | 
|  |  | 
|  | int get_tree_keyed(struct fs_context *fc, | 
|  | int (*fill_super)(struct super_block *sb, | 
|  | struct fs_context *fc), | 
|  | void *key) | 
|  | { | 
|  | fc->s_fs_info = key; | 
|  | return vfs_get_super(fc, test_keyed_super, fill_super); | 
|  | } | 
|  | EXPORT_SYMBOL(get_tree_keyed); | 
|  |  | 
|  | static int set_bdev_super(struct super_block *s, void *data) | 
|  | { | 
|  | s->s_dev = *(dev_t *)data; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int super_s_dev_set(struct super_block *s, struct fs_context *fc) | 
|  | { | 
|  | return set_bdev_super(s, fc->sget_key); | 
|  | } | 
|  |  | 
|  | static int super_s_dev_test(struct super_block *s, struct fs_context *fc) | 
|  | { | 
|  | return !(s->s_iflags & SB_I_RETIRED) && | 
|  | s->s_dev == *(dev_t *)fc->sget_key; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sget_dev - Find or create a superblock by device number | 
|  | * @fc: Filesystem context. | 
|  | * @dev: device number | 
|  | * | 
|  | * Find or create a superblock using the provided device number that | 
|  | * will be stored in fc->sget_key. | 
|  | * | 
|  | * If an extant superblock is matched, then that will be returned with | 
|  | * an elevated reference count that the caller must transfer or discard. | 
|  | * | 
|  | * If no match is made, a new superblock will be allocated and basic | 
|  | * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will | 
|  | * be set). The superblock will be published and it will be returned in | 
|  | * a partially constructed state with SB_BORN and SB_ACTIVE as yet | 
|  | * unset. | 
|  | * | 
|  | * Return: an existing or newly created superblock on success, an error | 
|  | *         pointer on failure. | 
|  | */ | 
|  | struct super_block *sget_dev(struct fs_context *fc, dev_t dev) | 
|  | { | 
|  | fc->sget_key = &dev; | 
|  | return sget_fc(fc, super_s_dev_test, super_s_dev_set); | 
|  | } | 
|  | EXPORT_SYMBOL(sget_dev); | 
|  |  | 
|  | #ifdef CONFIG_BLOCK | 
|  | /* | 
|  | * Lock the superblock that is holder of the bdev. Returns the superblock | 
|  | * pointer if we successfully locked the superblock and it is alive. Otherwise | 
|  | * we return NULL and just unlock bdev->bd_holder_lock. | 
|  | * | 
|  | * The function must be called with bdev->bd_holder_lock and releases it. | 
|  | */ | 
|  | static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl) | 
|  | __releases(&bdev->bd_holder_lock) | 
|  | { | 
|  | struct super_block *sb = bdev->bd_holder; | 
|  | bool locked; | 
|  |  | 
|  | lockdep_assert_held(&bdev->bd_holder_lock); | 
|  | lockdep_assert_not_held(&sb->s_umount); | 
|  | lockdep_assert_not_held(&bdev->bd_disk->open_mutex); | 
|  |  | 
|  | /* Make sure sb doesn't go away from under us */ | 
|  | spin_lock(&sb_lock); | 
|  | sb->s_count++; | 
|  | spin_unlock(&sb_lock); | 
|  |  | 
|  | mutex_unlock(&bdev->bd_holder_lock); | 
|  |  | 
|  | locked = super_lock(sb, excl); | 
|  |  | 
|  | /* | 
|  | * If the superblock wasn't already SB_DYING then we hold | 
|  | * s_umount and can safely drop our temporary reference. | 
|  | */ | 
|  | put_super(sb); | 
|  |  | 
|  | if (!locked) | 
|  | return NULL; | 
|  |  | 
|  | if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) { | 
|  | super_unlock(sb, excl); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return sb; | 
|  | } | 
|  |  | 
|  | static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise) | 
|  | { | 
|  | struct super_block *sb; | 
|  |  | 
|  | sb = bdev_super_lock(bdev, false); | 
|  | if (!sb) | 
|  | return; | 
|  |  | 
|  | if (sb->s_op->remove_bdev) { | 
|  | int ret; | 
|  |  | 
|  | ret = sb->s_op->remove_bdev(sb, bdev); | 
|  | if (!ret) { | 
|  | super_unlock_shared(sb); | 
|  | return; | 
|  | } | 
|  | /* Fallback to shutdown. */ | 
|  | } | 
|  |  | 
|  | if (!surprise) | 
|  | sync_filesystem(sb); | 
|  | shrink_dcache_sb(sb); | 
|  | evict_inodes(sb); | 
|  | if (sb->s_op->shutdown) | 
|  | sb->s_op->shutdown(sb); | 
|  |  | 
|  | super_unlock_shared(sb); | 
|  | } | 
|  |  | 
|  | static void fs_bdev_sync(struct block_device *bdev) | 
|  | { | 
|  | struct super_block *sb; | 
|  |  | 
|  | sb = bdev_super_lock(bdev, false); | 
|  | if (!sb) | 
|  | return; | 
|  |  | 
|  | sync_filesystem(sb); | 
|  | super_unlock_shared(sb); | 
|  | } | 
|  |  | 
|  | static struct super_block *get_bdev_super(struct block_device *bdev) | 
|  | { | 
|  | bool active = false; | 
|  | struct super_block *sb; | 
|  |  | 
|  | sb = bdev_super_lock(bdev, true); | 
|  | if (sb) { | 
|  | active = atomic_inc_not_zero(&sb->s_active); | 
|  | super_unlock_excl(sb); | 
|  | } | 
|  | if (!active) | 
|  | return NULL; | 
|  | return sb; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fs_bdev_freeze - freeze owning filesystem of block device | 
|  | * @bdev: block device | 
|  | * | 
|  | * Freeze the filesystem that owns this block device if it is still | 
|  | * active. | 
|  | * | 
|  | * A filesystem that owns multiple block devices may be frozen from each | 
|  | * block device and won't be unfrozen until all block devices are | 
|  | * unfrozen. Each block device can only freeze the filesystem once as we | 
|  | * nest freezes for block devices in the block layer. | 
|  | * | 
|  | * Return: If the freeze was successful zero is returned. If the freeze | 
|  | *         failed a negative error code is returned. | 
|  | */ | 
|  | static int fs_bdev_freeze(struct block_device *bdev) | 
|  | { | 
|  | struct super_block *sb; | 
|  | int error = 0; | 
|  |  | 
|  | lockdep_assert_held(&bdev->bd_fsfreeze_mutex); | 
|  |  | 
|  | sb = get_bdev_super(bdev); | 
|  | if (!sb) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (sb->s_op->freeze_super) | 
|  | error = sb->s_op->freeze_super(sb, | 
|  | FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL); | 
|  | else | 
|  | error = freeze_super(sb, | 
|  | FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL); | 
|  | if (!error) | 
|  | error = sync_blockdev(bdev); | 
|  | deactivate_super(sb); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fs_bdev_thaw - thaw owning filesystem of block device | 
|  | * @bdev: block device | 
|  | * | 
|  | * Thaw the filesystem that owns this block device. | 
|  | * | 
|  | * A filesystem that owns multiple block devices may be frozen from each | 
|  | * block device and won't be unfrozen until all block devices are | 
|  | * unfrozen. Each block device can only freeze the filesystem once as we | 
|  | * nest freezes for block devices in the block layer. | 
|  | * | 
|  | * Return: If the thaw was successful zero is returned. If the thaw | 
|  | *         failed a negative error code is returned. If this function | 
|  | *         returns zero it doesn't mean that the filesystem is unfrozen | 
|  | *         as it may have been frozen multiple times (kernel may hold a | 
|  | *         freeze or might be frozen from other block devices). | 
|  | */ | 
|  | static int fs_bdev_thaw(struct block_device *bdev) | 
|  | { | 
|  | struct super_block *sb; | 
|  | int error; | 
|  |  | 
|  | lockdep_assert_held(&bdev->bd_fsfreeze_mutex); | 
|  |  | 
|  | /* | 
|  | * The block device may have been frozen before it was claimed by a | 
|  | * filesystem. Concurrently another process might try to mount that | 
|  | * frozen block device and has temporarily claimed the block device for | 
|  | * that purpose causing a concurrent fs_bdev_thaw() to end up here. The | 
|  | * mounter is already about to abort mounting because they still saw an | 
|  | * elevanted bdev->bd_fsfreeze_count so get_bdev_super() will return | 
|  | * NULL in that case. | 
|  | */ | 
|  | sb = get_bdev_super(bdev); | 
|  | if (!sb) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (sb->s_op->thaw_super) | 
|  | error = sb->s_op->thaw_super(sb, | 
|  | FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL); | 
|  | else | 
|  | error = thaw_super(sb, | 
|  | FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE, NULL); | 
|  | deactivate_super(sb); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | const struct blk_holder_ops fs_holder_ops = { | 
|  | .mark_dead		= fs_bdev_mark_dead, | 
|  | .sync			= fs_bdev_sync, | 
|  | .freeze			= fs_bdev_freeze, | 
|  | .thaw			= fs_bdev_thaw, | 
|  | }; | 
|  | EXPORT_SYMBOL_GPL(fs_holder_ops); | 
|  |  | 
|  | int setup_bdev_super(struct super_block *sb, int sb_flags, | 
|  | struct fs_context *fc) | 
|  | { | 
|  | blk_mode_t mode = sb_open_mode(sb_flags); | 
|  | struct file *bdev_file; | 
|  | struct block_device *bdev; | 
|  |  | 
|  | bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops); | 
|  | if (IS_ERR(bdev_file)) { | 
|  | if (fc) | 
|  | errorf(fc, "%s: Can't open blockdev", fc->source); | 
|  | return PTR_ERR(bdev_file); | 
|  | } | 
|  | bdev = file_bdev(bdev_file); | 
|  |  | 
|  | /* | 
|  | * This really should be in blkdev_get_by_dev, but right now can't due | 
|  | * to legacy issues that require us to allow opening a block device node | 
|  | * writable from userspace even for a read-only block device. | 
|  | */ | 
|  | if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) { | 
|  | bdev_fput(bdev_file); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It is enough to check bdev was not frozen before we set | 
|  | * s_bdev as freezing will wait until SB_BORN is set. | 
|  | */ | 
|  | if (atomic_read(&bdev->bd_fsfreeze_count) > 0) { | 
|  | if (fc) | 
|  | warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); | 
|  | bdev_fput(bdev_file); | 
|  | return -EBUSY; | 
|  | } | 
|  | spin_lock(&sb_lock); | 
|  | sb->s_bdev_file = bdev_file; | 
|  | sb->s_bdev = bdev; | 
|  | sb->s_bdi = bdi_get(bdev->bd_disk->bdi); | 
|  | if (bdev_stable_writes(bdev)) | 
|  | sb->s_iflags |= SB_I_STABLE_WRITES; | 
|  | spin_unlock(&sb_lock); | 
|  |  | 
|  | snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev); | 
|  | shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name, | 
|  | sb->s_id); | 
|  | sb_set_blocksize(sb, block_size(bdev)); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(setup_bdev_super); | 
|  |  | 
|  | /** | 
|  | * get_tree_bdev_flags - Get a superblock based on a single block device | 
|  | * @fc: The filesystem context holding the parameters | 
|  | * @fill_super: Helper to initialise a new superblock | 
|  | * @flags: GET_TREE_BDEV_* flags | 
|  | */ | 
|  | int get_tree_bdev_flags(struct fs_context *fc, | 
|  | int (*fill_super)(struct super_block *sb, | 
|  | struct fs_context *fc), unsigned int flags) | 
|  | { | 
|  | struct super_block *s; | 
|  | int error = 0; | 
|  | dev_t dev; | 
|  |  | 
|  | if (!fc->source) | 
|  | return invalf(fc, "No source specified"); | 
|  |  | 
|  | error = lookup_bdev(fc->source, &dev); | 
|  | if (error) { | 
|  | if (!(flags & GET_TREE_BDEV_QUIET_LOOKUP)) | 
|  | errorf(fc, "%s: Can't lookup blockdev", fc->source); | 
|  | return error; | 
|  | } | 
|  | fc->sb_flags |= SB_NOSEC; | 
|  | s = sget_dev(fc, dev); | 
|  | if (IS_ERR(s)) | 
|  | return PTR_ERR(s); | 
|  |  | 
|  | if (s->s_root) { | 
|  | /* Don't summarily change the RO/RW state. */ | 
|  | if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { | 
|  | warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev); | 
|  | deactivate_locked_super(s); | 
|  | return -EBUSY; | 
|  | } | 
|  | } else { | 
|  | error = setup_bdev_super(s, fc->sb_flags, fc); | 
|  | if (!error) | 
|  | error = fill_super(s, fc); | 
|  | if (error) { | 
|  | deactivate_locked_super(s); | 
|  | return error; | 
|  | } | 
|  | s->s_flags |= SB_ACTIVE; | 
|  | } | 
|  |  | 
|  | BUG_ON(fc->root); | 
|  | fc->root = dget(s->s_root); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_tree_bdev_flags); | 
|  |  | 
|  | /** | 
|  | * get_tree_bdev - Get a superblock based on a single block device | 
|  | * @fc: The filesystem context holding the parameters | 
|  | * @fill_super: Helper to initialise a new superblock | 
|  | */ | 
|  | int get_tree_bdev(struct fs_context *fc, | 
|  | int (*fill_super)(struct super_block *, | 
|  | struct fs_context *)) | 
|  | { | 
|  | return get_tree_bdev_flags(fc, fill_super, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(get_tree_bdev); | 
|  |  | 
|  | static int test_bdev_super(struct super_block *s, void *data) | 
|  | { | 
|  | return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data; | 
|  | } | 
|  |  | 
|  | struct dentry *mount_bdev(struct file_system_type *fs_type, | 
|  | int flags, const char *dev_name, void *data, | 
|  | int (*fill_super)(struct super_block *, void *, int)) | 
|  | { | 
|  | struct super_block *s; | 
|  | int error; | 
|  | dev_t dev; | 
|  |  | 
|  | error = lookup_bdev(dev_name, &dev); | 
|  | if (error) | 
|  | return ERR_PTR(error); | 
|  |  | 
|  | flags |= SB_NOSEC; | 
|  | s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev); | 
|  | if (IS_ERR(s)) | 
|  | return ERR_CAST(s); | 
|  |  | 
|  | if (s->s_root) { | 
|  | if ((flags ^ s->s_flags) & SB_RDONLY) { | 
|  | deactivate_locked_super(s); | 
|  | return ERR_PTR(-EBUSY); | 
|  | } | 
|  | } else { | 
|  | error = setup_bdev_super(s, flags, NULL); | 
|  | if (!error) | 
|  | error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); | 
|  | if (error) { | 
|  | deactivate_locked_super(s); | 
|  | return ERR_PTR(error); | 
|  | } | 
|  |  | 
|  | s->s_flags |= SB_ACTIVE; | 
|  | } | 
|  |  | 
|  | return dget(s->s_root); | 
|  | } | 
|  | EXPORT_SYMBOL(mount_bdev); | 
|  |  | 
|  | void kill_block_super(struct super_block *sb) | 
|  | { | 
|  | struct block_device *bdev = sb->s_bdev; | 
|  |  | 
|  | generic_shutdown_super(sb); | 
|  | if (bdev) { | 
|  | sync_blockdev(bdev); | 
|  | bdev_fput(sb->s_bdev_file); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(kill_block_super); | 
|  | #endif | 
|  |  | 
|  | struct dentry *mount_nodev(struct file_system_type *fs_type, | 
|  | int flags, void *data, | 
|  | int (*fill_super)(struct super_block *, void *, int)) | 
|  | { | 
|  | int error; | 
|  | struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); | 
|  |  | 
|  | if (IS_ERR(s)) | 
|  | return ERR_CAST(s); | 
|  |  | 
|  | error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); | 
|  | if (error) { | 
|  | deactivate_locked_super(s); | 
|  | return ERR_PTR(error); | 
|  | } | 
|  | s->s_flags |= SB_ACTIVE; | 
|  | return dget(s->s_root); | 
|  | } | 
|  | EXPORT_SYMBOL(mount_nodev); | 
|  |  | 
|  | /** | 
|  | * vfs_get_tree - Get the mountable root | 
|  | * @fc: The superblock configuration context. | 
|  | * | 
|  | * The filesystem is invoked to get or create a superblock which can then later | 
|  | * be used for mounting.  The filesystem places a pointer to the root to be | 
|  | * used for mounting in @fc->root. | 
|  | */ | 
|  | int vfs_get_tree(struct fs_context *fc) | 
|  | { | 
|  | struct super_block *sb; | 
|  | int error; | 
|  |  | 
|  | if (fc->root) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* Get the mountable root in fc->root, with a ref on the root and a ref | 
|  | * on the superblock. | 
|  | */ | 
|  | error = fc->ops->get_tree(fc); | 
|  | if (error < 0) | 
|  | return error; | 
|  |  | 
|  | if (!fc->root) { | 
|  | pr_err("Filesystem %s get_tree() didn't set fc->root, returned %i\n", | 
|  | fc->fs_type->name, error); | 
|  | /* We don't know what the locking state of the superblock is - | 
|  | * if there is a superblock. | 
|  | */ | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | sb = fc->root->d_sb; | 
|  | WARN_ON(!sb->s_bdi); | 
|  |  | 
|  | /* | 
|  | * super_wake() contains a memory barrier which also care of | 
|  | * ordering for super_cache_count(). We place it before setting | 
|  | * SB_BORN as the data dependency between the two functions is | 
|  | * the superblock structure contents that we just set up, not | 
|  | * the SB_BORN flag. | 
|  | */ | 
|  | super_wake(sb, SB_BORN); | 
|  |  | 
|  | error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL); | 
|  | if (unlikely(error)) { | 
|  | fc_drop_locked(fc); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE | 
|  | * but s_maxbytes was an unsigned long long for many releases. Throw | 
|  | * this warning for a little while to try and catch filesystems that | 
|  | * violate this rule. | 
|  | */ | 
|  | WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " | 
|  | "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(vfs_get_tree); | 
|  |  | 
|  | /* | 
|  | * Setup private BDI for given superblock. It gets automatically cleaned up | 
|  | * in generic_shutdown_super(). | 
|  | */ | 
|  | int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) | 
|  | { | 
|  | struct backing_dev_info *bdi; | 
|  | int err; | 
|  | va_list args; | 
|  |  | 
|  | bdi = bdi_alloc(NUMA_NO_NODE); | 
|  | if (!bdi) | 
|  | return -ENOMEM; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | err = bdi_register_va(bdi, fmt, args); | 
|  | va_end(args); | 
|  | if (err) { | 
|  | bdi_put(bdi); | 
|  | return err; | 
|  | } | 
|  | WARN_ON(sb->s_bdi != &noop_backing_dev_info); | 
|  | sb->s_bdi = bdi; | 
|  | sb->s_iflags |= SB_I_PERSB_BDI; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(super_setup_bdi_name); | 
|  |  | 
|  | /* | 
|  | * Setup private BDI for given superblock. I gets automatically cleaned up | 
|  | * in generic_shutdown_super(). | 
|  | */ | 
|  | int super_setup_bdi(struct super_block *sb) | 
|  | { | 
|  | static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); | 
|  |  | 
|  | return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, | 
|  | atomic_long_inc_return(&bdi_seq)); | 
|  | } | 
|  | EXPORT_SYMBOL(super_setup_bdi); | 
|  |  | 
|  | /** | 
|  | * sb_wait_write - wait until all writers to given file system finish | 
|  | * @sb: the super for which we wait | 
|  | * @level: type of writers we wait for (normal vs page fault) | 
|  | * | 
|  | * This function waits until there are no writers of given type to given file | 
|  | * system. | 
|  | */ | 
|  | static void sb_wait_write(struct super_block *sb, int level) | 
|  | { | 
|  | percpu_down_write(sb->s_writers.rw_sem + level-1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are going to return to userspace and forget about these locks, the | 
|  | * ownership goes to the caller of thaw_super() which does unlock(). | 
|  | */ | 
|  | static void lockdep_sb_freeze_release(struct super_block *sb) | 
|  | { | 
|  | int level; | 
|  |  | 
|  | for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) | 
|  | percpu_rwsem_release(sb->s_writers.rw_sem + level, _THIS_IP_); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). | 
|  | */ | 
|  | static void lockdep_sb_freeze_acquire(struct super_block *sb) | 
|  | { | 
|  | int level; | 
|  |  | 
|  | for (level = 0; level < SB_FREEZE_LEVELS; ++level) | 
|  | percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_); | 
|  | } | 
|  |  | 
|  | static void sb_freeze_unlock(struct super_block *sb, int level) | 
|  | { | 
|  | for (level--; level >= 0; level--) | 
|  | percpu_up_write(sb->s_writers.rw_sem + level); | 
|  | } | 
|  |  | 
|  | static int wait_for_partially_frozen(struct super_block *sb) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | do { | 
|  | unsigned short old = sb->s_writers.frozen; | 
|  |  | 
|  | up_write(&sb->s_umount); | 
|  | ret = wait_var_event_killable(&sb->s_writers.frozen, | 
|  | sb->s_writers.frozen != old); | 
|  | down_write(&sb->s_umount); | 
|  | } while (ret == 0 && | 
|  | sb->s_writers.frozen != SB_UNFROZEN && | 
|  | sb->s_writers.frozen != SB_FREEZE_COMPLETE); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE) | 
|  | #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST | FREEZE_EXCL) | 
|  |  | 
|  | static inline int freeze_inc(struct super_block *sb, enum freeze_holder who) | 
|  | { | 
|  | WARN_ON_ONCE((who & ~FREEZE_FLAGS)); | 
|  | WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); | 
|  |  | 
|  | if (who & FREEZE_HOLDER_KERNEL) | 
|  | ++sb->s_writers.freeze_kcount; | 
|  | if (who & FREEZE_HOLDER_USERSPACE) | 
|  | ++sb->s_writers.freeze_ucount; | 
|  | return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; | 
|  | } | 
|  |  | 
|  | static inline int freeze_dec(struct super_block *sb, enum freeze_holder who) | 
|  | { | 
|  | WARN_ON_ONCE((who & ~FREEZE_FLAGS)); | 
|  | WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); | 
|  |  | 
|  | if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount) | 
|  | --sb->s_writers.freeze_kcount; | 
|  | if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount) | 
|  | --sb->s_writers.freeze_ucount; | 
|  | return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; | 
|  | } | 
|  |  | 
|  | static inline bool may_freeze(struct super_block *sb, enum freeze_holder who, | 
|  | const void *freeze_owner) | 
|  | { | 
|  | lockdep_assert_held(&sb->s_umount); | 
|  |  | 
|  | WARN_ON_ONCE((who & ~FREEZE_FLAGS)); | 
|  | WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); | 
|  |  | 
|  | if (who & FREEZE_EXCL) { | 
|  | if (WARN_ON_ONCE(!(who & FREEZE_HOLDER_KERNEL))) | 
|  | return false; | 
|  | if (WARN_ON_ONCE(who & ~(FREEZE_EXCL | FREEZE_HOLDER_KERNEL))) | 
|  | return false; | 
|  | if (WARN_ON_ONCE(!freeze_owner)) | 
|  | return false; | 
|  | /* This freeze already has a specific owner. */ | 
|  | if (sb->s_writers.freeze_owner) | 
|  | return false; | 
|  | /* | 
|  | * This is already frozen multiple times so we're just | 
|  | * going to take a reference count and mark the freeze as | 
|  | * being owned by the caller. | 
|  | */ | 
|  | if (sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount) | 
|  | sb->s_writers.freeze_owner = freeze_owner; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (who & FREEZE_HOLDER_KERNEL) | 
|  | return (who & FREEZE_MAY_NEST) || | 
|  | sb->s_writers.freeze_kcount == 0; | 
|  | if (who & FREEZE_HOLDER_USERSPACE) | 
|  | return (who & FREEZE_MAY_NEST) || | 
|  | sb->s_writers.freeze_ucount == 0; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool may_unfreeze(struct super_block *sb, enum freeze_holder who, | 
|  | const void *freeze_owner) | 
|  | { | 
|  | lockdep_assert_held(&sb->s_umount); | 
|  |  | 
|  | WARN_ON_ONCE((who & ~FREEZE_FLAGS)); | 
|  | WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); | 
|  |  | 
|  | if (who & FREEZE_EXCL) { | 
|  | if (WARN_ON_ONCE(!(who & FREEZE_HOLDER_KERNEL))) | 
|  | return false; | 
|  | if (WARN_ON_ONCE(who & ~(FREEZE_EXCL | FREEZE_HOLDER_KERNEL))) | 
|  | return false; | 
|  | if (WARN_ON_ONCE(!freeze_owner)) | 
|  | return false; | 
|  | if (WARN_ON_ONCE(sb->s_writers.freeze_kcount == 0)) | 
|  | return false; | 
|  | /* This isn't exclusively frozen. */ | 
|  | if (!sb->s_writers.freeze_owner) | 
|  | return false; | 
|  | /* This isn't exclusively frozen by us. */ | 
|  | if (sb->s_writers.freeze_owner != freeze_owner) | 
|  | return false; | 
|  | /* | 
|  | * This is still frozen multiple times so we're just | 
|  | * going to drop our reference count and undo our | 
|  | * exclusive freeze. | 
|  | */ | 
|  | if ((sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount) > 1) | 
|  | sb->s_writers.freeze_owner = NULL; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (who & FREEZE_HOLDER_KERNEL) { | 
|  | /* | 
|  | * Someone's trying to steal the reference belonging to | 
|  | * @sb->s_writers.freeze_owner. | 
|  | */ | 
|  | if (sb->s_writers.freeze_kcount == 1 && | 
|  | sb->s_writers.freeze_owner) | 
|  | return false; | 
|  | return sb->s_writers.freeze_kcount > 0; | 
|  | } | 
|  |  | 
|  | if (who & FREEZE_HOLDER_USERSPACE) | 
|  | return sb->s_writers.freeze_ucount > 0; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * freeze_super - lock the filesystem and force it into a consistent state | 
|  | * @sb: the super to lock | 
|  | * @who: context that wants to freeze | 
|  | * @freeze_owner: owner of the freeze | 
|  | * | 
|  | * Syncs the super to make sure the filesystem is consistent and calls the fs's | 
|  | * freeze_fs.  Subsequent calls to this without first thawing the fs may return | 
|  | * -EBUSY. | 
|  | * | 
|  | * @who should be: | 
|  | * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs; | 
|  | * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs. | 
|  | * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed. | 
|  | * | 
|  | * The @who argument distinguishes between the kernel and userspace trying to | 
|  | * freeze the filesystem.  Although there cannot be multiple kernel freezes or | 
|  | * multiple userspace freezes in effect at any given time, the kernel and | 
|  | * userspace can both hold a filesystem frozen.  The filesystem remains frozen | 
|  | * until there are no kernel or userspace freezes in effect. | 
|  | * | 
|  | * A filesystem may hold multiple devices and thus a filesystems may be | 
|  | * frozen through the block layer via multiple block devices. In this | 
|  | * case the request is marked as being allowed to nest by passing | 
|  | * FREEZE_MAY_NEST. The filesystem remains frozen until all block | 
|  | * devices are unfrozen. If multiple freezes are attempted without | 
|  | * FREEZE_MAY_NEST -EBUSY will be returned. | 
|  | * | 
|  | * During this function, sb->s_writers.frozen goes through these values: | 
|  | * | 
|  | * SB_UNFROZEN: File system is normal, all writes progress as usual. | 
|  | * | 
|  | * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New | 
|  | * writes should be blocked, though page faults are still allowed. We wait for | 
|  | * all writes to complete and then proceed to the next stage. | 
|  | * | 
|  | * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked | 
|  | * but internal fs threads can still modify the filesystem (although they | 
|  | * should not dirty new pages or inodes), writeback can run etc. After waiting | 
|  | * for all running page faults we sync the filesystem which will clean all | 
|  | * dirty pages and inodes (no new dirty pages or inodes can be created when | 
|  | * sync is running). | 
|  | * | 
|  | * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs | 
|  | * modification are blocked (e.g. XFS preallocation truncation on inode | 
|  | * reclaim). This is usually implemented by blocking new transactions for | 
|  | * filesystems that have them and need this additional guard. After all | 
|  | * internal writers are finished we call ->freeze_fs() to finish filesystem | 
|  | * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is | 
|  | * mostly auxiliary for filesystems to verify they do not modify frozen fs. | 
|  | * | 
|  | * sb->s_writers.frozen is protected by sb->s_umount. | 
|  | * | 
|  | * Return: If the freeze was successful zero is returned. If the freeze | 
|  | *         failed a negative error code is returned. | 
|  | */ | 
|  | int freeze_super(struct super_block *sb, enum freeze_holder who, const void *freeze_owner) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!super_lock_excl(sb)) { | 
|  | WARN_ON_ONCE("Dying superblock while freezing!"); | 
|  | return -EINVAL; | 
|  | } | 
|  | atomic_inc(&sb->s_active); | 
|  |  | 
|  | retry: | 
|  | if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) { | 
|  | if (may_freeze(sb, who, freeze_owner)) | 
|  | ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1); | 
|  | else | 
|  | ret = -EBUSY; | 
|  | /* All freezers share a single active reference. */ | 
|  | deactivate_locked_super(sb); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (sb->s_writers.frozen != SB_UNFROZEN) { | 
|  | ret = wait_for_partially_frozen(sb); | 
|  | if (ret) { | 
|  | deactivate_locked_super(sb); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (sb_rdonly(sb)) { | 
|  | /* Nothing to do really... */ | 
|  | WARN_ON_ONCE(freeze_inc(sb, who) > 1); | 
|  | sb->s_writers.freeze_owner = freeze_owner; | 
|  | sb->s_writers.frozen = SB_FREEZE_COMPLETE; | 
|  | wake_up_var(&sb->s_writers.frozen); | 
|  | super_unlock_excl(sb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | sb->s_writers.frozen = SB_FREEZE_WRITE; | 
|  | /* Release s_umount to preserve sb_start_write -> s_umount ordering */ | 
|  | super_unlock_excl(sb); | 
|  | sb_wait_write(sb, SB_FREEZE_WRITE); | 
|  | __super_lock_excl(sb); | 
|  |  | 
|  | /* Now we go and block page faults... */ | 
|  | sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; | 
|  | sb_wait_write(sb, SB_FREEZE_PAGEFAULT); | 
|  |  | 
|  | /* All writers are done so after syncing there won't be dirty data */ | 
|  | ret = sync_filesystem(sb); | 
|  | if (ret) { | 
|  | sb->s_writers.frozen = SB_UNFROZEN; | 
|  | sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT); | 
|  | wake_up_var(&sb->s_writers.frozen); | 
|  | deactivate_locked_super(sb); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Now wait for internal filesystem counter */ | 
|  | sb->s_writers.frozen = SB_FREEZE_FS; | 
|  | sb_wait_write(sb, SB_FREEZE_FS); | 
|  |  | 
|  | if (sb->s_op->freeze_fs) { | 
|  | ret = sb->s_op->freeze_fs(sb); | 
|  | if (ret) { | 
|  | printk(KERN_ERR | 
|  | "VFS:Filesystem freeze failed\n"); | 
|  | sb->s_writers.frozen = SB_UNFROZEN; | 
|  | sb_freeze_unlock(sb, SB_FREEZE_FS); | 
|  | wake_up_var(&sb->s_writers.frozen); | 
|  | deactivate_locked_super(sb); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * For debugging purposes so that fs can warn if it sees write activity | 
|  | * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). | 
|  | */ | 
|  | WARN_ON_ONCE(freeze_inc(sb, who) > 1); | 
|  | sb->s_writers.freeze_owner = freeze_owner; | 
|  | sb->s_writers.frozen = SB_FREEZE_COMPLETE; | 
|  | wake_up_var(&sb->s_writers.frozen); | 
|  | lockdep_sb_freeze_release(sb); | 
|  | super_unlock_excl(sb); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(freeze_super); | 
|  |  | 
|  | /* | 
|  | * Undoes the effect of a freeze_super_locked call.  If the filesystem is | 
|  | * frozen both by userspace and the kernel, a thaw call from either source | 
|  | * removes that state without releasing the other state or unlocking the | 
|  | * filesystem. | 
|  | */ | 
|  | static int thaw_super_locked(struct super_block *sb, enum freeze_holder who, | 
|  | const void *freeze_owner) | 
|  | { | 
|  | int error = -EINVAL; | 
|  |  | 
|  | if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (!may_unfreeze(sb, who, freeze_owner)) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * All freezers share a single active reference. | 
|  | * So just unlock in case there are any left. | 
|  | */ | 
|  | if (freeze_dec(sb, who)) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (sb_rdonly(sb)) { | 
|  | sb->s_writers.frozen = SB_UNFROZEN; | 
|  | sb->s_writers.freeze_owner = NULL; | 
|  | wake_up_var(&sb->s_writers.frozen); | 
|  | goto out_deactivate; | 
|  | } | 
|  |  | 
|  | lockdep_sb_freeze_acquire(sb); | 
|  |  | 
|  | if (sb->s_op->unfreeze_fs) { | 
|  | error = sb->s_op->unfreeze_fs(sb); | 
|  | if (error) { | 
|  | pr_err("VFS: Filesystem thaw failed\n"); | 
|  | freeze_inc(sb, who); | 
|  | lockdep_sb_freeze_release(sb); | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | sb->s_writers.frozen = SB_UNFROZEN; | 
|  | sb->s_writers.freeze_owner = NULL; | 
|  | wake_up_var(&sb->s_writers.frozen); | 
|  | sb_freeze_unlock(sb, SB_FREEZE_FS); | 
|  | out_deactivate: | 
|  | deactivate_locked_super(sb); | 
|  | return 0; | 
|  |  | 
|  | out_unlock: | 
|  | super_unlock_excl(sb); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * thaw_super -- unlock filesystem | 
|  | * @sb: the super to thaw | 
|  | * @who: context that wants to freeze | 
|  | * @freeze_owner: owner of the freeze | 
|  | * | 
|  | * Unlocks the filesystem and marks it writeable again after freeze_super() | 
|  | * if there are no remaining freezes on the filesystem. | 
|  | * | 
|  | * @who should be: | 
|  | * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs; | 
|  | * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs. | 
|  | * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed | 
|  | * | 
|  | * A filesystem may hold multiple devices and thus a filesystems may | 
|  | * have been frozen through the block layer via multiple block devices. | 
|  | * The filesystem remains frozen until all block devices are unfrozen. | 
|  | */ | 
|  | int thaw_super(struct super_block *sb, enum freeze_holder who, | 
|  | const void *freeze_owner) | 
|  | { | 
|  | if (!super_lock_excl(sb)) { | 
|  | WARN_ON_ONCE("Dying superblock while thawing!"); | 
|  | return -EINVAL; | 
|  | } | 
|  | return thaw_super_locked(sb, who, freeze_owner); | 
|  | } | 
|  | EXPORT_SYMBOL(thaw_super); | 
|  |  | 
|  | /* | 
|  | * Create workqueue for deferred direct IO completions. We allocate the | 
|  | * workqueue when it's first needed. This avoids creating workqueue for | 
|  | * filesystems that don't need it and also allows us to create the workqueue | 
|  | * late enough so the we can include s_id in the name of the workqueue. | 
|  | */ | 
|  | int sb_init_dio_done_wq(struct super_block *sb) | 
|  | { | 
|  | struct workqueue_struct *old; | 
|  | struct workqueue_struct *wq = alloc_workqueue("dio/%s", | 
|  | WQ_MEM_RECLAIM, 0, | 
|  | sb->s_id); | 
|  | if (!wq) | 
|  | return -ENOMEM; | 
|  | /* | 
|  | * This has to be atomic as more DIOs can race to create the workqueue | 
|  | */ | 
|  | old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); | 
|  | /* Someone created workqueue before us? Free ours... */ | 
|  | if (old) | 
|  | destroy_workqueue(wq); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sb_init_dio_done_wq); |