|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
|  | * Copyright (c) 2016-2018 Christoph Hellwig. | 
|  | * All Rights Reserved. | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_shared.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_iomap.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_bmap.h" | 
|  | #include "xfs_bmap_util.h" | 
|  | #include "xfs_reflink.h" | 
|  | #include "xfs_errortag.h" | 
|  | #include "xfs_error.h" | 
|  |  | 
|  | struct xfs_writepage_ctx { | 
|  | struct iomap_writepage_ctx ctx; | 
|  | unsigned int		data_seq; | 
|  | unsigned int		cow_seq; | 
|  | }; | 
|  |  | 
|  | static inline struct xfs_writepage_ctx * | 
|  | XFS_WPC(struct iomap_writepage_ctx *ctx) | 
|  | { | 
|  | return container_of(ctx, struct xfs_writepage_ctx, ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fast and loose check if this write could update the on-disk inode size. | 
|  | */ | 
|  | static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend) | 
|  | { | 
|  | return ioend->io_offset + ioend->io_size > | 
|  | XFS_I(ioend->io_inode)->i_disk_size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update on-disk file size now that data has been written to disk. | 
|  | */ | 
|  | int | 
|  | xfs_setfilesize( | 
|  | struct xfs_inode	*ip, | 
|  | xfs_off_t		offset, | 
|  | size_t			size) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_trans	*tp; | 
|  | xfs_fsize_t		isize; | 
|  | int			error; | 
|  |  | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | isize = xfs_new_eof(ip, offset + size); | 
|  | if (!isize) { | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | xfs_trans_cancel(tp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | trace_xfs_setfilesize(ip, offset, size); | 
|  |  | 
|  | ip->i_disk_size = isize; | 
|  | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | 
|  | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
|  |  | 
|  | return xfs_trans_commit(tp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IO write completion. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_end_ioend( | 
|  | struct iomap_ioend	*ioend) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(ioend->io_inode); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | xfs_off_t		offset = ioend->io_offset; | 
|  | size_t			size = ioend->io_size; | 
|  | unsigned int		nofs_flag; | 
|  | int			error; | 
|  |  | 
|  | /* | 
|  | * We can allocate memory here while doing writeback on behalf of | 
|  | * memory reclaim.  To avoid memory allocation deadlocks set the | 
|  | * task-wide nofs context for the following operations. | 
|  | */ | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  |  | 
|  | /* | 
|  | * Just clean up the in-memory structures if the fs has been shut down. | 
|  | */ | 
|  | if (xfs_is_shutdown(mp)) { | 
|  | error = -EIO; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clean up all COW blocks and underlying data fork delalloc blocks on | 
|  | * I/O error. The delalloc punch is required because this ioend was | 
|  | * mapped to blocks in the COW fork and the associated pages are no | 
|  | * longer dirty. If we don't remove delalloc blocks here, they become | 
|  | * stale and can corrupt free space accounting on unmount. | 
|  | */ | 
|  | error = blk_status_to_errno(ioend->io_bio->bi_status); | 
|  | if (unlikely(error)) { | 
|  | if (ioend->io_flags & IOMAP_F_SHARED) { | 
|  | xfs_reflink_cancel_cow_range(ip, offset, size, true); | 
|  | xfs_bmap_punch_delalloc_range(ip, offset, | 
|  | offset + size); | 
|  | } | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Success: commit the COW or unwritten blocks if needed. | 
|  | */ | 
|  | if (ioend->io_flags & IOMAP_F_SHARED) | 
|  | error = xfs_reflink_end_cow(ip, offset, size); | 
|  | else if (ioend->io_type == IOMAP_UNWRITTEN) | 
|  | error = xfs_iomap_write_unwritten(ip, offset, size, false); | 
|  |  | 
|  | if (!error && xfs_ioend_is_append(ioend)) | 
|  | error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); | 
|  | done: | 
|  | iomap_finish_ioends(ioend, error); | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finish all pending IO completions that require transactional modifications. | 
|  | * | 
|  | * We try to merge physical and logically contiguous ioends before completion to | 
|  | * minimise the number of transactions we need to perform during IO completion. | 
|  | * Both unwritten extent conversion and COW remapping need to iterate and modify | 
|  | * one physical extent at a time, so we gain nothing by merging physically | 
|  | * discontiguous extents here. | 
|  | * | 
|  | * The ioend chain length that we can be processing here is largely unbound in | 
|  | * length and we may have to perform significant amounts of work on each ioend | 
|  | * to complete it. Hence we have to be careful about holding the CPU for too | 
|  | * long in this loop. | 
|  | */ | 
|  | void | 
|  | xfs_end_io( | 
|  | struct work_struct	*work) | 
|  | { | 
|  | struct xfs_inode	*ip = | 
|  | container_of(work, struct xfs_inode, i_ioend_work); | 
|  | struct iomap_ioend	*ioend; | 
|  | struct list_head	tmp; | 
|  | unsigned long		flags; | 
|  |  | 
|  | spin_lock_irqsave(&ip->i_ioend_lock, flags); | 
|  | list_replace_init(&ip->i_ioend_list, &tmp); | 
|  | spin_unlock_irqrestore(&ip->i_ioend_lock, flags); | 
|  |  | 
|  | iomap_sort_ioends(&tmp); | 
|  | while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend, | 
|  | io_list))) { | 
|  | list_del_init(&ioend->io_list); | 
|  | iomap_ioend_try_merge(ioend, &tmp); | 
|  | xfs_end_ioend(ioend); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_end_bio( | 
|  | struct bio		*bio) | 
|  | { | 
|  | struct iomap_ioend	*ioend = bio->bi_private; | 
|  | struct xfs_inode	*ip = XFS_I(ioend->io_inode); | 
|  | unsigned long		flags; | 
|  |  | 
|  | spin_lock_irqsave(&ip->i_ioend_lock, flags); | 
|  | if (list_empty(&ip->i_ioend_list)) | 
|  | WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue, | 
|  | &ip->i_ioend_work)); | 
|  | list_add_tail(&ioend->io_list, &ip->i_ioend_list); | 
|  | spin_unlock_irqrestore(&ip->i_ioend_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fast revalidation of the cached writeback mapping. Return true if the current | 
|  | * mapping is valid, false otherwise. | 
|  | */ | 
|  | static bool | 
|  | xfs_imap_valid( | 
|  | struct iomap_writepage_ctx	*wpc, | 
|  | struct xfs_inode		*ip, | 
|  | loff_t				offset) | 
|  | { | 
|  | if (offset < wpc->iomap.offset || | 
|  | offset >= wpc->iomap.offset + wpc->iomap.length) | 
|  | return false; | 
|  | /* | 
|  | * If this is a COW mapping, it is sufficient to check that the mapping | 
|  | * covers the offset. Be careful to check this first because the caller | 
|  | * can revalidate a COW mapping without updating the data seqno. | 
|  | */ | 
|  | if (wpc->iomap.flags & IOMAP_F_SHARED) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * This is not a COW mapping. Check the sequence number of the data fork | 
|  | * because concurrent changes could have invalidated the extent. Check | 
|  | * the COW fork because concurrent changes since the last time we | 
|  | * checked (and found nothing at this offset) could have added | 
|  | * overlapping blocks. | 
|  | */ | 
|  | if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) { | 
|  | trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap, | 
|  | XFS_WPC(wpc)->data_seq, XFS_DATA_FORK); | 
|  | return false; | 
|  | } | 
|  | if (xfs_inode_has_cow_data(ip) && | 
|  | XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) { | 
|  | trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap, | 
|  | XFS_WPC(wpc)->cow_seq, XFS_COW_FORK); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pass in a dellalloc extent and convert it to real extents, return the real | 
|  | * extent that maps offset_fsb in wpc->iomap. | 
|  | * | 
|  | * The current page is held locked so nothing could have removed the block | 
|  | * backing offset_fsb, although it could have moved from the COW to the data | 
|  | * fork by another thread. | 
|  | */ | 
|  | static int | 
|  | xfs_convert_blocks( | 
|  | struct iomap_writepage_ctx *wpc, | 
|  | struct xfs_inode	*ip, | 
|  | int			whichfork, | 
|  | loff_t			offset) | 
|  | { | 
|  | int			error; | 
|  | unsigned		*seq; | 
|  |  | 
|  | if (whichfork == XFS_COW_FORK) | 
|  | seq = &XFS_WPC(wpc)->cow_seq; | 
|  | else | 
|  | seq = &XFS_WPC(wpc)->data_seq; | 
|  |  | 
|  | /* | 
|  | * Attempt to allocate whatever delalloc extent currently backs offset | 
|  | * and put the result into wpc->iomap.  Allocate in a loop because it | 
|  | * may take several attempts to allocate real blocks for a contiguous | 
|  | * delalloc extent if free space is sufficiently fragmented. | 
|  | */ | 
|  | do { | 
|  | error = xfs_bmapi_convert_delalloc(ip, whichfork, offset, | 
|  | &wpc->iomap, seq); | 
|  | if (error) | 
|  | return error; | 
|  | } while (wpc->iomap.offset + wpc->iomap.length <= offset); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_map_blocks( | 
|  | struct iomap_writepage_ctx *wpc, | 
|  | struct inode		*inode, | 
|  | loff_t			offset) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | ssize_t			count = i_blocksize(inode); | 
|  | xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset); | 
|  | xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count); | 
|  | xfs_fileoff_t		cow_fsb; | 
|  | int			whichfork; | 
|  | struct xfs_bmbt_irec	imap; | 
|  | struct xfs_iext_cursor	icur; | 
|  | int			retries = 0; | 
|  | int			error = 0; | 
|  |  | 
|  | if (xfs_is_shutdown(mp)) | 
|  | return -EIO; | 
|  |  | 
|  | XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS); | 
|  |  | 
|  | /* | 
|  | * COW fork blocks can overlap data fork blocks even if the blocks | 
|  | * aren't shared.  COW I/O always takes precedent, so we must always | 
|  | * check for overlap on reflink inodes unless the mapping is already a | 
|  | * COW one, or the COW fork hasn't changed from the last time we looked | 
|  | * at it. | 
|  | * | 
|  | * It's safe to check the COW fork if_seq here without the ILOCK because | 
|  | * we've indirectly protected against concurrent updates: writeback has | 
|  | * the page locked, which prevents concurrent invalidations by reflink | 
|  | * and directio and prevents concurrent buffered writes to the same | 
|  | * page.  Changes to if_seq always happen under i_lock, which protects | 
|  | * against concurrent updates and provides a memory barrier on the way | 
|  | * out that ensures that we always see the current value. | 
|  | */ | 
|  | if (xfs_imap_valid(wpc, ip, offset)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If we don't have a valid map, now it's time to get a new one for this | 
|  | * offset.  This will convert delayed allocations (including COW ones) | 
|  | * into real extents.  If we return without a valid map, it means we | 
|  | * landed in a hole and we skip the block. | 
|  | */ | 
|  | retry: | 
|  | cow_fsb = NULLFILEOFF; | 
|  | whichfork = XFS_DATA_FORK; | 
|  | xfs_ilock(ip, XFS_ILOCK_SHARED); | 
|  | ASSERT(!xfs_need_iread_extents(&ip->i_df)); | 
|  |  | 
|  | /* | 
|  | * Check if this is offset is covered by a COW extents, and if yes use | 
|  | * it directly instead of looking up anything in the data fork. | 
|  | */ | 
|  | if (xfs_inode_has_cow_data(ip) && | 
|  | xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) | 
|  | cow_fsb = imap.br_startoff; | 
|  | if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { | 
|  | XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  |  | 
|  | whichfork = XFS_COW_FORK; | 
|  | goto allocate_blocks; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No COW extent overlap. Revalidate now that we may have updated | 
|  | * ->cow_seq. If the data mapping is still valid, we're done. | 
|  | */ | 
|  | if (xfs_imap_valid(wpc, ip, offset)) { | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we don't have a valid map, now it's time to get a new one for this | 
|  | * offset.  This will convert delayed allocations (including COW ones) | 
|  | * into real extents. | 
|  | */ | 
|  | if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) | 
|  | imap.br_startoff = end_fsb;	/* fake a hole past EOF */ | 
|  | XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq); | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  |  | 
|  | /* landed in a hole or beyond EOF? */ | 
|  | if (imap.br_startoff > offset_fsb) { | 
|  | imap.br_blockcount = imap.br_startoff - offset_fsb; | 
|  | imap.br_startoff = offset_fsb; | 
|  | imap.br_startblock = HOLESTARTBLOCK; | 
|  | imap.br_state = XFS_EXT_NORM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Truncate to the next COW extent if there is one.  This is the only | 
|  | * opportunity to do this because we can skip COW fork lookups for the | 
|  | * subsequent blocks in the mapping; however, the requirement to treat | 
|  | * the COW range separately remains. | 
|  | */ | 
|  | if (cow_fsb != NULLFILEOFF && | 
|  | cow_fsb < imap.br_startoff + imap.br_blockcount) | 
|  | imap.br_blockcount = cow_fsb - imap.br_startoff; | 
|  |  | 
|  | /* got a delalloc extent? */ | 
|  | if (imap.br_startblock != HOLESTARTBLOCK && | 
|  | isnullstartblock(imap.br_startblock)) | 
|  | goto allocate_blocks; | 
|  |  | 
|  | xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq); | 
|  | trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap); | 
|  | return 0; | 
|  | allocate_blocks: | 
|  | error = xfs_convert_blocks(wpc, ip, whichfork, offset); | 
|  | if (error) { | 
|  | /* | 
|  | * If we failed to find the extent in the COW fork we might have | 
|  | * raced with a COW to data fork conversion or truncate. | 
|  | * Restart the lookup to catch the extent in the data fork for | 
|  | * the former case, but prevent additional retries to avoid | 
|  | * looping forever for the latter case. | 
|  | */ | 
|  | if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++) | 
|  | goto retry; | 
|  | ASSERT(error != -EAGAIN); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Due to merging the return real extent might be larger than the | 
|  | * original delalloc one.  Trim the return extent to the next COW | 
|  | * boundary again to force a re-lookup. | 
|  | */ | 
|  | if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) { | 
|  | loff_t		cow_offset = XFS_FSB_TO_B(mp, cow_fsb); | 
|  |  | 
|  | if (cow_offset < wpc->iomap.offset + wpc->iomap.length) | 
|  | wpc->iomap.length = cow_offset - wpc->iomap.offset; | 
|  | } | 
|  |  | 
|  | ASSERT(wpc->iomap.offset <= offset); | 
|  | ASSERT(wpc->iomap.offset + wpc->iomap.length > offset); | 
|  | trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_prepare_ioend( | 
|  | struct iomap_ioend	*ioend, | 
|  | int			status) | 
|  | { | 
|  | unsigned int		nofs_flag; | 
|  |  | 
|  | /* | 
|  | * We can allocate memory here while doing writeback on behalf of | 
|  | * memory reclaim.  To avoid memory allocation deadlocks set the | 
|  | * task-wide nofs context for the following operations. | 
|  | */ | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  |  | 
|  | /* Convert CoW extents to regular */ | 
|  | if (!status && (ioend->io_flags & IOMAP_F_SHARED)) { | 
|  | status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), | 
|  | ioend->io_offset, ioend->io_size); | 
|  | } | 
|  |  | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  |  | 
|  | /* send ioends that might require a transaction to the completion wq */ | 
|  | if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN || | 
|  | (ioend->io_flags & IOMAP_F_SHARED)) | 
|  | ioend->io_bio->bi_end_io = xfs_end_bio; | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the folio has delalloc blocks on it, the caller is asking us to punch them | 
|  | * out. If we don't, we can leave a stale delalloc mapping covered by a clean | 
|  | * page that needs to be dirtied again before the delalloc mapping can be | 
|  | * converted. This stale delalloc mapping can trip up a later direct I/O read | 
|  | * operation on the same region. | 
|  | * | 
|  | * We prevent this by truncating away the delalloc regions on the folio. Because | 
|  | * they are delalloc, we can do this without needing a transaction. Indeed - if | 
|  | * we get ENOSPC errors, we have to be able to do this truncation without a | 
|  | * transaction as there is no space left for block reservation (typically why | 
|  | * we see a ENOSPC in writeback). | 
|  | */ | 
|  | static void | 
|  | xfs_discard_folio( | 
|  | struct folio		*folio, | 
|  | loff_t			pos) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(folio->mapping->host); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | int			error; | 
|  |  | 
|  | if (xfs_is_shutdown(mp)) | 
|  | return; | 
|  |  | 
|  | xfs_alert_ratelimited(mp, | 
|  | "page discard on page "PTR_FMT", inode 0x%llx, pos %llu.", | 
|  | folio, ip->i_ino, pos); | 
|  |  | 
|  | /* | 
|  | * The end of the punch range is always the offset of the first | 
|  | * byte of the next folio. Hence the end offset is only dependent on the | 
|  | * folio itself and not the start offset that is passed in. | 
|  | */ | 
|  | error = xfs_bmap_punch_delalloc_range(ip, pos, | 
|  | folio_pos(folio) + folio_size(folio)); | 
|  |  | 
|  | if (error && !xfs_is_shutdown(mp)) | 
|  | xfs_alert(mp, "page discard unable to remove delalloc mapping."); | 
|  | } | 
|  |  | 
|  | static const struct iomap_writeback_ops xfs_writeback_ops = { | 
|  | .map_blocks		= xfs_map_blocks, | 
|  | .prepare_ioend		= xfs_prepare_ioend, | 
|  | .discard_folio		= xfs_discard_folio, | 
|  | }; | 
|  |  | 
|  | STATIC int | 
|  | xfs_vm_writepages( | 
|  | struct address_space	*mapping, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | struct xfs_writepage_ctx wpc = { }; | 
|  |  | 
|  | /* | 
|  | * Writing back data in a transaction context can result in recursive | 
|  | * transactions. This is bad, so issue a warning and get out of here. | 
|  | */ | 
|  | if (WARN_ON_ONCE(current->journal_info)) | 
|  | return 0; | 
|  |  | 
|  | xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); | 
|  | return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_dax_writepages( | 
|  | struct address_space	*mapping, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(mapping->host); | 
|  |  | 
|  | xfs_iflags_clear(ip, XFS_ITRUNCATED); | 
|  | return dax_writeback_mapping_range(mapping, | 
|  | xfs_inode_buftarg(ip)->bt_daxdev, wbc); | 
|  | } | 
|  |  | 
|  | STATIC sector_t | 
|  | xfs_vm_bmap( | 
|  | struct address_space	*mapping, | 
|  | sector_t		block) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(mapping->host); | 
|  |  | 
|  | trace_xfs_vm_bmap(ip); | 
|  |  | 
|  | /* | 
|  | * The swap code (ab-)uses ->bmap to get a block mapping and then | 
|  | * bypasses the file system for actual I/O.  We really can't allow | 
|  | * that on reflinks inodes, so we have to skip out here.  And yes, | 
|  | * 0 is the magic code for a bmap error. | 
|  | * | 
|  | * Since we don't pass back blockdev info, we can't return bmap | 
|  | * information for rt files either. | 
|  | */ | 
|  | if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip)) | 
|  | return 0; | 
|  | return iomap_bmap(mapping, block, &xfs_read_iomap_ops); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_vm_read_folio( | 
|  | struct file		*unused, | 
|  | struct folio		*folio) | 
|  | { | 
|  | return iomap_read_folio(folio, &xfs_read_iomap_ops); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_vm_readahead( | 
|  | struct readahead_control	*rac) | 
|  | { | 
|  | iomap_readahead(rac, &xfs_read_iomap_ops); | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_iomap_swapfile_activate( | 
|  | struct swap_info_struct		*sis, | 
|  | struct file			*swap_file, | 
|  | sector_t			*span) | 
|  | { | 
|  | sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev; | 
|  | return iomap_swapfile_activate(sis, swap_file, span, | 
|  | &xfs_read_iomap_ops); | 
|  | } | 
|  |  | 
|  | const struct address_space_operations xfs_address_space_operations = { | 
|  | .read_folio		= xfs_vm_read_folio, | 
|  | .readahead		= xfs_vm_readahead, | 
|  | .writepages		= xfs_vm_writepages, | 
|  | .dirty_folio		= iomap_dirty_folio, | 
|  | .release_folio		= iomap_release_folio, | 
|  | .invalidate_folio	= iomap_invalidate_folio, | 
|  | .bmap			= xfs_vm_bmap, | 
|  | .migrate_folio		= filemap_migrate_folio, | 
|  | .is_partially_uptodate  = iomap_is_partially_uptodate, | 
|  | .error_remove_page	= generic_error_remove_page, | 
|  | .swap_activate		= xfs_iomap_swapfile_activate, | 
|  | }; | 
|  |  | 
|  | const struct address_space_operations xfs_dax_aops = { | 
|  | .writepages		= xfs_dax_writepages, | 
|  | .dirty_folio		= noop_dirty_folio, | 
|  | .swap_activate		= xfs_iomap_swapfile_activate, | 
|  | }; |