|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * SHA-256 routines supporting the Power 7+ Nest Accelerators driver | 
|  | * | 
|  | * Copyright (C) 2011-2012 International Business Machines Inc. | 
|  | * | 
|  | * Author: Kent Yoder <yoder1@us.ibm.com> | 
|  | */ | 
|  |  | 
|  | #include <crypto/internal/hash.h> | 
|  | #include <crypto/sha2.h> | 
|  | #include <linux/module.h> | 
|  | #include <asm/vio.h> | 
|  | #include <asm/byteorder.h> | 
|  |  | 
|  | #include "nx_csbcpb.h" | 
|  | #include "nx.h" | 
|  |  | 
|  | struct sha256_state_be { | 
|  | __be32 state[SHA256_DIGEST_SIZE / 4]; | 
|  | u64 count; | 
|  | u8 buf[SHA256_BLOCK_SIZE]; | 
|  | }; | 
|  |  | 
|  | static int nx_crypto_ctx_sha256_init(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm); | 
|  | int err; | 
|  |  | 
|  | err = nx_crypto_ctx_sha_init(tfm); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | nx_ctx_init(nx_ctx, HCOP_FC_SHA); | 
|  |  | 
|  | nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256]; | 
|  |  | 
|  | NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nx_sha256_init(struct shash_desc *desc) { | 
|  | struct sha256_state_be *sctx = shash_desc_ctx(desc); | 
|  |  | 
|  | memset(sctx, 0, sizeof *sctx); | 
|  |  | 
|  | sctx->state[0] = __cpu_to_be32(SHA256_H0); | 
|  | sctx->state[1] = __cpu_to_be32(SHA256_H1); | 
|  | sctx->state[2] = __cpu_to_be32(SHA256_H2); | 
|  | sctx->state[3] = __cpu_to_be32(SHA256_H3); | 
|  | sctx->state[4] = __cpu_to_be32(SHA256_H4); | 
|  | sctx->state[5] = __cpu_to_be32(SHA256_H5); | 
|  | sctx->state[6] = __cpu_to_be32(SHA256_H6); | 
|  | sctx->state[7] = __cpu_to_be32(SHA256_H7); | 
|  | sctx->count = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nx_sha256_update(struct shash_desc *desc, const u8 *data, | 
|  | unsigned int len) | 
|  | { | 
|  | struct sha256_state_be *sctx = shash_desc_ctx(desc); | 
|  | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
|  | struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; | 
|  | struct nx_sg *out_sg; | 
|  | u64 to_process = 0, leftover, total; | 
|  | unsigned long irq_flags; | 
|  | int rc = 0; | 
|  | int data_len; | 
|  | u32 max_sg_len; | 
|  | u64 buf_len = (sctx->count % SHA256_BLOCK_SIZE); | 
|  |  | 
|  | spin_lock_irqsave(&nx_ctx->lock, irq_flags); | 
|  |  | 
|  | /* 2 cases for total data len: | 
|  | *  1: < SHA256_BLOCK_SIZE: copy into state, return 0 | 
|  | *  2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover | 
|  | */ | 
|  | total = (sctx->count % SHA256_BLOCK_SIZE) + len; | 
|  | if (total < SHA256_BLOCK_SIZE) { | 
|  | memcpy(sctx->buf + buf_len, data, len); | 
|  | sctx->count += len; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | memcpy(csbcpb->cpb.sha256.message_digest, sctx->state, SHA256_DIGEST_SIZE); | 
|  | NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; | 
|  | NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; | 
|  |  | 
|  | max_sg_len = min_t(u64, nx_ctx->ap->sglen, | 
|  | nx_driver.of.max_sg_len/sizeof(struct nx_sg)); | 
|  | max_sg_len = min_t(u64, max_sg_len, | 
|  | nx_ctx->ap->databytelen/NX_PAGE_SIZE); | 
|  |  | 
|  | data_len = SHA256_DIGEST_SIZE; | 
|  | out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state, | 
|  | &data_len, max_sg_len); | 
|  | nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); | 
|  |  | 
|  | if (data_len != SHA256_DIGEST_SIZE) { | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | do { | 
|  | int used_sgs = 0; | 
|  | struct nx_sg *in_sg = nx_ctx->in_sg; | 
|  |  | 
|  | if (buf_len) { | 
|  | data_len = buf_len; | 
|  | in_sg = nx_build_sg_list(in_sg, | 
|  | (u8 *) sctx->buf, | 
|  | &data_len, | 
|  | max_sg_len); | 
|  |  | 
|  | if (data_len != buf_len) { | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | used_sgs = in_sg - nx_ctx->in_sg; | 
|  | } | 
|  |  | 
|  | /* to_process: SHA256_BLOCK_SIZE aligned chunk to be | 
|  | * processed in this iteration. This value is restricted | 
|  | * by sg list limits and number of sgs we already used | 
|  | * for leftover data. (see above) | 
|  | * In ideal case, we could allow NX_PAGE_SIZE * max_sg_len, | 
|  | * but because data may not be aligned, we need to account | 
|  | * for that too. */ | 
|  | to_process = min_t(u64, total, | 
|  | (max_sg_len - 1 - used_sgs) * NX_PAGE_SIZE); | 
|  | to_process = to_process & ~(SHA256_BLOCK_SIZE - 1); | 
|  |  | 
|  | data_len = to_process - buf_len; | 
|  | in_sg = nx_build_sg_list(in_sg, (u8 *) data, | 
|  | &data_len, max_sg_len); | 
|  |  | 
|  | nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); | 
|  |  | 
|  | to_process = data_len + buf_len; | 
|  | leftover = total - to_process; | 
|  |  | 
|  | /* | 
|  | * we've hit the nx chip previously and we're updating | 
|  | * again, so copy over the partial digest. | 
|  | */ | 
|  | memcpy(csbcpb->cpb.sha256.input_partial_digest, | 
|  | csbcpb->cpb.sha256.message_digest, | 
|  | SHA256_DIGEST_SIZE); | 
|  |  | 
|  | if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) { | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | atomic_inc(&(nx_ctx->stats->sha256_ops)); | 
|  |  | 
|  | total -= to_process; | 
|  | data += to_process - buf_len; | 
|  | buf_len = 0; | 
|  |  | 
|  | } while (leftover >= SHA256_BLOCK_SIZE); | 
|  |  | 
|  | /* copy the leftover back into the state struct */ | 
|  | if (leftover) | 
|  | memcpy(sctx->buf, data, leftover); | 
|  |  | 
|  | sctx->count += len; | 
|  | memcpy(sctx->state, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); | 
|  | out: | 
|  | spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int nx_sha256_final(struct shash_desc *desc, u8 *out) | 
|  | { | 
|  | struct sha256_state_be *sctx = shash_desc_ctx(desc); | 
|  | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
|  | struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; | 
|  | struct nx_sg *in_sg, *out_sg; | 
|  | unsigned long irq_flags; | 
|  | u32 max_sg_len; | 
|  | int rc = 0; | 
|  | int len; | 
|  |  | 
|  | spin_lock_irqsave(&nx_ctx->lock, irq_flags); | 
|  |  | 
|  | max_sg_len = min_t(u64, nx_ctx->ap->sglen, | 
|  | nx_driver.of.max_sg_len/sizeof(struct nx_sg)); | 
|  | max_sg_len = min_t(u64, max_sg_len, | 
|  | nx_ctx->ap->databytelen/NX_PAGE_SIZE); | 
|  |  | 
|  | /* final is represented by continuing the operation and indicating that | 
|  | * this is not an intermediate operation */ | 
|  | if (sctx->count >= SHA256_BLOCK_SIZE) { | 
|  | /* we've hit the nx chip previously, now we're finalizing, | 
|  | * so copy over the partial digest */ | 
|  | memcpy(csbcpb->cpb.sha256.input_partial_digest, sctx->state, SHA256_DIGEST_SIZE); | 
|  | NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; | 
|  | NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; | 
|  | } else { | 
|  | NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; | 
|  | NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION; | 
|  | } | 
|  |  | 
|  | csbcpb->cpb.sha256.message_bit_length = (u64) (sctx->count * 8); | 
|  |  | 
|  | len = sctx->count & (SHA256_BLOCK_SIZE - 1); | 
|  | in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) sctx->buf, | 
|  | &len, max_sg_len); | 
|  |  | 
|  | if (len != (sctx->count & (SHA256_BLOCK_SIZE - 1))) { | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | len = SHA256_DIGEST_SIZE; | 
|  | out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len, max_sg_len); | 
|  |  | 
|  | if (len != SHA256_DIGEST_SIZE) { | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); | 
|  | nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); | 
|  | if (!nx_ctx->op.outlen) { | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | atomic_inc(&(nx_ctx->stats->sha256_ops)); | 
|  |  | 
|  | atomic64_add(sctx->count, &(nx_ctx->stats->sha256_bytes)); | 
|  | memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); | 
|  | out: | 
|  | spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int nx_sha256_export(struct shash_desc *desc, void *out) | 
|  | { | 
|  | struct sha256_state_be *sctx = shash_desc_ctx(desc); | 
|  |  | 
|  | memcpy(out, sctx, sizeof(*sctx)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nx_sha256_import(struct shash_desc *desc, const void *in) | 
|  | { | 
|  | struct sha256_state_be *sctx = shash_desc_ctx(desc); | 
|  |  | 
|  | memcpy(sctx, in, sizeof(*sctx)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct shash_alg nx_shash_sha256_alg = { | 
|  | .digestsize = SHA256_DIGEST_SIZE, | 
|  | .init       = nx_sha256_init, | 
|  | .update     = nx_sha256_update, | 
|  | .final      = nx_sha256_final, | 
|  | .export     = nx_sha256_export, | 
|  | .import     = nx_sha256_import, | 
|  | .descsize   = sizeof(struct sha256_state_be), | 
|  | .statesize  = sizeof(struct sha256_state_be), | 
|  | .base       = { | 
|  | .cra_name        = "sha256", | 
|  | .cra_driver_name = "sha256-nx", | 
|  | .cra_priority    = 300, | 
|  | .cra_blocksize   = SHA256_BLOCK_SIZE, | 
|  | .cra_module      = THIS_MODULE, | 
|  | .cra_ctxsize     = sizeof(struct nx_crypto_ctx), | 
|  | .cra_init        = nx_crypto_ctx_sha256_init, | 
|  | .cra_exit        = nx_crypto_ctx_exit, | 
|  | } | 
|  | }; |