|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * fs/crypto/hooks.c | 
|  | * | 
|  | * Encryption hooks for higher-level filesystem operations. | 
|  | */ | 
|  |  | 
|  | #include "fscrypt_private.h" | 
|  |  | 
|  | /** | 
|  | * fscrypt_file_open() - prepare to open a possibly-encrypted regular file | 
|  | * @inode: the inode being opened | 
|  | * @filp: the struct file being set up | 
|  | * | 
|  | * Currently, an encrypted regular file can only be opened if its encryption key | 
|  | * is available; access to the raw encrypted contents is not supported. | 
|  | * Therefore, we first set up the inode's encryption key (if not already done) | 
|  | * and return an error if it's unavailable. | 
|  | * | 
|  | * We also verify that if the parent directory (from the path via which the file | 
|  | * is being opened) is encrypted, then the inode being opened uses the same | 
|  | * encryption policy.  This is needed as part of the enforcement that all files | 
|  | * in an encrypted directory tree use the same encryption policy, as a | 
|  | * protection against certain types of offline attacks.  Note that this check is | 
|  | * needed even when opening an *unencrypted* file, since it's forbidden to have | 
|  | * an unencrypted file in an encrypted directory. | 
|  | * | 
|  | * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code | 
|  | */ | 
|  | int fscrypt_file_open(struct inode *inode, struct file *filp) | 
|  | { | 
|  | int err; | 
|  | struct dentry *dir; | 
|  |  | 
|  | err = fscrypt_require_key(inode); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | dir = dget_parent(file_dentry(filp)); | 
|  | if (IS_ENCRYPTED(d_inode(dir)) && | 
|  | !fscrypt_has_permitted_context(d_inode(dir), inode)) { | 
|  | fscrypt_warn(inode, | 
|  | "Inconsistent encryption context (parent directory: %lu)", | 
|  | d_inode(dir)->i_ino); | 
|  | err = -EPERM; | 
|  | } | 
|  | dput(dir); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(fscrypt_file_open); | 
|  |  | 
|  | int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, | 
|  | struct dentry *dentry) | 
|  | { | 
|  | if (fscrypt_is_nokey_name(dentry)) | 
|  | return -ENOKEY; | 
|  | /* | 
|  | * We don't need to separately check that the directory inode's key is | 
|  | * available, as it's implied by the dentry not being a no-key name. | 
|  | */ | 
|  |  | 
|  | if (!fscrypt_has_permitted_context(dir, inode)) | 
|  | return -EXDEV; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__fscrypt_prepare_link); | 
|  |  | 
|  | int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, | 
|  | struct inode *new_dir, struct dentry *new_dentry, | 
|  | unsigned int flags) | 
|  | { | 
|  | if (fscrypt_is_nokey_name(old_dentry) || | 
|  | fscrypt_is_nokey_name(new_dentry)) | 
|  | return -ENOKEY; | 
|  | /* | 
|  | * We don't need to separately check that the directory inodes' keys are | 
|  | * available, as it's implied by the dentries not being no-key names. | 
|  | */ | 
|  |  | 
|  | if (old_dir != new_dir) { | 
|  | if (IS_ENCRYPTED(new_dir) && | 
|  | !fscrypt_has_permitted_context(new_dir, | 
|  | d_inode(old_dentry))) | 
|  | return -EXDEV; | 
|  |  | 
|  | if ((flags & RENAME_EXCHANGE) && | 
|  | IS_ENCRYPTED(old_dir) && | 
|  | !fscrypt_has_permitted_context(old_dir, | 
|  | d_inode(new_dentry))) | 
|  | return -EXDEV; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename); | 
|  |  | 
|  | int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, | 
|  | struct fscrypt_name *fname) | 
|  | { | 
|  | int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname); | 
|  |  | 
|  | if (err && err != -ENOENT) | 
|  | return err; | 
|  |  | 
|  | if (fname->is_nokey_name) { | 
|  | spin_lock(&dentry->d_lock); | 
|  | dentry->d_flags |= DCACHE_NOKEY_NAME; | 
|  | spin_unlock(&dentry->d_lock); | 
|  | } | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup); | 
|  |  | 
|  | /** | 
|  | * fscrypt_prepare_lookup_partial() - prepare lookup without filename setup | 
|  | * @dir: the encrypted directory being searched | 
|  | * @dentry: the dentry being looked up in @dir | 
|  | * | 
|  | * This function should be used by the ->lookup and ->atomic_open methods of | 
|  | * filesystems that handle filename encryption and no-key name encoding | 
|  | * themselves and thus can't use fscrypt_prepare_lookup().  Like | 
|  | * fscrypt_prepare_lookup(), this will try to set up the directory's encryption | 
|  | * key and will set DCACHE_NOKEY_NAME on the dentry if the key is unavailable. | 
|  | * However, this function doesn't set up a struct fscrypt_name for the filename. | 
|  | * | 
|  | * Return: 0 on success; -errno on error.  Note that the encryption key being | 
|  | *	   unavailable is not considered an error.  It is also not an error if | 
|  | *	   the encryption policy is unsupported by this kernel; that is treated | 
|  | *	   like the key being unavailable, so that files can still be deleted. | 
|  | */ | 
|  | int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry) | 
|  | { | 
|  | int err = fscrypt_get_encryption_info(dir, true); | 
|  |  | 
|  | if (!err && !fscrypt_has_encryption_key(dir)) { | 
|  | spin_lock(&dentry->d_lock); | 
|  | dentry->d_flags |= DCACHE_NOKEY_NAME; | 
|  | spin_unlock(&dentry->d_lock); | 
|  | } | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(fscrypt_prepare_lookup_partial); | 
|  |  | 
|  | int __fscrypt_prepare_readdir(struct inode *dir) | 
|  | { | 
|  | return fscrypt_get_encryption_info(dir, true); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir); | 
|  |  | 
|  | int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr) | 
|  | { | 
|  | if (attr->ia_valid & ATTR_SIZE) | 
|  | return fscrypt_require_key(d_inode(dentry)); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr); | 
|  |  | 
|  | /** | 
|  | * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS | 
|  | * @inode: the inode on which flags are being changed | 
|  | * @oldflags: the old flags | 
|  | * @flags: the new flags | 
|  | * | 
|  | * The caller should be holding i_rwsem for write. | 
|  | * | 
|  | * Return: 0 on success; -errno if the flags change isn't allowed or if | 
|  | *	   another error occurs. | 
|  | */ | 
|  | int fscrypt_prepare_setflags(struct inode *inode, | 
|  | unsigned int oldflags, unsigned int flags) | 
|  | { | 
|  | struct fscrypt_inode_info *ci; | 
|  | struct fscrypt_master_key *mk; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * When the CASEFOLD flag is set on an encrypted directory, we must | 
|  | * derive the secret key needed for the dirhash.  This is only possible | 
|  | * if the directory uses a v2 encryption policy. | 
|  | */ | 
|  | if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) { | 
|  | err = fscrypt_require_key(inode); | 
|  | if (err) | 
|  | return err; | 
|  | ci = inode->i_crypt_info; | 
|  | if (ci->ci_policy.version != FSCRYPT_POLICY_V2) | 
|  | return -EINVAL; | 
|  | mk = ci->ci_master_key; | 
|  | down_read(&mk->mk_sem); | 
|  | if (mk->mk_present) | 
|  | err = fscrypt_derive_dirhash_key(ci, mk); | 
|  | else | 
|  | err = -ENOKEY; | 
|  | up_read(&mk->mk_sem); | 
|  | return err; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink | 
|  | * @dir: directory in which the symlink is being created | 
|  | * @target: plaintext symlink target | 
|  | * @len: length of @target excluding null terminator | 
|  | * @max_len: space the filesystem has available to store the symlink target | 
|  | * @disk_link: (out) the on-disk symlink target being prepared | 
|  | * | 
|  | * This function computes the size the symlink target will require on-disk, | 
|  | * stores it in @disk_link->len, and validates it against @max_len.  An | 
|  | * encrypted symlink may be longer than the original. | 
|  | * | 
|  | * Additionally, @disk_link->name is set to @target if the symlink will be | 
|  | * unencrypted, but left NULL if the symlink will be encrypted.  For encrypted | 
|  | * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the | 
|  | * on-disk target later.  (The reason for the two-step process is that some | 
|  | * filesystems need to know the size of the symlink target before creating the | 
|  | * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.) | 
|  | * | 
|  | * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long, | 
|  | * -ENOKEY if the encryption key is missing, or another -errno code if a problem | 
|  | * occurred while setting up the encryption key. | 
|  | */ | 
|  | int fscrypt_prepare_symlink(struct inode *dir, const char *target, | 
|  | unsigned int len, unsigned int max_len, | 
|  | struct fscrypt_str *disk_link) | 
|  | { | 
|  | const union fscrypt_policy *policy; | 
|  |  | 
|  | /* | 
|  | * To calculate the size of the encrypted symlink target we need to know | 
|  | * the amount of NUL padding, which is determined by the flags set in | 
|  | * the encryption policy which will be inherited from the directory. | 
|  | */ | 
|  | policy = fscrypt_policy_to_inherit(dir); | 
|  | if (policy == NULL) { | 
|  | /* Not encrypted */ | 
|  | disk_link->name = (unsigned char *)target; | 
|  | disk_link->len = len + 1; | 
|  | if (disk_link->len > max_len) | 
|  | return -ENAMETOOLONG; | 
|  | return 0; | 
|  | } | 
|  | if (IS_ERR(policy)) | 
|  | return PTR_ERR(policy); | 
|  |  | 
|  | /* | 
|  | * Calculate the size of the encrypted symlink and verify it won't | 
|  | * exceed max_len.  Note that for historical reasons, encrypted symlink | 
|  | * targets are prefixed with the ciphertext length, despite this | 
|  | * actually being redundant with i_size.  This decreases by 2 bytes the | 
|  | * longest symlink target we can accept. | 
|  | * | 
|  | * We could recover 1 byte by not counting a null terminator, but | 
|  | * counting it (even though it is meaningless for ciphertext) is simpler | 
|  | * for now since filesystems will assume it is there and subtract it. | 
|  | */ | 
|  | if (!__fscrypt_fname_encrypted_size(policy, len, | 
|  | max_len - sizeof(struct fscrypt_symlink_data) - 1, | 
|  | &disk_link->len)) | 
|  | return -ENAMETOOLONG; | 
|  | disk_link->len += sizeof(struct fscrypt_symlink_data) + 1; | 
|  |  | 
|  | disk_link->name = NULL; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink); | 
|  |  | 
|  | int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, | 
|  | unsigned int len, struct fscrypt_str *disk_link) | 
|  | { | 
|  | int err; | 
|  | struct qstr iname = QSTR_INIT(target, len); | 
|  | struct fscrypt_symlink_data *sd; | 
|  | unsigned int ciphertext_len; | 
|  |  | 
|  | /* | 
|  | * fscrypt_prepare_new_inode() should have already set up the new | 
|  | * symlink inode's encryption key.  We don't wait until now to do it, | 
|  | * since we may be in a filesystem transaction now. | 
|  | */ | 
|  | if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode))) | 
|  | return -ENOKEY; | 
|  |  | 
|  | if (disk_link->name) { | 
|  | /* filesystem-provided buffer */ | 
|  | sd = (struct fscrypt_symlink_data *)disk_link->name; | 
|  | } else { | 
|  | sd = kmalloc(disk_link->len, GFP_NOFS); | 
|  | if (!sd) | 
|  | return -ENOMEM; | 
|  | } | 
|  | ciphertext_len = disk_link->len - sizeof(*sd) - 1; | 
|  | sd->len = cpu_to_le16(ciphertext_len); | 
|  |  | 
|  | err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path, | 
|  | ciphertext_len); | 
|  | if (err) | 
|  | goto err_free_sd; | 
|  |  | 
|  | /* | 
|  | * Null-terminating the ciphertext doesn't make sense, but we still | 
|  | * count the null terminator in the length, so we might as well | 
|  | * initialize it just in case the filesystem writes it out. | 
|  | */ | 
|  | sd->encrypted_path[ciphertext_len] = '\0'; | 
|  |  | 
|  | /* Cache the plaintext symlink target for later use by get_link() */ | 
|  | err = -ENOMEM; | 
|  | inode->i_link = kmemdup(target, len + 1, GFP_NOFS); | 
|  | if (!inode->i_link) | 
|  | goto err_free_sd; | 
|  |  | 
|  | if (!disk_link->name) | 
|  | disk_link->name = (unsigned char *)sd; | 
|  | return 0; | 
|  |  | 
|  | err_free_sd: | 
|  | if (!disk_link->name) | 
|  | kfree(sd); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink); | 
|  |  | 
|  | /** | 
|  | * fscrypt_get_symlink() - get the target of an encrypted symlink | 
|  | * @inode: the symlink inode | 
|  | * @caddr: the on-disk contents of the symlink | 
|  | * @max_size: size of @caddr buffer | 
|  | * @done: if successful, will be set up to free the returned target if needed | 
|  | * | 
|  | * If the symlink's encryption key is available, we decrypt its target. | 
|  | * Otherwise, we encode its target for presentation. | 
|  | * | 
|  | * This may sleep, so the filesystem must have dropped out of RCU mode already. | 
|  | * | 
|  | * Return: the presentable symlink target or an ERR_PTR() | 
|  | */ | 
|  | const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, | 
|  | unsigned int max_size, | 
|  | struct delayed_call *done) | 
|  | { | 
|  | const struct fscrypt_symlink_data *sd; | 
|  | struct fscrypt_str cstr, pstr; | 
|  | bool has_key; | 
|  | int err; | 
|  |  | 
|  | /* This is for encrypted symlinks only */ | 
|  | if (WARN_ON_ONCE(!IS_ENCRYPTED(inode))) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* If the decrypted target is already cached, just return it. */ | 
|  | pstr.name = READ_ONCE(inode->i_link); | 
|  | if (pstr.name) | 
|  | return pstr.name; | 
|  |  | 
|  | /* | 
|  | * Try to set up the symlink's encryption key, but we can continue | 
|  | * regardless of whether the key is available or not. | 
|  | */ | 
|  | err = fscrypt_get_encryption_info(inode, false); | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  | has_key = fscrypt_has_encryption_key(inode); | 
|  |  | 
|  | /* | 
|  | * For historical reasons, encrypted symlink targets are prefixed with | 
|  | * the ciphertext length, even though this is redundant with i_size. | 
|  | */ | 
|  |  | 
|  | if (max_size < sizeof(*sd) + 1) | 
|  | return ERR_PTR(-EUCLEAN); | 
|  | sd = caddr; | 
|  | cstr.name = (unsigned char *)sd->encrypted_path; | 
|  | cstr.len = le16_to_cpu(sd->len); | 
|  |  | 
|  | if (cstr.len == 0) | 
|  | return ERR_PTR(-EUCLEAN); | 
|  |  | 
|  | if (cstr.len + sizeof(*sd) > max_size) | 
|  | return ERR_PTR(-EUCLEAN); | 
|  |  | 
|  | err = fscrypt_fname_alloc_buffer(cstr.len, &pstr); | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  |  | 
|  | err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr); | 
|  | if (err) | 
|  | goto err_kfree; | 
|  |  | 
|  | err = -EUCLEAN; | 
|  | if (pstr.name[0] == '\0') | 
|  | goto err_kfree; | 
|  |  | 
|  | pstr.name[pstr.len] = '\0'; | 
|  |  | 
|  | /* | 
|  | * Cache decrypted symlink targets in i_link for later use.  Don't cache | 
|  | * symlink targets encoded without the key, since those become outdated | 
|  | * once the key is added.  This pairs with the READ_ONCE() above and in | 
|  | * the VFS path lookup code. | 
|  | */ | 
|  | if (!has_key || | 
|  | cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL) | 
|  | set_delayed_call(done, kfree_link, pstr.name); | 
|  |  | 
|  | return pstr.name; | 
|  |  | 
|  | err_kfree: | 
|  | kfree(pstr.name); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(fscrypt_get_symlink); | 
|  |  | 
|  | /** | 
|  | * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks | 
|  | * @path: the path for the encrypted symlink being queried | 
|  | * @stat: the struct being filled with the symlink's attributes | 
|  | * | 
|  | * Override st_size of encrypted symlinks to be the length of the decrypted | 
|  | * symlink target (or the no-key encoded symlink target, if the key is | 
|  | * unavailable) rather than the length of the encrypted symlink target.  This is | 
|  | * necessary for st_size to match the symlink target that userspace actually | 
|  | * sees.  POSIX requires this, and some userspace programs depend on it. | 
|  | * | 
|  | * This requires reading the symlink target from disk if needed, setting up the | 
|  | * inode's encryption key if possible, and then decrypting or encoding the | 
|  | * symlink target.  This makes lstat() more heavyweight than is normally the | 
|  | * case.  However, decrypted symlink targets will be cached in ->i_link, so | 
|  | * usually the symlink won't have to be read and decrypted again later if/when | 
|  | * it is actually followed, readlink() is called, or lstat() is called again. | 
|  | * | 
|  | * Return: 0 on success, -errno on failure | 
|  | */ | 
|  | int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat) | 
|  | { | 
|  | struct dentry *dentry = path->dentry; | 
|  | struct inode *inode = d_inode(dentry); | 
|  | const char *link; | 
|  | DEFINE_DELAYED_CALL(done); | 
|  |  | 
|  | /* | 
|  | * To get the symlink target that userspace will see (whether it's the | 
|  | * decrypted target or the no-key encoded target), we can just get it in | 
|  | * the same way the VFS does during path resolution and readlink(). | 
|  | */ | 
|  | link = READ_ONCE(inode->i_link); | 
|  | if (!link) { | 
|  | link = inode->i_op->get_link(dentry, inode, &done); | 
|  | if (IS_ERR(link)) | 
|  | return PTR_ERR(link); | 
|  | } | 
|  | stat->size = strlen(link); | 
|  | do_delayed_call(&done); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr); |