| /* | 
 |  * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
 |  *		operating system.  INET is implemented using the  BSD Socket | 
 |  *		interface as the means of communication with the user level. | 
 |  * | 
 |  *		Implementation of the Transmission Control Protocol(TCP). | 
 |  * | 
 |  * Authors:	Ross Biro | 
 |  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | 
 |  *		Mark Evans, <evansmp@uhura.aston.ac.uk> | 
 |  *		Corey Minyard <wf-rch!minyard@relay.EU.net> | 
 |  *		Florian La Roche, <flla@stud.uni-sb.de> | 
 |  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu> | 
 |  *		Linus Torvalds, <torvalds@cs.helsinki.fi> | 
 |  *		Alan Cox, <gw4pts@gw4pts.ampr.org> | 
 |  *		Matthew Dillon, <dillon@apollo.west.oic.com> | 
 |  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no> | 
 |  *		Jorge Cwik, <jorge@laser.satlink.net> | 
 |  */ | 
 |  | 
 | /* | 
 |  * Changes: | 
 |  *		Pedro Roque	:	Fast Retransmit/Recovery. | 
 |  *					Two receive queues. | 
 |  *					Retransmit queue handled by TCP. | 
 |  *					Better retransmit timer handling. | 
 |  *					New congestion avoidance. | 
 |  *					Header prediction. | 
 |  *					Variable renaming. | 
 |  * | 
 |  *		Eric		:	Fast Retransmit. | 
 |  *		Randy Scott	:	MSS option defines. | 
 |  *		Eric Schenk	:	Fixes to slow start algorithm. | 
 |  *		Eric Schenk	:	Yet another double ACK bug. | 
 |  *		Eric Schenk	:	Delayed ACK bug fixes. | 
 |  *		Eric Schenk	:	Floyd style fast retrans war avoidance. | 
 |  *		David S. Miller	:	Don't allow zero congestion window. | 
 |  *		Eric Schenk	:	Fix retransmitter so that it sends | 
 |  *					next packet on ack of previous packet. | 
 |  *		Andi Kleen	:	Moved open_request checking here | 
 |  *					and process RSTs for open_requests. | 
 |  *		Andi Kleen	:	Better prune_queue, and other fixes. | 
 |  *		Andrey Savochkin:	Fix RTT measurements in the presence of | 
 |  *					timestamps. | 
 |  *		Andrey Savochkin:	Check sequence numbers correctly when | 
 |  *					removing SACKs due to in sequence incoming | 
 |  *					data segments. | 
 |  *		Andi Kleen:		Make sure we never ack data there is not | 
 |  *					enough room for. Also make this condition | 
 |  *					a fatal error if it might still happen. | 
 |  *		Andi Kleen:		Add tcp_measure_rcv_mss to make | 
 |  *					connections with MSS<min(MTU,ann. MSS) | 
 |  *					work without delayed acks. | 
 |  *		Andi Kleen:		Process packets with PSH set in the | 
 |  *					fast path. | 
 |  *		J Hadi Salim:		ECN support | 
 |  *	 	Andrei Gurtov, | 
 |  *		Pasi Sarolahti, | 
 |  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission | 
 |  *					engine. Lots of bugs are found. | 
 |  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) "TCP: " fmt | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/module.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/prefetch.h> | 
 | #include <net/dst.h> | 
 | #include <net/tcp.h> | 
 | #include <net/inet_common.h> | 
 | #include <linux/ipsec.h> | 
 | #include <asm/unaligned.h> | 
 | #include <linux/errqueue.h> | 
 |  | 
 | int sysctl_tcp_timestamps __read_mostly = 1; | 
 | int sysctl_tcp_window_scaling __read_mostly = 1; | 
 | int sysctl_tcp_sack __read_mostly = 1; | 
 | int sysctl_tcp_fack __read_mostly = 1; | 
 | int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; | 
 | int sysctl_tcp_max_reordering __read_mostly = 300; | 
 | EXPORT_SYMBOL(sysctl_tcp_reordering); | 
 | int sysctl_tcp_dsack __read_mostly = 1; | 
 | int sysctl_tcp_app_win __read_mostly = 31; | 
 | int sysctl_tcp_adv_win_scale __read_mostly = 1; | 
 | EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); | 
 |  | 
 | /* rfc5961 challenge ack rate limiting */ | 
 | int sysctl_tcp_challenge_ack_limit = 100; | 
 |  | 
 | int sysctl_tcp_stdurg __read_mostly; | 
 | int sysctl_tcp_rfc1337 __read_mostly; | 
 | int sysctl_tcp_max_orphans __read_mostly = NR_FILE; | 
 | int sysctl_tcp_frto __read_mostly = 2; | 
 |  | 
 | int sysctl_tcp_thin_dupack __read_mostly; | 
 |  | 
 | int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; | 
 | int sysctl_tcp_early_retrans __read_mostly = 3; | 
 | int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; | 
 |  | 
 | #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/ | 
 | #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/ | 
 | #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/ | 
 | #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/ | 
 | #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/ | 
 | #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/ | 
 | #define FLAG_ECE		0x40 /* ECE in this ACK				*/ | 
 | #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/ | 
 | #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/ | 
 | #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ | 
 | #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */ | 
 | #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */ | 
 | #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */ | 
 |  | 
 | #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED) | 
 | #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) | 
 | #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE) | 
 | #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED) | 
 |  | 
 | #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) | 
 | #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) | 
 |  | 
 | /* Adapt the MSS value used to make delayed ack decision to the | 
 |  * real world. | 
 |  */ | 
 | static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) | 
 | { | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	const unsigned int lss = icsk->icsk_ack.last_seg_size; | 
 | 	unsigned int len; | 
 |  | 
 | 	icsk->icsk_ack.last_seg_size = 0; | 
 |  | 
 | 	/* skb->len may jitter because of SACKs, even if peer | 
 | 	 * sends good full-sized frames. | 
 | 	 */ | 
 | 	len = skb_shinfo(skb)->gso_size ? : skb->len; | 
 | 	if (len >= icsk->icsk_ack.rcv_mss) { | 
 | 		icsk->icsk_ack.rcv_mss = len; | 
 | 	} else { | 
 | 		/* Otherwise, we make more careful check taking into account, | 
 | 		 * that SACKs block is variable. | 
 | 		 * | 
 | 		 * "len" is invariant segment length, including TCP header. | 
 | 		 */ | 
 | 		len += skb->data - skb_transport_header(skb); | 
 | 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || | 
 | 		    /* If PSH is not set, packet should be | 
 | 		     * full sized, provided peer TCP is not badly broken. | 
 | 		     * This observation (if it is correct 8)) allows | 
 | 		     * to handle super-low mtu links fairly. | 
 | 		     */ | 
 | 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && | 
 | 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { | 
 | 			/* Subtract also invariant (if peer is RFC compliant), | 
 | 			 * tcp header plus fixed timestamp option length. | 
 | 			 * Resulting "len" is MSS free of SACK jitter. | 
 | 			 */ | 
 | 			len -= tcp_sk(sk)->tcp_header_len; | 
 | 			icsk->icsk_ack.last_seg_size = len; | 
 | 			if (len == lss) { | 
 | 				icsk->icsk_ack.rcv_mss = len; | 
 | 				return; | 
 | 			} | 
 | 		} | 
 | 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) | 
 | 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; | 
 | 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; | 
 | 	} | 
 | } | 
 |  | 
 | static void tcp_incr_quickack(struct sock *sk) | 
 | { | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); | 
 |  | 
 | 	if (quickacks == 0) | 
 | 		quickacks = 2; | 
 | 	if (quickacks > icsk->icsk_ack.quick) | 
 | 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); | 
 | } | 
 |  | 
 | static void tcp_enter_quickack_mode(struct sock *sk) | 
 | { | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	tcp_incr_quickack(sk); | 
 | 	icsk->icsk_ack.pingpong = 0; | 
 | 	icsk->icsk_ack.ato = TCP_ATO_MIN; | 
 | } | 
 |  | 
 | /* Send ACKs quickly, if "quick" count is not exhausted | 
 |  * and the session is not interactive. | 
 |  */ | 
 |  | 
 | static inline bool tcp_in_quickack_mode(const struct sock *sk) | 
 | { | 
 | 	const struct inet_connection_sock *icsk = inet_csk(sk); | 
 |  | 
 | 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; | 
 | } | 
 |  | 
 | static void tcp_ecn_queue_cwr(struct tcp_sock *tp) | 
 | { | 
 | 	if (tp->ecn_flags & TCP_ECN_OK) | 
 | 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR; | 
 | } | 
 |  | 
 | static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) | 
 | { | 
 | 	if (tcp_hdr(skb)->cwr) | 
 | 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; | 
 | } | 
 |  | 
 | static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) | 
 | { | 
 | 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; | 
 | } | 
 |  | 
 | static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) | 
 | { | 
 | 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { | 
 | 	case INET_ECN_NOT_ECT: | 
 | 		/* Funny extension: if ECT is not set on a segment, | 
 | 		 * and we already seen ECT on a previous segment, | 
 | 		 * it is probably a retransmit. | 
 | 		 */ | 
 | 		if (tp->ecn_flags & TCP_ECN_SEEN) | 
 | 			tcp_enter_quickack_mode((struct sock *)tp); | 
 | 		break; | 
 | 	case INET_ECN_CE: | 
 | 		if (tcp_ca_needs_ecn((struct sock *)tp)) | 
 | 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); | 
 |  | 
 | 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { | 
 | 			/* Better not delay acks, sender can have a very low cwnd */ | 
 | 			tcp_enter_quickack_mode((struct sock *)tp); | 
 | 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR; | 
 | 		} | 
 | 		tp->ecn_flags |= TCP_ECN_SEEN; | 
 | 		break; | 
 | 	default: | 
 | 		if (tcp_ca_needs_ecn((struct sock *)tp)) | 
 | 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); | 
 | 		tp->ecn_flags |= TCP_ECN_SEEN; | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) | 
 | { | 
 | 	if (tp->ecn_flags & TCP_ECN_OK) | 
 | 		__tcp_ecn_check_ce(tp, skb); | 
 | } | 
 |  | 
 | static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) | 
 | { | 
 | 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) | 
 | 		tp->ecn_flags &= ~TCP_ECN_OK; | 
 | } | 
 |  | 
 | static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) | 
 | { | 
 | 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) | 
 | 		tp->ecn_flags &= ~TCP_ECN_OK; | 
 | } | 
 |  | 
 | static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) | 
 | { | 
 | 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | /* Buffer size and advertised window tuning. | 
 |  * | 
 |  * 1. Tuning sk->sk_sndbuf, when connection enters established state. | 
 |  */ | 
 |  | 
 | static void tcp_sndbuf_expand(struct sock *sk) | 
 | { | 
 | 	const struct tcp_sock *tp = tcp_sk(sk); | 
 | 	int sndmem, per_mss; | 
 | 	u32 nr_segs; | 
 |  | 
 | 	/* Worst case is non GSO/TSO : each frame consumes one skb | 
 | 	 * and skb->head is kmalloced using power of two area of memory | 
 | 	 */ | 
 | 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + | 
 | 		  MAX_TCP_HEADER + | 
 | 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | 
 |  | 
 | 	per_mss = roundup_pow_of_two(per_mss) + | 
 | 		  SKB_DATA_ALIGN(sizeof(struct sk_buff)); | 
 |  | 
 | 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); | 
 | 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1); | 
 |  | 
 | 	/* Fast Recovery (RFC 5681 3.2) : | 
 | 	 * Cubic needs 1.7 factor, rounded to 2 to include | 
 | 	 * extra cushion (application might react slowly to POLLOUT) | 
 | 	 */ | 
 | 	sndmem = 2 * nr_segs * per_mss; | 
 |  | 
 | 	if (sk->sk_sndbuf < sndmem) | 
 | 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); | 
 | } | 
 |  | 
 | /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) | 
 |  * | 
 |  * All tcp_full_space() is split to two parts: "network" buffer, allocated | 
 |  * forward and advertised in receiver window (tp->rcv_wnd) and | 
 |  * "application buffer", required to isolate scheduling/application | 
 |  * latencies from network. | 
 |  * window_clamp is maximal advertised window. It can be less than | 
 |  * tcp_full_space(), in this case tcp_full_space() - window_clamp | 
 |  * is reserved for "application" buffer. The less window_clamp is | 
 |  * the smoother our behaviour from viewpoint of network, but the lower | 
 |  * throughput and the higher sensitivity of the connection to losses. 8) | 
 |  * | 
 |  * rcv_ssthresh is more strict window_clamp used at "slow start" | 
 |  * phase to predict further behaviour of this connection. | 
 |  * It is used for two goals: | 
 |  * - to enforce header prediction at sender, even when application | 
 |  *   requires some significant "application buffer". It is check #1. | 
 |  * - to prevent pruning of receive queue because of misprediction | 
 |  *   of receiver window. Check #2. | 
 |  * | 
 |  * The scheme does not work when sender sends good segments opening | 
 |  * window and then starts to feed us spaghetti. But it should work | 
 |  * in common situations. Otherwise, we have to rely on queue collapsing. | 
 |  */ | 
 |  | 
 | /* Slow part of check#2. */ | 
 | static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	/* Optimize this! */ | 
 | 	int truesize = tcp_win_from_space(skb->truesize) >> 1; | 
 | 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; | 
 |  | 
 | 	while (tp->rcv_ssthresh <= window) { | 
 | 		if (truesize <= skb->len) | 
 | 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss; | 
 |  | 
 | 		truesize >>= 1; | 
 | 		window >>= 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	/* Check #1 */ | 
 | 	if (tp->rcv_ssthresh < tp->window_clamp && | 
 | 	    (int)tp->rcv_ssthresh < tcp_space(sk) && | 
 | 	    !sk_under_memory_pressure(sk)) { | 
 | 		int incr; | 
 |  | 
 | 		/* Check #2. Increase window, if skb with such overhead | 
 | 		 * will fit to rcvbuf in future. | 
 | 		 */ | 
 | 		if (tcp_win_from_space(skb->truesize) <= skb->len) | 
 | 			incr = 2 * tp->advmss; | 
 | 		else | 
 | 			incr = __tcp_grow_window(sk, skb); | 
 |  | 
 | 		if (incr) { | 
 | 			incr = max_t(int, incr, 2 * skb->len); | 
 | 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, | 
 | 					       tp->window_clamp); | 
 | 			inet_csk(sk)->icsk_ack.quick |= 1; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* 3. Tuning rcvbuf, when connection enters established state. */ | 
 | static void tcp_fixup_rcvbuf(struct sock *sk) | 
 | { | 
 | 	u32 mss = tcp_sk(sk)->advmss; | 
 | 	int rcvmem; | 
 |  | 
 | 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * | 
 | 		 tcp_default_init_rwnd(mss); | 
 |  | 
 | 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency | 
 | 	 * Allow enough cushion so that sender is not limited by our window | 
 | 	 */ | 
 | 	if (sysctl_tcp_moderate_rcvbuf) | 
 | 		rcvmem <<= 2; | 
 |  | 
 | 	if (sk->sk_rcvbuf < rcvmem) | 
 | 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); | 
 | } | 
 |  | 
 | /* 4. Try to fixup all. It is made immediately after connection enters | 
 |  *    established state. | 
 |  */ | 
 | void tcp_init_buffer_space(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	int maxwin; | 
 |  | 
 | 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) | 
 | 		tcp_fixup_rcvbuf(sk); | 
 | 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) | 
 | 		tcp_sndbuf_expand(sk); | 
 |  | 
 | 	tp->rcvq_space.space = tp->rcv_wnd; | 
 | 	tp->rcvq_space.time = tcp_time_stamp; | 
 | 	tp->rcvq_space.seq = tp->copied_seq; | 
 |  | 
 | 	maxwin = tcp_full_space(sk); | 
 |  | 
 | 	if (tp->window_clamp >= maxwin) { | 
 | 		tp->window_clamp = maxwin; | 
 |  | 
 | 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) | 
 | 			tp->window_clamp = max(maxwin - | 
 | 					       (maxwin >> sysctl_tcp_app_win), | 
 | 					       4 * tp->advmss); | 
 | 	} | 
 |  | 
 | 	/* Force reservation of one segment. */ | 
 | 	if (sysctl_tcp_app_win && | 
 | 	    tp->window_clamp > 2 * tp->advmss && | 
 | 	    tp->window_clamp + tp->advmss > maxwin) | 
 | 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); | 
 |  | 
 | 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); | 
 | 	tp->snd_cwnd_stamp = tcp_time_stamp; | 
 | } | 
 |  | 
 | /* 5. Recalculate window clamp after socket hit its memory bounds. */ | 
 | static void tcp_clamp_window(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 |  | 
 | 	icsk->icsk_ack.quick = 0; | 
 |  | 
 | 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && | 
 | 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && | 
 | 	    !sk_under_memory_pressure(sk) && | 
 | 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { | 
 | 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), | 
 | 				    sysctl_tcp_rmem[2]); | 
 | 	} | 
 | 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) | 
 | 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); | 
 | } | 
 |  | 
 | /* Initialize RCV_MSS value. | 
 |  * RCV_MSS is an our guess about MSS used by the peer. | 
 |  * We haven't any direct information about the MSS. | 
 |  * It's better to underestimate the RCV_MSS rather than overestimate. | 
 |  * Overestimations make us ACKing less frequently than needed. | 
 |  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). | 
 |  */ | 
 | void tcp_initialize_rcv_mss(struct sock *sk) | 
 | { | 
 | 	const struct tcp_sock *tp = tcp_sk(sk); | 
 | 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); | 
 |  | 
 | 	hint = min(hint, tp->rcv_wnd / 2); | 
 | 	hint = min(hint, TCP_MSS_DEFAULT); | 
 | 	hint = max(hint, TCP_MIN_MSS); | 
 |  | 
 | 	inet_csk(sk)->icsk_ack.rcv_mss = hint; | 
 | } | 
 | EXPORT_SYMBOL(tcp_initialize_rcv_mss); | 
 |  | 
 | /* Receiver "autotuning" code. | 
 |  * | 
 |  * The algorithm for RTT estimation w/o timestamps is based on | 
 |  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. | 
 |  * <http://public.lanl.gov/radiant/pubs.html#DRS> | 
 |  * | 
 |  * More detail on this code can be found at | 
 |  * <http://staff.psc.edu/jheffner/>, | 
 |  * though this reference is out of date.  A new paper | 
 |  * is pending. | 
 |  */ | 
 | static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) | 
 | { | 
 | 	u32 new_sample = tp->rcv_rtt_est.rtt; | 
 | 	long m = sample; | 
 |  | 
 | 	if (m == 0) | 
 | 		m = 1; | 
 |  | 
 | 	if (new_sample != 0) { | 
 | 		/* If we sample in larger samples in the non-timestamp | 
 | 		 * case, we could grossly overestimate the RTT especially | 
 | 		 * with chatty applications or bulk transfer apps which | 
 | 		 * are stalled on filesystem I/O. | 
 | 		 * | 
 | 		 * Also, since we are only going for a minimum in the | 
 | 		 * non-timestamp case, we do not smooth things out | 
 | 		 * else with timestamps disabled convergence takes too | 
 | 		 * long. | 
 | 		 */ | 
 | 		if (!win_dep) { | 
 | 			m -= (new_sample >> 3); | 
 | 			new_sample += m; | 
 | 		} else { | 
 | 			m <<= 3; | 
 | 			if (m < new_sample) | 
 | 				new_sample = m; | 
 | 		} | 
 | 	} else { | 
 | 		/* No previous measure. */ | 
 | 		new_sample = m << 3; | 
 | 	} | 
 |  | 
 | 	if (tp->rcv_rtt_est.rtt != new_sample) | 
 | 		tp->rcv_rtt_est.rtt = new_sample; | 
 | } | 
 |  | 
 | static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) | 
 | { | 
 | 	if (tp->rcv_rtt_est.time == 0) | 
 | 		goto new_measure; | 
 | 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) | 
 | 		return; | 
 | 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); | 
 |  | 
 | new_measure: | 
 | 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; | 
 | 	tp->rcv_rtt_est.time = tcp_time_stamp; | 
 | } | 
 |  | 
 | static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, | 
 | 					  const struct sk_buff *skb) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	if (tp->rx_opt.rcv_tsecr && | 
 | 	    (TCP_SKB_CB(skb)->end_seq - | 
 | 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) | 
 | 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * This function should be called every time data is copied to user space. | 
 |  * It calculates the appropriate TCP receive buffer space. | 
 |  */ | 
 | void tcp_rcv_space_adjust(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	int time; | 
 | 	int copied; | 
 |  | 
 | 	time = tcp_time_stamp - tp->rcvq_space.time; | 
 | 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) | 
 | 		return; | 
 |  | 
 | 	/* Number of bytes copied to user in last RTT */ | 
 | 	copied = tp->copied_seq - tp->rcvq_space.seq; | 
 | 	if (copied <= tp->rcvq_space.space) | 
 | 		goto new_measure; | 
 |  | 
 | 	/* A bit of theory : | 
 | 	 * copied = bytes received in previous RTT, our base window | 
 | 	 * To cope with packet losses, we need a 2x factor | 
 | 	 * To cope with slow start, and sender growing its cwin by 100 % | 
 | 	 * every RTT, we need a 4x factor, because the ACK we are sending | 
 | 	 * now is for the next RTT, not the current one : | 
 | 	 * <prev RTT . ><current RTT .. ><next RTT .... > | 
 | 	 */ | 
 |  | 
 | 	if (sysctl_tcp_moderate_rcvbuf && | 
 | 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { | 
 | 		int rcvwin, rcvmem, rcvbuf; | 
 |  | 
 | 		/* minimal window to cope with packet losses, assuming | 
 | 		 * steady state. Add some cushion because of small variations. | 
 | 		 */ | 
 | 		rcvwin = (copied << 1) + 16 * tp->advmss; | 
 |  | 
 | 		/* If rate increased by 25%, | 
 | 		 *	assume slow start, rcvwin = 3 * copied | 
 | 		 * If rate increased by 50%, | 
 | 		 *	assume sender can use 2x growth, rcvwin = 4 * copied | 
 | 		 */ | 
 | 		if (copied >= | 
 | 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { | 
 | 			if (copied >= | 
 | 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) | 
 | 				rcvwin <<= 1; | 
 | 			else | 
 | 				rcvwin += (rcvwin >> 1); | 
 | 		} | 
 |  | 
 | 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); | 
 | 		while (tcp_win_from_space(rcvmem) < tp->advmss) | 
 | 			rcvmem += 128; | 
 |  | 
 | 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); | 
 | 		if (rcvbuf > sk->sk_rcvbuf) { | 
 | 			sk->sk_rcvbuf = rcvbuf; | 
 |  | 
 | 			/* Make the window clamp follow along.  */ | 
 | 			tp->window_clamp = rcvwin; | 
 | 		} | 
 | 	} | 
 | 	tp->rcvq_space.space = copied; | 
 |  | 
 | new_measure: | 
 | 	tp->rcvq_space.seq = tp->copied_seq; | 
 | 	tp->rcvq_space.time = tcp_time_stamp; | 
 | } | 
 |  | 
 | /* There is something which you must keep in mind when you analyze the | 
 |  * behavior of the tp->ato delayed ack timeout interval.  When a | 
 |  * connection starts up, we want to ack as quickly as possible.  The | 
 |  * problem is that "good" TCP's do slow start at the beginning of data | 
 |  * transmission.  The means that until we send the first few ACK's the | 
 |  * sender will sit on his end and only queue most of his data, because | 
 |  * he can only send snd_cwnd unacked packets at any given time.  For | 
 |  * each ACK we send, he increments snd_cwnd and transmits more of his | 
 |  * queue.  -DaveM | 
 |  */ | 
 | static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	u32 now; | 
 |  | 
 | 	inet_csk_schedule_ack(sk); | 
 |  | 
 | 	tcp_measure_rcv_mss(sk, skb); | 
 |  | 
 | 	tcp_rcv_rtt_measure(tp); | 
 |  | 
 | 	now = tcp_time_stamp; | 
 |  | 
 | 	if (!icsk->icsk_ack.ato) { | 
 | 		/* The _first_ data packet received, initialize | 
 | 		 * delayed ACK engine. | 
 | 		 */ | 
 | 		tcp_incr_quickack(sk); | 
 | 		icsk->icsk_ack.ato = TCP_ATO_MIN; | 
 | 	} else { | 
 | 		int m = now - icsk->icsk_ack.lrcvtime; | 
 |  | 
 | 		if (m <= TCP_ATO_MIN / 2) { | 
 | 			/* The fastest case is the first. */ | 
 | 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; | 
 | 		} else if (m < icsk->icsk_ack.ato) { | 
 | 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; | 
 | 			if (icsk->icsk_ack.ato > icsk->icsk_rto) | 
 | 				icsk->icsk_ack.ato = icsk->icsk_rto; | 
 | 		} else if (m > icsk->icsk_rto) { | 
 | 			/* Too long gap. Apparently sender failed to | 
 | 			 * restart window, so that we send ACKs quickly. | 
 | 			 */ | 
 | 			tcp_incr_quickack(sk); | 
 | 			sk_mem_reclaim(sk); | 
 | 		} | 
 | 	} | 
 | 	icsk->icsk_ack.lrcvtime = now; | 
 |  | 
 | 	tcp_ecn_check_ce(tp, skb); | 
 |  | 
 | 	if (skb->len >= 128) | 
 | 		tcp_grow_window(sk, skb); | 
 | } | 
 |  | 
 | /* Called to compute a smoothed rtt estimate. The data fed to this | 
 |  * routine either comes from timestamps, or from segments that were | 
 |  * known _not_ to have been retransmitted [see Karn/Partridge | 
 |  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 | 
 |  * piece by Van Jacobson. | 
 |  * NOTE: the next three routines used to be one big routine. | 
 |  * To save cycles in the RFC 1323 implementation it was better to break | 
 |  * it up into three procedures. -- erics | 
 |  */ | 
 | static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	long m = mrtt_us; /* RTT */ | 
 | 	u32 srtt = tp->srtt_us; | 
 |  | 
 | 	/*	The following amusing code comes from Jacobson's | 
 | 	 *	article in SIGCOMM '88.  Note that rtt and mdev | 
 | 	 *	are scaled versions of rtt and mean deviation. | 
 | 	 *	This is designed to be as fast as possible | 
 | 	 *	m stands for "measurement". | 
 | 	 * | 
 | 	 *	On a 1990 paper the rto value is changed to: | 
 | 	 *	RTO = rtt + 4 * mdev | 
 | 	 * | 
 | 	 * Funny. This algorithm seems to be very broken. | 
 | 	 * These formulae increase RTO, when it should be decreased, increase | 
 | 	 * too slowly, when it should be increased quickly, decrease too quickly | 
 | 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely | 
 | 	 * does not matter how to _calculate_ it. Seems, it was trap | 
 | 	 * that VJ failed to avoid. 8) | 
 | 	 */ | 
 | 	if (srtt != 0) { | 
 | 		m -= (srtt >> 3);	/* m is now error in rtt est */ | 
 | 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */ | 
 | 		if (m < 0) { | 
 | 			m = -m;		/* m is now abs(error) */ | 
 | 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */ | 
 | 			/* This is similar to one of Eifel findings. | 
 | 			 * Eifel blocks mdev updates when rtt decreases. | 
 | 			 * This solution is a bit different: we use finer gain | 
 | 			 * for mdev in this case (alpha*beta). | 
 | 			 * Like Eifel it also prevents growth of rto, | 
 | 			 * but also it limits too fast rto decreases, | 
 | 			 * happening in pure Eifel. | 
 | 			 */ | 
 | 			if (m > 0) | 
 | 				m >>= 3; | 
 | 		} else { | 
 | 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */ | 
 | 		} | 
 | 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */ | 
 | 		if (tp->mdev_us > tp->mdev_max_us) { | 
 | 			tp->mdev_max_us = tp->mdev_us; | 
 | 			if (tp->mdev_max_us > tp->rttvar_us) | 
 | 				tp->rttvar_us = tp->mdev_max_us; | 
 | 		} | 
 | 		if (after(tp->snd_una, tp->rtt_seq)) { | 
 | 			if (tp->mdev_max_us < tp->rttvar_us) | 
 | 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; | 
 | 			tp->rtt_seq = tp->snd_nxt; | 
 | 			tp->mdev_max_us = tcp_rto_min_us(sk); | 
 | 		} | 
 | 	} else { | 
 | 		/* no previous measure. */ | 
 | 		srtt = m << 3;		/* take the measured time to be rtt */ | 
 | 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */ | 
 | 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); | 
 | 		tp->mdev_max_us = tp->rttvar_us; | 
 | 		tp->rtt_seq = tp->snd_nxt; | 
 | 	} | 
 | 	tp->srtt_us = max(1U, srtt); | 
 | } | 
 |  | 
 | /* Set the sk_pacing_rate to allow proper sizing of TSO packets. | 
 |  * Note: TCP stack does not yet implement pacing. | 
 |  * FQ packet scheduler can be used to implement cheap but effective | 
 |  * TCP pacing, to smooth the burst on large writes when packets | 
 |  * in flight is significantly lower than cwnd (or rwin) | 
 |  */ | 
 | static void tcp_update_pacing_rate(struct sock *sk) | 
 | { | 
 | 	const struct tcp_sock *tp = tcp_sk(sk); | 
 | 	u64 rate; | 
 |  | 
 | 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ | 
 | 	rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3); | 
 |  | 
 | 	rate *= max(tp->snd_cwnd, tp->packets_out); | 
 |  | 
 | 	if (likely(tp->srtt_us)) | 
 | 		do_div(rate, tp->srtt_us); | 
 |  | 
 | 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate | 
 | 	 * without any lock. We want to make sure compiler wont store | 
 | 	 * intermediate values in this location. | 
 | 	 */ | 
 | 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, | 
 | 						sk->sk_max_pacing_rate); | 
 | } | 
 |  | 
 | /* Calculate rto without backoff.  This is the second half of Van Jacobson's | 
 |  * routine referred to above. | 
 |  */ | 
 | static void tcp_set_rto(struct sock *sk) | 
 | { | 
 | 	const struct tcp_sock *tp = tcp_sk(sk); | 
 | 	/* Old crap is replaced with new one. 8) | 
 | 	 * | 
 | 	 * More seriously: | 
 | 	 * 1. If rtt variance happened to be less 50msec, it is hallucination. | 
 | 	 *    It cannot be less due to utterly erratic ACK generation made | 
 | 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_ | 
 | 	 *    to do with delayed acks, because at cwnd>2 true delack timeout | 
 | 	 *    is invisible. Actually, Linux-2.4 also generates erratic | 
 | 	 *    ACKs in some circumstances. | 
 | 	 */ | 
 | 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); | 
 |  | 
 | 	/* 2. Fixups made earlier cannot be right. | 
 | 	 *    If we do not estimate RTO correctly without them, | 
 | 	 *    all the algo is pure shit and should be replaced | 
 | 	 *    with correct one. It is exactly, which we pretend to do. | 
 | 	 */ | 
 |  | 
 | 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo | 
 | 	 * guarantees that rto is higher. | 
 | 	 */ | 
 | 	tcp_bound_rto(sk); | 
 | } | 
 |  | 
 | __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) | 
 | { | 
 | 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); | 
 |  | 
 | 	if (!cwnd) | 
 | 		cwnd = TCP_INIT_CWND; | 
 | 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp); | 
 | } | 
 |  | 
 | /* | 
 |  * Packet counting of FACK is based on in-order assumptions, therefore TCP | 
 |  * disables it when reordering is detected | 
 |  */ | 
 | void tcp_disable_fack(struct tcp_sock *tp) | 
 | { | 
 | 	/* RFC3517 uses different metric in lost marker => reset on change */ | 
 | 	if (tcp_is_fack(tp)) | 
 | 		tp->lost_skb_hint = NULL; | 
 | 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; | 
 | } | 
 |  | 
 | /* Take a notice that peer is sending D-SACKs */ | 
 | static void tcp_dsack_seen(struct tcp_sock *tp) | 
 | { | 
 | 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; | 
 | } | 
 |  | 
 | static void tcp_update_reordering(struct sock *sk, const int metric, | 
 | 				  const int ts) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	if (metric > tp->reordering) { | 
 | 		int mib_idx; | 
 |  | 
 | 		tp->reordering = min(sysctl_tcp_max_reordering, metric); | 
 |  | 
 | 		/* This exciting event is worth to be remembered. 8) */ | 
 | 		if (ts) | 
 | 			mib_idx = LINUX_MIB_TCPTSREORDER; | 
 | 		else if (tcp_is_reno(tp)) | 
 | 			mib_idx = LINUX_MIB_TCPRENOREORDER; | 
 | 		else if (tcp_is_fack(tp)) | 
 | 			mib_idx = LINUX_MIB_TCPFACKREORDER; | 
 | 		else | 
 | 			mib_idx = LINUX_MIB_TCPSACKREORDER; | 
 |  | 
 | 		NET_INC_STATS_BH(sock_net(sk), mib_idx); | 
 | #if FASTRETRANS_DEBUG > 1 | 
 | 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n", | 
 | 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, | 
 | 			 tp->reordering, | 
 | 			 tp->fackets_out, | 
 | 			 tp->sacked_out, | 
 | 			 tp->undo_marker ? tp->undo_retrans : 0); | 
 | #endif | 
 | 		tcp_disable_fack(tp); | 
 | 	} | 
 |  | 
 | 	if (metric > 0) | 
 | 		tcp_disable_early_retrans(tp); | 
 | } | 
 |  | 
 | /* This must be called before lost_out is incremented */ | 
 | static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) | 
 | { | 
 | 	if ((tp->retransmit_skb_hint == NULL) || | 
 | 	    before(TCP_SKB_CB(skb)->seq, | 
 | 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) | 
 | 		tp->retransmit_skb_hint = skb; | 
 |  | 
 | 	if (!tp->lost_out || | 
 | 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) | 
 | 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; | 
 | } | 
 |  | 
 | static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) | 
 | { | 
 | 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { | 
 | 		tcp_verify_retransmit_hint(tp, skb); | 
 |  | 
 | 		tp->lost_out += tcp_skb_pcount(skb); | 
 | 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; | 
 | 	} | 
 | } | 
 |  | 
 | static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, | 
 | 					    struct sk_buff *skb) | 
 | { | 
 | 	tcp_verify_retransmit_hint(tp, skb); | 
 |  | 
 | 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { | 
 | 		tp->lost_out += tcp_skb_pcount(skb); | 
 | 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; | 
 | 	} | 
 | } | 
 |  | 
 | /* This procedure tags the retransmission queue when SACKs arrive. | 
 |  * | 
 |  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). | 
 |  * Packets in queue with these bits set are counted in variables | 
 |  * sacked_out, retrans_out and lost_out, correspondingly. | 
 |  * | 
 |  * Valid combinations are: | 
 |  * Tag  InFlight	Description | 
 |  * 0	1		- orig segment is in flight. | 
 |  * S	0		- nothing flies, orig reached receiver. | 
 |  * L	0		- nothing flies, orig lost by net. | 
 |  * R	2		- both orig and retransmit are in flight. | 
 |  * L|R	1		- orig is lost, retransmit is in flight. | 
 |  * S|R  1		- orig reached receiver, retrans is still in flight. | 
 |  * (L|S|R is logically valid, it could occur when L|R is sacked, | 
 |  *  but it is equivalent to plain S and code short-curcuits it to S. | 
 |  *  L|S is logically invalid, it would mean -1 packet in flight 8)) | 
 |  * | 
 |  * These 6 states form finite state machine, controlled by the following events: | 
 |  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) | 
 |  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) | 
 |  * 3. Loss detection event of two flavors: | 
 |  *	A. Scoreboard estimator decided the packet is lost. | 
 |  *	   A'. Reno "three dupacks" marks head of queue lost. | 
 |  *	   A''. Its FACK modification, head until snd.fack is lost. | 
 |  *	B. SACK arrives sacking SND.NXT at the moment, when the | 
 |  *	   segment was retransmitted. | 
 |  * 4. D-SACK added new rule: D-SACK changes any tag to S. | 
 |  * | 
 |  * It is pleasant to note, that state diagram turns out to be commutative, | 
 |  * so that we are allowed not to be bothered by order of our actions, | 
 |  * when multiple events arrive simultaneously. (see the function below). | 
 |  * | 
 |  * Reordering detection. | 
 |  * -------------------- | 
 |  * Reordering metric is maximal distance, which a packet can be displaced | 
 |  * in packet stream. With SACKs we can estimate it: | 
 |  * | 
 |  * 1. SACK fills old hole and the corresponding segment was not | 
 |  *    ever retransmitted -> reordering. Alas, we cannot use it | 
 |  *    when segment was retransmitted. | 
 |  * 2. The last flaw is solved with D-SACK. D-SACK arrives | 
 |  *    for retransmitted and already SACKed segment -> reordering.. | 
 |  * Both of these heuristics are not used in Loss state, when we cannot | 
 |  * account for retransmits accurately. | 
 |  * | 
 |  * SACK block validation. | 
 |  * ---------------------- | 
 |  * | 
 |  * SACK block range validation checks that the received SACK block fits to | 
 |  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. | 
 |  * Note that SND.UNA is not included to the range though being valid because | 
 |  * it means that the receiver is rather inconsistent with itself reporting | 
 |  * SACK reneging when it should advance SND.UNA. Such SACK block this is | 
 |  * perfectly valid, however, in light of RFC2018 which explicitly states | 
 |  * that "SACK block MUST reflect the newest segment.  Even if the newest | 
 |  * segment is going to be discarded ...", not that it looks very clever | 
 |  * in case of head skb. Due to potentional receiver driven attacks, we | 
 |  * choose to avoid immediate execution of a walk in write queue due to | 
 |  * reneging and defer head skb's loss recovery to standard loss recovery | 
 |  * procedure that will eventually trigger (nothing forbids us doing this). | 
 |  * | 
 |  * Implements also blockage to start_seq wrap-around. Problem lies in the | 
 |  * fact that though start_seq (s) is before end_seq (i.e., not reversed), | 
 |  * there's no guarantee that it will be before snd_nxt (n). The problem | 
 |  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt | 
 |  * wrap (s_w): | 
 |  * | 
 |  *         <- outs wnd ->                          <- wrapzone -> | 
 |  *         u     e      n                         u_w   e_w  s n_w | 
 |  *         |     |      |                          |     |   |  | | 
 |  * |<------------+------+----- TCP seqno space --------------+---------->| | 
 |  * ...-- <2^31 ->|                                           |<--------... | 
 |  * ...---- >2^31 ------>|                                    |<--------... | 
 |  * | 
 |  * Current code wouldn't be vulnerable but it's better still to discard such | 
 |  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat | 
 |  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in | 
 |  * snd_nxt wrap -> snd_una region will then become "well defined", i.e., | 
 |  * equal to the ideal case (infinite seqno space without wrap caused issues). | 
 |  * | 
 |  * With D-SACK the lower bound is extended to cover sequence space below | 
 |  * SND.UNA down to undo_marker, which is the last point of interest. Yet | 
 |  * again, D-SACK block must not to go across snd_una (for the same reason as | 
 |  * for the normal SACK blocks, explained above). But there all simplicity | 
 |  * ends, TCP might receive valid D-SACKs below that. As long as they reside | 
 |  * fully below undo_marker they do not affect behavior in anyway and can | 
 |  * therefore be safely ignored. In rare cases (which are more or less | 
 |  * theoretical ones), the D-SACK will nicely cross that boundary due to skb | 
 |  * fragmentation and packet reordering past skb's retransmission. To consider | 
 |  * them correctly, the acceptable range must be extended even more though | 
 |  * the exact amount is rather hard to quantify. However, tp->max_window can | 
 |  * be used as an exaggerated estimate. | 
 |  */ | 
 | static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, | 
 | 				   u32 start_seq, u32 end_seq) | 
 | { | 
 | 	/* Too far in future, or reversed (interpretation is ambiguous) */ | 
 | 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) | 
 | 		return false; | 
 |  | 
 | 	/* Nasty start_seq wrap-around check (see comments above) */ | 
 | 	if (!before(start_seq, tp->snd_nxt)) | 
 | 		return false; | 
 |  | 
 | 	/* In outstanding window? ...This is valid exit for D-SACKs too. | 
 | 	 * start_seq == snd_una is non-sensical (see comments above) | 
 | 	 */ | 
 | 	if (after(start_seq, tp->snd_una)) | 
 | 		return true; | 
 |  | 
 | 	if (!is_dsack || !tp->undo_marker) | 
 | 		return false; | 
 |  | 
 | 	/* ...Then it's D-SACK, and must reside below snd_una completely */ | 
 | 	if (after(end_seq, tp->snd_una)) | 
 | 		return false; | 
 |  | 
 | 	if (!before(start_seq, tp->undo_marker)) | 
 | 		return true; | 
 |  | 
 | 	/* Too old */ | 
 | 	if (!after(end_seq, tp->undo_marker)) | 
 | 		return false; | 
 |  | 
 | 	/* Undo_marker boundary crossing (overestimates a lot). Known already: | 
 | 	 *   start_seq < undo_marker and end_seq >= undo_marker. | 
 | 	 */ | 
 | 	return !before(start_seq, end_seq - tp->max_window); | 
 | } | 
 |  | 
 | /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". | 
 |  * Event "B". Later note: FACK people cheated me again 8), we have to account | 
 |  * for reordering! Ugly, but should help. | 
 |  * | 
 |  * Search retransmitted skbs from write_queue that were sent when snd_nxt was | 
 |  * less than what is now known to be received by the other end (derived from | 
 |  * highest SACK block). Also calculate the lowest snd_nxt among the remaining | 
 |  * retransmitted skbs to avoid some costly processing per ACKs. | 
 |  */ | 
 | static void tcp_mark_lost_retrans(struct sock *sk) | 
 | { | 
 | 	const struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *skb; | 
 | 	int cnt = 0; | 
 | 	u32 new_low_seq = tp->snd_nxt; | 
 | 	u32 received_upto = tcp_highest_sack_seq(tp); | 
 |  | 
 | 	if (!tcp_is_fack(tp) || !tp->retrans_out || | 
 | 	    !after(received_upto, tp->lost_retrans_low) || | 
 | 	    icsk->icsk_ca_state != TCP_CA_Recovery) | 
 | 		return; | 
 |  | 
 | 	tcp_for_write_queue(skb, sk) { | 
 | 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; | 
 |  | 
 | 		if (skb == tcp_send_head(sk)) | 
 | 			break; | 
 | 		if (cnt == tp->retrans_out) | 
 | 			break; | 
 | 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) | 
 | 			continue; | 
 |  | 
 | 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) | 
 | 			continue; | 
 |  | 
 | 		/* TODO: We would like to get rid of tcp_is_fack(tp) only | 
 | 		 * constraint here (see above) but figuring out that at | 
 | 		 * least tp->reordering SACK blocks reside between ack_seq | 
 | 		 * and received_upto is not easy task to do cheaply with | 
 | 		 * the available datastructures. | 
 | 		 * | 
 | 		 * Whether FACK should check here for tp->reordering segs | 
 | 		 * in-between one could argue for either way (it would be | 
 | 		 * rather simple to implement as we could count fack_count | 
 | 		 * during the walk and do tp->fackets_out - fack_count). | 
 | 		 */ | 
 | 		if (after(received_upto, ack_seq)) { | 
 | 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; | 
 | 			tp->retrans_out -= tcp_skb_pcount(skb); | 
 |  | 
 | 			tcp_skb_mark_lost_uncond_verify(tp, skb); | 
 | 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); | 
 | 		} else { | 
 | 			if (before(ack_seq, new_low_seq)) | 
 | 				new_low_seq = ack_seq; | 
 | 			cnt += tcp_skb_pcount(skb); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (tp->retrans_out) | 
 | 		tp->lost_retrans_low = new_low_seq; | 
 | } | 
 |  | 
 | static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, | 
 | 			    struct tcp_sack_block_wire *sp, int num_sacks, | 
 | 			    u32 prior_snd_una) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); | 
 | 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); | 
 | 	bool dup_sack = false; | 
 |  | 
 | 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { | 
 | 		dup_sack = true; | 
 | 		tcp_dsack_seen(tp); | 
 | 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); | 
 | 	} else if (num_sacks > 1) { | 
 | 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); | 
 | 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); | 
 |  | 
 | 		if (!after(end_seq_0, end_seq_1) && | 
 | 		    !before(start_seq_0, start_seq_1)) { | 
 | 			dup_sack = true; | 
 | 			tcp_dsack_seen(tp); | 
 | 			NET_INC_STATS_BH(sock_net(sk), | 
 | 					LINUX_MIB_TCPDSACKOFORECV); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* D-SACK for already forgotten data... Do dumb counting. */ | 
 | 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && | 
 | 	    !after(end_seq_0, prior_snd_una) && | 
 | 	    after(end_seq_0, tp->undo_marker)) | 
 | 		tp->undo_retrans--; | 
 |  | 
 | 	return dup_sack; | 
 | } | 
 |  | 
 | struct tcp_sacktag_state { | 
 | 	int	reord; | 
 | 	int	fack_count; | 
 | 	long	rtt_us; /* RTT measured by SACKing never-retransmitted data */ | 
 | 	int	flag; | 
 | }; | 
 |  | 
 | /* Check if skb is fully within the SACK block. In presence of GSO skbs, | 
 |  * the incoming SACK may not exactly match but we can find smaller MSS | 
 |  * aligned portion of it that matches. Therefore we might need to fragment | 
 |  * which may fail and creates some hassle (caller must handle error case | 
 |  * returns). | 
 |  * | 
 |  * FIXME: this could be merged to shift decision code | 
 |  */ | 
 | static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, | 
 | 				  u32 start_seq, u32 end_seq) | 
 | { | 
 | 	int err; | 
 | 	bool in_sack; | 
 | 	unsigned int pkt_len; | 
 | 	unsigned int mss; | 
 |  | 
 | 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && | 
 | 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq); | 
 |  | 
 | 	if (tcp_skb_pcount(skb) > 1 && !in_sack && | 
 | 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) { | 
 | 		mss = tcp_skb_mss(skb); | 
 | 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); | 
 |  | 
 | 		if (!in_sack) { | 
 | 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq; | 
 | 			if (pkt_len < mss) | 
 | 				pkt_len = mss; | 
 | 		} else { | 
 | 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq; | 
 | 			if (pkt_len < mss) | 
 | 				return -EINVAL; | 
 | 		} | 
 |  | 
 | 		/* Round if necessary so that SACKs cover only full MSSes | 
 | 		 * and/or the remaining small portion (if present) | 
 | 		 */ | 
 | 		if (pkt_len > mss) { | 
 | 			unsigned int new_len = (pkt_len / mss) * mss; | 
 | 			if (!in_sack && new_len < pkt_len) { | 
 | 				new_len += mss; | 
 | 				if (new_len >= skb->len) | 
 | 					return 0; | 
 | 			} | 
 | 			pkt_len = new_len; | 
 | 		} | 
 | 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); | 
 | 		if (err < 0) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	return in_sack; | 
 | } | 
 |  | 
 | /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ | 
 | static u8 tcp_sacktag_one(struct sock *sk, | 
 | 			  struct tcp_sacktag_state *state, u8 sacked, | 
 | 			  u32 start_seq, u32 end_seq, | 
 | 			  int dup_sack, int pcount, | 
 | 			  const struct skb_mstamp *xmit_time) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	int fack_count = state->fack_count; | 
 |  | 
 | 	/* Account D-SACK for retransmitted packet. */ | 
 | 	if (dup_sack && (sacked & TCPCB_RETRANS)) { | 
 | 		if (tp->undo_marker && tp->undo_retrans > 0 && | 
 | 		    after(end_seq, tp->undo_marker)) | 
 | 			tp->undo_retrans--; | 
 | 		if (sacked & TCPCB_SACKED_ACKED) | 
 | 			state->reord = min(fack_count, state->reord); | 
 | 	} | 
 |  | 
 | 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */ | 
 | 	if (!after(end_seq, tp->snd_una)) | 
 | 		return sacked; | 
 |  | 
 | 	if (!(sacked & TCPCB_SACKED_ACKED)) { | 
 | 		if (sacked & TCPCB_SACKED_RETRANS) { | 
 | 			/* If the segment is not tagged as lost, | 
 | 			 * we do not clear RETRANS, believing | 
 | 			 * that retransmission is still in flight. | 
 | 			 */ | 
 | 			if (sacked & TCPCB_LOST) { | 
 | 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); | 
 | 				tp->lost_out -= pcount; | 
 | 				tp->retrans_out -= pcount; | 
 | 			} | 
 | 		} else { | 
 | 			if (!(sacked & TCPCB_RETRANS)) { | 
 | 				/* New sack for not retransmitted frame, | 
 | 				 * which was in hole. It is reordering. | 
 | 				 */ | 
 | 				if (before(start_seq, | 
 | 					   tcp_highest_sack_seq(tp))) | 
 | 					state->reord = min(fack_count, | 
 | 							   state->reord); | 
 | 				if (!after(end_seq, tp->high_seq)) | 
 | 					state->flag |= FLAG_ORIG_SACK_ACKED; | 
 | 				/* Pick the earliest sequence sacked for RTT */ | 
 | 				if (state->rtt_us < 0) { | 
 | 					struct skb_mstamp now; | 
 |  | 
 | 					skb_mstamp_get(&now); | 
 | 					state->rtt_us = skb_mstamp_us_delta(&now, | 
 | 								xmit_time); | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (sacked & TCPCB_LOST) { | 
 | 				sacked &= ~TCPCB_LOST; | 
 | 				tp->lost_out -= pcount; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		sacked |= TCPCB_SACKED_ACKED; | 
 | 		state->flag |= FLAG_DATA_SACKED; | 
 | 		tp->sacked_out += pcount; | 
 |  | 
 | 		fack_count += pcount; | 
 |  | 
 | 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */ | 
 | 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && | 
 | 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) | 
 | 			tp->lost_cnt_hint += pcount; | 
 |  | 
 | 		if (fack_count > tp->fackets_out) | 
 | 			tp->fackets_out = fack_count; | 
 | 	} | 
 |  | 
 | 	/* D-SACK. We can detect redundant retransmission in S|R and plain R | 
 | 	 * frames and clear it. undo_retrans is decreased above, L|R frames | 
 | 	 * are accounted above as well. | 
 | 	 */ | 
 | 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { | 
 | 		sacked &= ~TCPCB_SACKED_RETRANS; | 
 | 		tp->retrans_out -= pcount; | 
 | 	} | 
 |  | 
 | 	return sacked; | 
 | } | 
 |  | 
 | /* Shift newly-SACKed bytes from this skb to the immediately previous | 
 |  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. | 
 |  */ | 
 | static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, | 
 | 			    struct tcp_sacktag_state *state, | 
 | 			    unsigned int pcount, int shifted, int mss, | 
 | 			    bool dup_sack) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb); | 
 | 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */ | 
 | 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */ | 
 |  | 
 | 	BUG_ON(!pcount); | 
 |  | 
 | 	/* Adjust counters and hints for the newly sacked sequence | 
 | 	 * range but discard the return value since prev is already | 
 | 	 * marked. We must tag the range first because the seq | 
 | 	 * advancement below implicitly advances | 
 | 	 * tcp_highest_sack_seq() when skb is highest_sack. | 
 | 	 */ | 
 | 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, | 
 | 			start_seq, end_seq, dup_sack, pcount, | 
 | 			&skb->skb_mstamp); | 
 |  | 
 | 	if (skb == tp->lost_skb_hint) | 
 | 		tp->lost_cnt_hint += pcount; | 
 |  | 
 | 	TCP_SKB_CB(prev)->end_seq += shifted; | 
 | 	TCP_SKB_CB(skb)->seq += shifted; | 
 |  | 
 | 	tcp_skb_pcount_add(prev, pcount); | 
 | 	BUG_ON(tcp_skb_pcount(skb) < pcount); | 
 | 	tcp_skb_pcount_add(skb, -pcount); | 
 |  | 
 | 	/* When we're adding to gso_segs == 1, gso_size will be zero, | 
 | 	 * in theory this shouldn't be necessary but as long as DSACK | 
 | 	 * code can come after this skb later on it's better to keep | 
 | 	 * setting gso_size to something. | 
 | 	 */ | 
 | 	if (!skb_shinfo(prev)->gso_size) { | 
 | 		skb_shinfo(prev)->gso_size = mss; | 
 | 		skb_shinfo(prev)->gso_type = sk->sk_gso_type; | 
 | 	} | 
 |  | 
 | 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */ | 
 | 	if (tcp_skb_pcount(skb) <= 1) { | 
 | 		skb_shinfo(skb)->gso_size = 0; | 
 | 		skb_shinfo(skb)->gso_type = 0; | 
 | 	} | 
 |  | 
 | 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */ | 
 | 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); | 
 |  | 
 | 	if (skb->len > 0) { | 
 | 		BUG_ON(!tcp_skb_pcount(skb)); | 
 | 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* Whole SKB was eaten :-) */ | 
 |  | 
 | 	if (skb == tp->retransmit_skb_hint) | 
 | 		tp->retransmit_skb_hint = prev; | 
 | 	if (skb == tp->lost_skb_hint) { | 
 | 		tp->lost_skb_hint = prev; | 
 | 		tp->lost_cnt_hint -= tcp_skb_pcount(prev); | 
 | 	} | 
 |  | 
 | 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; | 
 | 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) | 
 | 		TCP_SKB_CB(prev)->end_seq++; | 
 |  | 
 | 	if (skb == tcp_highest_sack(sk)) | 
 | 		tcp_advance_highest_sack(sk, skb); | 
 |  | 
 | 	tcp_unlink_write_queue(skb, sk); | 
 | 	sk_wmem_free_skb(sk, skb); | 
 |  | 
 | 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* I wish gso_size would have a bit more sane initialization than | 
 |  * something-or-zero which complicates things | 
 |  */ | 
 | static int tcp_skb_seglen(const struct sk_buff *skb) | 
 | { | 
 | 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); | 
 | } | 
 |  | 
 | /* Shifting pages past head area doesn't work */ | 
 | static int skb_can_shift(const struct sk_buff *skb) | 
 | { | 
 | 	return !skb_headlen(skb) && skb_is_nonlinear(skb); | 
 | } | 
 |  | 
 | /* Try collapsing SACK blocks spanning across multiple skbs to a single | 
 |  * skb. | 
 |  */ | 
 | static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, | 
 | 					  struct tcp_sacktag_state *state, | 
 | 					  u32 start_seq, u32 end_seq, | 
 | 					  bool dup_sack) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *prev; | 
 | 	int mss; | 
 | 	int pcount = 0; | 
 | 	int len; | 
 | 	int in_sack; | 
 |  | 
 | 	if (!sk_can_gso(sk)) | 
 | 		goto fallback; | 
 |  | 
 | 	/* Normally R but no L won't result in plain S */ | 
 | 	if (!dup_sack && | 
 | 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) | 
 | 		goto fallback; | 
 | 	if (!skb_can_shift(skb)) | 
 | 		goto fallback; | 
 | 	/* This frame is about to be dropped (was ACKed). */ | 
 | 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) | 
 | 		goto fallback; | 
 |  | 
 | 	/* Can only happen with delayed DSACK + discard craziness */ | 
 | 	if (unlikely(skb == tcp_write_queue_head(sk))) | 
 | 		goto fallback; | 
 | 	prev = tcp_write_queue_prev(sk, skb); | 
 |  | 
 | 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) | 
 | 		goto fallback; | 
 |  | 
 | 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && | 
 | 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq); | 
 |  | 
 | 	if (in_sack) { | 
 | 		len = skb->len; | 
 | 		pcount = tcp_skb_pcount(skb); | 
 | 		mss = tcp_skb_seglen(skb); | 
 |  | 
 | 		/* TODO: Fix DSACKs to not fragment already SACKed and we can | 
 | 		 * drop this restriction as unnecessary | 
 | 		 */ | 
 | 		if (mss != tcp_skb_seglen(prev)) | 
 | 			goto fallback; | 
 | 	} else { | 
 | 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) | 
 | 			goto noop; | 
 | 		/* CHECKME: This is non-MSS split case only?, this will | 
 | 		 * cause skipped skbs due to advancing loop btw, original | 
 | 		 * has that feature too | 
 | 		 */ | 
 | 		if (tcp_skb_pcount(skb) <= 1) | 
 | 			goto noop; | 
 |  | 
 | 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); | 
 | 		if (!in_sack) { | 
 | 			/* TODO: head merge to next could be attempted here | 
 | 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), | 
 | 			 * though it might not be worth of the additional hassle | 
 | 			 * | 
 | 			 * ...we can probably just fallback to what was done | 
 | 			 * previously. We could try merging non-SACKed ones | 
 | 			 * as well but it probably isn't going to buy off | 
 | 			 * because later SACKs might again split them, and | 
 | 			 * it would make skb timestamp tracking considerably | 
 | 			 * harder problem. | 
 | 			 */ | 
 | 			goto fallback; | 
 | 		} | 
 |  | 
 | 		len = end_seq - TCP_SKB_CB(skb)->seq; | 
 | 		BUG_ON(len < 0); | 
 | 		BUG_ON(len > skb->len); | 
 |  | 
 | 		/* MSS boundaries should be honoured or else pcount will | 
 | 		 * severely break even though it makes things bit trickier. | 
 | 		 * Optimize common case to avoid most of the divides | 
 | 		 */ | 
 | 		mss = tcp_skb_mss(skb); | 
 |  | 
 | 		/* TODO: Fix DSACKs to not fragment already SACKed and we can | 
 | 		 * drop this restriction as unnecessary | 
 | 		 */ | 
 | 		if (mss != tcp_skb_seglen(prev)) | 
 | 			goto fallback; | 
 |  | 
 | 		if (len == mss) { | 
 | 			pcount = 1; | 
 | 		} else if (len < mss) { | 
 | 			goto noop; | 
 | 		} else { | 
 | 			pcount = len / mss; | 
 | 			len = pcount * mss; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ | 
 | 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) | 
 | 		goto fallback; | 
 |  | 
 | 	if (!skb_shift(prev, skb, len)) | 
 | 		goto fallback; | 
 | 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) | 
 | 		goto out; | 
 |  | 
 | 	/* Hole filled allows collapsing with the next as well, this is very | 
 | 	 * useful when hole on every nth skb pattern happens | 
 | 	 */ | 
 | 	if (prev == tcp_write_queue_tail(sk)) | 
 | 		goto out; | 
 | 	skb = tcp_write_queue_next(sk, prev); | 
 |  | 
 | 	if (!skb_can_shift(skb) || | 
 | 	    (skb == tcp_send_head(sk)) || | 
 | 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || | 
 | 	    (mss != tcp_skb_seglen(skb))) | 
 | 		goto out; | 
 |  | 
 | 	len = skb->len; | 
 | 	if (skb_shift(prev, skb, len)) { | 
 | 		pcount += tcp_skb_pcount(skb); | 
 | 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); | 
 | 	} | 
 |  | 
 | out: | 
 | 	state->fack_count += pcount; | 
 | 	return prev; | 
 |  | 
 | noop: | 
 | 	return skb; | 
 |  | 
 | fallback: | 
 | 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, | 
 | 					struct tcp_sack_block *next_dup, | 
 | 					struct tcp_sacktag_state *state, | 
 | 					u32 start_seq, u32 end_seq, | 
 | 					bool dup_sack_in) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *tmp; | 
 |  | 
 | 	tcp_for_write_queue_from(skb, sk) { | 
 | 		int in_sack = 0; | 
 | 		bool dup_sack = dup_sack_in; | 
 |  | 
 | 		if (skb == tcp_send_head(sk)) | 
 | 			break; | 
 |  | 
 | 		/* queue is in-order => we can short-circuit the walk early */ | 
 | 		if (!before(TCP_SKB_CB(skb)->seq, end_seq)) | 
 | 			break; | 
 |  | 
 | 		if ((next_dup != NULL) && | 
 | 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { | 
 | 			in_sack = tcp_match_skb_to_sack(sk, skb, | 
 | 							next_dup->start_seq, | 
 | 							next_dup->end_seq); | 
 | 			if (in_sack > 0) | 
 | 				dup_sack = true; | 
 | 		} | 
 |  | 
 | 		/* skb reference here is a bit tricky to get right, since | 
 | 		 * shifting can eat and free both this skb and the next, | 
 | 		 * so not even _safe variant of the loop is enough. | 
 | 		 */ | 
 | 		if (in_sack <= 0) { | 
 | 			tmp = tcp_shift_skb_data(sk, skb, state, | 
 | 						 start_seq, end_seq, dup_sack); | 
 | 			if (tmp != NULL) { | 
 | 				if (tmp != skb) { | 
 | 					skb = tmp; | 
 | 					continue; | 
 | 				} | 
 |  | 
 | 				in_sack = 0; | 
 | 			} else { | 
 | 				in_sack = tcp_match_skb_to_sack(sk, skb, | 
 | 								start_seq, | 
 | 								end_seq); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (unlikely(in_sack < 0)) | 
 | 			break; | 
 |  | 
 | 		if (in_sack) { | 
 | 			TCP_SKB_CB(skb)->sacked = | 
 | 				tcp_sacktag_one(sk, | 
 | 						state, | 
 | 						TCP_SKB_CB(skb)->sacked, | 
 | 						TCP_SKB_CB(skb)->seq, | 
 | 						TCP_SKB_CB(skb)->end_seq, | 
 | 						dup_sack, | 
 | 						tcp_skb_pcount(skb), | 
 | 						&skb->skb_mstamp); | 
 |  | 
 | 			if (!before(TCP_SKB_CB(skb)->seq, | 
 | 				    tcp_highest_sack_seq(tp))) | 
 | 				tcp_advance_highest_sack(sk, skb); | 
 | 		} | 
 |  | 
 | 		state->fack_count += tcp_skb_pcount(skb); | 
 | 	} | 
 | 	return skb; | 
 | } | 
 |  | 
 | /* Avoid all extra work that is being done by sacktag while walking in | 
 |  * a normal way | 
 |  */ | 
 | static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, | 
 | 					struct tcp_sacktag_state *state, | 
 | 					u32 skip_to_seq) | 
 | { | 
 | 	tcp_for_write_queue_from(skb, sk) { | 
 | 		if (skb == tcp_send_head(sk)) | 
 | 			break; | 
 |  | 
 | 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) | 
 | 			break; | 
 |  | 
 | 		state->fack_count += tcp_skb_pcount(skb); | 
 | 	} | 
 | 	return skb; | 
 | } | 
 |  | 
 | static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, | 
 | 						struct sock *sk, | 
 | 						struct tcp_sack_block *next_dup, | 
 | 						struct tcp_sacktag_state *state, | 
 | 						u32 skip_to_seq) | 
 | { | 
 | 	if (next_dup == NULL) | 
 | 		return skb; | 
 |  | 
 | 	if (before(next_dup->start_seq, skip_to_seq)) { | 
 | 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); | 
 | 		skb = tcp_sacktag_walk(skb, sk, NULL, state, | 
 | 				       next_dup->start_seq, next_dup->end_seq, | 
 | 				       1); | 
 | 	} | 
 |  | 
 | 	return skb; | 
 | } | 
 |  | 
 | static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) | 
 | { | 
 | 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); | 
 | } | 
 |  | 
 | static int | 
 | tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, | 
 | 			u32 prior_snd_una, long *sack_rtt_us) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	const unsigned char *ptr = (skb_transport_header(ack_skb) + | 
 | 				    TCP_SKB_CB(ack_skb)->sacked); | 
 | 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); | 
 | 	struct tcp_sack_block sp[TCP_NUM_SACKS]; | 
 | 	struct tcp_sack_block *cache; | 
 | 	struct tcp_sacktag_state state; | 
 | 	struct sk_buff *skb; | 
 | 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); | 
 | 	int used_sacks; | 
 | 	bool found_dup_sack = false; | 
 | 	int i, j; | 
 | 	int first_sack_index; | 
 |  | 
 | 	state.flag = 0; | 
 | 	state.reord = tp->packets_out; | 
 | 	state.rtt_us = -1L; | 
 |  | 
 | 	if (!tp->sacked_out) { | 
 | 		if (WARN_ON(tp->fackets_out)) | 
 | 			tp->fackets_out = 0; | 
 | 		tcp_highest_sack_reset(sk); | 
 | 	} | 
 |  | 
 | 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, | 
 | 					 num_sacks, prior_snd_una); | 
 | 	if (found_dup_sack) | 
 | 		state.flag |= FLAG_DSACKING_ACK; | 
 |  | 
 | 	/* Eliminate too old ACKs, but take into | 
 | 	 * account more or less fresh ones, they can | 
 | 	 * contain valid SACK info. | 
 | 	 */ | 
 | 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) | 
 | 		return 0; | 
 |  | 
 | 	if (!tp->packets_out) | 
 | 		goto out; | 
 |  | 
 | 	used_sacks = 0; | 
 | 	first_sack_index = 0; | 
 | 	for (i = 0; i < num_sacks; i++) { | 
 | 		bool dup_sack = !i && found_dup_sack; | 
 |  | 
 | 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); | 
 | 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); | 
 |  | 
 | 		if (!tcp_is_sackblock_valid(tp, dup_sack, | 
 | 					    sp[used_sacks].start_seq, | 
 | 					    sp[used_sacks].end_seq)) { | 
 | 			int mib_idx; | 
 |  | 
 | 			if (dup_sack) { | 
 | 				if (!tp->undo_marker) | 
 | 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; | 
 | 				else | 
 | 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; | 
 | 			} else { | 
 | 				/* Don't count olds caused by ACK reordering */ | 
 | 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && | 
 | 				    !after(sp[used_sacks].end_seq, tp->snd_una)) | 
 | 					continue; | 
 | 				mib_idx = LINUX_MIB_TCPSACKDISCARD; | 
 | 			} | 
 |  | 
 | 			NET_INC_STATS_BH(sock_net(sk), mib_idx); | 
 | 			if (i == 0) | 
 | 				first_sack_index = -1; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Ignore very old stuff early */ | 
 | 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) | 
 | 			continue; | 
 |  | 
 | 		used_sacks++; | 
 | 	} | 
 |  | 
 | 	/* order SACK blocks to allow in order walk of the retrans queue */ | 
 | 	for (i = used_sacks - 1; i > 0; i--) { | 
 | 		for (j = 0; j < i; j++) { | 
 | 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) { | 
 | 				swap(sp[j], sp[j + 1]); | 
 |  | 
 | 				/* Track where the first SACK block goes to */ | 
 | 				if (j == first_sack_index) | 
 | 					first_sack_index = j + 1; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	skb = tcp_write_queue_head(sk); | 
 | 	state.fack_count = 0; | 
 | 	i = 0; | 
 |  | 
 | 	if (!tp->sacked_out) { | 
 | 		/* It's already past, so skip checking against it */ | 
 | 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); | 
 | 	} else { | 
 | 		cache = tp->recv_sack_cache; | 
 | 		/* Skip empty blocks in at head of the cache */ | 
 | 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && | 
 | 		       !cache->end_seq) | 
 | 			cache++; | 
 | 	} | 
 |  | 
 | 	while (i < used_sacks) { | 
 | 		u32 start_seq = sp[i].start_seq; | 
 | 		u32 end_seq = sp[i].end_seq; | 
 | 		bool dup_sack = (found_dup_sack && (i == first_sack_index)); | 
 | 		struct tcp_sack_block *next_dup = NULL; | 
 |  | 
 | 		if (found_dup_sack && ((i + 1) == first_sack_index)) | 
 | 			next_dup = &sp[i + 1]; | 
 |  | 
 | 		/* Skip too early cached blocks */ | 
 | 		while (tcp_sack_cache_ok(tp, cache) && | 
 | 		       !before(start_seq, cache->end_seq)) | 
 | 			cache++; | 
 |  | 
 | 		/* Can skip some work by looking recv_sack_cache? */ | 
 | 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack && | 
 | 		    after(end_seq, cache->start_seq)) { | 
 |  | 
 | 			/* Head todo? */ | 
 | 			if (before(start_seq, cache->start_seq)) { | 
 | 				skb = tcp_sacktag_skip(skb, sk, &state, | 
 | 						       start_seq); | 
 | 				skb = tcp_sacktag_walk(skb, sk, next_dup, | 
 | 						       &state, | 
 | 						       start_seq, | 
 | 						       cache->start_seq, | 
 | 						       dup_sack); | 
 | 			} | 
 |  | 
 | 			/* Rest of the block already fully processed? */ | 
 | 			if (!after(end_seq, cache->end_seq)) | 
 | 				goto advance_sp; | 
 |  | 
 | 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, | 
 | 						       &state, | 
 | 						       cache->end_seq); | 
 |  | 
 | 			/* ...tail remains todo... */ | 
 | 			if (tcp_highest_sack_seq(tp) == cache->end_seq) { | 
 | 				/* ...but better entrypoint exists! */ | 
 | 				skb = tcp_highest_sack(sk); | 
 | 				if (skb == NULL) | 
 | 					break; | 
 | 				state.fack_count = tp->fackets_out; | 
 | 				cache++; | 
 | 				goto walk; | 
 | 			} | 
 |  | 
 | 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); | 
 | 			/* Check overlap against next cached too (past this one already) */ | 
 | 			cache++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!before(start_seq, tcp_highest_sack_seq(tp))) { | 
 | 			skb = tcp_highest_sack(sk); | 
 | 			if (skb == NULL) | 
 | 				break; | 
 | 			state.fack_count = tp->fackets_out; | 
 | 		} | 
 | 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq); | 
 |  | 
 | walk: | 
 | 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state, | 
 | 				       start_seq, end_seq, dup_sack); | 
 |  | 
 | advance_sp: | 
 | 		i++; | 
 | 	} | 
 |  | 
 | 	/* Clear the head of the cache sack blocks so we can skip it next time */ | 
 | 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { | 
 | 		tp->recv_sack_cache[i].start_seq = 0; | 
 | 		tp->recv_sack_cache[i].end_seq = 0; | 
 | 	} | 
 | 	for (j = 0; j < used_sacks; j++) | 
 | 		tp->recv_sack_cache[i++] = sp[j]; | 
 |  | 
 | 	tcp_mark_lost_retrans(sk); | 
 |  | 
 | 	tcp_verify_left_out(tp); | 
 |  | 
 | 	if ((state.reord < tp->fackets_out) && | 
 | 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) | 
 | 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); | 
 |  | 
 | out: | 
 |  | 
 | #if FASTRETRANS_DEBUG > 0 | 
 | 	WARN_ON((int)tp->sacked_out < 0); | 
 | 	WARN_ON((int)tp->lost_out < 0); | 
 | 	WARN_ON((int)tp->retrans_out < 0); | 
 | 	WARN_ON((int)tcp_packets_in_flight(tp) < 0); | 
 | #endif | 
 | 	*sack_rtt_us = state.rtt_us; | 
 | 	return state.flag; | 
 | } | 
 |  | 
 | /* Limits sacked_out so that sum with lost_out isn't ever larger than | 
 |  * packets_out. Returns false if sacked_out adjustement wasn't necessary. | 
 |  */ | 
 | static bool tcp_limit_reno_sacked(struct tcp_sock *tp) | 
 | { | 
 | 	u32 holes; | 
 |  | 
 | 	holes = max(tp->lost_out, 1U); | 
 | 	holes = min(holes, tp->packets_out); | 
 |  | 
 | 	if ((tp->sacked_out + holes) > tp->packets_out) { | 
 | 		tp->sacked_out = tp->packets_out - holes; | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* If we receive more dupacks than we expected counting segments | 
 |  * in assumption of absent reordering, interpret this as reordering. | 
 |  * The only another reason could be bug in receiver TCP. | 
 |  */ | 
 | static void tcp_check_reno_reordering(struct sock *sk, const int addend) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	if (tcp_limit_reno_sacked(tp)) | 
 | 		tcp_update_reordering(sk, tp->packets_out + addend, 0); | 
 | } | 
 |  | 
 | /* Emulate SACKs for SACKless connection: account for a new dupack. */ | 
 |  | 
 | static void tcp_add_reno_sack(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	tp->sacked_out++; | 
 | 	tcp_check_reno_reordering(sk, 0); | 
 | 	tcp_verify_left_out(tp); | 
 | } | 
 |  | 
 | /* Account for ACK, ACKing some data in Reno Recovery phase. */ | 
 |  | 
 | static void tcp_remove_reno_sacks(struct sock *sk, int acked) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	if (acked > 0) { | 
 | 		/* One ACK acked hole. The rest eat duplicate ACKs. */ | 
 | 		if (acked - 1 >= tp->sacked_out) | 
 | 			tp->sacked_out = 0; | 
 | 		else | 
 | 			tp->sacked_out -= acked - 1; | 
 | 	} | 
 | 	tcp_check_reno_reordering(sk, acked); | 
 | 	tcp_verify_left_out(tp); | 
 | } | 
 |  | 
 | static inline void tcp_reset_reno_sack(struct tcp_sock *tp) | 
 | { | 
 | 	tp->sacked_out = 0; | 
 | } | 
 |  | 
 | void tcp_clear_retrans(struct tcp_sock *tp) | 
 | { | 
 | 	tp->retrans_out = 0; | 
 | 	tp->lost_out = 0; | 
 | 	tp->undo_marker = 0; | 
 | 	tp->undo_retrans = -1; | 
 | 	tp->fackets_out = 0; | 
 | 	tp->sacked_out = 0; | 
 | } | 
 |  | 
 | static inline void tcp_init_undo(struct tcp_sock *tp) | 
 | { | 
 | 	tp->undo_marker = tp->snd_una; | 
 | 	/* Retransmission still in flight may cause DSACKs later. */ | 
 | 	tp->undo_retrans = tp->retrans_out ? : -1; | 
 | } | 
 |  | 
 | /* Enter Loss state. If we detect SACK reneging, forget all SACK information | 
 |  * and reset tags completely, otherwise preserve SACKs. If receiver | 
 |  * dropped its ofo queue, we will know this due to reneging detection. | 
 |  */ | 
 | void tcp_enter_loss(struct sock *sk) | 
 | { | 
 | 	const struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *skb; | 
 | 	bool new_recovery = false; | 
 | 	bool is_reneg;			/* is receiver reneging on SACKs? */ | 
 |  | 
 | 	/* Reduce ssthresh if it has not yet been made inside this window. */ | 
 | 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || | 
 | 	    !after(tp->high_seq, tp->snd_una) || | 
 | 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { | 
 | 		new_recovery = true; | 
 | 		tp->prior_ssthresh = tcp_current_ssthresh(sk); | 
 | 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); | 
 | 		tcp_ca_event(sk, CA_EVENT_LOSS); | 
 | 		tcp_init_undo(tp); | 
 | 	} | 
 | 	tp->snd_cwnd	   = 1; | 
 | 	tp->snd_cwnd_cnt   = 0; | 
 | 	tp->snd_cwnd_stamp = tcp_time_stamp; | 
 |  | 
 | 	tp->retrans_out = 0; | 
 | 	tp->lost_out = 0; | 
 |  | 
 | 	if (tcp_is_reno(tp)) | 
 | 		tcp_reset_reno_sack(tp); | 
 |  | 
 | 	skb = tcp_write_queue_head(sk); | 
 | 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); | 
 | 	if (is_reneg) { | 
 | 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); | 
 | 		tp->sacked_out = 0; | 
 | 		tp->fackets_out = 0; | 
 | 	} | 
 | 	tcp_clear_all_retrans_hints(tp); | 
 |  | 
 | 	tcp_for_write_queue(skb, sk) { | 
 | 		if (skb == tcp_send_head(sk)) | 
 | 			break; | 
 |  | 
 | 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; | 
 | 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) { | 
 | 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; | 
 | 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; | 
 | 			tp->lost_out += tcp_skb_pcount(skb); | 
 | 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; | 
 | 		} | 
 | 	} | 
 | 	tcp_verify_left_out(tp); | 
 |  | 
 | 	/* Timeout in disordered state after receiving substantial DUPACKs | 
 | 	 * suggests that the degree of reordering is over-estimated. | 
 | 	 */ | 
 | 	if (icsk->icsk_ca_state <= TCP_CA_Disorder && | 
 | 	    tp->sacked_out >= sysctl_tcp_reordering) | 
 | 		tp->reordering = min_t(unsigned int, tp->reordering, | 
 | 				       sysctl_tcp_reordering); | 
 | 	tcp_set_ca_state(sk, TCP_CA_Loss); | 
 | 	tp->high_seq = tp->snd_nxt; | 
 | 	tcp_ecn_queue_cwr(tp); | 
 |  | 
 | 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous | 
 | 	 * loss recovery is underway except recurring timeout(s) on | 
 | 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing | 
 | 	 */ | 
 | 	tp->frto = sysctl_tcp_frto && | 
 | 		   (new_recovery || icsk->icsk_retransmits) && | 
 | 		   !inet_csk(sk)->icsk_mtup.probe_size; | 
 | } | 
 |  | 
 | /* If ACK arrived pointing to a remembered SACK, it means that our | 
 |  * remembered SACKs do not reflect real state of receiver i.e. | 
 |  * receiver _host_ is heavily congested (or buggy). | 
 |  * | 
 |  * To avoid big spurious retransmission bursts due to transient SACK | 
 |  * scoreboard oddities that look like reneging, we give the receiver a | 
 |  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will | 
 |  * restore sanity to the SACK scoreboard. If the apparent reneging | 
 |  * persists until this RTO then we'll clear the SACK scoreboard. | 
 |  */ | 
 | static bool tcp_check_sack_reneging(struct sock *sk, int flag) | 
 | { | 
 | 	if (flag & FLAG_SACK_RENEGING) { | 
 | 		struct tcp_sock *tp = tcp_sk(sk); | 
 | 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), | 
 | 					  msecs_to_jiffies(10)); | 
 |  | 
 | 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, | 
 | 					  delay, TCP_RTO_MAX); | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline int tcp_fackets_out(const struct tcp_sock *tp) | 
 | { | 
 | 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; | 
 | } | 
 |  | 
 | /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs | 
 |  * counter when SACK is enabled (without SACK, sacked_out is used for | 
 |  * that purpose). | 
 |  * | 
 |  * Instead, with FACK TCP uses fackets_out that includes both SACKed | 
 |  * segments up to the highest received SACK block so far and holes in | 
 |  * between them. | 
 |  * | 
 |  * With reordering, holes may still be in flight, so RFC3517 recovery | 
 |  * uses pure sacked_out (total number of SACKed segments) even though | 
 |  * it violates the RFC that uses duplicate ACKs, often these are equal | 
 |  * but when e.g. out-of-window ACKs or packet duplication occurs, | 
 |  * they differ. Since neither occurs due to loss, TCP should really | 
 |  * ignore them. | 
 |  */ | 
 | static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) | 
 | { | 
 | 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; | 
 | } | 
 |  | 
 | static bool tcp_pause_early_retransmit(struct sock *sk, int flag) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	unsigned long delay; | 
 |  | 
 | 	/* Delay early retransmit and entering fast recovery for | 
 | 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples | 
 | 	 * available, or RTO is scheduled to fire first. | 
 | 	 */ | 
 | 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || | 
 | 	    (flag & FLAG_ECE) || !tp->srtt_us) | 
 | 		return false; | 
 |  | 
 | 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5), | 
 | 		    msecs_to_jiffies(2)); | 
 |  | 
 | 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) | 
 | 		return false; | 
 |  | 
 | 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, | 
 | 				  TCP_RTO_MAX); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Linux NewReno/SACK/FACK/ECN state machine. | 
 |  * -------------------------------------- | 
 |  * | 
 |  * "Open"	Normal state, no dubious events, fast path. | 
 |  * "Disorder"   In all the respects it is "Open", | 
 |  *		but requires a bit more attention. It is entered when | 
 |  *		we see some SACKs or dupacks. It is split of "Open" | 
 |  *		mainly to move some processing from fast path to slow one. | 
 |  * "CWR"	CWND was reduced due to some Congestion Notification event. | 
 |  *		It can be ECN, ICMP source quench, local device congestion. | 
 |  * "Recovery"	CWND was reduced, we are fast-retransmitting. | 
 |  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging. | 
 |  * | 
 |  * tcp_fastretrans_alert() is entered: | 
 |  * - each incoming ACK, if state is not "Open" | 
 |  * - when arrived ACK is unusual, namely: | 
 |  *	* SACK | 
 |  *	* Duplicate ACK. | 
 |  *	* ECN ECE. | 
 |  * | 
 |  * Counting packets in flight is pretty simple. | 
 |  * | 
 |  *	in_flight = packets_out - left_out + retrans_out | 
 |  * | 
 |  *	packets_out is SND.NXT-SND.UNA counted in packets. | 
 |  * | 
 |  *	retrans_out is number of retransmitted segments. | 
 |  * | 
 |  *	left_out is number of segments left network, but not ACKed yet. | 
 |  * | 
 |  *		left_out = sacked_out + lost_out | 
 |  * | 
 |  *     sacked_out: Packets, which arrived to receiver out of order | 
 |  *		   and hence not ACKed. With SACKs this number is simply | 
 |  *		   amount of SACKed data. Even without SACKs | 
 |  *		   it is easy to give pretty reliable estimate of this number, | 
 |  *		   counting duplicate ACKs. | 
 |  * | 
 |  *       lost_out: Packets lost by network. TCP has no explicit | 
 |  *		   "loss notification" feedback from network (for now). | 
 |  *		   It means that this number can be only _guessed_. | 
 |  *		   Actually, it is the heuristics to predict lossage that | 
 |  *		   distinguishes different algorithms. | 
 |  * | 
 |  *	F.e. after RTO, when all the queue is considered as lost, | 
 |  *	lost_out = packets_out and in_flight = retrans_out. | 
 |  * | 
 |  *		Essentially, we have now two algorithms counting | 
 |  *		lost packets. | 
 |  * | 
 |  *		FACK: It is the simplest heuristics. As soon as we decided | 
 |  *		that something is lost, we decide that _all_ not SACKed | 
 |  *		packets until the most forward SACK are lost. I.e. | 
 |  *		lost_out = fackets_out - sacked_out and left_out = fackets_out. | 
 |  *		It is absolutely correct estimate, if network does not reorder | 
 |  *		packets. And it loses any connection to reality when reordering | 
 |  *		takes place. We use FACK by default until reordering | 
 |  *		is suspected on the path to this destination. | 
 |  * | 
 |  *		NewReno: when Recovery is entered, we assume that one segment | 
 |  *		is lost (classic Reno). While we are in Recovery and | 
 |  *		a partial ACK arrives, we assume that one more packet | 
 |  *		is lost (NewReno). This heuristics are the same in NewReno | 
 |  *		and SACK. | 
 |  * | 
 |  *  Imagine, that's all! Forget about all this shamanism about CWND inflation | 
 |  *  deflation etc. CWND is real congestion window, never inflated, changes | 
 |  *  only according to classic VJ rules. | 
 |  * | 
 |  * Really tricky (and requiring careful tuning) part of algorithm | 
 |  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). | 
 |  * The first determines the moment _when_ we should reduce CWND and, | 
 |  * hence, slow down forward transmission. In fact, it determines the moment | 
 |  * when we decide that hole is caused by loss, rather than by a reorder. | 
 |  * | 
 |  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill | 
 |  * holes, caused by lost packets. | 
 |  * | 
 |  * And the most logically complicated part of algorithm is undo | 
 |  * heuristics. We detect false retransmits due to both too early | 
 |  * fast retransmit (reordering) and underestimated RTO, analyzing | 
 |  * timestamps and D-SACKs. When we detect that some segments were | 
 |  * retransmitted by mistake and CWND reduction was wrong, we undo | 
 |  * window reduction and abort recovery phase. This logic is hidden | 
 |  * inside several functions named tcp_try_undo_<something>. | 
 |  */ | 
 |  | 
 | /* This function decides, when we should leave Disordered state | 
 |  * and enter Recovery phase, reducing congestion window. | 
 |  * | 
 |  * Main question: may we further continue forward transmission | 
 |  * with the same cwnd? | 
 |  */ | 
 | static bool tcp_time_to_recover(struct sock *sk, int flag) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	__u32 packets_out; | 
 |  | 
 | 	/* Trick#1: The loss is proven. */ | 
 | 	if (tp->lost_out) | 
 | 		return true; | 
 |  | 
 | 	/* Not-A-Trick#2 : Classic rule... */ | 
 | 	if (tcp_dupack_heuristics(tp) > tp->reordering) | 
 | 		return true; | 
 |  | 
 | 	/* Trick#4: It is still not OK... But will it be useful to delay | 
 | 	 * recovery more? | 
 | 	 */ | 
 | 	packets_out = tp->packets_out; | 
 | 	if (packets_out <= tp->reordering && | 
 | 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && | 
 | 	    !tcp_may_send_now(sk)) { | 
 | 		/* We have nothing to send. This connection is limited | 
 | 		 * either by receiver window or by application. | 
 | 		 */ | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* If a thin stream is detected, retransmit after first | 
 | 	 * received dupack. Employ only if SACK is supported in order | 
 | 	 * to avoid possible corner-case series of spurious retransmissions | 
 | 	 * Use only if there are no unsent data. | 
 | 	 */ | 
 | 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && | 
 | 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && | 
 | 	    tcp_is_sack(tp) && !tcp_send_head(sk)) | 
 | 		return true; | 
 |  | 
 | 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious | 
 | 	 * retransmissions due to small network reorderings, we implement | 
 | 	 * Mitigation A.3 in the RFC and delay the retransmission for a short | 
 | 	 * interval if appropriate. | 
 | 	 */ | 
 | 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && | 
 | 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && | 
 | 	    !tcp_may_send_now(sk)) | 
 | 		return !tcp_pause_early_retransmit(sk, flag); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* Detect loss in event "A" above by marking head of queue up as lost. | 
 |  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments | 
 |  * are considered lost. For RFC3517 SACK, a segment is considered lost if it | 
 |  * has at least tp->reordering SACKed seqments above it; "packets" refers to | 
 |  * the maximum SACKed segments to pass before reaching this limit. | 
 |  */ | 
 | static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *skb; | 
 | 	int cnt, oldcnt; | 
 | 	int err; | 
 | 	unsigned int mss; | 
 | 	/* Use SACK to deduce losses of new sequences sent during recovery */ | 
 | 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq; | 
 |  | 
 | 	WARN_ON(packets > tp->packets_out); | 
 | 	if (tp->lost_skb_hint) { | 
 | 		skb = tp->lost_skb_hint; | 
 | 		cnt = tp->lost_cnt_hint; | 
 | 		/* Head already handled? */ | 
 | 		if (mark_head && skb != tcp_write_queue_head(sk)) | 
 | 			return; | 
 | 	} else { | 
 | 		skb = tcp_write_queue_head(sk); | 
 | 		cnt = 0; | 
 | 	} | 
 |  | 
 | 	tcp_for_write_queue_from(skb, sk) { | 
 | 		if (skb == tcp_send_head(sk)) | 
 | 			break; | 
 | 		/* TODO: do this better */ | 
 | 		/* this is not the most efficient way to do this... */ | 
 | 		tp->lost_skb_hint = skb; | 
 | 		tp->lost_cnt_hint = cnt; | 
 |  | 
 | 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) | 
 | 			break; | 
 |  | 
 | 		oldcnt = cnt; | 
 | 		if (tcp_is_fack(tp) || tcp_is_reno(tp) || | 
 | 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) | 
 | 			cnt += tcp_skb_pcount(skb); | 
 |  | 
 | 		if (cnt > packets) { | 
 | 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || | 
 | 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || | 
 | 			    (oldcnt >= packets)) | 
 | 				break; | 
 |  | 
 | 			mss = skb_shinfo(skb)->gso_size; | 
 | 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, | 
 | 					   mss, GFP_ATOMIC); | 
 | 			if (err < 0) | 
 | 				break; | 
 | 			cnt = packets; | 
 | 		} | 
 |  | 
 | 		tcp_skb_mark_lost(tp, skb); | 
 |  | 
 | 		if (mark_head) | 
 | 			break; | 
 | 	} | 
 | 	tcp_verify_left_out(tp); | 
 | } | 
 |  | 
 | /* Account newly detected lost packet(s) */ | 
 |  | 
 | static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	if (tcp_is_reno(tp)) { | 
 | 		tcp_mark_head_lost(sk, 1, 1); | 
 | 	} else if (tcp_is_fack(tp)) { | 
 | 		int lost = tp->fackets_out - tp->reordering; | 
 | 		if (lost <= 0) | 
 | 			lost = 1; | 
 | 		tcp_mark_head_lost(sk, lost, 0); | 
 | 	} else { | 
 | 		int sacked_upto = tp->sacked_out - tp->reordering; | 
 | 		if (sacked_upto >= 0) | 
 | 			tcp_mark_head_lost(sk, sacked_upto, 0); | 
 | 		else if (fast_rexmit) | 
 | 			tcp_mark_head_lost(sk, 1, 1); | 
 | 	} | 
 | } | 
 |  | 
 | /* CWND moderation, preventing bursts due to too big ACKs | 
 |  * in dubious situations. | 
 |  */ | 
 | static inline void tcp_moderate_cwnd(struct tcp_sock *tp) | 
 | { | 
 | 	tp->snd_cwnd = min(tp->snd_cwnd, | 
 | 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp)); | 
 | 	tp->snd_cwnd_stamp = tcp_time_stamp; | 
 | } | 
 |  | 
 | /* Nothing was retransmitted or returned timestamp is less | 
 |  * than timestamp of the first retransmission. | 
 |  */ | 
 | static inline bool tcp_packet_delayed(const struct tcp_sock *tp) | 
 | { | 
 | 	return !tp->retrans_stamp || | 
 | 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && | 
 | 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); | 
 | } | 
 |  | 
 | /* Undo procedures. */ | 
 |  | 
 | /* We can clear retrans_stamp when there are no retransmissions in the | 
 |  * window. It would seem that it is trivially available for us in | 
 |  * tp->retrans_out, however, that kind of assumptions doesn't consider | 
 |  * what will happen if errors occur when sending retransmission for the | 
 |  * second time. ...It could the that such segment has only | 
 |  * TCPCB_EVER_RETRANS set at the present time. It seems that checking | 
 |  * the head skb is enough except for some reneging corner cases that | 
 |  * are not worth the effort. | 
 |  * | 
 |  * Main reason for all this complexity is the fact that connection dying | 
 |  * time now depends on the validity of the retrans_stamp, in particular, | 
 |  * that successive retransmissions of a segment must not advance | 
 |  * retrans_stamp under any conditions. | 
 |  */ | 
 | static bool tcp_any_retrans_done(const struct sock *sk) | 
 | { | 
 | 	const struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *skb; | 
 |  | 
 | 	if (tp->retrans_out) | 
 | 		return true; | 
 |  | 
 | 	skb = tcp_write_queue_head(sk); | 
 | 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | #if FASTRETRANS_DEBUG > 1 | 
 | static void DBGUNDO(struct sock *sk, const char *msg) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct inet_sock *inet = inet_sk(sk); | 
 |  | 
 | 	if (sk->sk_family == AF_INET) { | 
 | 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", | 
 | 			 msg, | 
 | 			 &inet->inet_daddr, ntohs(inet->inet_dport), | 
 | 			 tp->snd_cwnd, tcp_left_out(tp), | 
 | 			 tp->snd_ssthresh, tp->prior_ssthresh, | 
 | 			 tp->packets_out); | 
 | 	} | 
 | #if IS_ENABLED(CONFIG_IPV6) | 
 | 	else if (sk->sk_family == AF_INET6) { | 
 | 		struct ipv6_pinfo *np = inet6_sk(sk); | 
 | 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", | 
 | 			 msg, | 
 | 			 &np->daddr, ntohs(inet->inet_dport), | 
 | 			 tp->snd_cwnd, tcp_left_out(tp), | 
 | 			 tp->snd_ssthresh, tp->prior_ssthresh, | 
 | 			 tp->packets_out); | 
 | 	} | 
 | #endif | 
 | } | 
 | #else | 
 | #define DBGUNDO(x...) do { } while (0) | 
 | #endif | 
 |  | 
 | static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	if (unmark_loss) { | 
 | 		struct sk_buff *skb; | 
 |  | 
 | 		tcp_for_write_queue(skb, sk) { | 
 | 			if (skb == tcp_send_head(sk)) | 
 | 				break; | 
 | 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; | 
 | 		} | 
 | 		tp->lost_out = 0; | 
 | 		tcp_clear_all_retrans_hints(tp); | 
 | 	} | 
 |  | 
 | 	if (tp->prior_ssthresh) { | 
 | 		const struct inet_connection_sock *icsk = inet_csk(sk); | 
 |  | 
 | 		if (icsk->icsk_ca_ops->undo_cwnd) | 
 | 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); | 
 | 		else | 
 | 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); | 
 |  | 
 | 		if (tp->prior_ssthresh > tp->snd_ssthresh) { | 
 | 			tp->snd_ssthresh = tp->prior_ssthresh; | 
 | 			tcp_ecn_withdraw_cwr(tp); | 
 | 		} | 
 | 	} else { | 
 | 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); | 
 | 	} | 
 | 	tp->snd_cwnd_stamp = tcp_time_stamp; | 
 | 	tp->undo_marker = 0; | 
 | } | 
 |  | 
 | static inline bool tcp_may_undo(const struct tcp_sock *tp) | 
 | { | 
 | 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); | 
 | } | 
 |  | 
 | /* People celebrate: "We love our President!" */ | 
 | static bool tcp_try_undo_recovery(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	if (tcp_may_undo(tp)) { | 
 | 		int mib_idx; | 
 |  | 
 | 		/* Happy end! We did not retransmit anything | 
 | 		 * or our original transmission succeeded. | 
 | 		 */ | 
 | 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); | 
 | 		tcp_undo_cwnd_reduction(sk, false); | 
 | 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) | 
 | 			mib_idx = LINUX_MIB_TCPLOSSUNDO; | 
 | 		else | 
 | 			mib_idx = LINUX_MIB_TCPFULLUNDO; | 
 |  | 
 | 		NET_INC_STATS_BH(sock_net(sk), mib_idx); | 
 | 	} | 
 | 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { | 
 | 		/* Hold old state until something *above* high_seq | 
 | 		 * is ACKed. For Reno it is MUST to prevent false | 
 | 		 * fast retransmits (RFC2582). SACK TCP is safe. */ | 
 | 		tcp_moderate_cwnd(tp); | 
 | 		if (!tcp_any_retrans_done(sk)) | 
 | 			tp->retrans_stamp = 0; | 
 | 		return true; | 
 | 	} | 
 | 	tcp_set_ca_state(sk, TCP_CA_Open); | 
 | 	return false; | 
 | } | 
 |  | 
 | /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ | 
 | static bool tcp_try_undo_dsack(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	if (tp->undo_marker && !tp->undo_retrans) { | 
 | 		DBGUNDO(sk, "D-SACK"); | 
 | 		tcp_undo_cwnd_reduction(sk, false); | 
 | 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* Undo during loss recovery after partial ACK or using F-RTO. */ | 
 | static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	if (frto_undo || tcp_may_undo(tp)) { | 
 | 		tcp_undo_cwnd_reduction(sk, true); | 
 |  | 
 | 		DBGUNDO(sk, "partial loss"); | 
 | 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); | 
 | 		if (frto_undo) | 
 | 			NET_INC_STATS_BH(sock_net(sk), | 
 | 					 LINUX_MIB_TCPSPURIOUSRTOS); | 
 | 		inet_csk(sk)->icsk_retransmits = 0; | 
 | 		if (frto_undo || tcp_is_sack(tp)) | 
 | 			tcp_set_ca_state(sk, TCP_CA_Open); | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* The cwnd reduction in CWR and Recovery use the PRR algorithm | 
 |  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ | 
 |  * It computes the number of packets to send (sndcnt) based on packets newly | 
 |  * delivered: | 
 |  *   1) If the packets in flight is larger than ssthresh, PRR spreads the | 
 |  *	cwnd reductions across a full RTT. | 
 |  *   2) If packets in flight is lower than ssthresh (such as due to excess | 
 |  *	losses and/or application stalls), do not perform any further cwnd | 
 |  *	reductions, but instead slow start up to ssthresh. | 
 |  */ | 
 | static void tcp_init_cwnd_reduction(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	tp->high_seq = tp->snd_nxt; | 
 | 	tp->tlp_high_seq = 0; | 
 | 	tp->snd_cwnd_cnt = 0; | 
 | 	tp->prior_cwnd = tp->snd_cwnd; | 
 | 	tp->prr_delivered = 0; | 
 | 	tp->prr_out = 0; | 
 | 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); | 
 | 	tcp_ecn_queue_cwr(tp); | 
 | } | 
 |  | 
 | static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked, | 
 | 			       int fast_rexmit) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	int sndcnt = 0; | 
 | 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); | 
 | 	int newly_acked_sacked = prior_unsacked - | 
 | 				 (tp->packets_out - tp->sacked_out); | 
 |  | 
 | 	tp->prr_delivered += newly_acked_sacked; | 
 | 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { | 
 | 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + | 
 | 			       tp->prior_cwnd - 1; | 
 | 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; | 
 | 	} else { | 
 | 		sndcnt = min_t(int, delta, | 
 | 			       max_t(int, tp->prr_delivered - tp->prr_out, | 
 | 				     newly_acked_sacked) + 1); | 
 | 	} | 
 |  | 
 | 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); | 
 | 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; | 
 | } | 
 |  | 
 | static inline void tcp_end_cwnd_reduction(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ | 
 | 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || | 
 | 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { | 
 | 		tp->snd_cwnd = tp->snd_ssthresh; | 
 | 		tp->snd_cwnd_stamp = tcp_time_stamp; | 
 | 	} | 
 | 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); | 
 | } | 
 |  | 
 | /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ | 
 | void tcp_enter_cwr(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	tp->prior_ssthresh = 0; | 
 | 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { | 
 | 		tp->undo_marker = 0; | 
 | 		tcp_init_cwnd_reduction(sk); | 
 | 		tcp_set_ca_state(sk, TCP_CA_CWR); | 
 | 	} | 
 | } | 
 |  | 
 | static void tcp_try_keep_open(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	int state = TCP_CA_Open; | 
 |  | 
 | 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) | 
 | 		state = TCP_CA_Disorder; | 
 |  | 
 | 	if (inet_csk(sk)->icsk_ca_state != state) { | 
 | 		tcp_set_ca_state(sk, state); | 
 | 		tp->high_seq = tp->snd_nxt; | 
 | 	} | 
 | } | 
 |  | 
 | static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	tcp_verify_left_out(tp); | 
 |  | 
 | 	if (!tcp_any_retrans_done(sk)) | 
 | 		tp->retrans_stamp = 0; | 
 |  | 
 | 	if (flag & FLAG_ECE) | 
 | 		tcp_enter_cwr(sk); | 
 |  | 
 | 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { | 
 | 		tcp_try_keep_open(sk); | 
 | 	} else { | 
 | 		tcp_cwnd_reduction(sk, prior_unsacked, 0); | 
 | 	} | 
 | } | 
 |  | 
 | static void tcp_mtup_probe_failed(struct sock *sk) | 
 | { | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 |  | 
 | 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; | 
 | 	icsk->icsk_mtup.probe_size = 0; | 
 | } | 
 |  | 
 | static void tcp_mtup_probe_success(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 |  | 
 | 	/* FIXME: breaks with very large cwnd */ | 
 | 	tp->prior_ssthresh = tcp_current_ssthresh(sk); | 
 | 	tp->snd_cwnd = tp->snd_cwnd * | 
 | 		       tcp_mss_to_mtu(sk, tp->mss_cache) / | 
 | 		       icsk->icsk_mtup.probe_size; | 
 | 	tp->snd_cwnd_cnt = 0; | 
 | 	tp->snd_cwnd_stamp = tcp_time_stamp; | 
 | 	tp->snd_ssthresh = tcp_current_ssthresh(sk); | 
 |  | 
 | 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; | 
 | 	icsk->icsk_mtup.probe_size = 0; | 
 | 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); | 
 | } | 
 |  | 
 | /* Do a simple retransmit without using the backoff mechanisms in | 
 |  * tcp_timer. This is used for path mtu discovery. | 
 |  * The socket is already locked here. | 
 |  */ | 
 | void tcp_simple_retransmit(struct sock *sk) | 
 | { | 
 | 	const struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *skb; | 
 | 	unsigned int mss = tcp_current_mss(sk); | 
 | 	u32 prior_lost = tp->lost_out; | 
 |  | 
 | 	tcp_for_write_queue(skb, sk) { | 
 | 		if (skb == tcp_send_head(sk)) | 
 | 			break; | 
 | 		if (tcp_skb_seglen(skb) > mss && | 
 | 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { | 
 | 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { | 
 | 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; | 
 | 				tp->retrans_out -= tcp_skb_pcount(skb); | 
 | 			} | 
 | 			tcp_skb_mark_lost_uncond_verify(tp, skb); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	tcp_clear_retrans_hints_partial(tp); | 
 |  | 
 | 	if (prior_lost == tp->lost_out) | 
 | 		return; | 
 |  | 
 | 	if (tcp_is_reno(tp)) | 
 | 		tcp_limit_reno_sacked(tp); | 
 |  | 
 | 	tcp_verify_left_out(tp); | 
 |  | 
 | 	/* Don't muck with the congestion window here. | 
 | 	 * Reason is that we do not increase amount of _data_ | 
 | 	 * in network, but units changed and effective | 
 | 	 * cwnd/ssthresh really reduced now. | 
 | 	 */ | 
 | 	if (icsk->icsk_ca_state != TCP_CA_Loss) { | 
 | 		tp->high_seq = tp->snd_nxt; | 
 | 		tp->snd_ssthresh = tcp_current_ssthresh(sk); | 
 | 		tp->prior_ssthresh = 0; | 
 | 		tp->undo_marker = 0; | 
 | 		tcp_set_ca_state(sk, TCP_CA_Loss); | 
 | 	} | 
 | 	tcp_xmit_retransmit_queue(sk); | 
 | } | 
 | EXPORT_SYMBOL(tcp_simple_retransmit); | 
 |  | 
 | static void tcp_enter_recovery(struct sock *sk, bool ece_ack) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	int mib_idx; | 
 |  | 
 | 	if (tcp_is_reno(tp)) | 
 | 		mib_idx = LINUX_MIB_TCPRENORECOVERY; | 
 | 	else | 
 | 		mib_idx = LINUX_MIB_TCPSACKRECOVERY; | 
 |  | 
 | 	NET_INC_STATS_BH(sock_net(sk), mib_idx); | 
 |  | 
 | 	tp->prior_ssthresh = 0; | 
 | 	tcp_init_undo(tp); | 
 |  | 
 | 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { | 
 | 		if (!ece_ack) | 
 | 			tp->prior_ssthresh = tcp_current_ssthresh(sk); | 
 | 		tcp_init_cwnd_reduction(sk); | 
 | 	} | 
 | 	tcp_set_ca_state(sk, TCP_CA_Recovery); | 
 | } | 
 |  | 
 | /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are | 
 |  * recovered or spurious. Otherwise retransmits more on partial ACKs. | 
 |  */ | 
 | static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	bool recovered = !before(tp->snd_una, tp->high_seq); | 
 |  | 
 | 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ | 
 | 		/* Step 3.b. A timeout is spurious if not all data are | 
 | 		 * lost, i.e., never-retransmitted data are (s)acked. | 
 | 		 */ | 
 | 		if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED)) | 
 | 			return; | 
 |  | 
 | 		if (after(tp->snd_nxt, tp->high_seq) && | 
 | 		    (flag & FLAG_DATA_SACKED || is_dupack)) { | 
 | 			tp->frto = 0; /* Loss was real: 2nd part of step 3.a */ | 
 | 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { | 
 | 			tp->high_seq = tp->snd_nxt; | 
 | 			__tcp_push_pending_frames(sk, tcp_current_mss(sk), | 
 | 						  TCP_NAGLE_OFF); | 
 | 			if (after(tp->snd_nxt, tp->high_seq)) | 
 | 				return; /* Step 2.b */ | 
 | 			tp->frto = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (recovered) { | 
 | 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ | 
 | 		tcp_try_undo_recovery(sk); | 
 | 		return; | 
 | 	} | 
 | 	if (tcp_is_reno(tp)) { | 
 | 		/* A Reno DUPACK means new data in F-RTO step 2.b above are | 
 | 		 * delivered. Lower inflight to clock out (re)tranmissions. | 
 | 		 */ | 
 | 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack) | 
 | 			tcp_add_reno_sack(sk); | 
 | 		else if (flag & FLAG_SND_UNA_ADVANCED) | 
 | 			tcp_reset_reno_sack(tp); | 
 | 	} | 
 | 	if (tcp_try_undo_loss(sk, false)) | 
 | 		return; | 
 | 	tcp_xmit_retransmit_queue(sk); | 
 | } | 
 |  | 
 | /* Undo during fast recovery after partial ACK. */ | 
 | static bool tcp_try_undo_partial(struct sock *sk, const int acked, | 
 | 				 const int prior_unsacked) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	if (tp->undo_marker && tcp_packet_delayed(tp)) { | 
 | 		/* Plain luck! Hole if filled with delayed | 
 | 		 * packet, rather than with a retransmit. | 
 | 		 */ | 
 | 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); | 
 |  | 
 | 		/* We are getting evidence that the reordering degree is higher | 
 | 		 * than we realized. If there are no retransmits out then we | 
 | 		 * can undo. Otherwise we clock out new packets but do not | 
 | 		 * mark more packets lost or retransmit more. | 
 | 		 */ | 
 | 		if (tp->retrans_out) { | 
 | 			tcp_cwnd_reduction(sk, prior_unsacked, 0); | 
 | 			return true; | 
 | 		} | 
 |  | 
 | 		if (!tcp_any_retrans_done(sk)) | 
 | 			tp->retrans_stamp = 0; | 
 |  | 
 | 		DBGUNDO(sk, "partial recovery"); | 
 | 		tcp_undo_cwnd_reduction(sk, true); | 
 | 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); | 
 | 		tcp_try_keep_open(sk); | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* Process an event, which can update packets-in-flight not trivially. | 
 |  * Main goal of this function is to calculate new estimate for left_out, | 
 |  * taking into account both packets sitting in receiver's buffer and | 
 |  * packets lost by network. | 
 |  * | 
 |  * Besides that it does CWND reduction, when packet loss is detected | 
 |  * and changes state of machine. | 
 |  * | 
 |  * It does _not_ decide what to send, it is made in function | 
 |  * tcp_xmit_retransmit_queue(). | 
 |  */ | 
 | static void tcp_fastretrans_alert(struct sock *sk, const int acked, | 
 | 				  const int prior_unsacked, | 
 | 				  bool is_dupack, int flag) | 
 | { | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && | 
 | 				    (tcp_fackets_out(tp) > tp->reordering)); | 
 | 	int fast_rexmit = 0; | 
 |  | 
 | 	if (WARN_ON(!tp->packets_out && tp->sacked_out)) | 
 | 		tp->sacked_out = 0; | 
 | 	if (WARN_ON(!tp->sacked_out && tp->fackets_out)) | 
 | 		tp->fackets_out = 0; | 
 |  | 
 | 	/* Now state machine starts. | 
 | 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ | 
 | 	if (flag & FLAG_ECE) | 
 | 		tp->prior_ssthresh = 0; | 
 |  | 
 | 	/* B. In all the states check for reneging SACKs. */ | 
 | 	if (tcp_check_sack_reneging(sk, flag)) | 
 | 		return; | 
 |  | 
 | 	/* C. Check consistency of the current state. */ | 
 | 	tcp_verify_left_out(tp); | 
 |  | 
 | 	/* D. Check state exit conditions. State can be terminated | 
 | 	 *    when high_seq is ACKed. */ | 
 | 	if (icsk->icsk_ca_state == TCP_CA_Open) { | 
 | 		WARN_ON(tp->retrans_out != 0); | 
 | 		tp->retrans_stamp = 0; | 
 | 	} else if (!before(tp->snd_una, tp->high_seq)) { | 
 | 		switch (icsk->icsk_ca_state) { | 
 | 		case TCP_CA_CWR: | 
 | 			/* CWR is to be held something *above* high_seq | 
 | 			 * is ACKed for CWR bit to reach receiver. */ | 
 | 			if (tp->snd_una != tp->high_seq) { | 
 | 				tcp_end_cwnd_reduction(sk); | 
 | 				tcp_set_ca_state(sk, TCP_CA_Open); | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		case TCP_CA_Recovery: | 
 | 			if (tcp_is_reno(tp)) | 
 | 				tcp_reset_reno_sack(tp); | 
 | 			if (tcp_try_undo_recovery(sk)) | 
 | 				return; | 
 | 			tcp_end_cwnd_reduction(sk); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* E. Process state. */ | 
 | 	switch (icsk->icsk_ca_state) { | 
 | 	case TCP_CA_Recovery: | 
 | 		if (!(flag & FLAG_SND_UNA_ADVANCED)) { | 
 | 			if (tcp_is_reno(tp) && is_dupack) | 
 | 				tcp_add_reno_sack(sk); | 
 | 		} else { | 
 | 			if (tcp_try_undo_partial(sk, acked, prior_unsacked)) | 
 | 				return; | 
 | 			/* Partial ACK arrived. Force fast retransmit. */ | 
 | 			do_lost = tcp_is_reno(tp) || | 
 | 				  tcp_fackets_out(tp) > tp->reordering; | 
 | 		} | 
 | 		if (tcp_try_undo_dsack(sk)) { | 
 | 			tcp_try_keep_open(sk); | 
 | 			return; | 
 | 		} | 
 | 		break; | 
 | 	case TCP_CA_Loss: | 
 | 		tcp_process_loss(sk, flag, is_dupack); | 
 | 		if (icsk->icsk_ca_state != TCP_CA_Open) | 
 | 			return; | 
 | 		/* Fall through to processing in Open state. */ | 
 | 	default: | 
 | 		if (tcp_is_reno(tp)) { | 
 | 			if (flag & FLAG_SND_UNA_ADVANCED) | 
 | 				tcp_reset_reno_sack(tp); | 
 | 			if (is_dupack) | 
 | 				tcp_add_reno_sack(sk); | 
 | 		} | 
 |  | 
 | 		if (icsk->icsk_ca_state <= TCP_CA_Disorder) | 
 | 			tcp_try_undo_dsack(sk); | 
 |  | 
 | 		if (!tcp_time_to_recover(sk, flag)) { | 
 | 			tcp_try_to_open(sk, flag, prior_unsacked); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* MTU probe failure: don't reduce cwnd */ | 
 | 		if (icsk->icsk_ca_state < TCP_CA_CWR && | 
 | 		    icsk->icsk_mtup.probe_size && | 
 | 		    tp->snd_una == tp->mtu_probe.probe_seq_start) { | 
 | 			tcp_mtup_probe_failed(sk); | 
 | 			/* Restores the reduction we did in tcp_mtup_probe() */ | 
 | 			tp->snd_cwnd++; | 
 | 			tcp_simple_retransmit(sk); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* Otherwise enter Recovery state */ | 
 | 		tcp_enter_recovery(sk, (flag & FLAG_ECE)); | 
 | 		fast_rexmit = 1; | 
 | 	} | 
 |  | 
 | 	if (do_lost) | 
 | 		tcp_update_scoreboard(sk, fast_rexmit); | 
 | 	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit); | 
 | 	tcp_xmit_retransmit_queue(sk); | 
 | } | 
 |  | 
 | static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, | 
 | 				      long seq_rtt_us, long sack_rtt_us) | 
 | { | 
 | 	const struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because | 
 | 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But | 
 | 	 * Karn's algorithm forbids taking RTT if some retransmitted data | 
 | 	 * is acked (RFC6298). | 
 | 	 */ | 
 | 	if (flag & FLAG_RETRANS_DATA_ACKED) | 
 | 		seq_rtt_us = -1L; | 
 |  | 
 | 	if (seq_rtt_us < 0) | 
 | 		seq_rtt_us = sack_rtt_us; | 
 |  | 
 | 	/* RTTM Rule: A TSecr value received in a segment is used to | 
 | 	 * update the averaged RTT measurement only if the segment | 
 | 	 * acknowledges some new data, i.e., only if it advances the | 
 | 	 * left edge of the send window. | 
 | 	 * See draft-ietf-tcplw-high-performance-00, section 3.3. | 
 | 	 */ | 
 | 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && | 
 | 	    flag & FLAG_ACKED) | 
 | 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr); | 
 |  | 
 | 	if (seq_rtt_us < 0) | 
 | 		return false; | 
 |  | 
 | 	tcp_rtt_estimator(sk, seq_rtt_us); | 
 | 	tcp_set_rto(sk); | 
 |  | 
 | 	/* RFC6298: only reset backoff on valid RTT measurement. */ | 
 | 	inet_csk(sk)->icsk_backoff = 0; | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ | 
 | static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	long seq_rtt_us = -1L; | 
 |  | 
 | 	if (synack_stamp && !tp->total_retrans) | 
 | 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp); | 
 |  | 
 | 	/* If the ACK acks both the SYNACK and the (Fast Open'd) data packets | 
 | 	 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack() | 
 | 	 */ | 
 | 	if (!tp->srtt_us) | 
 | 		tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L); | 
 | } | 
 |  | 
 | static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) | 
 | { | 
 | 	const struct inet_connection_sock *icsk = inet_csk(sk); | 
 |  | 
 | 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); | 
 | 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; | 
 | } | 
 |  | 
 | /* Restart timer after forward progress on connection. | 
 |  * RFC2988 recommends to restart timer to now+rto. | 
 |  */ | 
 | void tcp_rearm_rto(struct sock *sk) | 
 | { | 
 | 	const struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	/* If the retrans timer is currently being used by Fast Open | 
 | 	 * for SYN-ACK retrans purpose, stay put. | 
 | 	 */ | 
 | 	if (tp->fastopen_rsk) | 
 | 		return; | 
 |  | 
 | 	if (!tp->packets_out) { | 
 | 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); | 
 | 	} else { | 
 | 		u32 rto = inet_csk(sk)->icsk_rto; | 
 | 		/* Offset the time elapsed after installing regular RTO */ | 
 | 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || | 
 | 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { | 
 | 			struct sk_buff *skb = tcp_write_queue_head(sk); | 
 | 			const u32 rto_time_stamp = | 
 | 				tcp_skb_timestamp(skb) + rto; | 
 | 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); | 
 | 			/* delta may not be positive if the socket is locked | 
 | 			 * when the retrans timer fires and is rescheduled. | 
 | 			 */ | 
 | 			if (delta > 0) | 
 | 				rto = delta; | 
 | 		} | 
 | 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, | 
 | 					  TCP_RTO_MAX); | 
 | 	} | 
 | } | 
 |  | 
 | /* This function is called when the delayed ER timer fires. TCP enters | 
 |  * fast recovery and performs fast-retransmit. | 
 |  */ | 
 | void tcp_resume_early_retransmit(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	tcp_rearm_rto(sk); | 
 |  | 
 | 	/* Stop if ER is disabled after the delayed ER timer is scheduled */ | 
 | 	if (!tp->do_early_retrans) | 
 | 		return; | 
 |  | 
 | 	tcp_enter_recovery(sk, false); | 
 | 	tcp_update_scoreboard(sk, 1); | 
 | 	tcp_xmit_retransmit_queue(sk); | 
 | } | 
 |  | 
 | /* If we get here, the whole TSO packet has not been acked. */ | 
 | static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	u32 packets_acked; | 
 |  | 
 | 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); | 
 |  | 
 | 	packets_acked = tcp_skb_pcount(skb); | 
 | 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) | 
 | 		return 0; | 
 | 	packets_acked -= tcp_skb_pcount(skb); | 
 |  | 
 | 	if (packets_acked) { | 
 | 		BUG_ON(tcp_skb_pcount(skb) == 0); | 
 | 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); | 
 | 	} | 
 |  | 
 | 	return packets_acked; | 
 | } | 
 |  | 
 | static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, | 
 | 			   u32 prior_snd_una) | 
 | { | 
 | 	const struct skb_shared_info *shinfo; | 
 |  | 
 | 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ | 
 | 	if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK))) | 
 | 		return; | 
 |  | 
 | 	shinfo = skb_shinfo(skb); | 
 | 	if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) && | 
 | 	    between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1)) | 
 | 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); | 
 | } | 
 |  | 
 | /* Remove acknowledged frames from the retransmission queue. If our packet | 
 |  * is before the ack sequence we can discard it as it's confirmed to have | 
 |  * arrived at the other end. | 
 |  */ | 
 | static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, | 
 | 			       u32 prior_snd_una, long sack_rtt_us) | 
 | { | 
 | 	const struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct skb_mstamp first_ackt, last_ackt, now; | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	u32 prior_sacked = tp->sacked_out; | 
 | 	u32 reord = tp->packets_out; | 
 | 	bool fully_acked = true; | 
 | 	long ca_seq_rtt_us = -1L; | 
 | 	long seq_rtt_us = -1L; | 
 | 	struct sk_buff *skb; | 
 | 	u32 pkts_acked = 0; | 
 | 	bool rtt_update; | 
 | 	int flag = 0; | 
 |  | 
 | 	first_ackt.v64 = 0; | 
 |  | 
 | 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { | 
 | 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb); | 
 | 		u8 sacked = scb->sacked; | 
 | 		u32 acked_pcount; | 
 |  | 
 | 		tcp_ack_tstamp(sk, skb, prior_snd_una); | 
 |  | 
 | 		/* Determine how many packets and what bytes were acked, tso and else */ | 
 | 		if (after(scb->end_seq, tp->snd_una)) { | 
 | 			if (tcp_skb_pcount(skb) == 1 || | 
 | 			    !after(tp->snd_una, scb->seq)) | 
 | 				break; | 
 |  | 
 | 			acked_pcount = tcp_tso_acked(sk, skb); | 
 | 			if (!acked_pcount) | 
 | 				break; | 
 |  | 
 | 			fully_acked = false; | 
 | 		} else { | 
 | 			/* Speedup tcp_unlink_write_queue() and next loop */ | 
 | 			prefetchw(skb->next); | 
 | 			acked_pcount = tcp_skb_pcount(skb); | 
 | 		} | 
 |  | 
 | 		if (unlikely(sacked & TCPCB_RETRANS)) { | 
 | 			if (sacked & TCPCB_SACKED_RETRANS) | 
 | 				tp->retrans_out -= acked_pcount; | 
 | 			flag |= FLAG_RETRANS_DATA_ACKED; | 
 | 		} else { | 
 | 			last_ackt = skb->skb_mstamp; | 
 | 			WARN_ON_ONCE(last_ackt.v64 == 0); | 
 | 			if (!first_ackt.v64) | 
 | 				first_ackt = last_ackt; | 
 |  | 
 | 			if (!(sacked & TCPCB_SACKED_ACKED)) | 
 | 				reord = min(pkts_acked, reord); | 
 | 			if (!after(scb->end_seq, tp->high_seq)) | 
 | 				flag |= FLAG_ORIG_SACK_ACKED; | 
 | 		} | 
 |  | 
 | 		if (sacked & TCPCB_SACKED_ACKED) | 
 | 			tp->sacked_out -= acked_pcount; | 
 | 		if (sacked & TCPCB_LOST) | 
 | 			tp->lost_out -= acked_pcount; | 
 |  | 
 | 		tp->packets_out -= acked_pcount; | 
 | 		pkts_acked += acked_pcount; | 
 |  | 
 | 		/* Initial outgoing SYN's get put onto the write_queue | 
 | 		 * just like anything else we transmit.  It is not | 
 | 		 * true data, and if we misinform our callers that | 
 | 		 * this ACK acks real data, we will erroneously exit | 
 | 		 * connection startup slow start one packet too | 
 | 		 * quickly.  This is severely frowned upon behavior. | 
 | 		 */ | 
 | 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { | 
 | 			flag |= FLAG_DATA_ACKED; | 
 | 		} else { | 
 | 			flag |= FLAG_SYN_ACKED; | 
 | 			tp->retrans_stamp = 0; | 
 | 		} | 
 |  | 
 | 		if (!fully_acked) | 
 | 			break; | 
 |  | 
 | 		tcp_unlink_write_queue(skb, sk); | 
 | 		sk_wmem_free_skb(sk, skb); | 
 | 		if (unlikely(skb == tp->retransmit_skb_hint)) | 
 | 			tp->retransmit_skb_hint = NULL; | 
 | 		if (unlikely(skb == tp->lost_skb_hint)) | 
 | 			tp->lost_skb_hint = NULL; | 
 | 	} | 
 |  | 
 | 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) | 
 | 		tp->snd_up = tp->snd_una; | 
 |  | 
 | 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) | 
 | 		flag |= FLAG_SACK_RENEGING; | 
 |  | 
 | 	skb_mstamp_get(&now); | 
 | 	if (likely(first_ackt.v64)) { | 
 | 		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt); | 
 | 		ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt); | 
 | 	} | 
 |  | 
 | 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us); | 
 |  | 
 | 	if (flag & FLAG_ACKED) { | 
 | 		const struct tcp_congestion_ops *ca_ops | 
 | 			= inet_csk(sk)->icsk_ca_ops; | 
 |  | 
 | 		tcp_rearm_rto(sk); | 
 | 		if (unlikely(icsk->icsk_mtup.probe_size && | 
 | 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { | 
 | 			tcp_mtup_probe_success(sk); | 
 | 		} | 
 |  | 
 | 		if (tcp_is_reno(tp)) { | 
 | 			tcp_remove_reno_sacks(sk, pkts_acked); | 
 | 		} else { | 
 | 			int delta; | 
 |  | 
 | 			/* Non-retransmitted hole got filled? That's reordering */ | 
 | 			if (reord < prior_fackets) | 
 | 				tcp_update_reordering(sk, tp->fackets_out - reord, 0); | 
 |  | 
 | 			delta = tcp_is_fack(tp) ? pkts_acked : | 
 | 						  prior_sacked - tp->sacked_out; | 
 | 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); | 
 | 		} | 
 |  | 
 | 		tp->fackets_out -= min(pkts_acked, tp->fackets_out); | 
 |  | 
 | 		if (ca_ops->pkts_acked) { | 
 | 			long rtt_us = min_t(ulong, ca_seq_rtt_us, sack_rtt_us); | 
 | 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us); | 
 | 		} | 
 |  | 
 | 	} else if (skb && rtt_update && sack_rtt_us >= 0 && | 
 | 		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) { | 
 | 		/* Do not re-arm RTO if the sack RTT is measured from data sent | 
 | 		 * after when the head was last (re)transmitted. Otherwise the | 
 | 		 * timeout may continue to extend in loss recovery. | 
 | 		 */ | 
 | 		tcp_rearm_rto(sk); | 
 | 	} | 
 |  | 
 | #if FASTRETRANS_DEBUG > 0 | 
 | 	WARN_ON((int)tp->sacked_out < 0); | 
 | 	WARN_ON((int)tp->lost_out < 0); | 
 | 	WARN_ON((int)tp->retrans_out < 0); | 
 | 	if (!tp->packets_out && tcp_is_sack(tp)) { | 
 | 		icsk = inet_csk(sk); | 
 | 		if (tp->lost_out) { | 
 | 			pr_debug("Leak l=%u %d\n", | 
 | 				 tp->lost_out, icsk->icsk_ca_state); | 
 | 			tp->lost_out = 0; | 
 | 		} | 
 | 		if (tp->sacked_out) { | 
 | 			pr_debug("Leak s=%u %d\n", | 
 | 				 tp->sacked_out, icsk->icsk_ca_state); | 
 | 			tp->sacked_out = 0; | 
 | 		} | 
 | 		if (tp->retrans_out) { | 
 | 			pr_debug("Leak r=%u %d\n", | 
 | 				 tp->retrans_out, icsk->icsk_ca_state); | 
 | 			tp->retrans_out = 0; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	return flag; | 
 | } | 
 |  | 
 | static void tcp_ack_probe(struct sock *sk) | 
 | { | 
 | 	const struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 |  | 
 | 	/* Was it a usable window open? */ | 
 |  | 
 | 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { | 
 | 		icsk->icsk_backoff = 0; | 
 | 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); | 
 | 		/* Socket must be waked up by subsequent tcp_data_snd_check(). | 
 | 		 * This function is not for random using! | 
 | 		 */ | 
 | 	} else { | 
 | 		unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); | 
 |  | 
 | 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, | 
 | 					  when, TCP_RTO_MAX); | 
 | 	} | 
 | } | 
 |  | 
 | static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) | 
 | { | 
 | 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || | 
 | 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open; | 
 | } | 
 |  | 
 | /* Decide wheather to run the increase function of congestion control. */ | 
 | static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) | 
 | { | 
 | 	if (tcp_in_cwnd_reduction(sk)) | 
 | 		return false; | 
 |  | 
 | 	/* If reordering is high then always grow cwnd whenever data is | 
 | 	 * delivered regardless of its ordering. Otherwise stay conservative | 
 | 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ | 
 | 	 * new SACK or ECE mark may first advance cwnd here and later reduce | 
 | 	 * cwnd in tcp_fastretrans_alert() based on more states. | 
 | 	 */ | 
 | 	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering) | 
 | 		return flag & FLAG_FORWARD_PROGRESS; | 
 |  | 
 | 	return flag & FLAG_DATA_ACKED; | 
 | } | 
 |  | 
 | /* Check that window update is acceptable. | 
 |  * The function assumes that snd_una<=ack<=snd_next. | 
 |  */ | 
 | static inline bool tcp_may_update_window(const struct tcp_sock *tp, | 
 | 					const u32 ack, const u32 ack_seq, | 
 | 					const u32 nwin) | 
 | { | 
 | 	return	after(ack, tp->snd_una) || | 
 | 		after(ack_seq, tp->snd_wl1) || | 
 | 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); | 
 | } | 
 |  | 
 | /* Update our send window. | 
 |  * | 
 |  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 | 
 |  * and in FreeBSD. NetBSD's one is even worse.) is wrong. | 
 |  */ | 
 | static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, | 
 | 				 u32 ack_seq) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	int flag = 0; | 
 | 	u32 nwin = ntohs(tcp_hdr(skb)->window); | 
 |  | 
 | 	if (likely(!tcp_hdr(skb)->syn)) | 
 | 		nwin <<= tp->rx_opt.snd_wscale; | 
 |  | 
 | 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { | 
 | 		flag |= FLAG_WIN_UPDATE; | 
 | 		tcp_update_wl(tp, ack_seq); | 
 |  | 
 | 		if (tp->snd_wnd != nwin) { | 
 | 			tp->snd_wnd = nwin; | 
 |  | 
 | 			/* Note, it is the only place, where | 
 | 			 * fast path is recovered for sending TCP. | 
 | 			 */ | 
 | 			tp->pred_flags = 0; | 
 | 			tcp_fast_path_check(sk); | 
 |  | 
 | 			if (nwin > tp->max_window) { | 
 | 				tp->max_window = nwin; | 
 | 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	tp->snd_una = ack; | 
 |  | 
 | 	return flag; | 
 | } | 
 |  | 
 | /* RFC 5961 7 [ACK Throttling] */ | 
 | static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) | 
 | { | 
 | 	/* unprotected vars, we dont care of overwrites */ | 
 | 	static u32 challenge_timestamp; | 
 | 	static unsigned int challenge_count; | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	u32 now; | 
 |  | 
 | 	/* First check our per-socket dupack rate limit. */ | 
 | 	if (tcp_oow_rate_limited(sock_net(sk), skb, | 
 | 				 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, | 
 | 				 &tp->last_oow_ack_time)) | 
 | 		return; | 
 |  | 
 | 	/* Then check the check host-wide RFC 5961 rate limit. */ | 
 | 	now = jiffies / HZ; | 
 | 	if (now != challenge_timestamp) { | 
 | 		challenge_timestamp = now; | 
 | 		challenge_count = 0; | 
 | 	} | 
 | 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { | 
 | 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); | 
 | 		tcp_send_ack(sk); | 
 | 	} | 
 | } | 
 |  | 
 | static void tcp_store_ts_recent(struct tcp_sock *tp) | 
 | { | 
 | 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; | 
 | 	tp->rx_opt.ts_recent_stamp = get_seconds(); | 
 | } | 
 |  | 
 | static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) | 
 | { | 
 | 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { | 
 | 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard | 
 | 		 * extra check below makes sure this can only happen | 
 | 		 * for pure ACK frames.  -DaveM | 
 | 		 * | 
 | 		 * Not only, also it occurs for expired timestamps. | 
 | 		 */ | 
 |  | 
 | 		if (tcp_paws_check(&tp->rx_opt, 0)) | 
 | 			tcp_store_ts_recent(tp); | 
 | 	} | 
 | } | 
 |  | 
 | /* This routine deals with acks during a TLP episode. | 
 |  * We mark the end of a TLP episode on receiving TLP dupack or when | 
 |  * ack is after tlp_high_seq. | 
 |  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. | 
 |  */ | 
 | static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	if (before(ack, tp->tlp_high_seq)) | 
 | 		return; | 
 |  | 
 | 	if (flag & FLAG_DSACKING_ACK) { | 
 | 		/* This DSACK means original and TLP probe arrived; no loss */ | 
 | 		tp->tlp_high_seq = 0; | 
 | 	} else if (after(ack, tp->tlp_high_seq)) { | 
 | 		/* ACK advances: there was a loss, so reduce cwnd. Reset | 
 | 		 * tlp_high_seq in tcp_init_cwnd_reduction() | 
 | 		 */ | 
 | 		tcp_init_cwnd_reduction(sk); | 
 | 		tcp_set_ca_state(sk, TCP_CA_CWR); | 
 | 		tcp_end_cwnd_reduction(sk); | 
 | 		tcp_try_keep_open(sk); | 
 | 		NET_INC_STATS_BH(sock_net(sk), | 
 | 				 LINUX_MIB_TCPLOSSPROBERECOVERY); | 
 | 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED | | 
 | 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) { | 
 | 		/* Pure dupack: original and TLP probe arrived; no loss */ | 
 | 		tp->tlp_high_seq = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static inline void tcp_in_ack_event(struct sock *sk, u32 flags) | 
 | { | 
 | 	const struct inet_connection_sock *icsk = inet_csk(sk); | 
 |  | 
 | 	if (icsk->icsk_ca_ops->in_ack_event) | 
 | 		icsk->icsk_ca_ops->in_ack_event(sk, flags); | 
 | } | 
 |  | 
 | /* This routine deals with incoming acks, but not outgoing ones. */ | 
 | static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) | 
 | { | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	u32 prior_snd_una = tp->snd_una; | 
 | 	u32 ack_seq = TCP_SKB_CB(skb)->seq; | 
 | 	u32 ack = TCP_SKB_CB(skb)->ack_seq; | 
 | 	bool is_dupack = false; | 
 | 	u32 prior_fackets; | 
 | 	int prior_packets = tp->packets_out; | 
 | 	const int prior_unsacked = tp->packets_out - tp->sacked_out; | 
 | 	int acked = 0; /* Number of packets newly acked */ | 
 | 	long sack_rtt_us = -1L; | 
 |  | 
 | 	/* We very likely will need to access write queue head. */ | 
 | 	prefetchw(sk->sk_write_queue.next); | 
 |  | 
 | 	/* If the ack is older than previous acks | 
 | 	 * then we can probably ignore it. | 
 | 	 */ | 
 | 	if (before(ack, prior_snd_una)) { | 
 | 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ | 
 | 		if (before(ack, prior_snd_una - tp->max_window)) { | 
 | 			tcp_send_challenge_ack(sk, skb); | 
 | 			return -1; | 
 | 		} | 
 | 		goto old_ack; | 
 | 	} | 
 |  | 
 | 	/* If the ack includes data we haven't sent yet, discard | 
 | 	 * this segment (RFC793 Section 3.9). | 
 | 	 */ | 
 | 	if (after(ack, tp->snd_nxt)) | 
 | 		goto invalid_ack; | 
 |  | 
 | 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || | 
 | 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) | 
 | 		tcp_rearm_rto(sk); | 
 |  | 
 | 	if (after(ack, prior_snd_una)) { | 
 | 		flag |= FLAG_SND_UNA_ADVANCED; | 
 | 		icsk->icsk_retransmits = 0; | 
 | 	} | 
 |  | 
 | 	prior_fackets = tp->fackets_out; | 
 |  | 
 | 	/* ts_recent update must be made after we are sure that the packet | 
 | 	 * is in window. | 
 | 	 */ | 
 | 	if (flag & FLAG_UPDATE_TS_RECENT) | 
 | 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); | 
 |  | 
 | 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { | 
 | 		/* Window is constant, pure forward advance. | 
 | 		 * No more checks are required. | 
 | 		 * Note, we use the fact that SND.UNA>=SND.WL2. | 
 | 		 */ | 
 | 		tcp_update_wl(tp, ack_seq); | 
 | 		tp->snd_una = ack; | 
 | 		flag |= FLAG_WIN_UPDATE; | 
 |  | 
 | 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); | 
 |  | 
 | 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); | 
 | 	} else { | 
 | 		u32 ack_ev_flags = CA_ACK_SLOWPATH; | 
 |  | 
 | 		if (ack_seq != TCP_SKB_CB(skb)->end_seq) | 
 | 			flag |= FLAG_DATA; | 
 | 		else | 
 | 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); | 
 |  | 
 | 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); | 
 |  | 
 | 		if (TCP_SKB_CB(skb)->sacked) | 
 | 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, | 
 | 							&sack_rtt_us); | 
 |  | 
 | 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { | 
 | 			flag |= FLAG_ECE; | 
 | 			ack_ev_flags |= CA_ACK_ECE; | 
 | 		} | 
 |  | 
 | 		if (flag & FLAG_WIN_UPDATE) | 
 | 			ack_ev_flags |= CA_ACK_WIN_UPDATE; | 
 |  | 
 | 		tcp_in_ack_event(sk, ack_ev_flags); | 
 | 	} | 
 |  | 
 | 	/* We passed data and got it acked, remove any soft error | 
 | 	 * log. Something worked... | 
 | 	 */ | 
 | 	sk->sk_err_soft = 0; | 
 | 	icsk->icsk_probes_out = 0; | 
 | 	tp->rcv_tstamp = tcp_time_stamp; | 
 | 	if (!prior_packets) | 
 | 		goto no_queue; | 
 |  | 
 | 	/* See if we can take anything off of the retransmit queue. */ | 
 | 	acked = tp->packets_out; | 
 | 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, | 
 | 				    sack_rtt_us); | 
 | 	acked -= tp->packets_out; | 
 |  | 
 | 	/* Advance cwnd if state allows */ | 
 | 	if (tcp_may_raise_cwnd(sk, flag)) | 
 | 		tcp_cong_avoid(sk, ack, acked); | 
 |  | 
 | 	if (tcp_ack_is_dubious(sk, flag)) { | 
 | 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); | 
 | 		tcp_fastretrans_alert(sk, acked, prior_unsacked, | 
 | 				      is_dupack, flag); | 
 | 	} | 
 | 	if (tp->tlp_high_seq) | 
 | 		tcp_process_tlp_ack(sk, ack, flag); | 
 |  | 
 | 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { | 
 | 		struct dst_entry *dst = __sk_dst_get(sk); | 
 | 		if (dst) | 
 | 			dst_confirm(dst); | 
 | 	} | 
 |  | 
 | 	if (icsk->icsk_pending == ICSK_TIME_RETRANS) | 
 | 		tcp_schedule_loss_probe(sk); | 
 | 	tcp_update_pacing_rate(sk); | 
 | 	return 1; | 
 |  | 
 | no_queue: | 
 | 	/* If data was DSACKed, see if we can undo a cwnd reduction. */ | 
 | 	if (flag & FLAG_DSACKING_ACK) | 
 | 		tcp_fastretrans_alert(sk, acked, prior_unsacked, | 
 | 				      is_dupack, flag); | 
 | 	/* If this ack opens up a zero window, clear backoff.  It was | 
 | 	 * being used to time the probes, and is probably far higher than | 
 | 	 * it needs to be for normal retransmission. | 
 | 	 */ | 
 | 	if (tcp_send_head(sk)) | 
 | 		tcp_ack_probe(sk); | 
 |  | 
 | 	if (tp->tlp_high_seq) | 
 | 		tcp_process_tlp_ack(sk, ack, flag); | 
 | 	return 1; | 
 |  | 
 | invalid_ack: | 
 | 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); | 
 | 	return -1; | 
 |  | 
 | old_ack: | 
 | 	/* If data was SACKed, tag it and see if we should send more data. | 
 | 	 * If data was DSACKed, see if we can undo a cwnd reduction. | 
 | 	 */ | 
 | 	if (TCP_SKB_CB(skb)->sacked) { | 
 | 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, | 
 | 						&sack_rtt_us); | 
 | 		tcp_fastretrans_alert(sk, acked, prior_unsacked, | 
 | 				      is_dupack, flag); | 
 | 	} | 
 |  | 
 | 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Look for tcp options. Normally only called on SYN and SYNACK packets. | 
 |  * But, this can also be called on packets in the established flow when | 
 |  * the fast version below fails. | 
 |  */ | 
 | void tcp_parse_options(const struct sk_buff *skb, | 
 | 		       struct tcp_options_received *opt_rx, int estab, | 
 | 		       struct tcp_fastopen_cookie *foc) | 
 | { | 
 | 	const unsigned char *ptr; | 
 | 	const struct tcphdr *th = tcp_hdr(skb); | 
 | 	int length = (th->doff * 4) - sizeof(struct tcphdr); | 
 |  | 
 | 	ptr = (const unsigned char *)(th + 1); | 
 | 	opt_rx->saw_tstamp = 0; | 
 |  | 
 | 	while (length > 0) { | 
 | 		int opcode = *ptr++; | 
 | 		int opsize; | 
 |  | 
 | 		switch (opcode) { | 
 | 		case TCPOPT_EOL: | 
 | 			return; | 
 | 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */ | 
 | 			length--; | 
 | 			continue; | 
 | 		default: | 
 | 			opsize = *ptr++; | 
 | 			if (opsize < 2) /* "silly options" */ | 
 | 				return; | 
 | 			if (opsize > length) | 
 | 				return;	/* don't parse partial options */ | 
 | 			switch (opcode) { | 
 | 			case TCPOPT_MSS: | 
 | 				if (opsize == TCPOLEN_MSS && th->syn && !estab) { | 
 | 					u16 in_mss = get_unaligned_be16(ptr); | 
 | 					if (in_mss) { | 
 | 						if (opt_rx->user_mss && | 
 | 						    opt_rx->user_mss < in_mss) | 
 | 							in_mss = opt_rx->user_mss; | 
 | 						opt_rx->mss_clamp = in_mss; | 
 | 					} | 
 | 				} | 
 | 				break; | 
 | 			case TCPOPT_WINDOW: | 
 | 				if (opsize == TCPOLEN_WINDOW && th->syn && | 
 | 				    !estab && sysctl_tcp_window_scaling) { | 
 | 					__u8 snd_wscale = *(__u8 *)ptr; | 
 | 					opt_rx->wscale_ok = 1; | 
 | 					if (snd_wscale > 14) { | 
 | 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", | 
 | 								     __func__, | 
 | 								     snd_wscale); | 
 | 						snd_wscale = 14; | 
 | 					} | 
 | 					opt_rx->snd_wscale = snd_wscale; | 
 | 				} | 
 | 				break; | 
 | 			case TCPOPT_TIMESTAMP: | 
 | 				if ((opsize == TCPOLEN_TIMESTAMP) && | 
 | 				    ((estab && opt_rx->tstamp_ok) || | 
 | 				     (!estab && sysctl_tcp_timestamps))) { | 
 | 					opt_rx->saw_tstamp = 1; | 
 | 					opt_rx->rcv_tsval = get_unaligned_be32(ptr); | 
 | 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); | 
 | 				} | 
 | 				break; | 
 | 			case TCPOPT_SACK_PERM: | 
 | 				if (opsize == TCPOLEN_SACK_PERM && th->syn && | 
 | 				    !estab && sysctl_tcp_sack) { | 
 | 					opt_rx->sack_ok = TCP_SACK_SEEN; | 
 | 					tcp_sack_reset(opt_rx); | 
 | 				} | 
 | 				break; | 
 |  | 
 | 			case TCPOPT_SACK: | 
 | 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && | 
 | 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && | 
 | 				   opt_rx->sack_ok) { | 
 | 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; | 
 | 				} | 
 | 				break; | 
 | #ifdef CONFIG_TCP_MD5SIG | 
 | 			case TCPOPT_MD5SIG: | 
 | 				/* | 
 | 				 * The MD5 Hash has already been | 
 | 				 * checked (see tcp_v{4,6}_do_rcv()). | 
 | 				 */ | 
 | 				break; | 
 | #endif | 
 | 			case TCPOPT_EXP: | 
 | 				/* Fast Open option shares code 254 using a | 
 | 				 * 16 bits magic number. It's valid only in | 
 | 				 * SYN or SYN-ACK with an even size. | 
 | 				 */ | 
 | 				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE || | 
 | 				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC || | 
 | 				    foc == NULL || !th->syn || (opsize & 1)) | 
 | 					break; | 
 | 				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE; | 
 | 				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN && | 
 | 				    foc->len <= TCP_FASTOPEN_COOKIE_MAX) | 
 | 					memcpy(foc->val, ptr + 2, foc->len); | 
 | 				else if (foc->len != 0) | 
 | 					foc->len = -1; | 
 | 				break; | 
 |  | 
 | 			} | 
 | 			ptr += opsize-2; | 
 | 			length -= opsize; | 
 | 		} | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(tcp_parse_options); | 
 |  | 
 | static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) | 
 | { | 
 | 	const __be32 *ptr = (const __be32 *)(th + 1); | 
 |  | 
 | 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 
 | 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { | 
 | 		tp->rx_opt.saw_tstamp = 1; | 
 | 		++ptr; | 
 | 		tp->rx_opt.rcv_tsval = ntohl(*ptr); | 
 | 		++ptr; | 
 | 		if (*ptr) | 
 | 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; | 
 | 		else | 
 | 			tp->rx_opt.rcv_tsecr = 0; | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* Fast parse options. This hopes to only see timestamps. | 
 |  * If it is wrong it falls back on tcp_parse_options(). | 
 |  */ | 
 | static bool tcp_fast_parse_options(const struct sk_buff *skb, | 
 | 				   const struct tcphdr *th, struct tcp_sock *tp) | 
 | { | 
 | 	/* In the spirit of fast parsing, compare doff directly to constant | 
 | 	 * values.  Because equality is used, short doff can be ignored here. | 
 | 	 */ | 
 | 	if (th->doff == (sizeof(*th) / 4)) { | 
 | 		tp->rx_opt.saw_tstamp = 0; | 
 | 		return false; | 
 | 	} else if (tp->rx_opt.tstamp_ok && | 
 | 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { | 
 | 		if (tcp_parse_aligned_timestamp(tp, th)) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL); | 
 | 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) | 
 | 		tp->rx_opt.rcv_tsecr -= tp->tsoffset; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | #ifdef CONFIG_TCP_MD5SIG | 
 | /* | 
 |  * Parse MD5 Signature option | 
 |  */ | 
 | const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) | 
 | { | 
 | 	int length = (th->doff << 2) - sizeof(*th); | 
 | 	const u8 *ptr = (const u8 *)(th + 1); | 
 |  | 
 | 	/* If the TCP option is too short, we can short cut */ | 
 | 	if (length < TCPOLEN_MD5SIG) | 
 | 		return NULL; | 
 |  | 
 | 	while (length > 0) { | 
 | 		int opcode = *ptr++; | 
 | 		int opsize; | 
 |  | 
 | 		switch (opcode) { | 
 | 		case TCPOPT_EOL: | 
 | 			return NULL; | 
 | 		case TCPOPT_NOP: | 
 | 			length--; | 
 | 			continue; | 
 | 		default: | 
 | 			opsize = *ptr++; | 
 | 			if (opsize < 2 || opsize > length) | 
 | 				return NULL; | 
 | 			if (opcode == TCPOPT_MD5SIG) | 
 | 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL; | 
 | 		} | 
 | 		ptr += opsize - 2; | 
 | 		length -= opsize; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(tcp_parse_md5sig_option); | 
 | #endif | 
 |  | 
 | /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM | 
 |  * | 
 |  * It is not fatal. If this ACK does _not_ change critical state (seqs, window) | 
 |  * it can pass through stack. So, the following predicate verifies that | 
 |  * this segment is not used for anything but congestion avoidance or | 
 |  * fast retransmit. Moreover, we even are able to eliminate most of such | 
 |  * second order effects, if we apply some small "replay" window (~RTO) | 
 |  * to timestamp space. | 
 |  * | 
 |  * All these measures still do not guarantee that we reject wrapped ACKs | 
 |  * on networks with high bandwidth, when sequence space is recycled fastly, | 
 |  * but it guarantees that such events will be very rare and do not affect | 
 |  * connection seriously. This doesn't look nice, but alas, PAWS is really | 
 |  * buggy extension. | 
 |  * | 
 |  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC | 
 |  * states that events when retransmit arrives after original data are rare. | 
 |  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is | 
 |  * the biggest problem on large power networks even with minor reordering. | 
 |  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe | 
 |  * up to bandwidth of 18Gigabit/sec. 8) ] | 
 |  */ | 
 |  | 
 | static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) | 
 | { | 
 | 	const struct tcp_sock *tp = tcp_sk(sk); | 
 | 	const struct tcphdr *th = tcp_hdr(skb); | 
 | 	u32 seq = TCP_SKB_CB(skb)->seq; | 
 | 	u32 ack = TCP_SKB_CB(skb)->ack_seq; | 
 |  | 
 | 	return (/* 1. Pure ACK with correct sequence number. */ | 
 | 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && | 
 |  | 
 | 		/* 2. ... and duplicate ACK. */ | 
 | 		ack == tp->snd_una && | 
 |  | 
 | 		/* 3. ... and does not update window. */ | 
 | 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && | 
 |  | 
 | 		/* 4. ... and sits in replay window. */ | 
 | 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); | 
 | } | 
 |  | 
 | static inline bool tcp_paws_discard(const struct sock *sk, | 
 | 				   const struct sk_buff *skb) | 
 | { | 
 | 	const struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && | 
 | 	       !tcp_disordered_ack(sk, skb); | 
 | } | 
 |  | 
 | /* Check segment sequence number for validity. | 
 |  * | 
 |  * Segment controls are considered valid, if the segment | 
 |  * fits to the window after truncation to the window. Acceptability | 
 |  * of data (and SYN, FIN, of course) is checked separately. | 
 |  * See tcp_data_queue(), for example. | 
 |  * | 
 |  * Also, controls (RST is main one) are accepted using RCV.WUP instead | 
 |  * of RCV.NXT. Peer still did not advance his SND.UNA when we | 
 |  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. | 
 |  * (borrowed from freebsd) | 
 |  */ | 
 |  | 
 | static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) | 
 | { | 
 | 	return	!before(end_seq, tp->rcv_wup) && | 
 | 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp)); | 
 | } | 
 |  | 
 | /* When we get a reset we do this. */ | 
 | void tcp_reset(struct sock *sk) | 
 | { | 
 | 	/* We want the right error as BSD sees it (and indeed as we do). */ | 
 | 	switch (sk->sk_state) { | 
 | 	case TCP_SYN_SENT: | 
 | 		sk->sk_err = ECONNREFUSED; | 
 | 		break; | 
 | 	case TCP_CLOSE_WAIT: | 
 | 		sk->sk_err = EPIPE; | 
 | 		break; | 
 | 	case TCP_CLOSE: | 
 | 		return; | 
 | 	default: | 
 | 		sk->sk_err = ECONNRESET; | 
 | 	} | 
 | 	/* This barrier is coupled with smp_rmb() in tcp_poll() */ | 
 | 	smp_wmb(); | 
 |  | 
 | 	if (!sock_flag(sk, SOCK_DEAD)) | 
 | 		sk->sk_error_report(sk); | 
 |  | 
 | 	tcp_done(sk); | 
 | } | 
 |  | 
 | /* | 
 |  * 	Process the FIN bit. This now behaves as it is supposed to work | 
 |  *	and the FIN takes effect when it is validly part of sequence | 
 |  *	space. Not before when we get holes. | 
 |  * | 
 |  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT | 
 |  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter | 
 |  *	TIME-WAIT) | 
 |  * | 
 |  *	If we are in FINWAIT-1, a received FIN indicates simultaneous | 
 |  *	close and we go into CLOSING (and later onto TIME-WAIT) | 
 |  * | 
 |  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. | 
 |  */ | 
 | static void tcp_fin(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	const struct dst_entry *dst; | 
 |  | 
 | 	inet_csk_schedule_ack(sk); | 
 |  | 
 | 	sk->sk_shutdown |= RCV_SHUTDOWN; | 
 | 	sock_set_flag(sk, SOCK_DONE); | 
 |  | 
 | 	switch (sk->sk_state) { | 
 | 	case TCP_SYN_RECV: | 
 | 	case TCP_ESTABLISHED: | 
 | 		/* Move to CLOSE_WAIT */ | 
 | 		tcp_set_state(sk, TCP_CLOSE_WAIT); | 
 | 		dst = __sk_dst_get(sk); | 
 | 		if (!dst || !dst_metric(dst, RTAX_QUICKACK)) | 
 | 			inet_csk(sk)->icsk_ack.pingpong = 1; | 
 | 		break; | 
 |  | 
 | 	case TCP_CLOSE_WAIT: | 
 | 	case TCP_CLOSING: | 
 | 		/* Received a retransmission of the FIN, do | 
 | 		 * nothing. | 
 | 		 */ | 
 | 		break; | 
 | 	case TCP_LAST_ACK: | 
 | 		/* RFC793: Remain in the LAST-ACK state. */ | 
 | 		break; | 
 |  | 
 | 	case TCP_FIN_WAIT1: | 
 | 		/* This case occurs when a simultaneous close | 
 | 		 * happens, we must ack the received FIN and | 
 | 		 * enter the CLOSING state. | 
 | 		 */ | 
 | 		tcp_send_ack(sk); | 
 | 		tcp_set_state(sk, TCP_CLOSING); | 
 | 		break; | 
 | 	case TCP_FIN_WAIT2: | 
 | 		/* Received a FIN -- send ACK and enter TIME_WAIT. */ | 
 | 		tcp_send_ack(sk); | 
 | 		tcp_time_wait(sk, TCP_TIME_WAIT, 0); | 
 | 		break; | 
 | 	default: | 
 | 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these | 
 | 		 * cases we should never reach this piece of code. | 
 | 		 */ | 
 | 		pr_err("%s: Impossible, sk->sk_state=%d\n", | 
 | 		       __func__, sk->sk_state); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* It _is_ possible, that we have something out-of-order _after_ FIN. | 
 | 	 * Probably, we should reset in this case. For now drop them. | 
 | 	 */ | 
 | 	__skb_queue_purge(&tp->out_of_order_queue); | 
 | 	if (tcp_is_sack(tp)) | 
 | 		tcp_sack_reset(&tp->rx_opt); | 
 | 	sk_mem_reclaim(sk); | 
 |  | 
 | 	if (!sock_flag(sk, SOCK_DEAD)) { | 
 | 		sk->sk_state_change(sk); | 
 |  | 
 | 		/* Do not send POLL_HUP for half duplex close. */ | 
 | 		if (sk->sk_shutdown == SHUTDOWN_MASK || | 
 | 		    sk->sk_state == TCP_CLOSE) | 
 | 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); | 
 | 		else | 
 | 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); | 
 | 	} | 
 | } | 
 |  | 
 | static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, | 
 | 				  u32 end_seq) | 
 | { | 
 | 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { | 
 | 		if (before(seq, sp->start_seq)) | 
 | 			sp->start_seq = seq; | 
 | 		if (after(end_seq, sp->end_seq)) | 
 | 			sp->end_seq = end_seq; | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) { | 
 | 		int mib_idx; | 
 |  | 
 | 		if (before(seq, tp->rcv_nxt)) | 
 | 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT; | 
 | 		else | 
 | 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT; | 
 |  | 
 | 		NET_INC_STATS_BH(sock_net(sk), mib_idx); | 
 |  | 
 | 		tp->rx_opt.dsack = 1; | 
 | 		tp->duplicate_sack[0].start_seq = seq; | 
 | 		tp->duplicate_sack[0].end_seq = end_seq; | 
 | 	} | 
 | } | 
 |  | 
 | static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	if (!tp->rx_opt.dsack) | 
 | 		tcp_dsack_set(sk, seq, end_seq); | 
 | 	else | 
 | 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq); | 
 | } | 
 |  | 
 | static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && | 
 | 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { | 
 | 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); | 
 | 		tcp_enter_quickack_mode(sk); | 
 |  | 
 | 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) { | 
 | 			u32 end_seq = TCP_SKB_CB(skb)->end_seq; | 
 |  | 
 | 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) | 
 | 				end_seq = tp->rcv_nxt; | 
 | 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	tcp_send_ack(sk); | 
 | } | 
 |  | 
 | /* These routines update the SACK block as out-of-order packets arrive or | 
 |  * in-order packets close up the sequence space. | 
 |  */ | 
 | static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) | 
 | { | 
 | 	int this_sack; | 
 | 	struct tcp_sack_block *sp = &tp->selective_acks[0]; | 
 | 	struct tcp_sack_block *swalk = sp + 1; | 
 |  | 
 | 	/* See if the recent change to the first SACK eats into | 
 | 	 * or hits the sequence space of other SACK blocks, if so coalesce. | 
 | 	 */ | 
 | 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { | 
 | 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { | 
 | 			int i; | 
 |  | 
 | 			/* Zap SWALK, by moving every further SACK up by one slot. | 
 | 			 * Decrease num_sacks. | 
 | 			 */ | 
 | 			tp->rx_opt.num_sacks--; | 
 | 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++) | 
 | 				sp[i] = sp[i + 1]; | 
 | 			continue; | 
 | 		} | 
 | 		this_sack++, swalk++; | 
 | 	} | 
 | } | 
 |  | 
 | static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct tcp_sack_block *sp = &tp->selective_acks[0]; | 
 | 	int cur_sacks = tp->rx_opt.num_sacks; | 
 | 	int this_sack; | 
 |  | 
 | 	if (!cur_sacks) | 
 | 		goto new_sack; | 
 |  | 
 | 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { | 
 | 		if (tcp_sack_extend(sp, seq, end_seq)) { | 
 | 			/* Rotate this_sack to the first one. */ | 
 | 			for (; this_sack > 0; this_sack--, sp--) | 
 | 				swap(*sp, *(sp - 1)); | 
 | 			if (cur_sacks > 1) | 
 | 				tcp_sack_maybe_coalesce(tp); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Could not find an adjacent existing SACK, build a new one, | 
 | 	 * put it at the front, and shift everyone else down.  We | 
 | 	 * always know there is at least one SACK present already here. | 
 | 	 * | 
 | 	 * If the sack array is full, forget about the last one. | 
 | 	 */ | 
 | 	if (this_sack >= TCP_NUM_SACKS) { | 
 | 		this_sack--; | 
 | 		tp->rx_opt.num_sacks--; | 
 | 		sp--; | 
 | 	} | 
 | 	for (; this_sack > 0; this_sack--, sp--) | 
 | 		*sp = *(sp - 1); | 
 |  | 
 | new_sack: | 
 | 	/* Build the new head SACK, and we're done. */ | 
 | 	sp->start_seq = seq; | 
 | 	sp->end_seq = end_seq; | 
 | 	tp->rx_opt.num_sacks++; | 
 | } | 
 |  | 
 | /* RCV.NXT advances, some SACKs should be eaten. */ | 
 |  | 
 | static void tcp_sack_remove(struct tcp_sock *tp) | 
 | { | 
 | 	struct tcp_sack_block *sp = &tp->selective_acks[0]; | 
 | 	int num_sacks = tp->rx_opt.num_sacks; | 
 | 	int this_sack; | 
 |  | 
 | 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ | 
 | 	if (skb_queue_empty(&tp->out_of_order_queue)) { | 
 | 		tp->rx_opt.num_sacks = 0; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for (this_sack = 0; this_sack < num_sacks;) { | 
 | 		/* Check if the start of the sack is covered by RCV.NXT. */ | 
 | 		if (!before(tp->rcv_nxt, sp->start_seq)) { | 
 | 			int i; | 
 |  | 
 | 			/* RCV.NXT must cover all the block! */ | 
 | 			WARN_ON(before(tp->rcv_nxt, sp->end_seq)); | 
 |  | 
 | 			/* Zap this SACK, by moving forward any other SACKS. */ | 
 | 			for (i = this_sack+1; i < num_sacks; i++) | 
 | 				tp->selective_acks[i-1] = tp->selective_acks[i]; | 
 | 			num_sacks--; | 
 | 			continue; | 
 | 		} | 
 | 		this_sack++; | 
 | 		sp++; | 
 | 	} | 
 | 	tp->rx_opt.num_sacks = num_sacks; | 
 | } | 
 |  | 
 | /** | 
 |  * tcp_try_coalesce - try to merge skb to prior one | 
 |  * @sk: socket | 
 |  * @to: prior buffer | 
 |  * @from: buffer to add in queue | 
 |  * @fragstolen: pointer to boolean | 
 |  * | 
 |  * Before queueing skb @from after @to, try to merge them | 
 |  * to reduce overall memory use and queue lengths, if cost is small. | 
 |  * Packets in ofo or receive queues can stay a long time. | 
 |  * Better try to coalesce them right now to avoid future collapses. | 
 |  * Returns true if caller should free @from instead of queueing it | 
 |  */ | 
 | static bool tcp_try_coalesce(struct sock *sk, | 
 | 			     struct sk_buff *to, | 
 | 			     struct sk_buff *from, | 
 | 			     bool *fragstolen) | 
 | { | 
 | 	int delta; | 
 |  | 
 | 	*fragstolen = false; | 
 |  | 
 | 	/* Its possible this segment overlaps with prior segment in queue */ | 
 | 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) | 
 | 		return false; | 
 |  | 
 | 	if (!skb_try_coalesce(to, from, fragstolen, &delta)) | 
 | 		return false; | 
 |  | 
 | 	atomic_add(delta, &sk->sk_rmem_alloc); | 
 | 	sk_mem_charge(sk, delta); | 
 | 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); | 
 | 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; | 
 | 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; | 
 | 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; | 
 | 	return true; | 
 | } | 
 |  | 
 | /* This one checks to see if we can put data from the | 
 |  * out_of_order queue into the receive_queue. | 
 |  */ | 
 | static void tcp_ofo_queue(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	__u32 dsack_high = tp->rcv_nxt; | 
 | 	struct sk_buff *skb, *tail; | 
 | 	bool fragstolen, eaten; | 
 |  | 
 | 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { | 
 | 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) | 
 | 			break; | 
 |  | 
 | 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { | 
 | 			__u32 dsack = dsack_high; | 
 | 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) | 
 | 				dsack_high = TCP_SKB_CB(skb)->end_seq; | 
 | 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); | 
 | 		} | 
 |  | 
 | 		__skb_unlink(skb, &tp->out_of_order_queue); | 
 | 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { | 
 | 			SOCK_DEBUG(sk, "ofo packet was already received\n"); | 
 | 			__kfree_skb(skb); | 
 | 			continue; | 
 | 		} | 
 | 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", | 
 | 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, | 
 | 			   TCP_SKB_CB(skb)->end_seq); | 
 |  | 
 | 		tail = skb_peek_tail(&sk->sk_receive_queue); | 
 | 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); | 
 | 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; | 
 | 		if (!eaten) | 
 | 			__skb_queue_tail(&sk->sk_receive_queue, skb); | 
 | 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) | 
 | 			tcp_fin(sk); | 
 | 		if (eaten) | 
 | 			kfree_skb_partial(skb, fragstolen); | 
 | 	} | 
 | } | 
 |  | 
 | static bool tcp_prune_ofo_queue(struct sock *sk); | 
 | static int tcp_prune_queue(struct sock *sk); | 
 |  | 
 | static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, | 
 | 				 unsigned int size) | 
 | { | 
 | 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || | 
 | 	    !sk_rmem_schedule(sk, skb, size)) { | 
 |  | 
 | 		if (tcp_prune_queue(sk) < 0) | 
 | 			return -1; | 
 |  | 
 | 		if (!sk_rmem_schedule(sk, skb, size)) { | 
 | 			if (!tcp_prune_ofo_queue(sk)) | 
 | 				return -1; | 
 |  | 
 | 			if (!sk_rmem_schedule(sk, skb, size)) | 
 | 				return -1; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *skb1; | 
 | 	u32 seq, end_seq; | 
 |  | 
 | 	tcp_ecn_check_ce(tp, skb); | 
 |  | 
 | 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { | 
 | 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); | 
 | 		__kfree_skb(skb); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Disable header prediction. */ | 
 | 	tp->pred_flags = 0; | 
 | 	inet_csk_schedule_ack(sk); | 
 |  | 
 | 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); | 
 | 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", | 
 | 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); | 
 |  | 
 | 	skb1 = skb_peek_tail(&tp->out_of_order_queue); | 
 | 	if (!skb1) { | 
 | 		/* Initial out of order segment, build 1 SACK. */ | 
 | 		if (tcp_is_sack(tp)) { | 
 | 			tp->rx_opt.num_sacks = 1; | 
 | 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; | 
 | 			tp->selective_acks[0].end_seq = | 
 | 						TCP_SKB_CB(skb)->end_seq; | 
 | 		} | 
 | 		__skb_queue_head(&tp->out_of_order_queue, skb); | 
 | 		goto end; | 
 | 	} | 
 |  | 
 | 	seq = TCP_SKB_CB(skb)->seq; | 
 | 	end_seq = TCP_SKB_CB(skb)->end_seq; | 
 |  | 
 | 	if (seq == TCP_SKB_CB(skb1)->end_seq) { | 
 | 		bool fragstolen; | 
 |  | 
 | 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { | 
 | 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb); | 
 | 		} else { | 
 | 			tcp_grow_window(sk, skb); | 
 | 			kfree_skb_partial(skb, fragstolen); | 
 | 			skb = NULL; | 
 | 		} | 
 |  | 
 | 		if (!tp->rx_opt.num_sacks || | 
 | 		    tp->selective_acks[0].end_seq != seq) | 
 | 			goto add_sack; | 
 |  | 
 | 		/* Common case: data arrive in order after hole. */ | 
 | 		tp->selective_acks[0].end_seq = end_seq; | 
 | 		goto end; | 
 | 	} | 
 |  | 
 | 	/* Find place to insert this segment. */ | 
 | 	while (1) { | 
 | 		if (!after(TCP_SKB_CB(skb1)->seq, seq)) | 
 | 			break; | 
 | 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { | 
 | 			skb1 = NULL; | 
 | 			break; | 
 | 		} | 
 | 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); | 
 | 	} | 
 |  | 
 | 	/* Do skb overlap to previous one? */ | 
 | 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { | 
 | 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { | 
 | 			/* All the bits are present. Drop. */ | 
 | 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); | 
 | 			__kfree_skb(skb); | 
 | 			skb = NULL; | 
 | 			tcp_dsack_set(sk, seq, end_seq); | 
 | 			goto add_sack; | 
 | 		} | 
 | 		if (after(seq, TCP_SKB_CB(skb1)->seq)) { | 
 | 			/* Partial overlap. */ | 
 | 			tcp_dsack_set(sk, seq, | 
 | 				      TCP_SKB_CB(skb1)->end_seq); | 
 | 		} else { | 
 | 			if (skb_queue_is_first(&tp->out_of_order_queue, | 
 | 					       skb1)) | 
 | 				skb1 = NULL; | 
 | 			else | 
 | 				skb1 = skb_queue_prev( | 
 | 					&tp->out_of_order_queue, | 
 | 					skb1); | 
 | 		} | 
 | 	} | 
 | 	if (!skb1) | 
 | 		__skb_queue_head(&tp->out_of_order_queue, skb); | 
 | 	else | 
 | 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb); | 
 |  | 
 | 	/* And clean segments covered by new one as whole. */ | 
 | 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { | 
 | 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb); | 
 |  | 
 | 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) | 
 | 			break; | 
 | 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { | 
 | 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, | 
 | 					 end_seq); | 
 | 			break; | 
 | 		} | 
 | 		__skb_unlink(skb1, &tp->out_of_order_queue); | 
 | 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, | 
 | 				 TCP_SKB_CB(skb1)->end_seq); | 
 | 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); | 
 | 		__kfree_skb(skb1); | 
 | 	} | 
 |  | 
 | add_sack: | 
 | 	if (tcp_is_sack(tp)) | 
 | 		tcp_sack_new_ofo_skb(sk, seq, end_seq); | 
 | end: | 
 | 	if (skb) { | 
 | 		tcp_grow_window(sk, skb); | 
 | 		skb_set_owner_r(skb, sk); | 
 | 	} | 
 | } | 
 |  | 
 | static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, | 
 | 		  bool *fragstolen) | 
 | { | 
 | 	int eaten; | 
 | 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); | 
 |  | 
 | 	__skb_pull(skb, hdrlen); | 
 | 	eaten = (tail && | 
 | 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; | 
 | 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; | 
 | 	if (!eaten) { | 
 | 		__skb_queue_tail(&sk->sk_receive_queue, skb); | 
 | 		skb_set_owner_r(skb, sk); | 
 | 	} | 
 | 	return eaten; | 
 | } | 
 |  | 
 | int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) | 
 | { | 
 | 	struct sk_buff *skb; | 
 | 	bool fragstolen; | 
 |  | 
 | 	if (size == 0) | 
 | 		return 0; | 
 |  | 
 | 	skb = alloc_skb(size, sk->sk_allocation); | 
 | 	if (!skb) | 
 | 		goto err; | 
 |  | 
 | 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) | 
 | 		goto err_free; | 
 |  | 
 | 	if (memcpy_from_msg(skb_put(skb, size), msg, size)) | 
 | 		goto err_free; | 
 |  | 
 | 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; | 
 | 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; | 
 | 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; | 
 |  | 
 | 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { | 
 | 		WARN_ON_ONCE(fragstolen); /* should not happen */ | 
 | 		__kfree_skb(skb); | 
 | 	} | 
 | 	return size; | 
 |  | 
 | err_free: | 
 | 	kfree_skb(skb); | 
 | err: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	int eaten = -1; | 
 | 	bool fragstolen = false; | 
 |  | 
 | 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) | 
 | 		goto drop; | 
 |  | 
 | 	skb_dst_drop(skb); | 
 | 	__skb_pull(skb, tcp_hdr(skb)->doff * 4); | 
 |  | 
 | 	tcp_ecn_accept_cwr(tp, skb); | 
 |  | 
 | 	tp->rx_opt.dsack = 0; | 
 |  | 
 | 	/*  Queue data for delivery to the user. | 
 | 	 *  Packets in sequence go to the receive queue. | 
 | 	 *  Out of sequence packets to the out_of_order_queue. | 
 | 	 */ | 
 | 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { | 
 | 		if (tcp_receive_window(tp) == 0) | 
 | 			goto out_of_window; | 
 |  | 
 | 		/* Ok. In sequence. In window. */ | 
 | 		if (tp->ucopy.task == current && | 
 | 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && | 
 | 		    sock_owned_by_user(sk) && !tp->urg_data) { | 
 | 			int chunk = min_t(unsigned int, skb->len, | 
 | 					  tp->ucopy.len); | 
 |  | 
 | 			__set_current_state(TASK_RUNNING); | 
 |  | 
 | 			local_bh_enable(); | 
 | 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { | 
 | 				tp->ucopy.len -= chunk; | 
 | 				tp->copied_seq += chunk; | 
 | 				eaten = (chunk == skb->len); | 
 | 				tcp_rcv_space_adjust(sk); | 
 | 			} | 
 | 			local_bh_disable(); | 
 | 		} | 
 |  | 
 | 		if (eaten <= 0) { | 
 | queue_and_out: | 
 | 			if (eaten < 0 && | 
 | 			    tcp_try_rmem_schedule(sk, skb, skb->truesize)) | 
 | 				goto drop; | 
 |  | 
 | 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); | 
 | 		} | 
 | 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; | 
 | 		if (skb->len) | 
 | 			tcp_event_data_recv(sk, skb); | 
 | 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) | 
 | 			tcp_fin(sk); | 
 |  | 
 | 		if (!skb_queue_empty(&tp->out_of_order_queue)) { | 
 | 			tcp_ofo_queue(sk); | 
 |  | 
 | 			/* RFC2581. 4.2. SHOULD send immediate ACK, when | 
 | 			 * gap in queue is filled. | 
 | 			 */ | 
 | 			if (skb_queue_empty(&tp->out_of_order_queue)) | 
 | 				inet_csk(sk)->icsk_ack.pingpong = 0; | 
 | 		} | 
 |  | 
 | 		if (tp->rx_opt.num_sacks) | 
 | 			tcp_sack_remove(tp); | 
 |  | 
 | 		tcp_fast_path_check(sk); | 
 |  | 
 | 		if (eaten > 0) | 
 | 			kfree_skb_partial(skb, fragstolen); | 
 | 		if (!sock_flag(sk, SOCK_DEAD)) | 
 | 			sk->sk_data_ready(sk); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { | 
 | 		/* A retransmit, 2nd most common case.  Force an immediate ack. */ | 
 | 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); | 
 | 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); | 
 |  | 
 | out_of_window: | 
 | 		tcp_enter_quickack_mode(sk); | 
 | 		inet_csk_schedule_ack(sk); | 
 | drop: | 
 | 		__kfree_skb(skb); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Out of window. F.e. zero window probe. */ | 
 | 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) | 
 | 		goto out_of_window; | 
 |  | 
 | 	tcp_enter_quickack_mode(sk); | 
 |  | 
 | 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { | 
 | 		/* Partial packet, seq < rcv_next < end_seq */ | 
 | 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", | 
 | 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, | 
 | 			   TCP_SKB_CB(skb)->end_seq); | 
 |  | 
 | 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); | 
 |  | 
 | 		/* If window is closed, drop tail of packet. But after | 
 | 		 * remembering D-SACK for its head made in previous line. | 
 | 		 */ | 
 | 		if (!tcp_receive_window(tp)) | 
 | 			goto out_of_window; | 
 | 		goto queue_and_out; | 
 | 	} | 
 |  | 
 | 	tcp_data_queue_ofo(sk, skb); | 
 | } | 
 |  | 
 | static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, | 
 | 					struct sk_buff_head *list) | 
 | { | 
 | 	struct sk_buff *next = NULL; | 
 |  | 
 | 	if (!skb_queue_is_last(list, skb)) | 
 | 		next = skb_queue_next(list, skb); | 
 |  | 
 | 	__skb_unlink(skb, list); | 
 | 	__kfree_skb(skb); | 
 | 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); | 
 |  | 
 | 	return next; | 
 | } | 
 |  | 
 | /* Collapse contiguous sequence of skbs head..tail with | 
 |  * sequence numbers start..end. | 
 |  * | 
 |  * If tail is NULL, this means until the end of the list. | 
 |  * | 
 |  * Segments with FIN/SYN are not collapsed (only because this | 
 |  * simplifies code) | 
 |  */ | 
 | static void | 
 | tcp_collapse(struct sock *sk, struct sk_buff_head *list, | 
 | 	     struct sk_buff *head, struct sk_buff *tail, | 
 | 	     u32 start, u32 end) | 
 | { | 
 | 	struct sk_buff *skb, *n; | 
 | 	bool end_of_skbs; | 
 |  | 
 | 	/* First, check that queue is collapsible and find | 
 | 	 * the point where collapsing can be useful. */ | 
 | 	skb = head; | 
 | restart: | 
 | 	end_of_skbs = true; | 
 | 	skb_queue_walk_from_safe(list, skb, n) { | 
 | 		if (skb == tail) | 
 | 			break; | 
 | 		/* No new bits? It is possible on ofo queue. */ | 
 | 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) { | 
 | 			skb = tcp_collapse_one(sk, skb, list); | 
 | 			if (!skb) | 
 | 				break; | 
 | 			goto restart; | 
 | 		} | 
 |  | 
 | 		/* The first skb to collapse is: | 
 | 		 * - not SYN/FIN and | 
 | 		 * - bloated or contains data before "start" or | 
 | 		 *   overlaps to the next one. | 
 | 		 */ | 
 | 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && | 
 | 		    (tcp_win_from_space(skb->truesize) > skb->len || | 
 | 		     before(TCP_SKB_CB(skb)->seq, start))) { | 
 | 			end_of_skbs = false; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (!skb_queue_is_last(list, skb)) { | 
 | 			struct sk_buff *next = skb_queue_next(list, skb); | 
 | 			if (next != tail && | 
 | 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { | 
 | 				end_of_skbs = false; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Decided to skip this, advance start seq. */ | 
 | 		start = TCP_SKB_CB(skb)->end_seq; | 
 | 	} | 
 | 	if (end_of_skbs || | 
 | 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) | 
 | 		return; | 
 |  | 
 | 	while (before(start, end)) { | 
 | 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); | 
 | 		struct sk_buff *nskb; | 
 |  | 
 | 		nskb = alloc_skb(copy, GFP_ATOMIC); | 
 | 		if (!nskb) | 
 | 			return; | 
 |  | 
 | 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); | 
 | 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; | 
 | 		__skb_queue_before(list, skb, nskb); | 
 | 		skb_set_owner_r(nskb, sk); | 
 |  | 
 | 		/* Copy data, releasing collapsed skbs. */ | 
 | 		while (copy > 0) { | 
 | 			int offset = start - TCP_SKB_CB(skb)->seq; | 
 | 			int size = TCP_SKB_CB(skb)->end_seq - start; | 
 |  | 
 | 			BUG_ON(offset < 0); | 
 | 			if (size > 0) { | 
 | 				size = min(copy, size); | 
 | 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) | 
 | 					BUG(); | 
 | 				TCP_SKB_CB(nskb)->end_seq += size; | 
 | 				copy -= size; | 
 | 				start += size; | 
 | 			} | 
 | 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) { | 
 | 				skb = tcp_collapse_one(sk, skb, list); | 
 | 				if (!skb || | 
 | 				    skb == tail || | 
 | 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) | 
 | 					return; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs | 
 |  * and tcp_collapse() them until all the queue is collapsed. | 
 |  */ | 
 | static void tcp_collapse_ofo_queue(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); | 
 | 	struct sk_buff *head; | 
 | 	u32 start, end; | 
 |  | 
 | 	if (skb == NULL) | 
 | 		return; | 
 |  | 
 | 	start = TCP_SKB_CB(skb)->seq; | 
 | 	end = TCP_SKB_CB(skb)->end_seq; | 
 | 	head = skb; | 
 |  | 
 | 	for (;;) { | 
 | 		struct sk_buff *next = NULL; | 
 |  | 
 | 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) | 
 | 			next = skb_queue_next(&tp->out_of_order_queue, skb); | 
 | 		skb = next; | 
 |  | 
 | 		/* Segment is terminated when we see gap or when | 
 | 		 * we are at the end of all the queue. */ | 
 | 		if (!skb || | 
 | 		    after(TCP_SKB_CB(skb)->seq, end) || | 
 | 		    before(TCP_SKB_CB(skb)->end_seq, start)) { | 
 | 			tcp_collapse(sk, &tp->out_of_order_queue, | 
 | 				     head, skb, start, end); | 
 | 			head = skb; | 
 | 			if (!skb) | 
 | 				break; | 
 | 			/* Start new segment */ | 
 | 			start = TCP_SKB_CB(skb)->seq; | 
 | 			end = TCP_SKB_CB(skb)->end_seq; | 
 | 		} else { | 
 | 			if (before(TCP_SKB_CB(skb)->seq, start)) | 
 | 				start = TCP_SKB_CB(skb)->seq; | 
 | 			if (after(TCP_SKB_CB(skb)->end_seq, end)) | 
 | 				end = TCP_SKB_CB(skb)->end_seq; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Purge the out-of-order queue. | 
 |  * Return true if queue was pruned. | 
 |  */ | 
 | static bool tcp_prune_ofo_queue(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	bool res = false; | 
 |  | 
 | 	if (!skb_queue_empty(&tp->out_of_order_queue)) { | 
 | 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); | 
 | 		__skb_queue_purge(&tp->out_of_order_queue); | 
 |  | 
 | 		/* Reset SACK state.  A conforming SACK implementation will | 
 | 		 * do the same at a timeout based retransmit.  When a connection | 
 | 		 * is in a sad state like this, we care only about integrity | 
 | 		 * of the connection not performance. | 
 | 		 */ | 
 | 		if (tp->rx_opt.sack_ok) | 
 | 			tcp_sack_reset(&tp->rx_opt); | 
 | 		sk_mem_reclaim(sk); | 
 | 		res = true; | 
 | 	} | 
 | 	return res; | 
 | } | 
 |  | 
 | /* Reduce allocated memory if we can, trying to get | 
 |  * the socket within its memory limits again. | 
 |  * | 
 |  * Return less than zero if we should start dropping frames | 
 |  * until the socket owning process reads some of the data | 
 |  * to stabilize the situation. | 
 |  */ | 
 | static int tcp_prune_queue(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); | 
 |  | 
 | 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); | 
 |  | 
 | 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) | 
 | 		tcp_clamp_window(sk); | 
 | 	else if (sk_under_memory_pressure(sk)) | 
 | 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); | 
 |  | 
 | 	tcp_collapse_ofo_queue(sk); | 
 | 	if (!skb_queue_empty(&sk->sk_receive_queue)) | 
 | 		tcp_collapse(sk, &sk->sk_receive_queue, | 
 | 			     skb_peek(&sk->sk_receive_queue), | 
 | 			     NULL, | 
 | 			     tp->copied_seq, tp->rcv_nxt); | 
 | 	sk_mem_reclaim(sk); | 
 |  | 
 | 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) | 
 | 		return 0; | 
 |  | 
 | 	/* Collapsing did not help, destructive actions follow. | 
 | 	 * This must not ever occur. */ | 
 |  | 
 | 	tcp_prune_ofo_queue(sk); | 
 |  | 
 | 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) | 
 | 		return 0; | 
 |  | 
 | 	/* If we are really being abused, tell the caller to silently | 
 | 	 * drop receive data on the floor.  It will get retransmitted | 
 | 	 * and hopefully then we'll have sufficient space. | 
 | 	 */ | 
 | 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); | 
 |  | 
 | 	/* Massive buffer overcommit. */ | 
 | 	tp->pred_flags = 0; | 
 | 	return -1; | 
 | } | 
 |  | 
 | static bool tcp_should_expand_sndbuf(const struct sock *sk) | 
 | { | 
 | 	const struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	/* If the user specified a specific send buffer setting, do | 
 | 	 * not modify it. | 
 | 	 */ | 
 | 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) | 
 | 		return false; | 
 |  | 
 | 	/* If we are under global TCP memory pressure, do not expand.  */ | 
 | 	if (sk_under_memory_pressure(sk)) | 
 | 		return false; | 
 |  | 
 | 	/* If we are under soft global TCP memory pressure, do not expand.  */ | 
 | 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) | 
 | 		return false; | 
 |  | 
 | 	/* If we filled the congestion window, do not expand.  */ | 
 | 	if (tp->packets_out >= tp->snd_cwnd) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* When incoming ACK allowed to free some skb from write_queue, | 
 |  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket | 
 |  * on the exit from tcp input handler. | 
 |  * | 
 |  * PROBLEM: sndbuf expansion does not work well with largesend. | 
 |  */ | 
 | static void tcp_new_space(struct sock *sk) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	if (tcp_should_expand_sndbuf(sk)) { | 
 | 		tcp_sndbuf_expand(sk); | 
 | 		tp->snd_cwnd_stamp = tcp_time_stamp; | 
 | 	} | 
 |  | 
 | 	sk->sk_write_space(sk); | 
 | } | 
 |  | 
 | static void tcp_check_space(struct sock *sk) | 
 | { | 
 | 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { | 
 | 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); | 
 | 		if (sk->sk_socket && | 
 | 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) | 
 | 			tcp_new_space(sk); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void tcp_data_snd_check(struct sock *sk) | 
 | { | 
 | 	tcp_push_pending_frames(sk); | 
 | 	tcp_check_space(sk); | 
 | } | 
 |  | 
 | /* | 
 |  * Check if sending an ack is needed. | 
 |  */ | 
 | static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	    /* More than one full frame received... */ | 
 | 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && | 
 | 	     /* ... and right edge of window advances far enough. | 
 | 	      * (tcp_recvmsg() will send ACK otherwise). Or... | 
 | 	      */ | 
 | 	     __tcp_select_window(sk) >= tp->rcv_wnd) || | 
 | 	    /* We ACK each frame or... */ | 
 | 	    tcp_in_quickack_mode(sk) || | 
 | 	    /* We have out of order data. */ | 
 | 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) { | 
 | 		/* Then ack it now */ | 
 | 		tcp_send_ack(sk); | 
 | 	} else { | 
 | 		/* Else, send delayed ack. */ | 
 | 		tcp_send_delayed_ack(sk); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void tcp_ack_snd_check(struct sock *sk) | 
 | { | 
 | 	if (!inet_csk_ack_scheduled(sk)) { | 
 | 		/* We sent a data segment already. */ | 
 | 		return; | 
 | 	} | 
 | 	__tcp_ack_snd_check(sk, 1); | 
 | } | 
 |  | 
 | /* | 
 |  *	This routine is only called when we have urgent data | 
 |  *	signaled. Its the 'slow' part of tcp_urg. It could be | 
 |  *	moved inline now as tcp_urg is only called from one | 
 |  *	place. We handle URGent data wrong. We have to - as | 
 |  *	BSD still doesn't use the correction from RFC961. | 
 |  *	For 1003.1g we should support a new option TCP_STDURG to permit | 
 |  *	either form (or just set the sysctl tcp_stdurg). | 
 |  */ | 
 |  | 
 | static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	u32 ptr = ntohs(th->urg_ptr); | 
 |  | 
 | 	if (ptr && !sysctl_tcp_stdurg) | 
 | 		ptr--; | 
 | 	ptr += ntohl(th->seq); | 
 |  | 
 | 	/* Ignore urgent data that we've already seen and read. */ | 
 | 	if (after(tp->copied_seq, ptr)) | 
 | 		return; | 
 |  | 
 | 	/* Do not replay urg ptr. | 
 | 	 * | 
 | 	 * NOTE: interesting situation not covered by specs. | 
 | 	 * Misbehaving sender may send urg ptr, pointing to segment, | 
 | 	 * which we already have in ofo queue. We are not able to fetch | 
 | 	 * such data and will stay in TCP_URG_NOTYET until will be eaten | 
 | 	 * by recvmsg(). Seems, we are not obliged to handle such wicked | 
 | 	 * situations. But it is worth to think about possibility of some | 
 | 	 * DoSes using some hypothetical application level deadlock. | 
 | 	 */ | 
 | 	if (before(ptr, tp->rcv_nxt)) | 
 | 		return; | 
 |  | 
 | 	/* Do we already have a newer (or duplicate) urgent pointer? */ | 
 | 	if (tp->urg_data && !after(ptr, tp->urg_seq)) | 
 | 		return; | 
 |  | 
 | 	/* Tell the world about our new urgent pointer. */ | 
 | 	sk_send_sigurg(sk); | 
 |  | 
 | 	/* We may be adding urgent data when the last byte read was | 
 | 	 * urgent. To do this requires some care. We cannot just ignore | 
 | 	 * tp->copied_seq since we would read the last urgent byte again | 
 | 	 * as data, nor can we alter copied_seq until this data arrives | 
 | 	 * or we break the semantics of SIOCATMARK (and thus sockatmark()) | 
 | 	 * | 
 | 	 * NOTE. Double Dutch. Rendering to plain English: author of comment | 
 | 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB); | 
 | 	 * and expect that both A and B disappear from stream. This is _wrong_. | 
 | 	 * Though this happens in BSD with high probability, this is occasional. | 
 | 	 * Any application relying on this is buggy. Note also, that fix "works" | 
 | 	 * only in this artificial test. Insert some normal data between A and B and we will | 
 | 	 * decline of BSD again. Verdict: it is better to remove to trap | 
 | 	 * buggy users. | 
 | 	 */ | 
 | 	if (tp->urg_seq == tp->copied_seq && tp->urg_data && | 
 | 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { | 
 | 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); | 
 | 		tp->copied_seq++; | 
 | 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { | 
 | 			__skb_unlink(skb, &sk->sk_receive_queue); | 
 | 			__kfree_skb(skb); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	tp->urg_data = TCP_URG_NOTYET; | 
 | 	tp->urg_seq = ptr; | 
 |  | 
 | 	/* Disable header prediction. */ | 
 | 	tp->pred_flags = 0; | 
 | } | 
 |  | 
 | /* This is the 'fast' part of urgent handling. */ | 
 | static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	/* Check if we get a new urgent pointer - normally not. */ | 
 | 	if (th->urg) | 
 | 		tcp_check_urg(sk, th); | 
 |  | 
 | 	/* Do we wait for any urgent data? - normally not... */ | 
 | 	if (tp->urg_data == TCP_URG_NOTYET) { | 
 | 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - | 
 | 			  th->syn; | 
 |  | 
 | 		/* Is the urgent pointer pointing into this packet? */ | 
 | 		if (ptr < skb->len) { | 
 | 			u8 tmp; | 
 | 			if (skb_copy_bits(skb, ptr, &tmp, 1)) | 
 | 				BUG(); | 
 | 			tp->urg_data = TCP_URG_VALID | tmp; | 
 | 			if (!sock_flag(sk, SOCK_DEAD)) | 
 | 				sk->sk_data_ready(sk); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	int chunk = skb->len - hlen; | 
 | 	int err; | 
 |  | 
 | 	local_bh_enable(); | 
 | 	if (skb_csum_unnecessary(skb)) | 
 | 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); | 
 | 	else | 
 | 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); | 
 |  | 
 | 	if (!err) { | 
 | 		tp->ucopy.len -= chunk; | 
 | 		tp->copied_seq += chunk; | 
 | 		tcp_rcv_space_adjust(sk); | 
 | 	} | 
 |  | 
 | 	local_bh_disable(); | 
 | 	return err; | 
 | } | 
 |  | 
 | static __sum16 __tcp_checksum_complete_user(struct sock *sk, | 
 | 					    struct sk_buff *skb) | 
 | { | 
 | 	__sum16 result; | 
 |  | 
 | 	if (sock_owned_by_user(sk)) { | 
 | 		local_bh_enable(); | 
 | 		result = __tcp_checksum_complete(skb); | 
 | 		local_bh_disable(); | 
 | 	} else { | 
 | 		result = __tcp_checksum_complete(skb); | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | static inline bool tcp_checksum_complete_user(struct sock *sk, | 
 | 					     struct sk_buff *skb) | 
 | { | 
 | 	return !skb_csum_unnecessary(skb) && | 
 | 	       __tcp_checksum_complete_user(sk, skb); | 
 | } | 
 |  | 
 | /* Does PAWS and seqno based validation of an incoming segment, flags will | 
 |  * play significant role here. | 
 |  */ | 
 | static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, | 
 | 				  const struct tcphdr *th, int syn_inerr) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	/* RFC1323: H1. Apply PAWS check first. */ | 
 | 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && | 
 | 	    tcp_paws_discard(sk, skb)) { | 
 | 		if (!th->rst) { | 
 | 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); | 
 | 			if (!tcp_oow_rate_limited(sock_net(sk), skb, | 
 | 						  LINUX_MIB_TCPACKSKIPPEDPAWS, | 
 | 						  &tp->last_oow_ack_time)) | 
 | 				tcp_send_dupack(sk, skb); | 
 | 			goto discard; | 
 | 		} | 
 | 		/* Reset is accepted even if it did not pass PAWS. */ | 
 | 	} | 
 |  | 
 | 	/* Step 1: check sequence number */ | 
 | 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { | 
 | 		/* RFC793, page 37: "In all states except SYN-SENT, all reset | 
 | 		 * (RST) segments are validated by checking their SEQ-fields." | 
 | 		 * And page 69: "If an incoming segment is not acceptable, | 
 | 		 * an acknowledgment should be sent in reply (unless the RST | 
 | 		 * bit is set, if so drop the segment and return)". | 
 | 		 */ | 
 | 		if (!th->rst) { | 
 | 			if (th->syn) | 
 | 				goto syn_challenge; | 
 | 			if (!tcp_oow_rate_limited(sock_net(sk), skb, | 
 | 						  LINUX_MIB_TCPACKSKIPPEDSEQ, | 
 | 						  &tp->last_oow_ack_time)) | 
 | 				tcp_send_dupack(sk, skb); | 
 | 		} | 
 | 		goto discard; | 
 | 	} | 
 |  | 
 | 	/* Step 2: check RST bit */ | 
 | 	if (th->rst) { | 
 | 		/* RFC 5961 3.2 : | 
 | 		 * If sequence number exactly matches RCV.NXT, then | 
 | 		 *     RESET the connection | 
 | 		 * else | 
 | 		 *     Send a challenge ACK | 
 | 		 */ | 
 | 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) | 
 | 			tcp_reset(sk); | 
 | 		else | 
 | 			tcp_send_challenge_ack(sk, skb); | 
 | 		goto discard; | 
 | 	} | 
 |  | 
 | 	/* step 3: check security and precedence [ignored] */ | 
 |  | 
 | 	/* step 4: Check for a SYN | 
 | 	 * RFC 5961 4.2 : Send a challenge ack | 
 | 	 */ | 
 | 	if (th->syn) { | 
 | syn_challenge: | 
 | 		if (syn_inerr) | 
 | 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); | 
 | 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); | 
 | 		tcp_send_challenge_ack(sk, skb); | 
 | 		goto discard; | 
 | 	} | 
 |  | 
 | 	return true; | 
 |  | 
 | discard: | 
 | 	__kfree_skb(skb); | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  *	TCP receive function for the ESTABLISHED state. | 
 |  * | 
 |  *	It is split into a fast path and a slow path. The fast path is | 
 |  * 	disabled when: | 
 |  *	- A zero window was announced from us - zero window probing | 
 |  *        is only handled properly in the slow path. | 
 |  *	- Out of order segments arrived. | 
 |  *	- Urgent data is expected. | 
 |  *	- There is no buffer space left | 
 |  *	- Unexpected TCP flags/window values/header lengths are received | 
 |  *	  (detected by checking the TCP header against pred_flags) | 
 |  *	- Data is sent in both directions. Fast path only supports pure senders | 
 |  *	  or pure receivers (this means either the sequence number or the ack | 
 |  *	  value must stay constant) | 
 |  *	- Unexpected TCP option. | 
 |  * | 
 |  *	When these conditions are not satisfied it drops into a standard | 
 |  *	receive procedure patterned after RFC793 to handle all cases. | 
 |  *	The first three cases are guaranteed by proper pred_flags setting, | 
 |  *	the rest is checked inline. Fast processing is turned on in | 
 |  *	tcp_data_queue when everything is OK. | 
 |  */ | 
 | void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, | 
 | 			 const struct tcphdr *th, unsigned int len) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 |  | 
 | 	if (unlikely(sk->sk_rx_dst == NULL)) | 
 | 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); | 
 | 	/* | 
 | 	 *	Header prediction. | 
 | 	 *	The code loosely follows the one in the famous | 
 | 	 *	"30 instruction TCP receive" Van Jacobson mail. | 
 | 	 * | 
 | 	 *	Van's trick is to deposit buffers into socket queue | 
 | 	 *	on a device interrupt, to call tcp_recv function | 
 | 	 *	on the receive process context and checksum and copy | 
 | 	 *	the buffer to user space. smart... | 
 | 	 * | 
 | 	 *	Our current scheme is not silly either but we take the | 
 | 	 *	extra cost of the net_bh soft interrupt processing... | 
 | 	 *	We do checksum and copy also but from device to kernel. | 
 | 	 */ | 
 |  | 
 | 	tp->rx_opt.saw_tstamp = 0; | 
 |  | 
 | 	/*	pred_flags is 0xS?10 << 16 + snd_wnd | 
 | 	 *	if header_prediction is to be made | 
 | 	 *	'S' will always be tp->tcp_header_len >> 2 | 
 | 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to | 
 | 	 *  turn it off	(when there are holes in the receive | 
 | 	 *	 space for instance) | 
 | 	 *	PSH flag is ignored. | 
 | 	 */ | 
 |  | 
 | 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && | 
 | 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt && | 
 | 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { | 
 | 		int tcp_header_len = tp->tcp_header_len; | 
 |  | 
 | 		/* Timestamp header prediction: tcp_header_len | 
 | 		 * is automatically equal to th->doff*4 due to pred_flags | 
 | 		 * match. | 
 | 		 */ | 
 |  | 
 | 		/* Check timestamp */ | 
 | 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { | 
 | 			/* No? Slow path! */ | 
 | 			if (!tcp_parse_aligned_timestamp(tp, th)) | 
 | 				goto slow_path; | 
 |  | 
 | 			/* If PAWS failed, check it more carefully in slow path */ | 
 | 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) | 
 | 				goto slow_path; | 
 |  | 
 | 			/* DO NOT update ts_recent here, if checksum fails | 
 | 			 * and timestamp was corrupted part, it will result | 
 | 			 * in a hung connection since we will drop all | 
 | 			 * future packets due to the PAWS test. | 
 | 			 */ | 
 | 		} | 
 |  | 
 | 		if (len <= tcp_header_len) { | 
 | 			/* Bulk data transfer: sender */ | 
 | 			if (len == tcp_header_len) { | 
 | 				/* Predicted packet is in window by definition. | 
 | 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt. | 
 | 				 * Hence, check seq<=rcv_wup reduces to: | 
 | 				 */ | 
 | 				if (tcp_header_len == | 
 | 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && | 
 | 				    tp->rcv_nxt == tp->rcv_wup) | 
 | 					tcp_store_ts_recent(tp); | 
 |  | 
 | 				/* We know that such packets are checksummed | 
 | 				 * on entry. | 
 | 				 */ | 
 | 				tcp_ack(sk, skb, 0); | 
 | 				__kfree_skb(skb); | 
 | 				tcp_data_snd_check(sk); | 
 | 				return; | 
 | 			} else { /* Header too small */ | 
 | 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); | 
 | 				goto discard; | 
 | 			} | 
 | 		} else { | 
 | 			int eaten = 0; | 
 | 			bool fragstolen = false; | 
 |  | 
 | 			if (tp->ucopy.task == current && | 
 | 			    tp->copied_seq == tp->rcv_nxt && | 
 | 			    len - tcp_header_len <= tp->ucopy.len && | 
 | 			    sock_owned_by_user(sk)) { | 
 | 				__set_current_state(TASK_RUNNING); | 
 |  | 
 | 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { | 
 | 					/* Predicted packet is in window by definition. | 
 | 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt. | 
 | 					 * Hence, check seq<=rcv_wup reduces to: | 
 | 					 */ | 
 | 					if (tcp_header_len == | 
 | 					    (sizeof(struct tcphdr) + | 
 | 					     TCPOLEN_TSTAMP_ALIGNED) && | 
 | 					    tp->rcv_nxt == tp->rcv_wup) | 
 | 						tcp_store_ts_recent(tp); | 
 |  | 
 | 					tcp_rcv_rtt_measure_ts(sk, skb); | 
 |  | 
 | 					__skb_pull(skb, tcp_header_len); | 
 | 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; | 
 | 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); | 
 | 					eaten = 1; | 
 | 				} | 
 | 			} | 
 | 			if (!eaten) { | 
 | 				if (tcp_checksum_complete_user(sk, skb)) | 
 | 					goto csum_error; | 
 |  | 
 | 				if ((int)skb->truesize > sk->sk_forward_alloc) | 
 | 					goto step5; | 
 |  | 
 | 				/* Predicted packet is in window by definition. | 
 | 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt. | 
 | 				 * Hence, check seq<=rcv_wup reduces to: | 
 | 				 */ | 
 | 				if (tcp_header_len == | 
 | 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && | 
 | 				    tp->rcv_nxt == tp->rcv_wup) | 
 | 					tcp_store_ts_recent(tp); | 
 |  | 
 | 				tcp_rcv_rtt_measure_ts(sk, skb); | 
 |  | 
 | 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); | 
 |  | 
 | 				/* Bulk data transfer: receiver */ | 
 | 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len, | 
 | 						      &fragstolen); | 
 | 			} | 
 |  | 
 | 			tcp_event_data_recv(sk, skb); | 
 |  | 
 | 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { | 
 | 				/* Well, only one small jumplet in fast path... */ | 
 | 				tcp_ack(sk, skb, FLAG_DATA); | 
 | 				tcp_data_snd_check(sk); | 
 | 				if (!inet_csk_ack_scheduled(sk)) | 
 | 					goto no_ack; | 
 | 			} | 
 |  | 
 | 			__tcp_ack_snd_check(sk, 0); | 
 | no_ack: | 
 | 			if (eaten) | 
 | 				kfree_skb_partial(skb, fragstolen); | 
 | 			sk->sk_data_ready(sk); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | slow_path: | 
 | 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) | 
 | 		goto csum_error; | 
 |  | 
 | 	if (!th->ack && !th->rst && !th->syn) | 
 | 		goto discard; | 
 |  | 
 | 	/* | 
 | 	 *	Standard slow path. | 
 | 	 */ | 
 |  | 
 | 	if (!tcp_validate_incoming(sk, skb, th, 1)) | 
 | 		return; | 
 |  | 
 | step5: | 
 | 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) | 
 | 		goto discard; | 
 |  | 
 | 	tcp_rcv_rtt_measure_ts(sk, skb); | 
 |  | 
 | 	/* Process urgent data. */ | 
 | 	tcp_urg(sk, skb, th); | 
 |  | 
 | 	/* step 7: process the segment text */ | 
 | 	tcp_data_queue(sk, skb); | 
 |  | 
 | 	tcp_data_snd_check(sk); | 
 | 	tcp_ack_snd_check(sk); | 
 | 	return; | 
 |  | 
 | csum_error: | 
 | 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); | 
 | 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); | 
 |  | 
 | discard: | 
 | 	__kfree_skb(skb); | 
 | } | 
 | EXPORT_SYMBOL(tcp_rcv_established); | 
 |  | 
 | void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 |  | 
 | 	tcp_set_state(sk, TCP_ESTABLISHED); | 
 |  | 
 | 	if (skb != NULL) { | 
 | 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); | 
 | 		security_inet_conn_established(sk, skb); | 
 | 	} | 
 |  | 
 | 	/* Make sure socket is routed, for correct metrics.  */ | 
 | 	icsk->icsk_af_ops->rebuild_header(sk); | 
 |  | 
 | 	tcp_init_metrics(sk); | 
 |  | 
 | 	tcp_init_congestion_control(sk); | 
 |  | 
 | 	/* Prevent spurious tcp_cwnd_restart() on first data | 
 | 	 * packet. | 
 | 	 */ | 
 | 	tp->lsndtime = tcp_time_stamp; | 
 |  | 
 | 	tcp_init_buffer_space(sk); | 
 |  | 
 | 	if (sock_flag(sk, SOCK_KEEPOPEN)) | 
 | 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); | 
 |  | 
 | 	if (!tp->rx_opt.snd_wscale) | 
 | 		__tcp_fast_path_on(tp, tp->snd_wnd); | 
 | 	else | 
 | 		tp->pred_flags = 0; | 
 |  | 
 | 	if (!sock_flag(sk, SOCK_DEAD)) { | 
 | 		sk->sk_state_change(sk); | 
 | 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); | 
 | 	} | 
 | } | 
 |  | 
 | static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, | 
 | 				    struct tcp_fastopen_cookie *cookie) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; | 
 | 	u16 mss = tp->rx_opt.mss_clamp; | 
 | 	bool syn_drop; | 
 |  | 
 | 	if (mss == tp->rx_opt.user_mss) { | 
 | 		struct tcp_options_received opt; | 
 |  | 
 | 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */ | 
 | 		tcp_clear_options(&opt); | 
 | 		opt.user_mss = opt.mss_clamp = 0; | 
 | 		tcp_parse_options(synack, &opt, 0, NULL); | 
 | 		mss = opt.mss_clamp; | 
 | 	} | 
 |  | 
 | 	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */ | 
 | 		cookie->len = -1; | 
 |  | 
 | 	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably | 
 | 	 * the remote receives only the retransmitted (regular) SYNs: either | 
 | 	 * the original SYN-data or the corresponding SYN-ACK is lost. | 
 | 	 */ | 
 | 	syn_drop = (cookie->len <= 0 && data && tp->total_retrans); | 
 |  | 
 | 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop); | 
 |  | 
 | 	if (data) { /* Retransmit unacked data in SYN */ | 
 | 		tcp_for_write_queue_from(data, sk) { | 
 | 			if (data == tcp_send_head(sk) || | 
 | 			    __tcp_retransmit_skb(sk, data)) | 
 | 				break; | 
 | 		} | 
 | 		tcp_rearm_rto(sk); | 
 | 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); | 
 | 		return true; | 
 | 	} | 
 | 	tp->syn_data_acked = tp->syn_data; | 
 | 	if (tp->syn_data_acked) | 
 | 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); | 
 | 	return false; | 
 | } | 
 |  | 
 | static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, | 
 | 					 const struct tcphdr *th, unsigned int len) | 
 | { | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct tcp_fastopen_cookie foc = { .len = -1 }; | 
 | 	int saved_clamp = tp->rx_opt.mss_clamp; | 
 |  | 
 | 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc); | 
 | 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) | 
 | 		tp->rx_opt.rcv_tsecr -= tp->tsoffset; | 
 |  | 
 | 	if (th->ack) { | 
 | 		/* rfc793: | 
 | 		 * "If the state is SYN-SENT then | 
 | 		 *    first check the ACK bit | 
 | 		 *      If the ACK bit is set | 
 | 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send | 
 | 		 *        a reset (unless the RST bit is set, if so drop | 
 | 		 *        the segment and return)" | 
 | 		 */ | 
 | 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || | 
 | 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) | 
 | 			goto reset_and_undo; | 
 |  | 
 | 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && | 
 | 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, | 
 | 			     tcp_time_stamp)) { | 
 | 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); | 
 | 			goto reset_and_undo; | 
 | 		} | 
 |  | 
 | 		/* Now ACK is acceptable. | 
 | 		 * | 
 | 		 * "If the RST bit is set | 
 | 		 *    If the ACK was acceptable then signal the user "error: | 
 | 		 *    connection reset", drop the segment, enter CLOSED state, | 
 | 		 *    delete TCB, and return." | 
 | 		 */ | 
 |  | 
 | 		if (th->rst) { | 
 | 			tcp_reset(sk); | 
 | 			goto discard; | 
 | 		} | 
 |  | 
 | 		/* rfc793: | 
 | 		 *   "fifth, if neither of the SYN or RST bits is set then | 
 | 		 *    drop the segment and return." | 
 | 		 * | 
 | 		 *    See note below! | 
 | 		 *                                        --ANK(990513) | 
 | 		 */ | 
 | 		if (!th->syn) | 
 | 			goto discard_and_undo; | 
 |  | 
 | 		/* rfc793: | 
 | 		 *   "If the SYN bit is on ... | 
 | 		 *    are acceptable then ... | 
 | 		 *    (our SYN has been ACKed), change the connection | 
 | 		 *    state to ESTABLISHED..." | 
 | 		 */ | 
 |  | 
 | 		tcp_ecn_rcv_synack(tp, th); | 
 |  | 
 | 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); | 
 | 		tcp_ack(sk, skb, FLAG_SLOWPATH); | 
 |  | 
 | 		/* Ok.. it's good. Set up sequence numbers and | 
 | 		 * move to established. | 
 | 		 */ | 
 | 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; | 
 | 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; | 
 |  | 
 | 		/* RFC1323: The window in SYN & SYN/ACK segments is | 
 | 		 * never scaled. | 
 | 		 */ | 
 | 		tp->snd_wnd = ntohs(th->window); | 
 |  | 
 | 		if (!tp->rx_opt.wscale_ok) { | 
 | 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; | 
 | 			tp->window_clamp = min(tp->window_clamp, 65535U); | 
 | 		} | 
 |  | 
 | 		if (tp->rx_opt.saw_tstamp) { | 
 | 			tp->rx_opt.tstamp_ok	   = 1; | 
 | 			tp->tcp_header_len = | 
 | 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; | 
 | 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED; | 
 | 			tcp_store_ts_recent(tp); | 
 | 		} else { | 
 | 			tp->tcp_header_len = sizeof(struct tcphdr); | 
 | 		} | 
 |  | 
 | 		if (tcp_is_sack(tp) && sysctl_tcp_fack) | 
 | 			tcp_enable_fack(tp); | 
 |  | 
 | 		tcp_mtup_init(sk); | 
 | 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); | 
 | 		tcp_initialize_rcv_mss(sk); | 
 |  | 
 | 		/* Remember, tcp_poll() does not lock socket! | 
 | 		 * Change state from SYN-SENT only after copied_seq | 
 | 		 * is initialized. */ | 
 | 		tp->copied_seq = tp->rcv_nxt; | 
 |  | 
 | 		smp_mb(); | 
 |  | 
 | 		tcp_finish_connect(sk, skb); | 
 |  | 
 | 		if ((tp->syn_fastopen || tp->syn_data) && | 
 | 		    tcp_rcv_fastopen_synack(sk, skb, &foc)) | 
 | 			return -1; | 
 |  | 
 | 		if (sk->sk_write_pending || | 
 | 		    icsk->icsk_accept_queue.rskq_defer_accept || | 
 | 		    icsk->icsk_ack.pingpong) { | 
 | 			/* Save one ACK. Data will be ready after | 
 | 			 * several ticks, if write_pending is set. | 
 | 			 * | 
 | 			 * It may be deleted, but with this feature tcpdumps | 
 | 			 * look so _wonderfully_ clever, that I was not able | 
 | 			 * to stand against the temptation 8)     --ANK | 
 | 			 */ | 
 | 			inet_csk_schedule_ack(sk); | 
 | 			icsk->icsk_ack.lrcvtime = tcp_time_stamp; | 
 | 			tcp_enter_quickack_mode(sk); | 
 | 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, | 
 | 						  TCP_DELACK_MAX, TCP_RTO_MAX); | 
 |  | 
 | discard: | 
 | 			__kfree_skb(skb); | 
 | 			return 0; | 
 | 		} else { | 
 | 			tcp_send_ack(sk); | 
 | 		} | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	/* No ACK in the segment */ | 
 |  | 
 | 	if (th->rst) { | 
 | 		/* rfc793: | 
 | 		 * "If the RST bit is set | 
 | 		 * | 
 | 		 *      Otherwise (no ACK) drop the segment and return." | 
 | 		 */ | 
 |  | 
 | 		goto discard_and_undo; | 
 | 	} | 
 |  | 
 | 	/* PAWS check. */ | 
 | 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && | 
 | 	    tcp_paws_reject(&tp->rx_opt, 0)) | 
 | 		goto discard_and_undo; | 
 |  | 
 | 	if (th->syn) { | 
 | 		/* We see SYN without ACK. It is attempt of | 
 | 		 * simultaneous connect with crossed SYNs. | 
 | 		 * Particularly, it can be connect to self. | 
 | 		 */ | 
 | 		tcp_set_state(sk, TCP_SYN_RECV); | 
 |  | 
 | 		if (tp->rx_opt.saw_tstamp) { | 
 | 			tp->rx_opt.tstamp_ok = 1; | 
 | 			tcp_store_ts_recent(tp); | 
 | 			tp->tcp_header_len = | 
 | 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; | 
 | 		} else { | 
 | 			tp->tcp_header_len = sizeof(struct tcphdr); | 
 | 		} | 
 |  | 
 | 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; | 
 | 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; | 
 |  | 
 | 		/* RFC1323: The window in SYN & SYN/ACK segments is | 
 | 		 * never scaled. | 
 | 		 */ | 
 | 		tp->snd_wnd    = ntohs(th->window); | 
 | 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq; | 
 | 		tp->max_window = tp->snd_wnd; | 
 |  | 
 | 		tcp_ecn_rcv_syn(tp, th); | 
 |  | 
 | 		tcp_mtup_init(sk); | 
 | 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); | 
 | 		tcp_initialize_rcv_mss(sk); | 
 |  | 
 | 		tcp_send_synack(sk); | 
 | #if 0 | 
 | 		/* Note, we could accept data and URG from this segment. | 
 | 		 * There are no obstacles to make this (except that we must | 
 | 		 * either change tcp_recvmsg() to prevent it from returning data | 
 | 		 * before 3WHS completes per RFC793, or employ TCP Fast Open). | 
 | 		 * | 
 | 		 * However, if we ignore data in ACKless segments sometimes, | 
 | 		 * we have no reasons to accept it sometimes. | 
 | 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process | 
 | 		 * is not flawless. So, discard packet for sanity. | 
 | 		 * Uncomment this return to process the data. | 
 | 		 */ | 
 | 		return -1; | 
 | #else | 
 | 		goto discard; | 
 | #endif | 
 | 	} | 
 | 	/* "fifth, if neither of the SYN or RST bits is set then | 
 | 	 * drop the segment and return." | 
 | 	 */ | 
 |  | 
 | discard_and_undo: | 
 | 	tcp_clear_options(&tp->rx_opt); | 
 | 	tp->rx_opt.mss_clamp = saved_clamp; | 
 | 	goto discard; | 
 |  | 
 | reset_and_undo: | 
 | 	tcp_clear_options(&tp->rx_opt); | 
 | 	tp->rx_opt.mss_clamp = saved_clamp; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  *	This function implements the receiving procedure of RFC 793 for | 
 |  *	all states except ESTABLISHED and TIME_WAIT. | 
 |  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be | 
 |  *	address independent. | 
 |  */ | 
 |  | 
 | int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, | 
 | 			  const struct tcphdr *th, unsigned int len) | 
 | { | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct inet_connection_sock *icsk = inet_csk(sk); | 
 | 	struct request_sock *req; | 
 | 	int queued = 0; | 
 | 	bool acceptable; | 
 | 	u32 synack_stamp; | 
 |  | 
 | 	tp->rx_opt.saw_tstamp = 0; | 
 |  | 
 | 	switch (sk->sk_state) { | 
 | 	case TCP_CLOSE: | 
 | 		goto discard; | 
 |  | 
 | 	case TCP_LISTEN: | 
 | 		if (th->ack) | 
 | 			return 1; | 
 |  | 
 | 		if (th->rst) | 
 | 			goto discard; | 
 |  | 
 | 		if (th->syn) { | 
 | 			if (th->fin) | 
 | 				goto discard; | 
 | 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) | 
 | 				return 1; | 
 |  | 
 | 			/* Now we have several options: In theory there is | 
 | 			 * nothing else in the frame. KA9Q has an option to | 
 | 			 * send data with the syn, BSD accepts data with the | 
 | 			 * syn up to the [to be] advertised window and | 
 | 			 * Solaris 2.1 gives you a protocol error. For now | 
 | 			 * we just ignore it, that fits the spec precisely | 
 | 			 * and avoids incompatibilities. It would be nice in | 
 | 			 * future to drop through and process the data. | 
 | 			 * | 
 | 			 * Now that TTCP is starting to be used we ought to | 
 | 			 * queue this data. | 
 | 			 * But, this leaves one open to an easy denial of | 
 | 			 * service attack, and SYN cookies can't defend | 
 | 			 * against this problem. So, we drop the data | 
 | 			 * in the interest of security over speed unless | 
 | 			 * it's still in use. | 
 | 			 */ | 
 | 			kfree_skb(skb); | 
 | 			return 0; | 
 | 		} | 
 | 		goto discard; | 
 |  | 
 | 	case TCP_SYN_SENT: | 
 | 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len); | 
 | 		if (queued >= 0) | 
 | 			return queued; | 
 |  | 
 | 		/* Do step6 onward by hand. */ | 
 | 		tcp_urg(sk, skb, th); | 
 | 		__kfree_skb(skb); | 
 | 		tcp_data_snd_check(sk); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	req = tp->fastopen_rsk; | 
 | 	if (req != NULL) { | 
 | 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && | 
 | 		    sk->sk_state != TCP_FIN_WAIT1); | 
 |  | 
 | 		if (tcp_check_req(sk, skb, req, NULL, true) == NULL) | 
 | 			goto discard; | 
 | 	} | 
 |  | 
 | 	if (!th->ack && !th->rst && !th->syn) | 
 | 		goto discard; | 
 |  | 
 | 	if (!tcp_validate_incoming(sk, skb, th, 0)) | 
 | 		return 0; | 
 |  | 
 | 	/* step 5: check the ACK field */ | 
 | 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | | 
 | 				      FLAG_UPDATE_TS_RECENT) > 0; | 
 |  | 
 | 	switch (sk->sk_state) { | 
 | 	case TCP_SYN_RECV: | 
 | 		if (!acceptable) | 
 | 			return 1; | 
 |  | 
 | 		/* Once we leave TCP_SYN_RECV, we no longer need req | 
 | 		 * so release it. | 
 | 		 */ | 
 | 		if (req) { | 
 | 			synack_stamp = tcp_rsk(req)->snt_synack; | 
 | 			tp->total_retrans = req->num_retrans; | 
 | 			reqsk_fastopen_remove(sk, req, false); | 
 | 		} else { | 
 | 			synack_stamp = tp->lsndtime; | 
 | 			/* Make sure socket is routed, for correct metrics. */ | 
 | 			icsk->icsk_af_ops->rebuild_header(sk); | 
 | 			tcp_init_congestion_control(sk); | 
 |  | 
 | 			tcp_mtup_init(sk); | 
 | 			tp->copied_seq = tp->rcv_nxt; | 
 | 			tcp_init_buffer_space(sk); | 
 | 		} | 
 | 		smp_mb(); | 
 | 		tcp_set_state(sk, TCP_ESTABLISHED); | 
 | 		sk->sk_state_change(sk); | 
 |  | 
 | 		/* Note, that this wakeup is only for marginal crossed SYN case. | 
 | 		 * Passively open sockets are not waked up, because | 
 | 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL. | 
 | 		 */ | 
 | 		if (sk->sk_socket) | 
 | 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); | 
 |  | 
 | 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq; | 
 | 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; | 
 | 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); | 
 | 		tcp_synack_rtt_meas(sk, synack_stamp); | 
 |  | 
 | 		if (tp->rx_opt.tstamp_ok) | 
 | 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; | 
 |  | 
 | 		if (req) { | 
 | 			/* Re-arm the timer because data may have been sent out. | 
 | 			 * This is similar to the regular data transmission case | 
 | 			 * when new data has just been ack'ed. | 
 | 			 * | 
 | 			 * (TFO) - we could try to be more aggressive and | 
 | 			 * retransmitting any data sooner based on when they | 
 | 			 * are sent out. | 
 | 			 */ | 
 | 			tcp_rearm_rto(sk); | 
 | 		} else | 
 | 			tcp_init_metrics(sk); | 
 |  | 
 | 		tcp_update_pacing_rate(sk); | 
 |  | 
 | 		/* Prevent spurious tcp_cwnd_restart() on first data packet */ | 
 | 		tp->lsndtime = tcp_time_stamp; | 
 |  | 
 | 		tcp_initialize_rcv_mss(sk); | 
 | 		tcp_fast_path_on(tp); | 
 | 		break; | 
 |  | 
 | 	case TCP_FIN_WAIT1: { | 
 | 		struct dst_entry *dst; | 
 | 		int tmo; | 
 |  | 
 | 		/* If we enter the TCP_FIN_WAIT1 state and we are a | 
 | 		 * Fast Open socket and this is the first acceptable | 
 | 		 * ACK we have received, this would have acknowledged | 
 | 		 * our SYNACK so stop the SYNACK timer. | 
 | 		 */ | 
 | 		if (req != NULL) { | 
 | 			/* Return RST if ack_seq is invalid. | 
 | 			 * Note that RFC793 only says to generate a | 
 | 			 * DUPACK for it but for TCP Fast Open it seems | 
 | 			 * better to treat this case like TCP_SYN_RECV | 
 | 			 * above. | 
 | 			 */ | 
 | 			if (!acceptable) | 
 | 				return 1; | 
 | 			/* We no longer need the request sock. */ | 
 | 			reqsk_fastopen_remove(sk, req, false); | 
 | 			tcp_rearm_rto(sk); | 
 | 		} | 
 | 		if (tp->snd_una != tp->write_seq) | 
 | 			break; | 
 |  | 
 | 		tcp_set_state(sk, TCP_FIN_WAIT2); | 
 | 		sk->sk_shutdown |= SEND_SHUTDOWN; | 
 |  | 
 | 		dst = __sk_dst_get(sk); | 
 | 		if (dst) | 
 | 			dst_confirm(dst); | 
 |  | 
 | 		if (!sock_flag(sk, SOCK_DEAD)) { | 
 | 			/* Wake up lingering close() */ | 
 | 			sk->sk_state_change(sk); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (tp->linger2 < 0 || | 
 | 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && | 
 | 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { | 
 | 			tcp_done(sk); | 
 | 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); | 
 | 			return 1; | 
 | 		} | 
 |  | 
 | 		tmo = tcp_fin_time(sk); | 
 | 		if (tmo > TCP_TIMEWAIT_LEN) { | 
 | 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); | 
 | 		} else if (th->fin || sock_owned_by_user(sk)) { | 
 | 			/* Bad case. We could lose such FIN otherwise. | 
 | 			 * It is not a big problem, but it looks confusing | 
 | 			 * and not so rare event. We still can lose it now, | 
 | 			 * if it spins in bh_lock_sock(), but it is really | 
 | 			 * marginal case. | 
 | 			 */ | 
 | 			inet_csk_reset_keepalive_timer(sk, tmo); | 
 | 		} else { | 
 | 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); | 
 | 			goto discard; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	case TCP_CLOSING: | 
 | 		if (tp->snd_una == tp->write_seq) { | 
 | 			tcp_time_wait(sk, TCP_TIME_WAIT, 0); | 
 | 			goto discard; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case TCP_LAST_ACK: | 
 | 		if (tp->snd_una == tp->write_seq) { | 
 | 			tcp_update_metrics(sk); | 
 | 			tcp_done(sk); | 
 | 			goto discard; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* step 6: check the URG bit */ | 
 | 	tcp_urg(sk, skb, th); | 
 |  | 
 | 	/* step 7: process the segment text */ | 
 | 	switch (sk->sk_state) { | 
 | 	case TCP_CLOSE_WAIT: | 
 | 	case TCP_CLOSING: | 
 | 	case TCP_LAST_ACK: | 
 | 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) | 
 | 			break; | 
 | 	case TCP_FIN_WAIT1: | 
 | 	case TCP_FIN_WAIT2: | 
 | 		/* RFC 793 says to queue data in these states, | 
 | 		 * RFC 1122 says we MUST send a reset. | 
 | 		 * BSD 4.4 also does reset. | 
 | 		 */ | 
 | 		if (sk->sk_shutdown & RCV_SHUTDOWN) { | 
 | 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && | 
 | 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { | 
 | 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); | 
 | 				tcp_reset(sk); | 
 | 				return 1; | 
 | 			} | 
 | 		} | 
 | 		/* Fall through */ | 
 | 	case TCP_ESTABLISHED: | 
 | 		tcp_data_queue(sk, skb); | 
 | 		queued = 1; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* tcp_data could move socket to TIME-WAIT */ | 
 | 	if (sk->sk_state != TCP_CLOSE) { | 
 | 		tcp_data_snd_check(sk); | 
 | 		tcp_ack_snd_check(sk); | 
 | 	} | 
 |  | 
 | 	if (!queued) { | 
 | discard: | 
 | 		__kfree_skb(skb); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(tcp_rcv_state_process); | 
 |  | 
 | static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) | 
 | { | 
 | 	struct inet_request_sock *ireq = inet_rsk(req); | 
 |  | 
 | 	if (family == AF_INET) | 
 | 		net_dbg_ratelimited("drop open request from %pI4/%u\n", | 
 | 				    &ireq->ir_rmt_addr, port); | 
 | #if IS_ENABLED(CONFIG_IPV6) | 
 | 	else if (family == AF_INET6) | 
 | 		net_dbg_ratelimited("drop open request from %pI6/%u\n", | 
 | 				    &ireq->ir_v6_rmt_addr, port); | 
 | #endif | 
 | } | 
 |  | 
 | /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set | 
 |  * | 
 |  * If we receive a SYN packet with these bits set, it means a | 
 |  * network is playing bad games with TOS bits. In order to | 
 |  * avoid possible false congestion notifications, we disable | 
 |  * TCP ECN negotiation. | 
 |  * | 
 |  * Exception: tcp_ca wants ECN. This is required for DCTCP | 
 |  * congestion control: Linux DCTCP asserts ECT on all packets, | 
 |  * including SYN, which is most optimal solution; however, | 
 |  * others, such as FreeBSD do not. | 
 |  */ | 
 | static void tcp_ecn_create_request(struct request_sock *req, | 
 | 				   const struct sk_buff *skb, | 
 | 				   const struct sock *listen_sk, | 
 | 				   const struct dst_entry *dst) | 
 | { | 
 | 	const struct tcphdr *th = tcp_hdr(skb); | 
 | 	const struct net *net = sock_net(listen_sk); | 
 | 	bool th_ecn = th->ece && th->cwr; | 
 | 	bool ect, ecn_ok; | 
 |  | 
 | 	if (!th_ecn) | 
 | 		return; | 
 |  | 
 | 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); | 
 | 	ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN); | 
 |  | 
 | 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk)) | 
 | 		inet_rsk(req)->ecn_ok = 1; | 
 | } | 
 |  | 
 | int tcp_conn_request(struct request_sock_ops *rsk_ops, | 
 | 		     const struct tcp_request_sock_ops *af_ops, | 
 | 		     struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	struct tcp_options_received tmp_opt; | 
 | 	struct request_sock *req; | 
 | 	struct tcp_sock *tp = tcp_sk(sk); | 
 | 	struct dst_entry *dst = NULL; | 
 | 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; | 
 | 	bool want_cookie = false, fastopen; | 
 | 	struct flowi fl; | 
 | 	struct tcp_fastopen_cookie foc = { .len = -1 }; | 
 | 	int err; | 
 |  | 
 |  | 
 | 	/* TW buckets are converted to open requests without | 
 | 	 * limitations, they conserve resources and peer is | 
 | 	 * evidently real one. | 
 | 	 */ | 
 | 	if ((sysctl_tcp_syncookies == 2 || | 
 | 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) { | 
 | 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); | 
 | 		if (!want_cookie) | 
 | 			goto drop; | 
 | 	} | 
 |  | 
 |  | 
 | 	/* Accept backlog is full. If we have already queued enough | 
 | 	 * of warm entries in syn queue, drop request. It is better than | 
 | 	 * clogging syn queue with openreqs with exponentially increasing | 
 | 	 * timeout. | 
 | 	 */ | 
 | 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { | 
 | 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); | 
 | 		goto drop; | 
 | 	} | 
 |  | 
 | 	req = inet_reqsk_alloc(rsk_ops); | 
 | 	if (!req) | 
 | 		goto drop; | 
 |  | 
 | 	tcp_rsk(req)->af_specific = af_ops; | 
 |  | 
 | 	tcp_clear_options(&tmp_opt); | 
 | 	tmp_opt.mss_clamp = af_ops->mss_clamp; | 
 | 	tmp_opt.user_mss  = tp->rx_opt.user_mss; | 
 | 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); | 
 |  | 
 | 	if (want_cookie && !tmp_opt.saw_tstamp) | 
 | 		tcp_clear_options(&tmp_opt); | 
 |  | 
 | 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; | 
 | 	tcp_openreq_init(req, &tmp_opt, skb, sk); | 
 |  | 
 | 	af_ops->init_req(req, sk, skb); | 
 |  | 
 | 	if (security_inet_conn_request(sk, skb, req)) | 
 | 		goto drop_and_free; | 
 |  | 
 | 	if (!want_cookie && !isn) { | 
 | 		/* VJ's idea. We save last timestamp seen | 
 | 		 * from the destination in peer table, when entering | 
 | 		 * state TIME-WAIT, and check against it before | 
 | 		 * accepting new connection request. | 
 | 		 * | 
 | 		 * If "isn" is not zero, this request hit alive | 
 | 		 * timewait bucket, so that all the necessary checks | 
 | 		 * are made in the function processing timewait state. | 
 | 		 */ | 
 | 		if (tcp_death_row.sysctl_tw_recycle) { | 
 | 			bool strict; | 
 |  | 
 | 			dst = af_ops->route_req(sk, &fl, req, &strict); | 
 |  | 
 | 			if (dst && strict && | 
 | 			    !tcp_peer_is_proven(req, dst, true, | 
 | 						tmp_opt.saw_tstamp)) { | 
 | 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); | 
 | 				goto drop_and_release; | 
 | 			} | 
 | 		} | 
 | 		/* Kill the following clause, if you dislike this way. */ | 
 | 		else if (!sysctl_tcp_syncookies && | 
 | 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < | 
 | 			  (sysctl_max_syn_backlog >> 2)) && | 
 | 			 !tcp_peer_is_proven(req, dst, false, | 
 | 					     tmp_opt.saw_tstamp)) { | 
 | 			/* Without syncookies last quarter of | 
 | 			 * backlog is filled with destinations, | 
 | 			 * proven to be alive. | 
 | 			 * It means that we continue to communicate | 
 | 			 * to destinations, already remembered | 
 | 			 * to the moment of synflood. | 
 | 			 */ | 
 | 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source), | 
 | 				    rsk_ops->family); | 
 | 			goto drop_and_release; | 
 | 		} | 
 |  | 
 | 		isn = af_ops->init_seq(skb); | 
 | 	} | 
 | 	if (!dst) { | 
 | 		dst = af_ops->route_req(sk, &fl, req, NULL); | 
 | 		if (!dst) | 
 | 			goto drop_and_free; | 
 | 	} | 
 |  | 
 | 	tcp_ecn_create_request(req, skb, sk, dst); | 
 |  | 
 | 	if (want_cookie) { | 
 | 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); | 
 | 		req->cookie_ts = tmp_opt.tstamp_ok; | 
 | 		if (!tmp_opt.tstamp_ok) | 
 | 			inet_rsk(req)->ecn_ok = 0; | 
 | 	} | 
 |  | 
 | 	tcp_rsk(req)->snt_isn = isn; | 
 | 	tcp_openreq_init_rwin(req, sk, dst); | 
 | 	fastopen = !want_cookie && | 
 | 		   tcp_try_fastopen(sk, skb, req, &foc, dst); | 
 | 	err = af_ops->send_synack(sk, dst, &fl, req, | 
 | 				  skb_get_queue_mapping(skb), &foc); | 
 | 	if (!fastopen) { | 
 | 		if (err || want_cookie) | 
 | 			goto drop_and_free; | 
 |  | 
 | 		tcp_rsk(req)->listener = NULL; | 
 | 		af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | drop_and_release: | 
 | 	dst_release(dst); | 
 | drop_and_free: | 
 | 	reqsk_free(req); | 
 | drop: | 
 | 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(tcp_conn_request); |