|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * CQHCI crypto engine (inline encryption) support | 
|  | * | 
|  | * Copyright 2020 Google LLC | 
|  | */ | 
|  |  | 
|  | #include <linux/blk-crypto.h> | 
|  | #include <linux/blk-crypto-profile.h> | 
|  | #include <linux/mmc/host.h> | 
|  |  | 
|  | #include "cqhci-crypto.h" | 
|  |  | 
|  | /* Map from blk-crypto modes to CQHCI crypto algorithm IDs and key sizes */ | 
|  | static const struct cqhci_crypto_alg_entry { | 
|  | enum cqhci_crypto_alg alg; | 
|  | enum cqhci_crypto_key_size key_size; | 
|  | } cqhci_crypto_algs[BLK_ENCRYPTION_MODE_MAX] = { | 
|  | [BLK_ENCRYPTION_MODE_AES_256_XTS] = { | 
|  | .alg = CQHCI_CRYPTO_ALG_AES_XTS, | 
|  | .key_size = CQHCI_CRYPTO_KEY_SIZE_256, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static inline struct cqhci_host * | 
|  | cqhci_host_from_crypto_profile(struct blk_crypto_profile *profile) | 
|  | { | 
|  | struct mmc_host *mmc = | 
|  | container_of(profile, struct mmc_host, crypto_profile); | 
|  |  | 
|  | return mmc->cqe_private; | 
|  | } | 
|  |  | 
|  | static int cqhci_crypto_program_key(struct cqhci_host *cq_host, | 
|  | const union cqhci_crypto_cfg_entry *cfg, | 
|  | int slot) | 
|  | { | 
|  | u32 slot_offset = cq_host->crypto_cfg_register + slot * sizeof(*cfg); | 
|  | int i; | 
|  |  | 
|  | if (cq_host->ops->program_key) | 
|  | return cq_host->ops->program_key(cq_host, cfg, slot); | 
|  |  | 
|  | /* Clear CFGE */ | 
|  | cqhci_writel(cq_host, 0, slot_offset + 16 * sizeof(cfg->reg_val[0])); | 
|  |  | 
|  | /* Write the key */ | 
|  | for (i = 0; i < 16; i++) { | 
|  | cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[i]), | 
|  | slot_offset + i * sizeof(cfg->reg_val[0])); | 
|  | } | 
|  | /* Write dword 17 */ | 
|  | cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[17]), | 
|  | slot_offset + 17 * sizeof(cfg->reg_val[0])); | 
|  | /* Write dword 16, which includes the new value of CFGE */ | 
|  | cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[16]), | 
|  | slot_offset + 16 * sizeof(cfg->reg_val[0])); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cqhci_crypto_keyslot_program(struct blk_crypto_profile *profile, | 
|  | const struct blk_crypto_key *key, | 
|  | unsigned int slot) | 
|  |  | 
|  | { | 
|  | struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile); | 
|  | const union cqhci_crypto_cap_entry *ccap_array = | 
|  | cq_host->crypto_cap_array; | 
|  | const struct cqhci_crypto_alg_entry *alg = | 
|  | &cqhci_crypto_algs[key->crypto_cfg.crypto_mode]; | 
|  | u8 data_unit_mask = key->crypto_cfg.data_unit_size / 512; | 
|  | int i; | 
|  | int cap_idx = -1; | 
|  | union cqhci_crypto_cfg_entry cfg = {}; | 
|  | int err; | 
|  |  | 
|  | BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0); | 
|  | for (i = 0; i < cq_host->crypto_capabilities.num_crypto_cap; i++) { | 
|  | if (ccap_array[i].algorithm_id == alg->alg && | 
|  | ccap_array[i].key_size == alg->key_size && | 
|  | (ccap_array[i].sdus_mask & data_unit_mask)) { | 
|  | cap_idx = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (WARN_ON(cap_idx < 0)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | cfg.data_unit_size = data_unit_mask; | 
|  | cfg.crypto_cap_idx = cap_idx; | 
|  | cfg.config_enable = CQHCI_CRYPTO_CONFIGURATION_ENABLE; | 
|  |  | 
|  | if (ccap_array[cap_idx].algorithm_id == CQHCI_CRYPTO_ALG_AES_XTS) { | 
|  | /* In XTS mode, the blk_crypto_key's size is already doubled */ | 
|  | memcpy(cfg.crypto_key, key->raw, key->size/2); | 
|  | memcpy(cfg.crypto_key + CQHCI_CRYPTO_KEY_MAX_SIZE/2, | 
|  | key->raw + key->size/2, key->size/2); | 
|  | } else { | 
|  | memcpy(cfg.crypto_key, key->raw, key->size); | 
|  | } | 
|  |  | 
|  | err = cqhci_crypto_program_key(cq_host, &cfg, slot); | 
|  |  | 
|  | memzero_explicit(&cfg, sizeof(cfg)); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int cqhci_crypto_clear_keyslot(struct cqhci_host *cq_host, int slot) | 
|  | { | 
|  | /* | 
|  | * Clear the crypto cfg on the device. Clearing CFGE | 
|  | * might not be sufficient, so just clear the entire cfg. | 
|  | */ | 
|  | union cqhci_crypto_cfg_entry cfg = {}; | 
|  |  | 
|  | return cqhci_crypto_program_key(cq_host, &cfg, slot); | 
|  | } | 
|  |  | 
|  | static int cqhci_crypto_keyslot_evict(struct blk_crypto_profile *profile, | 
|  | const struct blk_crypto_key *key, | 
|  | unsigned int slot) | 
|  | { | 
|  | struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile); | 
|  |  | 
|  | return cqhci_crypto_clear_keyslot(cq_host, slot); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The keyslot management operations for CQHCI crypto. | 
|  | * | 
|  | * Note that the block layer ensures that these are never called while the host | 
|  | * controller is runtime-suspended.  However, the CQE won't necessarily be | 
|  | * "enabled" when these are called, i.e. CQHCI_ENABLE might not be set in the | 
|  | * CQHCI_CFG register.  But the hardware allows that. | 
|  | */ | 
|  | static const struct blk_crypto_ll_ops cqhci_crypto_ops = { | 
|  | .keyslot_program	= cqhci_crypto_keyslot_program, | 
|  | .keyslot_evict		= cqhci_crypto_keyslot_evict, | 
|  | }; | 
|  |  | 
|  | static enum blk_crypto_mode_num | 
|  | cqhci_find_blk_crypto_mode(union cqhci_crypto_cap_entry cap) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(cqhci_crypto_algs); i++) { | 
|  | BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0); | 
|  | if (cqhci_crypto_algs[i].alg == cap.algorithm_id && | 
|  | cqhci_crypto_algs[i].key_size == cap.key_size) | 
|  | return i; | 
|  | } | 
|  | return BLK_ENCRYPTION_MODE_INVALID; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cqhci_crypto_init - initialize CQHCI crypto support | 
|  | * @cq_host: a cqhci host | 
|  | * | 
|  | * If the driver previously set MMC_CAP2_CRYPTO and the CQE declares | 
|  | * CQHCI_CAP_CS, initialize the crypto support.  This involves reading the | 
|  | * crypto capability registers, initializing the blk_crypto_profile, clearing | 
|  | * all keyslots, and enabling 128-bit task descriptors. | 
|  | * | 
|  | * Return: 0 if crypto was initialized or isn't supported; whether | 
|  | *	   MMC_CAP2_CRYPTO remains set indicates which one of those cases it is. | 
|  | *	   Also can return a negative errno value on unexpected error. | 
|  | */ | 
|  | int cqhci_crypto_init(struct cqhci_host *cq_host) | 
|  | { | 
|  | struct mmc_host *mmc = cq_host->mmc; | 
|  | struct device *dev = mmc_dev(mmc); | 
|  | struct blk_crypto_profile *profile = &mmc->crypto_profile; | 
|  | unsigned int num_keyslots; | 
|  | unsigned int cap_idx; | 
|  | enum blk_crypto_mode_num blk_mode_num; | 
|  | unsigned int slot; | 
|  | int err = 0; | 
|  |  | 
|  | if (!(mmc->caps2 & MMC_CAP2_CRYPTO) || | 
|  | !(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS)) | 
|  | goto out; | 
|  |  | 
|  | cq_host->crypto_capabilities.reg_val = | 
|  | cpu_to_le32(cqhci_readl(cq_host, CQHCI_CCAP)); | 
|  |  | 
|  | cq_host->crypto_cfg_register = | 
|  | (u32)cq_host->crypto_capabilities.config_array_ptr * 0x100; | 
|  |  | 
|  | cq_host->crypto_cap_array = | 
|  | devm_kcalloc(dev, cq_host->crypto_capabilities.num_crypto_cap, | 
|  | sizeof(cq_host->crypto_cap_array[0]), GFP_KERNEL); | 
|  | if (!cq_host->crypto_cap_array) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * CCAP.CFGC is off by one, so the actual number of crypto | 
|  | * configurations (a.k.a. keyslots) is CCAP.CFGC + 1. | 
|  | */ | 
|  | num_keyslots = cq_host->crypto_capabilities.config_count + 1; | 
|  |  | 
|  | err = devm_blk_crypto_profile_init(dev, profile, num_keyslots); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | profile->ll_ops = cqhci_crypto_ops; | 
|  | profile->dev = dev; | 
|  |  | 
|  | /* Unfortunately, CQHCI crypto only supports 32 DUN bits. */ | 
|  | profile->max_dun_bytes_supported = 4; | 
|  |  | 
|  | /* | 
|  | * Cache all the crypto capabilities and advertise the supported crypto | 
|  | * modes and data unit sizes to the block layer. | 
|  | */ | 
|  | for (cap_idx = 0; cap_idx < cq_host->crypto_capabilities.num_crypto_cap; | 
|  | cap_idx++) { | 
|  | cq_host->crypto_cap_array[cap_idx].reg_val = | 
|  | cpu_to_le32(cqhci_readl(cq_host, | 
|  | CQHCI_CRYPTOCAP + | 
|  | cap_idx * sizeof(__le32))); | 
|  | blk_mode_num = cqhci_find_blk_crypto_mode( | 
|  | cq_host->crypto_cap_array[cap_idx]); | 
|  | if (blk_mode_num == BLK_ENCRYPTION_MODE_INVALID) | 
|  | continue; | 
|  | profile->modes_supported[blk_mode_num] |= | 
|  | cq_host->crypto_cap_array[cap_idx].sdus_mask * 512; | 
|  | } | 
|  |  | 
|  | /* Clear all the keyslots so that we start in a known state. */ | 
|  | for (slot = 0; slot < num_keyslots; slot++) | 
|  | cqhci_crypto_clear_keyslot(cq_host, slot); | 
|  |  | 
|  | /* CQHCI crypto requires the use of 128-bit task descriptors. */ | 
|  | cq_host->caps |= CQHCI_TASK_DESC_SZ_128; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | mmc->caps2 &= ~MMC_CAP2_CRYPTO; | 
|  | return err; | 
|  | } |