|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Cadence CDNSP DRD Driver. | 
|  | * | 
|  | * Copyright (C) 2020 Cadence. | 
|  | * | 
|  | * Author: Pawel Laszczak <pawell@cadence.com> | 
|  | * | 
|  | * Code based on Linux XHCI driver. | 
|  | * Origin: Copyright (C) 2008 Intel Corp | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Ring initialization rules: | 
|  | * 1. Each segment is initialized to zero, except for link TRBs. | 
|  | * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or | 
|  | *    Consumer Cycle State (CCS), depending on ring function. | 
|  | * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. | 
|  | * | 
|  | * Ring behavior rules: | 
|  | * 1. A ring is empty if enqueue == dequeue. This means there will always be at | 
|  | *    least one free TRB in the ring. This is useful if you want to turn that | 
|  | *    into a link TRB and expand the ring. | 
|  | * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a | 
|  | *    link TRB, then load the pointer with the address in the link TRB. If the | 
|  | *    link TRB had its toggle bit set, you may need to update the ring cycle | 
|  | *    state (see cycle bit rules). You may have to do this multiple times | 
|  | *    until you reach a non-link TRB. | 
|  | * 3. A ring is full if enqueue++ (for the definition of increment above) | 
|  | *    equals the dequeue pointer. | 
|  | * | 
|  | * Cycle bit rules: | 
|  | * 1. When a consumer increments a dequeue pointer and encounters a toggle bit | 
|  | *    in a link TRB, it must toggle the ring cycle state. | 
|  | * 2. When a producer increments an enqueue pointer and encounters a toggle bit | 
|  | *    in a link TRB, it must toggle the ring cycle state. | 
|  | * | 
|  | * Producer rules: | 
|  | * 1. Check if ring is full before you enqueue. | 
|  | * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. | 
|  | *    Update enqueue pointer between each write (which may update the ring | 
|  | *    cycle state). | 
|  | * 3. Notify consumer. If SW is producer, it rings the doorbell for command | 
|  | *    and endpoint rings. If controller is the producer for the event ring, | 
|  | *    and it generates an interrupt according to interrupt modulation rules. | 
|  | * | 
|  | * Consumer rules: | 
|  | * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state, | 
|  | *    the TRB is owned by the consumer. | 
|  | * 2. Update dequeue pointer (which may update the ring cycle state) and | 
|  | *    continue processing TRBs until you reach a TRB which is not owned by you. | 
|  | * 3. Notify the producer. SW is the consumer for the event ring, and it | 
|  | *    updates event ring dequeue pointer. Controller is the consumer for the | 
|  | *    command and endpoint rings; it generates events on the event ring | 
|  | *    for these. | 
|  | */ | 
|  |  | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/irq.h> | 
|  |  | 
|  | #include "cdnsp-trace.h" | 
|  | #include "cdnsp-gadget.h" | 
|  |  | 
|  | /* | 
|  | * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA | 
|  | * address of the TRB. | 
|  | */ | 
|  | dma_addr_t cdnsp_trb_virt_to_dma(struct cdnsp_segment *seg, | 
|  | union cdnsp_trb *trb) | 
|  | { | 
|  | unsigned long segment_offset = trb - seg->trbs; | 
|  |  | 
|  | if (trb < seg->trbs || segment_offset >= TRBS_PER_SEGMENT) | 
|  | return 0; | 
|  |  | 
|  | return seg->dma + (segment_offset * sizeof(*trb)); | 
|  | } | 
|  |  | 
|  | static bool cdnsp_trb_is_noop(union cdnsp_trb *trb) | 
|  | { | 
|  | return TRB_TYPE_NOOP_LE32(trb->generic.field[3]); | 
|  | } | 
|  |  | 
|  | static bool cdnsp_trb_is_link(union cdnsp_trb *trb) | 
|  | { | 
|  | return TRB_TYPE_LINK_LE32(trb->link.control); | 
|  | } | 
|  |  | 
|  | bool cdnsp_last_trb_on_seg(struct cdnsp_segment *seg, union cdnsp_trb *trb) | 
|  | { | 
|  | return trb == &seg->trbs[TRBS_PER_SEGMENT - 1]; | 
|  | } | 
|  |  | 
|  | bool cdnsp_last_trb_on_ring(struct cdnsp_ring *ring, | 
|  | struct cdnsp_segment *seg, | 
|  | union cdnsp_trb *trb) | 
|  | { | 
|  | return cdnsp_last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg); | 
|  | } | 
|  |  | 
|  | static bool cdnsp_link_trb_toggles_cycle(union cdnsp_trb *trb) | 
|  | { | 
|  | return le32_to_cpu(trb->link.control) & LINK_TOGGLE; | 
|  | } | 
|  |  | 
|  | static void cdnsp_trb_to_noop(union cdnsp_trb *trb, u32 noop_type) | 
|  | { | 
|  | if (cdnsp_trb_is_link(trb)) { | 
|  | /* Unchain chained link TRBs. */ | 
|  | trb->link.control &= cpu_to_le32(~TRB_CHAIN); | 
|  | } else { | 
|  | trb->generic.field[0] = 0; | 
|  | trb->generic.field[1] = 0; | 
|  | trb->generic.field[2] = 0; | 
|  | /* Preserve only the cycle bit of this TRB. */ | 
|  | trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); | 
|  | trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Updates trb to point to the next TRB in the ring, and updates seg if the next | 
|  | * TRB is in a new segment. This does not skip over link TRBs, and it does not | 
|  | * effect the ring dequeue or enqueue pointers. | 
|  | */ | 
|  | static void cdnsp_next_trb(struct cdnsp_device *pdev, | 
|  | struct cdnsp_ring *ring, | 
|  | struct cdnsp_segment **seg, | 
|  | union cdnsp_trb **trb) | 
|  | { | 
|  | if (cdnsp_trb_is_link(*trb)) { | 
|  | *seg = (*seg)->next; | 
|  | *trb = ((*seg)->trbs); | 
|  | } else { | 
|  | (*trb)++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See Cycle bit rules. SW is the consumer for the event ring only. | 
|  | * Don't make a ring full of link TRBs. That would be dumb and this would loop. | 
|  | */ | 
|  | void cdnsp_inc_deq(struct cdnsp_device *pdev, struct cdnsp_ring *ring) | 
|  | { | 
|  | /* event ring doesn't have link trbs, check for last trb. */ | 
|  | if (ring->type == TYPE_EVENT) { | 
|  | if (!cdnsp_last_trb_on_seg(ring->deq_seg, ring->dequeue)) { | 
|  | ring->dequeue++; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (cdnsp_last_trb_on_ring(ring, ring->deq_seg, ring->dequeue)) | 
|  | ring->cycle_state ^= 1; | 
|  |  | 
|  | ring->deq_seg = ring->deq_seg->next; | 
|  | ring->dequeue = ring->deq_seg->trbs; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* All other rings have link trbs. */ | 
|  | if (!cdnsp_trb_is_link(ring->dequeue)) { | 
|  | ring->dequeue++; | 
|  | ring->num_trbs_free++; | 
|  | } | 
|  | while (cdnsp_trb_is_link(ring->dequeue)) { | 
|  | ring->deq_seg = ring->deq_seg->next; | 
|  | ring->dequeue = ring->deq_seg->trbs; | 
|  | } | 
|  | out: | 
|  | trace_cdnsp_inc_deq(ring); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See Cycle bit rules. SW is the consumer for the event ring only. | 
|  | * Don't make a ring full of link TRBs. That would be dumb and this would loop. | 
|  | * | 
|  | * If we've just enqueued a TRB that is in the middle of a TD (meaning the | 
|  | * chain bit is set), then set the chain bit in all the following link TRBs. | 
|  | * If we've enqueued the last TRB in a TD, make sure the following link TRBs | 
|  | * have their chain bit cleared (so that each Link TRB is a separate TD). | 
|  | * | 
|  | * @more_trbs_coming:	Will you enqueue more TRBs before ringing the doorbell. | 
|  | */ | 
|  | static void cdnsp_inc_enq(struct cdnsp_device *pdev, | 
|  | struct cdnsp_ring *ring, | 
|  | bool more_trbs_coming) | 
|  | { | 
|  | union cdnsp_trb *next; | 
|  | u32 chain; | 
|  |  | 
|  | chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN; | 
|  |  | 
|  | /* If this is not event ring, there is one less usable TRB. */ | 
|  | if (!cdnsp_trb_is_link(ring->enqueue)) | 
|  | ring->num_trbs_free--; | 
|  | next = ++(ring->enqueue); | 
|  |  | 
|  | /* Update the dequeue pointer further if that was a link TRB */ | 
|  | while (cdnsp_trb_is_link(next)) { | 
|  | /* | 
|  | * If the caller doesn't plan on enqueuing more TDs before | 
|  | * ringing the doorbell, then we don't want to give the link TRB | 
|  | * to the hardware just yet. We'll give the link TRB back in | 
|  | * cdnsp_prepare_ring() just before we enqueue the TD at the | 
|  | * top of the ring. | 
|  | */ | 
|  | if (!chain && !more_trbs_coming) | 
|  | break; | 
|  |  | 
|  | next->link.control &= cpu_to_le32(~TRB_CHAIN); | 
|  | next->link.control |= cpu_to_le32(chain); | 
|  |  | 
|  | /* Give this link TRB to the hardware */ | 
|  | wmb(); | 
|  | next->link.control ^= cpu_to_le32(TRB_CYCLE); | 
|  |  | 
|  | /* Toggle the cycle bit after the last ring segment. */ | 
|  | if (cdnsp_link_trb_toggles_cycle(next)) | 
|  | ring->cycle_state ^= 1; | 
|  |  | 
|  | ring->enq_seg = ring->enq_seg->next; | 
|  | ring->enqueue = ring->enq_seg->trbs; | 
|  | next = ring->enqueue; | 
|  | } | 
|  |  | 
|  | trace_cdnsp_inc_enq(ring); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if there's room to enqueue num_trbs on the ring and make sure | 
|  | * enqueue pointer will not advance into dequeue segment. | 
|  | */ | 
|  | static bool cdnsp_room_on_ring(struct cdnsp_device *pdev, | 
|  | struct cdnsp_ring *ring, | 
|  | unsigned int num_trbs) | 
|  | { | 
|  | int num_trbs_in_deq_seg; | 
|  |  | 
|  | if (ring->num_trbs_free < num_trbs) | 
|  | return false; | 
|  |  | 
|  | if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) { | 
|  | num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs; | 
|  |  | 
|  | if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Workaround for L1: controller has issue with resuming from L1 after | 
|  | * setting doorbell for endpoint during L1 state. This function forces | 
|  | * resume signal in such case. | 
|  | */ | 
|  | static void cdnsp_force_l0_go(struct cdnsp_device *pdev) | 
|  | { | 
|  | if (pdev->active_port == &pdev->usb2_port && pdev->gadget.lpm_capable) | 
|  | cdnsp_set_link_state(pdev, &pdev->active_port->regs->portsc, XDEV_U0); | 
|  | } | 
|  |  | 
|  | /* Ring the doorbell after placing a command on the ring. */ | 
|  | void cdnsp_ring_cmd_db(struct cdnsp_device *pdev) | 
|  | { | 
|  | writel(DB_VALUE_CMD, &pdev->dba->cmd_db); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ring the doorbell after placing a transfer on the ring. | 
|  | * Returns true if doorbell was set, otherwise false. | 
|  | */ | 
|  | static bool cdnsp_ring_ep_doorbell(struct cdnsp_device *pdev, | 
|  | struct cdnsp_ep *pep, | 
|  | unsigned int stream_id) | 
|  | { | 
|  | __le32 __iomem *reg_addr = &pdev->dba->ep_db; | 
|  | unsigned int ep_state = pep->ep_state; | 
|  | unsigned int db_value; | 
|  |  | 
|  | /* | 
|  | * Don't ring the doorbell for this endpoint if endpoint is halted or | 
|  | * disabled. | 
|  | */ | 
|  | if (ep_state & EP_HALTED || !(ep_state & EP_ENABLED)) | 
|  | return false; | 
|  |  | 
|  | /* For stream capable endpoints driver can ring doorbell only twice. */ | 
|  | if (pep->ep_state & EP_HAS_STREAMS) { | 
|  | if (pep->stream_info.drbls_count >= 2) | 
|  | return false; | 
|  |  | 
|  | pep->stream_info.drbls_count++; | 
|  | } | 
|  |  | 
|  | pep->ep_state &= ~EP_STOPPED; | 
|  |  | 
|  | if (pep->idx == 0 && pdev->ep0_stage == CDNSP_DATA_STAGE && | 
|  | !pdev->ep0_expect_in) | 
|  | db_value = DB_VALUE_EP0_OUT(pep->idx, stream_id); | 
|  | else | 
|  | db_value = DB_VALUE(pep->idx, stream_id); | 
|  |  | 
|  | trace_cdnsp_tr_drbl(pep, stream_id); | 
|  |  | 
|  | writel(db_value, reg_addr); | 
|  |  | 
|  | if (pdev->rtl_revision < RTL_REVISION_NEW_LPM) | 
|  | cdnsp_force_l0_go(pdev); | 
|  |  | 
|  | /* Doorbell was set. */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the right ring for the given pep and stream_id. | 
|  | * If the endpoint supports streams, boundary check the USB request's stream ID. | 
|  | * If the endpoint doesn't support streams, return the singular endpoint ring. | 
|  | */ | 
|  | static struct cdnsp_ring *cdnsp_get_transfer_ring(struct cdnsp_device *pdev, | 
|  | struct cdnsp_ep *pep, | 
|  | unsigned int stream_id) | 
|  | { | 
|  | if (!(pep->ep_state & EP_HAS_STREAMS)) | 
|  | return pep->ring; | 
|  |  | 
|  | if (stream_id == 0 || stream_id >= pep->stream_info.num_streams) { | 
|  | dev_err(pdev->dev, "ERR: %s ring doesn't exist for SID: %d.\n", | 
|  | pep->name, stream_id); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return pep->stream_info.stream_rings[stream_id]; | 
|  | } | 
|  |  | 
|  | static struct cdnsp_ring * | 
|  | cdnsp_request_to_transfer_ring(struct cdnsp_device *pdev, | 
|  | struct cdnsp_request *preq) | 
|  | { | 
|  | return cdnsp_get_transfer_ring(pdev, preq->pep, | 
|  | preq->request.stream_id); | 
|  | } | 
|  |  | 
|  | /* Ring the doorbell for any rings with pending requests. */ | 
|  | void cdnsp_ring_doorbell_for_active_rings(struct cdnsp_device *pdev, | 
|  | struct cdnsp_ep *pep) | 
|  | { | 
|  | struct cdnsp_stream_info *stream_info; | 
|  | unsigned int stream_id; | 
|  | int ret; | 
|  |  | 
|  | if (pep->ep_state & EP_DIS_IN_RROGRESS) | 
|  | return; | 
|  |  | 
|  | /* A ring has pending Request if its TD list is not empty. */ | 
|  | if (!(pep->ep_state & EP_HAS_STREAMS) && pep->number) { | 
|  | if (pep->ring && !list_empty(&pep->ring->td_list)) | 
|  | cdnsp_ring_ep_doorbell(pdev, pep, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | stream_info = &pep->stream_info; | 
|  |  | 
|  | for (stream_id = 1; stream_id < stream_info->num_streams; stream_id++) { | 
|  | struct cdnsp_td *td, *td_temp; | 
|  | struct cdnsp_ring *ep_ring; | 
|  |  | 
|  | if (stream_info->drbls_count >= 2) | 
|  | return; | 
|  |  | 
|  | ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id); | 
|  | if (!ep_ring) | 
|  | continue; | 
|  |  | 
|  | if (!ep_ring->stream_active || ep_ring->stream_rejected) | 
|  | continue; | 
|  |  | 
|  | list_for_each_entry_safe(td, td_temp, &ep_ring->td_list, | 
|  | td_list) { | 
|  | if (td->drbl) | 
|  | continue; | 
|  |  | 
|  | ret = cdnsp_ring_ep_doorbell(pdev, pep, stream_id); | 
|  | if (ret) | 
|  | td->drbl = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the hw dequeue pointer controller stopped on, either directly from the | 
|  | * endpoint context, or if streams are in use from the stream context. | 
|  | * The returned hw_dequeue contains the lowest four bits with cycle state | 
|  | * and possible stream context type. | 
|  | */ | 
|  | static u64 cdnsp_get_hw_deq(struct cdnsp_device *pdev, | 
|  | unsigned int ep_index, | 
|  | unsigned int stream_id) | 
|  | { | 
|  | struct cdnsp_stream_ctx *st_ctx; | 
|  | struct cdnsp_ep *pep; | 
|  |  | 
|  | pep = &pdev->eps[ep_index]; | 
|  |  | 
|  | if (pep->ep_state & EP_HAS_STREAMS) { | 
|  | st_ctx = &pep->stream_info.stream_ctx_array[stream_id]; | 
|  | return le64_to_cpu(st_ctx->stream_ring); | 
|  | } | 
|  |  | 
|  | return le64_to_cpu(pep->out_ctx->deq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move the controller endpoint ring dequeue pointer past cur_td. | 
|  | * Record the new state of the controller endpoint ring dequeue segment, | 
|  | * dequeue pointer, and new consumer cycle state in state. | 
|  | * Update internal representation of the ring's dequeue pointer. | 
|  | * | 
|  | * We do this in three jumps: | 
|  | *  - First we update our new ring state to be the same as when the | 
|  | *    controller stopped. | 
|  | *  - Then we traverse the ring to find the segment that contains | 
|  | *    the last TRB in the TD. We toggle the controller new cycle state | 
|  | *    when we pass any link TRBs with the toggle cycle bit set. | 
|  | *  - Finally we move the dequeue state one TRB further, toggling the cycle bit | 
|  | *    if we've moved it past a link TRB with the toggle cycle bit set. | 
|  | */ | 
|  | static void cdnsp_find_new_dequeue_state(struct cdnsp_device *pdev, | 
|  | struct cdnsp_ep *pep, | 
|  | unsigned int stream_id, | 
|  | struct cdnsp_td *cur_td, | 
|  | struct cdnsp_dequeue_state *state) | 
|  | { | 
|  | bool td_last_trb_found = false; | 
|  | struct cdnsp_segment *new_seg; | 
|  | struct cdnsp_ring *ep_ring; | 
|  | union cdnsp_trb *new_deq; | 
|  | bool cycle_found = false; | 
|  | u64 hw_dequeue; | 
|  |  | 
|  | ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id); | 
|  | if (!ep_ring) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Dig out the cycle state saved by the controller during the | 
|  | * stop endpoint command. | 
|  | */ | 
|  | hw_dequeue = cdnsp_get_hw_deq(pdev, pep->idx, stream_id); | 
|  | new_seg = ep_ring->deq_seg; | 
|  | new_deq = ep_ring->dequeue; | 
|  | state->new_cycle_state = hw_dequeue & 0x1; | 
|  | state->stream_id = stream_id; | 
|  |  | 
|  | /* | 
|  | * We want to find the pointer, segment and cycle state of the new trb | 
|  | * (the one after current TD's last_trb). We know the cycle state at | 
|  | * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are | 
|  | * found. | 
|  | */ | 
|  | do { | 
|  | if (!cycle_found && cdnsp_trb_virt_to_dma(new_seg, new_deq) | 
|  | == (dma_addr_t)(hw_dequeue & ~0xf)) { | 
|  | cycle_found = true; | 
|  |  | 
|  | if (td_last_trb_found) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (new_deq == cur_td->last_trb) | 
|  | td_last_trb_found = true; | 
|  |  | 
|  | if (cycle_found && cdnsp_trb_is_link(new_deq) && | 
|  | cdnsp_link_trb_toggles_cycle(new_deq)) | 
|  | state->new_cycle_state ^= 0x1; | 
|  |  | 
|  | cdnsp_next_trb(pdev, ep_ring, &new_seg, &new_deq); | 
|  |  | 
|  | /* Search wrapped around, bail out. */ | 
|  | if (new_deq == pep->ring->dequeue) { | 
|  | dev_err(pdev->dev, | 
|  | "Error: Failed finding new dequeue state\n"); | 
|  | state->new_deq_seg = NULL; | 
|  | state->new_deq_ptr = NULL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | } while (!cycle_found || !td_last_trb_found); | 
|  |  | 
|  | state->new_deq_seg = new_seg; | 
|  | state->new_deq_ptr = new_deq; | 
|  |  | 
|  | trace_cdnsp_new_deq_state(state); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * flip_cycle means flip the cycle bit of all but the first and last TRB. | 
|  | * (The last TRB actually points to the ring enqueue pointer, which is not part | 
|  | * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. | 
|  | */ | 
|  | static void cdnsp_td_to_noop(struct cdnsp_device *pdev, | 
|  | struct cdnsp_ring *ep_ring, | 
|  | struct cdnsp_td *td, | 
|  | bool flip_cycle) | 
|  | { | 
|  | struct cdnsp_segment *seg = td->start_seg; | 
|  | union cdnsp_trb *trb = td->first_trb; | 
|  |  | 
|  | while (1) { | 
|  | cdnsp_trb_to_noop(trb, TRB_TR_NOOP); | 
|  |  | 
|  | /* flip cycle if asked to */ | 
|  | if (flip_cycle && trb != td->first_trb && trb != td->last_trb) | 
|  | trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); | 
|  |  | 
|  | if (trb == td->last_trb) | 
|  | break; | 
|  |  | 
|  | cdnsp_next_trb(pdev, ep_ring, &seg, &trb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This TD is defined by the TRBs starting at start_trb in start_seg and ending | 
|  | * at end_trb, which may be in another segment. If the suspect DMA address is a | 
|  | * TRB in this TD, this function returns that TRB's segment. Otherwise it | 
|  | * returns 0. | 
|  | */ | 
|  | static struct cdnsp_segment *cdnsp_trb_in_td(struct cdnsp_device *pdev, | 
|  | struct cdnsp_segment *start_seg, | 
|  | union cdnsp_trb *start_trb, | 
|  | union cdnsp_trb *end_trb, | 
|  | dma_addr_t suspect_dma) | 
|  | { | 
|  | struct cdnsp_segment *cur_seg; | 
|  | union cdnsp_trb *temp_trb; | 
|  | dma_addr_t end_seg_dma; | 
|  | dma_addr_t end_trb_dma; | 
|  | dma_addr_t start_dma; | 
|  |  | 
|  | start_dma = cdnsp_trb_virt_to_dma(start_seg, start_trb); | 
|  | cur_seg = start_seg; | 
|  |  | 
|  | do { | 
|  | if (start_dma == 0) | 
|  | return NULL; | 
|  |  | 
|  | temp_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1]; | 
|  | /* We may get an event for a Link TRB in the middle of a TD */ | 
|  | end_seg_dma = cdnsp_trb_virt_to_dma(cur_seg, temp_trb); | 
|  | /* If the end TRB isn't in this segment, this is set to 0 */ | 
|  | end_trb_dma = cdnsp_trb_virt_to_dma(cur_seg, end_trb); | 
|  |  | 
|  | trace_cdnsp_looking_trb_in_td(suspect_dma, start_dma, | 
|  | end_trb_dma, cur_seg->dma, | 
|  | end_seg_dma); | 
|  |  | 
|  | if (end_trb_dma > 0) { | 
|  | /* | 
|  | * The end TRB is in this segment, so suspect should | 
|  | * be here | 
|  | */ | 
|  | if (start_dma <= end_trb_dma) { | 
|  | if (suspect_dma >= start_dma && | 
|  | suspect_dma <= end_trb_dma) { | 
|  | return cur_seg; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Case for one segment with a | 
|  | * TD wrapped around to the top | 
|  | */ | 
|  | if ((suspect_dma >= start_dma && | 
|  | suspect_dma <= end_seg_dma) || | 
|  | (suspect_dma >= cur_seg->dma && | 
|  | suspect_dma <= end_trb_dma)) { | 
|  | return cur_seg; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Might still be somewhere in this segment */ | 
|  | if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) | 
|  | return cur_seg; | 
|  |  | 
|  | cur_seg = cur_seg->next; | 
|  | start_dma = cdnsp_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); | 
|  | } while (cur_seg != start_seg); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void cdnsp_unmap_td_bounce_buffer(struct cdnsp_device *pdev, | 
|  | struct cdnsp_ring *ring, | 
|  | struct cdnsp_td *td) | 
|  | { | 
|  | struct cdnsp_segment *seg = td->bounce_seg; | 
|  | struct cdnsp_request *preq; | 
|  | size_t len; | 
|  |  | 
|  | if (!seg) | 
|  | return; | 
|  |  | 
|  | preq = td->preq; | 
|  |  | 
|  | trace_cdnsp_bounce_unmap(td->preq, seg->bounce_len, seg->bounce_offs, | 
|  | seg->bounce_dma, 0); | 
|  |  | 
|  | if (!preq->direction) { | 
|  | dma_unmap_single(pdev->dev, seg->bounce_dma, | 
|  | ring->bounce_buf_len,  DMA_TO_DEVICE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | dma_unmap_single(pdev->dev, seg->bounce_dma, ring->bounce_buf_len, | 
|  | DMA_FROM_DEVICE); | 
|  |  | 
|  | /* For in transfers we need to copy the data from bounce to sg */ | 
|  | len = sg_pcopy_from_buffer(preq->request.sg, preq->request.num_sgs, | 
|  | seg->bounce_buf, seg->bounce_len, | 
|  | seg->bounce_offs); | 
|  | if (len != seg->bounce_len) | 
|  | dev_warn(pdev->dev, "WARN Wrong bounce buffer read length: %zu != %d\n", | 
|  | len, seg->bounce_len); | 
|  |  | 
|  | seg->bounce_len = 0; | 
|  | seg->bounce_offs = 0; | 
|  | } | 
|  |  | 
|  | static int cdnsp_cmd_set_deq(struct cdnsp_device *pdev, | 
|  | struct cdnsp_ep *pep, | 
|  | struct cdnsp_dequeue_state *deq_state) | 
|  | { | 
|  | struct cdnsp_ring *ep_ring; | 
|  | int ret; | 
|  |  | 
|  | if (!deq_state->new_deq_ptr || !deq_state->new_deq_seg) { | 
|  | cdnsp_ring_doorbell_for_active_rings(pdev, pep); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | cdnsp_queue_new_dequeue_state(pdev, pep, deq_state); | 
|  | cdnsp_ring_cmd_db(pdev); | 
|  | ret = cdnsp_wait_for_cmd_compl(pdev); | 
|  |  | 
|  | trace_cdnsp_handle_cmd_set_deq(cdnsp_get_slot_ctx(&pdev->out_ctx)); | 
|  | trace_cdnsp_handle_cmd_set_deq_ep(pep->out_ctx); | 
|  |  | 
|  | /* | 
|  | * Update the ring's dequeue segment and dequeue pointer | 
|  | * to reflect the new position. | 
|  | */ | 
|  | ep_ring = cdnsp_get_transfer_ring(pdev, pep, deq_state->stream_id); | 
|  |  | 
|  | if (cdnsp_trb_is_link(ep_ring->dequeue)) { | 
|  | ep_ring->deq_seg = ep_ring->deq_seg->next; | 
|  | ep_ring->dequeue = ep_ring->deq_seg->trbs; | 
|  | } | 
|  |  | 
|  | while (ep_ring->dequeue != deq_state->new_deq_ptr) { | 
|  | ep_ring->num_trbs_free++; | 
|  | ep_ring->dequeue++; | 
|  |  | 
|  | if (cdnsp_trb_is_link(ep_ring->dequeue)) { | 
|  | if (ep_ring->dequeue == deq_state->new_deq_ptr) | 
|  | break; | 
|  |  | 
|  | ep_ring->deq_seg = ep_ring->deq_seg->next; | 
|  | ep_ring->dequeue = ep_ring->deq_seg->trbs; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Probably there was TIMEOUT during handling Set Dequeue Pointer | 
|  | * command. It's critical error and controller will be stopped. | 
|  | */ | 
|  | if (ret) | 
|  | return -ESHUTDOWN; | 
|  |  | 
|  | /* Restart any rings with pending requests */ | 
|  | cdnsp_ring_doorbell_for_active_rings(pdev, pep); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cdnsp_remove_request(struct cdnsp_device *pdev, | 
|  | struct cdnsp_request *preq, | 
|  | struct cdnsp_ep *pep) | 
|  | { | 
|  | struct cdnsp_dequeue_state deq_state; | 
|  | struct cdnsp_td *cur_td = NULL; | 
|  | struct cdnsp_ring *ep_ring; | 
|  | struct cdnsp_segment *seg; | 
|  | int status = -ECONNRESET; | 
|  | int ret = 0; | 
|  | u64 hw_deq; | 
|  |  | 
|  | memset(&deq_state, 0, sizeof(deq_state)); | 
|  |  | 
|  | trace_cdnsp_remove_request(pep->out_ctx); | 
|  | trace_cdnsp_remove_request_td(preq); | 
|  |  | 
|  | cur_td = &preq->td; | 
|  | ep_ring = cdnsp_request_to_transfer_ring(pdev, preq); | 
|  |  | 
|  | /* | 
|  | * If we stopped on the TD we need to cancel, then we have to | 
|  | * move the controller endpoint ring dequeue pointer past | 
|  | * this TD. | 
|  | */ | 
|  | hw_deq = cdnsp_get_hw_deq(pdev, pep->idx, preq->request.stream_id); | 
|  | hw_deq &= ~0xf; | 
|  |  | 
|  | seg = cdnsp_trb_in_td(pdev, cur_td->start_seg, cur_td->first_trb, | 
|  | cur_td->last_trb, hw_deq); | 
|  |  | 
|  | if (seg && (pep->ep_state & EP_ENABLED) && | 
|  | !(pep->ep_state & EP_DIS_IN_RROGRESS)) | 
|  | cdnsp_find_new_dequeue_state(pdev, pep, preq->request.stream_id, | 
|  | cur_td, &deq_state); | 
|  | else | 
|  | cdnsp_td_to_noop(pdev, ep_ring, cur_td, false); | 
|  |  | 
|  | /* | 
|  | * The event handler won't see a completion for this TD anymore, | 
|  | * so remove it from the endpoint ring's TD list. | 
|  | */ | 
|  | list_del_init(&cur_td->td_list); | 
|  | ep_ring->num_tds--; | 
|  | pep->stream_info.td_count--; | 
|  |  | 
|  | /* | 
|  | * During disconnecting all endpoint will be disabled so we don't | 
|  | * have to worry about updating dequeue pointer. | 
|  | */ | 
|  | if (pdev->cdnsp_state & CDNSP_STATE_DISCONNECT_PENDING || | 
|  | pep->ep_state & EP_DIS_IN_RROGRESS) { | 
|  | status = -ESHUTDOWN; | 
|  | ret = cdnsp_cmd_set_deq(pdev, pep, &deq_state); | 
|  | } | 
|  |  | 
|  | cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, cur_td); | 
|  | cdnsp_gadget_giveback(pep, cur_td->preq, status); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cdnsp_update_port_id(struct cdnsp_device *pdev, u32 port_id) | 
|  | { | 
|  | struct cdnsp_port *port = pdev->active_port; | 
|  | u8 old_port = 0; | 
|  |  | 
|  | if (port && port->port_num == port_id) | 
|  | return 0; | 
|  |  | 
|  | if (port) | 
|  | old_port = port->port_num; | 
|  |  | 
|  | if (port_id == pdev->usb2_port.port_num) { | 
|  | port = &pdev->usb2_port; | 
|  | } else if (port_id == pdev->usb3_port.port_num) { | 
|  | port  = &pdev->usb3_port; | 
|  | } else { | 
|  | dev_err(pdev->dev, "Port event with invalid port ID %d\n", | 
|  | port_id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (port_id != old_port) { | 
|  | cdnsp_disable_slot(pdev); | 
|  | pdev->active_port = port; | 
|  | cdnsp_enable_slot(pdev); | 
|  | } | 
|  |  | 
|  | if (port_id == pdev->usb2_port.port_num) | 
|  | cdnsp_set_usb2_hardware_lpm(pdev, NULL, 1); | 
|  | else | 
|  | writel(PORT_U1_TIMEOUT(1) | PORT_U2_TIMEOUT(1), | 
|  | &pdev->usb3_port.regs->portpmsc); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cdnsp_handle_port_status(struct cdnsp_device *pdev, | 
|  | union cdnsp_trb *event) | 
|  | { | 
|  | struct cdnsp_port_regs __iomem *port_regs; | 
|  | u32 portsc, cmd_regs; | 
|  | bool port2 = false; | 
|  | u32 link_state; | 
|  | u32 port_id; | 
|  |  | 
|  | /* Port status change events always have a successful completion code */ | 
|  | if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) | 
|  | dev_err(pdev->dev, "ERR: incorrect PSC event\n"); | 
|  |  | 
|  | port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); | 
|  |  | 
|  | if (cdnsp_update_port_id(pdev, port_id)) | 
|  | goto cleanup; | 
|  |  | 
|  | port_regs = pdev->active_port->regs; | 
|  |  | 
|  | if (port_id == pdev->usb2_port.port_num) | 
|  | port2 = true; | 
|  |  | 
|  | new_event: | 
|  | portsc = readl(&port_regs->portsc); | 
|  | writel(cdnsp_port_state_to_neutral(portsc) | | 
|  | (portsc & PORT_CHANGE_BITS), &port_regs->portsc); | 
|  |  | 
|  | trace_cdnsp_handle_port_status(pdev->active_port->port_num, portsc); | 
|  |  | 
|  | pdev->gadget.speed = cdnsp_port_speed(portsc); | 
|  | link_state = portsc & PORT_PLS_MASK; | 
|  |  | 
|  | /* Port Link State change detected. */ | 
|  | if ((portsc & PORT_PLC)) { | 
|  | if (!(pdev->cdnsp_state & CDNSP_WAKEUP_PENDING)  && | 
|  | link_state == XDEV_RESUME) { | 
|  | cmd_regs = readl(&pdev->op_regs->command); | 
|  | if (!(cmd_regs & CMD_R_S)) | 
|  | goto cleanup; | 
|  |  | 
|  | if (DEV_SUPERSPEED_ANY(portsc)) { | 
|  | cdnsp_set_link_state(pdev, &port_regs->portsc, | 
|  | XDEV_U0); | 
|  |  | 
|  | cdnsp_resume_gadget(pdev); | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((pdev->cdnsp_state & CDNSP_WAKEUP_PENDING) && | 
|  | link_state == XDEV_U0) { | 
|  | pdev->cdnsp_state &= ~CDNSP_WAKEUP_PENDING; | 
|  |  | 
|  | cdnsp_force_header_wakeup(pdev, 1); | 
|  | cdnsp_ring_cmd_db(pdev); | 
|  | cdnsp_wait_for_cmd_compl(pdev); | 
|  | } | 
|  |  | 
|  | if (link_state == XDEV_U0 && pdev->link_state == XDEV_U3 && | 
|  | !DEV_SUPERSPEED_ANY(portsc)) | 
|  | cdnsp_resume_gadget(pdev); | 
|  |  | 
|  | if (link_state == XDEV_U3 &&  pdev->link_state != XDEV_U3) | 
|  | cdnsp_suspend_gadget(pdev); | 
|  |  | 
|  | pdev->link_state = link_state; | 
|  | } | 
|  |  | 
|  | if (portsc & PORT_CSC) { | 
|  | /* Detach device. */ | 
|  | if (pdev->gadget.connected && !(portsc & PORT_CONNECT)) | 
|  | cdnsp_disconnect_gadget(pdev); | 
|  |  | 
|  | /* Attach device. */ | 
|  | if (portsc & PORT_CONNECT) { | 
|  | if (!port2) | 
|  | cdnsp_irq_reset(pdev); | 
|  |  | 
|  | usb_gadget_set_state(&pdev->gadget, USB_STATE_ATTACHED); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Port reset. */ | 
|  | if ((portsc & (PORT_RC | PORT_WRC)) && (portsc & PORT_CONNECT)) { | 
|  | cdnsp_irq_reset(pdev); | 
|  | pdev->u1_allowed = 0; | 
|  | pdev->u2_allowed = 0; | 
|  | pdev->may_wakeup = 0; | 
|  | } | 
|  |  | 
|  | if (portsc & PORT_CEC) | 
|  | dev_err(pdev->dev, "Port Over Current detected\n"); | 
|  |  | 
|  | if (portsc & PORT_CEC) | 
|  | dev_err(pdev->dev, "Port Configure Error detected\n"); | 
|  |  | 
|  | if (readl(&port_regs->portsc) & PORT_CHANGE_BITS) | 
|  | goto new_event; | 
|  |  | 
|  | cleanup: | 
|  | cdnsp_inc_deq(pdev, pdev->event_ring); | 
|  | } | 
|  |  | 
|  | static void cdnsp_td_cleanup(struct cdnsp_device *pdev, | 
|  | struct cdnsp_td *td, | 
|  | struct cdnsp_ring *ep_ring, | 
|  | int *status) | 
|  | { | 
|  | struct cdnsp_request *preq = td->preq; | 
|  |  | 
|  | /* if a bounce buffer was used to align this td then unmap it */ | 
|  | cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, td); | 
|  |  | 
|  | /* | 
|  | * If the controller said we transferred more data than the buffer | 
|  | * length, Play it safe and say we didn't transfer anything. | 
|  | */ | 
|  | if (preq->request.actual > preq->request.length) { | 
|  | preq->request.actual = 0; | 
|  | *status = 0; | 
|  | } | 
|  |  | 
|  | list_del_init(&td->td_list); | 
|  | ep_ring->num_tds--; | 
|  | preq->pep->stream_info.td_count--; | 
|  |  | 
|  | cdnsp_gadget_giveback(preq->pep, preq, *status); | 
|  | } | 
|  |  | 
|  | static void cdnsp_finish_td(struct cdnsp_device *pdev, | 
|  | struct cdnsp_td *td, | 
|  | struct cdnsp_transfer_event *event, | 
|  | struct cdnsp_ep *ep, | 
|  | int *status) | 
|  | { | 
|  | struct cdnsp_ring *ep_ring; | 
|  | u32 trb_comp_code; | 
|  |  | 
|  | ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); | 
|  | trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
|  |  | 
|  | if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID || | 
|  | trb_comp_code == COMP_STOPPED || | 
|  | trb_comp_code == COMP_STOPPED_SHORT_PACKET) { | 
|  | /* | 
|  | * The Endpoint Stop Command completion will take care of any | 
|  | * stopped TDs. A stopped TD may be restarted, so don't update | 
|  | * the ring dequeue pointer or take this TD off any lists yet. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Update ring dequeue pointer */ | 
|  | while (ep_ring->dequeue != td->last_trb) | 
|  | cdnsp_inc_deq(pdev, ep_ring); | 
|  |  | 
|  | cdnsp_inc_deq(pdev, ep_ring); | 
|  |  | 
|  | cdnsp_td_cleanup(pdev, td, ep_ring, status); | 
|  | } | 
|  |  | 
|  | /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */ | 
|  | static int cdnsp_sum_trb_lengths(struct cdnsp_device *pdev, | 
|  | struct cdnsp_ring *ring, | 
|  | union cdnsp_trb *stop_trb) | 
|  | { | 
|  | struct cdnsp_segment *seg = ring->deq_seg; | 
|  | union cdnsp_trb *trb = ring->dequeue; | 
|  | u32 sum; | 
|  |  | 
|  | for (sum = 0; trb != stop_trb; cdnsp_next_trb(pdev, ring, &seg, &trb)) { | 
|  | if (!cdnsp_trb_is_noop(trb) && !cdnsp_trb_is_link(trb)) | 
|  | sum += TRB_LEN(le32_to_cpu(trb->generic.field[2])); | 
|  | } | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | static int cdnsp_giveback_first_trb(struct cdnsp_device *pdev, | 
|  | struct cdnsp_ep *pep, | 
|  | unsigned int stream_id, | 
|  | int start_cycle, | 
|  | struct cdnsp_generic_trb *start_trb) | 
|  | { | 
|  | /* | 
|  | * Pass all the TRBs to the hardware at once and make sure this write | 
|  | * isn't reordered. | 
|  | */ | 
|  | wmb(); | 
|  |  | 
|  | if (start_cycle) | 
|  | start_trb->field[3] |= cpu_to_le32(start_cycle); | 
|  | else | 
|  | start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); | 
|  |  | 
|  | if ((pep->ep_state & EP_HAS_STREAMS) && | 
|  | !pep->stream_info.first_prime_det) { | 
|  | trace_cdnsp_wait_for_prime(pep, stream_id); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return cdnsp_ring_ep_doorbell(pdev, pep, stream_id); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process control tds, update USB request status and actual_length. | 
|  | */ | 
|  | static void cdnsp_process_ctrl_td(struct cdnsp_device *pdev, | 
|  | struct cdnsp_td *td, | 
|  | union cdnsp_trb *event_trb, | 
|  | struct cdnsp_transfer_event *event, | 
|  | struct cdnsp_ep *pep, | 
|  | int *status) | 
|  | { | 
|  | struct cdnsp_ring *ep_ring; | 
|  | u32 remaining; | 
|  | u32 trb_type; | 
|  |  | 
|  | trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event_trb->generic.field[3])); | 
|  | ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer)); | 
|  | remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); | 
|  |  | 
|  | /* | 
|  | * if on data stage then update the actual_length of the USB | 
|  | * request and flag it as set, so it won't be overwritten in the event | 
|  | * for the last TRB. | 
|  | */ | 
|  | if (trb_type == TRB_DATA) { | 
|  | td->request_length_set = true; | 
|  | td->preq->request.actual = td->preq->request.length - remaining; | 
|  | } | 
|  |  | 
|  | /* at status stage */ | 
|  | if (!td->request_length_set) | 
|  | td->preq->request.actual = td->preq->request.length; | 
|  |  | 
|  | if (pdev->ep0_stage == CDNSP_DATA_STAGE && pep->number == 0 && | 
|  | pdev->three_stage_setup) { | 
|  | td = list_entry(ep_ring->td_list.next, struct cdnsp_td, | 
|  | td_list); | 
|  | pdev->ep0_stage = CDNSP_STATUS_STAGE; | 
|  |  | 
|  | cdnsp_giveback_first_trb(pdev, pep, 0, ep_ring->cycle_state, | 
|  | &td->last_trb->generic); | 
|  | return; | 
|  | } | 
|  |  | 
|  | *status = 0; | 
|  |  | 
|  | cdnsp_finish_td(pdev, td, event, pep, status); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process isochronous tds, update usb request status and actual_length. | 
|  | */ | 
|  | static void cdnsp_process_isoc_td(struct cdnsp_device *pdev, | 
|  | struct cdnsp_td *td, | 
|  | union cdnsp_trb *ep_trb, | 
|  | struct cdnsp_transfer_event *event, | 
|  | struct cdnsp_ep *pep, | 
|  | int status) | 
|  | { | 
|  | struct cdnsp_request *preq = td->preq; | 
|  | u32 remaining, requested, ep_trb_len; | 
|  | bool sum_trbs_for_length = false; | 
|  | struct cdnsp_ring *ep_ring; | 
|  | u32 trb_comp_code; | 
|  | u32 td_length; | 
|  |  | 
|  | ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer)); | 
|  | trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
|  | remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); | 
|  | ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); | 
|  |  | 
|  | requested = preq->request.length; | 
|  |  | 
|  | /* handle completion code */ | 
|  | switch (trb_comp_code) { | 
|  | case COMP_SUCCESS: | 
|  | preq->request.status = 0; | 
|  | break; | 
|  | case COMP_SHORT_PACKET: | 
|  | preq->request.status = 0; | 
|  | sum_trbs_for_length = true; | 
|  | break; | 
|  | case COMP_ISOCH_BUFFER_OVERRUN: | 
|  | case COMP_BABBLE_DETECTED_ERROR: | 
|  | preq->request.status = -EOVERFLOW; | 
|  | break; | 
|  | case COMP_STOPPED: | 
|  | sum_trbs_for_length = true; | 
|  | break; | 
|  | case COMP_STOPPED_SHORT_PACKET: | 
|  | /* field normally containing residue now contains transferred */ | 
|  | preq->request.status  = 0; | 
|  | requested = remaining; | 
|  | break; | 
|  | case COMP_STOPPED_LENGTH_INVALID: | 
|  | requested = 0; | 
|  | remaining = 0; | 
|  | break; | 
|  | default: | 
|  | sum_trbs_for_length = true; | 
|  | preq->request.status = -1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (sum_trbs_for_length) { | 
|  | td_length = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb); | 
|  | td_length += ep_trb_len - remaining; | 
|  | } else { | 
|  | td_length = requested; | 
|  | } | 
|  |  | 
|  | td->preq->request.actual += td_length; | 
|  |  | 
|  | cdnsp_finish_td(pdev, td, event, pep, &status); | 
|  | } | 
|  |  | 
|  | static void cdnsp_skip_isoc_td(struct cdnsp_device *pdev, | 
|  | struct cdnsp_td *td, | 
|  | struct cdnsp_transfer_event *event, | 
|  | struct cdnsp_ep *pep, | 
|  | int status) | 
|  | { | 
|  | struct cdnsp_ring *ep_ring; | 
|  |  | 
|  | ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer)); | 
|  | td->preq->request.status = -EXDEV; | 
|  | td->preq->request.actual = 0; | 
|  |  | 
|  | /* Update ring dequeue pointer */ | 
|  | while (ep_ring->dequeue != td->last_trb) | 
|  | cdnsp_inc_deq(pdev, ep_ring); | 
|  |  | 
|  | cdnsp_inc_deq(pdev, ep_ring); | 
|  |  | 
|  | cdnsp_td_cleanup(pdev, td, ep_ring, &status); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process bulk and interrupt tds, update usb request status and actual_length. | 
|  | */ | 
|  | static void cdnsp_process_bulk_intr_td(struct cdnsp_device *pdev, | 
|  | struct cdnsp_td *td, | 
|  | union cdnsp_trb *ep_trb, | 
|  | struct cdnsp_transfer_event *event, | 
|  | struct cdnsp_ep *ep, | 
|  | int *status) | 
|  | { | 
|  | u32 remaining, requested, ep_trb_len; | 
|  | struct cdnsp_ring *ep_ring; | 
|  | u32 trb_comp_code; | 
|  |  | 
|  | ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); | 
|  | trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
|  | remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); | 
|  | ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2])); | 
|  | requested = td->preq->request.length; | 
|  |  | 
|  | switch (trb_comp_code) { | 
|  | case COMP_SUCCESS: | 
|  | case COMP_SHORT_PACKET: | 
|  | *status = 0; | 
|  | break; | 
|  | case COMP_STOPPED_SHORT_PACKET: | 
|  | td->preq->request.actual = remaining; | 
|  | goto finish_td; | 
|  | case COMP_STOPPED_LENGTH_INVALID: | 
|  | /* Stopped on ep trb with invalid length, exclude it. */ | 
|  | ep_trb_len = 0; | 
|  | remaining = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ep_trb == td->last_trb) | 
|  | ep_trb_len = requested - remaining; | 
|  | else | 
|  | ep_trb_len = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb) + | 
|  | ep_trb_len - remaining; | 
|  | td->preq->request.actual = ep_trb_len; | 
|  |  | 
|  | finish_td: | 
|  | ep->stream_info.drbls_count--; | 
|  |  | 
|  | cdnsp_finish_td(pdev, td, event, ep, status); | 
|  | } | 
|  |  | 
|  | static void cdnsp_handle_tx_nrdy(struct cdnsp_device *pdev, | 
|  | struct cdnsp_transfer_event *event) | 
|  | { | 
|  | struct cdnsp_generic_trb *generic; | 
|  | struct cdnsp_ring *ep_ring; | 
|  | struct cdnsp_ep *pep; | 
|  | int cur_stream; | 
|  | int ep_index; | 
|  | int host_sid; | 
|  | int dev_sid; | 
|  |  | 
|  | generic = (struct cdnsp_generic_trb *)event; | 
|  | ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; | 
|  | dev_sid = TRB_TO_DEV_STREAM(le32_to_cpu(generic->field[0])); | 
|  | host_sid = TRB_TO_HOST_STREAM(le32_to_cpu(generic->field[2])); | 
|  |  | 
|  | pep = &pdev->eps[ep_index]; | 
|  |  | 
|  | if (!(pep->ep_state & EP_HAS_STREAMS)) | 
|  | return; | 
|  |  | 
|  | if (host_sid == STREAM_PRIME_ACK) { | 
|  | pep->stream_info.first_prime_det = 1; | 
|  | for (cur_stream = 1; cur_stream < pep->stream_info.num_streams; | 
|  | cur_stream++) { | 
|  | ep_ring = pep->stream_info.stream_rings[cur_stream]; | 
|  | ep_ring->stream_active = 1; | 
|  | ep_ring->stream_rejected = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (host_sid == STREAM_REJECTED) { | 
|  | struct cdnsp_td *td, *td_temp; | 
|  |  | 
|  | pep->stream_info.drbls_count--; | 
|  | ep_ring = pep->stream_info.stream_rings[dev_sid]; | 
|  | ep_ring->stream_active = 0; | 
|  | ep_ring->stream_rejected = 1; | 
|  |  | 
|  | list_for_each_entry_safe(td, td_temp, &ep_ring->td_list, | 
|  | td_list) { | 
|  | td->drbl = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | cdnsp_ring_doorbell_for_active_rings(pdev, pep); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this function returns an error condition, it means it got a Transfer | 
|  | * event with a corrupted TRB DMA address or endpoint is disabled. | 
|  | */ | 
|  | static int cdnsp_handle_tx_event(struct cdnsp_device *pdev, | 
|  | struct cdnsp_transfer_event *event) | 
|  | { | 
|  | const struct usb_endpoint_descriptor *desc; | 
|  | bool handling_skipped_tds = false; | 
|  | struct cdnsp_segment *ep_seg; | 
|  | struct cdnsp_ring *ep_ring; | 
|  | int status = -EINPROGRESS; | 
|  | union cdnsp_trb *ep_trb; | 
|  | dma_addr_t ep_trb_dma; | 
|  | struct cdnsp_ep *pep; | 
|  | struct cdnsp_td *td; | 
|  | u32 trb_comp_code; | 
|  | int invalidate; | 
|  | int ep_index; | 
|  |  | 
|  | invalidate = le32_to_cpu(event->flags) & TRB_EVENT_INVALIDATE; | 
|  | ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; | 
|  | trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); | 
|  | ep_trb_dma = le64_to_cpu(event->buffer); | 
|  |  | 
|  | pep = &pdev->eps[ep_index]; | 
|  | ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer)); | 
|  |  | 
|  | /* | 
|  | * If device is disconnect then all requests will be dequeued | 
|  | * by upper layers as part of disconnect sequence. | 
|  | * We don't want handle such event to avoid racing. | 
|  | */ | 
|  | if (invalidate || !pdev->gadget.connected) | 
|  | goto cleanup; | 
|  |  | 
|  | if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_DISABLED) { | 
|  | trace_cdnsp_ep_disabled(pep->out_ctx); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | /* Some transfer events don't always point to a trb*/ | 
|  | if (!ep_ring) { | 
|  | switch (trb_comp_code) { | 
|  | case COMP_INVALID_STREAM_TYPE_ERROR: | 
|  | case COMP_INVALID_STREAM_ID_ERROR: | 
|  | case COMP_RING_UNDERRUN: | 
|  | case COMP_RING_OVERRUN: | 
|  | goto cleanup; | 
|  | default: | 
|  | dev_err(pdev->dev, "ERROR: %s event for unknown ring\n", | 
|  | pep->name); | 
|  | goto err_out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Look for some error cases that need special treatment. */ | 
|  | switch (trb_comp_code) { | 
|  | case COMP_BABBLE_DETECTED_ERROR: | 
|  | status = -EOVERFLOW; | 
|  | break; | 
|  | case COMP_RING_UNDERRUN: | 
|  | case COMP_RING_OVERRUN: | 
|  | /* | 
|  | * When the Isoch ring is empty, the controller will generate | 
|  | * a Ring Overrun Event for IN Isoch endpoint or Ring | 
|  | * Underrun Event for OUT Isoch endpoint. | 
|  | */ | 
|  | goto cleanup; | 
|  | case COMP_MISSED_SERVICE_ERROR: | 
|  | /* | 
|  | * When encounter missed service error, one or more isoc tds | 
|  | * may be missed by controller. | 
|  | * Set skip flag of the ep_ring; Complete the missed tds as | 
|  | * short transfer when process the ep_ring next time. | 
|  | */ | 
|  | pep->skip = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * This TRB should be in the TD at the head of this ring's TD | 
|  | * list. | 
|  | */ | 
|  | if (list_empty(&ep_ring->td_list)) { | 
|  | /* | 
|  | * Don't print warnings if it's due to a stopped | 
|  | * endpoint generating an extra completion event, or | 
|  | * a event for the last TRB of a short TD we already | 
|  | * got a short event for. | 
|  | * The short TD is already removed from the TD list. | 
|  | */ | 
|  | if (!(trb_comp_code == COMP_STOPPED || | 
|  | trb_comp_code == COMP_STOPPED_LENGTH_INVALID || | 
|  | ep_ring->last_td_was_short)) | 
|  | trace_cdnsp_trb_without_td(ep_ring, | 
|  | (struct cdnsp_generic_trb *)event); | 
|  |  | 
|  | if (pep->skip) { | 
|  | pep->skip = false; | 
|  | trace_cdnsp_ep_list_empty_with_skip(pep, 0); | 
|  | } | 
|  |  | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | td = list_entry(ep_ring->td_list.next, struct cdnsp_td, | 
|  | td_list); | 
|  |  | 
|  | /* Is this a TRB in the currently executing TD? */ | 
|  | ep_seg = cdnsp_trb_in_td(pdev, ep_ring->deq_seg, | 
|  | ep_ring->dequeue, td->last_trb, | 
|  | ep_trb_dma); | 
|  |  | 
|  | desc = td->preq->pep->endpoint.desc; | 
|  |  | 
|  | if (ep_seg) { | 
|  | ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) | 
|  | / sizeof(*ep_trb)]; | 
|  |  | 
|  | trace_cdnsp_handle_transfer(ep_ring, | 
|  | (struct cdnsp_generic_trb *)ep_trb); | 
|  |  | 
|  | if (pep->skip && usb_endpoint_xfer_isoc(desc) && | 
|  | td->last_trb != ep_trb) | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Skip the Force Stopped Event. The event_trb(ep_trb_dma) | 
|  | * of FSE is not in the current TD pointed by ep_ring->dequeue | 
|  | * because that the hardware dequeue pointer still at the | 
|  | * previous TRB of the current TD. The previous TRB maybe a | 
|  | * Link TD or the last TRB of the previous TD. The command | 
|  | * completion handle will take care the rest. | 
|  | */ | 
|  | if (!ep_seg && (trb_comp_code == COMP_STOPPED || | 
|  | trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) { | 
|  | pep->skip = false; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (!ep_seg) { | 
|  | if (!pep->skip || !usb_endpoint_xfer_isoc(desc)) { | 
|  | /* Something is busted, give up! */ | 
|  | dev_err(pdev->dev, | 
|  | "ERROR Transfer event TRB DMA ptr not " | 
|  | "part of current TD ep_index %d " | 
|  | "comp_code %u\n", ep_index, | 
|  | trb_comp_code); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | cdnsp_skip_isoc_td(pdev, td, event, pep, status); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (trb_comp_code == COMP_SHORT_PACKET) | 
|  | ep_ring->last_td_was_short = true; | 
|  | else | 
|  | ep_ring->last_td_was_short = false; | 
|  |  | 
|  | if (pep->skip) { | 
|  | pep->skip = false; | 
|  | cdnsp_skip_isoc_td(pdev, td, event, pep, status); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (cdnsp_trb_is_noop(ep_trb)) | 
|  | goto cleanup; | 
|  |  | 
|  | if (usb_endpoint_xfer_control(desc)) | 
|  | cdnsp_process_ctrl_td(pdev, td, ep_trb, event, pep, | 
|  | &status); | 
|  | else if (usb_endpoint_xfer_isoc(desc)) | 
|  | cdnsp_process_isoc_td(pdev, td, ep_trb, event, pep, | 
|  | status); | 
|  | else | 
|  | cdnsp_process_bulk_intr_td(pdev, td, ep_trb, event, pep, | 
|  | &status); | 
|  | cleanup: | 
|  | handling_skipped_tds = pep->skip; | 
|  |  | 
|  | /* | 
|  | * Do not update event ring dequeue pointer if we're in a loop | 
|  | * processing missed tds. | 
|  | */ | 
|  | if (!handling_skipped_tds) | 
|  | cdnsp_inc_deq(pdev, pdev->event_ring); | 
|  |  | 
|  | /* | 
|  | * If ep->skip is set, it means there are missed tds on the | 
|  | * endpoint ring need to take care of. | 
|  | * Process them as short transfer until reach the td pointed by | 
|  | * the event. | 
|  | */ | 
|  | } while (handling_skipped_tds); | 
|  | return 0; | 
|  |  | 
|  | err_out: | 
|  | dev_err(pdev->dev, "@%016llx %08x %08x %08x %08x\n", | 
|  | (unsigned long long) | 
|  | cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg, | 
|  | pdev->event_ring->dequeue), | 
|  | lower_32_bits(le64_to_cpu(event->buffer)), | 
|  | upper_32_bits(le64_to_cpu(event->buffer)), | 
|  | le32_to_cpu(event->transfer_len), | 
|  | le32_to_cpu(event->flags)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function handles all events on the event ring. | 
|  | * Returns true for "possibly more events to process" (caller should call | 
|  | * again), otherwise false if done. | 
|  | */ | 
|  | static bool cdnsp_handle_event(struct cdnsp_device *pdev) | 
|  | { | 
|  | unsigned int comp_code; | 
|  | union cdnsp_trb *event; | 
|  | bool update_ptrs = true; | 
|  | u32 cycle_bit; | 
|  | int ret = 0; | 
|  | u32 flags; | 
|  |  | 
|  | event = pdev->event_ring->dequeue; | 
|  | flags = le32_to_cpu(event->event_cmd.flags); | 
|  | cycle_bit = (flags & TRB_CYCLE); | 
|  |  | 
|  | /* Does the controller or driver own the TRB? */ | 
|  | if (cycle_bit != pdev->event_ring->cycle_state) | 
|  | return false; | 
|  |  | 
|  | trace_cdnsp_handle_event(pdev->event_ring, &event->generic); | 
|  |  | 
|  | /* | 
|  | * Barrier between reading the TRB_CYCLE (valid) flag above and any | 
|  | * reads of the event's flags/data below. | 
|  | */ | 
|  | rmb(); | 
|  |  | 
|  | switch (flags & TRB_TYPE_BITMASK) { | 
|  | case TRB_TYPE(TRB_COMPLETION): | 
|  | /* | 
|  | * Command can't be handled in interrupt context so just | 
|  | * increment command ring dequeue pointer. | 
|  | */ | 
|  | cdnsp_inc_deq(pdev, pdev->cmd_ring); | 
|  | break; | 
|  | case TRB_TYPE(TRB_PORT_STATUS): | 
|  | cdnsp_handle_port_status(pdev, event); | 
|  | update_ptrs = false; | 
|  | break; | 
|  | case TRB_TYPE(TRB_TRANSFER): | 
|  | ret = cdnsp_handle_tx_event(pdev, &event->trans_event); | 
|  | if (ret >= 0) | 
|  | update_ptrs = false; | 
|  | break; | 
|  | case TRB_TYPE(TRB_SETUP): | 
|  | pdev->ep0_stage = CDNSP_SETUP_STAGE; | 
|  | pdev->setup_id = TRB_SETUPID_TO_TYPE(flags); | 
|  | pdev->setup_speed = TRB_SETUP_SPEEDID(flags); | 
|  | pdev->setup = *((struct usb_ctrlrequest *) | 
|  | &event->trans_event.buffer); | 
|  |  | 
|  | cdnsp_setup_analyze(pdev); | 
|  | break; | 
|  | case TRB_TYPE(TRB_ENDPOINT_NRDY): | 
|  | cdnsp_handle_tx_nrdy(pdev, &event->trans_event); | 
|  | break; | 
|  | case TRB_TYPE(TRB_HC_EVENT): { | 
|  | comp_code = GET_COMP_CODE(le32_to_cpu(event->generic.field[2])); | 
|  |  | 
|  | switch (comp_code) { | 
|  | case COMP_EVENT_RING_FULL_ERROR: | 
|  | dev_err(pdev->dev, "Event Ring Full\n"); | 
|  | break; | 
|  | default: | 
|  | dev_err(pdev->dev, "Controller error code 0x%02x\n", | 
|  | comp_code); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case TRB_TYPE(TRB_MFINDEX_WRAP): | 
|  | case TRB_TYPE(TRB_DRB_OVERFLOW): | 
|  | break; | 
|  | default: | 
|  | dev_warn(pdev->dev, "ERROR unknown event type %ld\n", | 
|  | TRB_FIELD_TO_TYPE(flags)); | 
|  | } | 
|  |  | 
|  | if (update_ptrs) | 
|  | /* Update SW event ring dequeue pointer. */ | 
|  | cdnsp_inc_deq(pdev, pdev->event_ring); | 
|  |  | 
|  | /* | 
|  | * Caller will call us again to check if there are more items | 
|  | * on the event ring. | 
|  | */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | irqreturn_t cdnsp_thread_irq_handler(int irq, void *data) | 
|  | { | 
|  | struct cdnsp_device *pdev = (struct cdnsp_device *)data; | 
|  | union cdnsp_trb *event_ring_deq; | 
|  | unsigned long flags; | 
|  | int counter = 0; | 
|  |  | 
|  | local_bh_disable(); | 
|  | spin_lock_irqsave(&pdev->lock, flags); | 
|  |  | 
|  | if (pdev->cdnsp_state & (CDNSP_STATE_HALTED | CDNSP_STATE_DYING)) { | 
|  | /* | 
|  | * While removing or stopping driver there may still be deferred | 
|  | * not handled interrupt which should not be treated as error. | 
|  | * Driver should simply ignore it. | 
|  | */ | 
|  | if (pdev->gadget_driver) | 
|  | cdnsp_died(pdev); | 
|  |  | 
|  | spin_unlock_irqrestore(&pdev->lock, flags); | 
|  | local_bh_enable(); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | event_ring_deq = pdev->event_ring->dequeue; | 
|  |  | 
|  | while (cdnsp_handle_event(pdev)) { | 
|  | if (++counter >= TRBS_PER_EV_DEQ_UPDATE) { | 
|  | cdnsp_update_erst_dequeue(pdev, event_ring_deq, 0); | 
|  | event_ring_deq = pdev->event_ring->dequeue; | 
|  | counter = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1); | 
|  |  | 
|  | spin_unlock_irqrestore(&pdev->lock, flags); | 
|  | local_bh_enable(); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | irqreturn_t cdnsp_irq_handler(int irq, void *priv) | 
|  | { | 
|  | struct cdnsp_device *pdev = (struct cdnsp_device *)priv; | 
|  | u32 irq_pending; | 
|  | u32 status; | 
|  |  | 
|  | status = readl(&pdev->op_regs->status); | 
|  |  | 
|  | if (status == ~(u32)0) { | 
|  | cdnsp_died(pdev); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | if (!(status & STS_EINT)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | writel(status | STS_EINT, &pdev->op_regs->status); | 
|  | irq_pending = readl(&pdev->ir_set->irq_pending); | 
|  | irq_pending |= IMAN_IP; | 
|  | writel(irq_pending, &pdev->ir_set->irq_pending); | 
|  |  | 
|  | if (status & STS_FATAL) { | 
|  | cdnsp_died(pdev); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | return IRQ_WAKE_THREAD; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generic function for queuing a TRB on a ring. | 
|  | * The caller must have checked to make sure there's room on the ring. | 
|  | * | 
|  | * @more_trbs_coming:	Will you enqueue more TRBs before setting doorbell? | 
|  | */ | 
|  | static void cdnsp_queue_trb(struct cdnsp_device *pdev, struct cdnsp_ring *ring, | 
|  | bool more_trbs_coming, u32 field1, u32 field2, | 
|  | u32 field3, u32 field4) | 
|  | { | 
|  | struct cdnsp_generic_trb *trb; | 
|  |  | 
|  | trb = &ring->enqueue->generic; | 
|  |  | 
|  | trb->field[0] = cpu_to_le32(field1); | 
|  | trb->field[1] = cpu_to_le32(field2); | 
|  | trb->field[2] = cpu_to_le32(field3); | 
|  | trb->field[3] = cpu_to_le32(field4); | 
|  |  | 
|  | trace_cdnsp_queue_trb(ring, trb); | 
|  | cdnsp_inc_enq(pdev, ring, more_trbs_coming); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Does various checks on the endpoint ring, and makes it ready to | 
|  | * queue num_trbs. | 
|  | */ | 
|  | static int cdnsp_prepare_ring(struct cdnsp_device *pdev, | 
|  | struct cdnsp_ring *ep_ring, | 
|  | u32 ep_state, unsigned | 
|  | int num_trbs, | 
|  | gfp_t mem_flags) | 
|  | { | 
|  | unsigned int num_trbs_needed; | 
|  |  | 
|  | /* Make sure the endpoint has been added to controller schedule. */ | 
|  | switch (ep_state) { | 
|  | case EP_STATE_STOPPED: | 
|  | case EP_STATE_RUNNING: | 
|  | case EP_STATE_HALTED: | 
|  | break; | 
|  | default: | 
|  | dev_err(pdev->dev, "ERROR: incorrect endpoint state\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | if (cdnsp_room_on_ring(pdev, ep_ring, num_trbs)) | 
|  | break; | 
|  |  | 
|  | trace_cdnsp_no_room_on_ring("try ring expansion"); | 
|  |  | 
|  | num_trbs_needed = num_trbs - ep_ring->num_trbs_free; | 
|  | if (cdnsp_ring_expansion(pdev, ep_ring, num_trbs_needed, | 
|  | mem_flags)) { | 
|  | dev_err(pdev->dev, "Ring expansion failed\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (cdnsp_trb_is_link(ep_ring->enqueue)) { | 
|  | ep_ring->enqueue->link.control |= cpu_to_le32(TRB_CHAIN); | 
|  | /* The cycle bit must be set as the last operation. */ | 
|  | wmb(); | 
|  | ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE); | 
|  |  | 
|  | /* Toggle the cycle bit after the last ring segment. */ | 
|  | if (cdnsp_link_trb_toggles_cycle(ep_ring->enqueue)) | 
|  | ep_ring->cycle_state ^= 1; | 
|  | ep_ring->enq_seg = ep_ring->enq_seg->next; | 
|  | ep_ring->enqueue = ep_ring->enq_seg->trbs; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cdnsp_prepare_transfer(struct cdnsp_device *pdev, | 
|  | struct cdnsp_request *preq, | 
|  | unsigned int num_trbs) | 
|  | { | 
|  | struct cdnsp_ring *ep_ring; | 
|  | int ret; | 
|  |  | 
|  | ep_ring = cdnsp_get_transfer_ring(pdev, preq->pep, | 
|  | preq->request.stream_id); | 
|  | if (!ep_ring) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = cdnsp_prepare_ring(pdev, ep_ring, | 
|  | GET_EP_CTX_STATE(preq->pep->out_ctx), | 
|  | num_trbs, GFP_ATOMIC); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | INIT_LIST_HEAD(&preq->td.td_list); | 
|  | preq->td.preq = preq; | 
|  |  | 
|  | /* Add this TD to the tail of the endpoint ring's TD list. */ | 
|  | list_add_tail(&preq->td.td_list, &ep_ring->td_list); | 
|  | ep_ring->num_tds++; | 
|  | preq->pep->stream_info.td_count++; | 
|  |  | 
|  | preq->td.start_seg = ep_ring->enq_seg; | 
|  | preq->td.first_trb = ep_ring->enqueue; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned int cdnsp_count_trbs(u64 addr, u64 len) | 
|  | { | 
|  | unsigned int num_trbs; | 
|  |  | 
|  | num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)), | 
|  | TRB_MAX_BUFF_SIZE); | 
|  | if (num_trbs == 0) | 
|  | num_trbs++; | 
|  |  | 
|  | return num_trbs; | 
|  | } | 
|  |  | 
|  | static unsigned int count_trbs_needed(struct cdnsp_request *preq) | 
|  | { | 
|  | return cdnsp_count_trbs(preq->request.dma, preq->request.length); | 
|  | } | 
|  |  | 
|  | static unsigned int count_sg_trbs_needed(struct cdnsp_request *preq) | 
|  | { | 
|  | unsigned int i, len, full_len, num_trbs = 0; | 
|  | struct scatterlist *sg; | 
|  |  | 
|  | full_len = preq->request.length; | 
|  |  | 
|  | for_each_sg(preq->request.sg, sg, preq->request.num_sgs, i) { | 
|  | len = sg_dma_len(sg); | 
|  | num_trbs += cdnsp_count_trbs(sg_dma_address(sg), len); | 
|  | len = min(len, full_len); | 
|  | full_len -= len; | 
|  | if (full_len == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return num_trbs; | 
|  | } | 
|  |  | 
|  | static void cdnsp_check_trb_math(struct cdnsp_request *preq, int running_total) | 
|  | { | 
|  | if (running_total != preq->request.length) | 
|  | dev_err(preq->pep->pdev->dev, | 
|  | "%s - Miscalculated tx length, " | 
|  | "queued %#x, asked for %#x (%d)\n", | 
|  | preq->pep->name, running_total, | 
|  | preq->request.length, preq->request.actual); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TD size is the number of max packet sized packets remaining in the TD | 
|  | * (*not* including this TRB). | 
|  | * | 
|  | * Total TD packet count = total_packet_count = | 
|  | *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) | 
|  | * | 
|  | * Packets transferred up to and including this TRB = packets_transferred = | 
|  | *     rounddown(total bytes transferred including this TRB / wMaxPacketSize) | 
|  | * | 
|  | * TD size = total_packet_count - packets_transferred | 
|  | * | 
|  | * It must fit in bits 21:17, so it can't be bigger than 31. | 
|  | * This is taken care of in the TRB_TD_SIZE() macro | 
|  | * | 
|  | * The last TRB in a TD must have the TD size set to zero. | 
|  | */ | 
|  | static u32 cdnsp_td_remainder(struct cdnsp_device *pdev, | 
|  | int transferred, | 
|  | int trb_buff_len, | 
|  | unsigned int td_total_len, | 
|  | struct cdnsp_request *preq, | 
|  | bool more_trbs_coming, | 
|  | bool zlp) | 
|  | { | 
|  | u32 maxp, total_packet_count; | 
|  |  | 
|  | /* Before ZLP driver needs set TD_SIZE = 1. */ | 
|  | if (zlp) | 
|  | return 1; | 
|  |  | 
|  | /* One TRB with a zero-length data packet. */ | 
|  | if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) || | 
|  | trb_buff_len == td_total_len) | 
|  | return 0; | 
|  |  | 
|  | maxp = usb_endpoint_maxp(preq->pep->endpoint.desc); | 
|  | total_packet_count = DIV_ROUND_UP(td_total_len, maxp); | 
|  |  | 
|  | /* Queuing functions don't count the current TRB into transferred. */ | 
|  | return (total_packet_count - ((transferred + trb_buff_len) / maxp)); | 
|  | } | 
|  |  | 
|  | static int cdnsp_align_td(struct cdnsp_device *pdev, | 
|  | struct cdnsp_request *preq, u32 enqd_len, | 
|  | u32 *trb_buff_len, struct cdnsp_segment *seg) | 
|  | { | 
|  | struct device *dev = pdev->dev; | 
|  | unsigned int unalign; | 
|  | unsigned int max_pkt; | 
|  | u32 new_buff_len; | 
|  |  | 
|  | max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc); | 
|  | unalign = (enqd_len + *trb_buff_len) % max_pkt; | 
|  |  | 
|  | /* We got lucky, last normal TRB data on segment is packet aligned. */ | 
|  | if (unalign == 0) | 
|  | return 0; | 
|  |  | 
|  | /* Is the last nornal TRB alignable by splitting it. */ | 
|  | if (*trb_buff_len > unalign) { | 
|  | *trb_buff_len -= unalign; | 
|  | trace_cdnsp_bounce_align_td_split(preq, *trb_buff_len, | 
|  | enqd_len, 0, unalign); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We want enqd_len + trb_buff_len to sum up to a number aligned to | 
|  | * number which is divisible by the endpoint's wMaxPacketSize. IOW: | 
|  | * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0. | 
|  | */ | 
|  | new_buff_len = max_pkt - (enqd_len % max_pkt); | 
|  |  | 
|  | if (new_buff_len > (preq->request.length - enqd_len)) | 
|  | new_buff_len = (preq->request.length - enqd_len); | 
|  |  | 
|  | /* Create a max max_pkt sized bounce buffer pointed to by last trb. */ | 
|  | if (preq->direction) { | 
|  | sg_pcopy_to_buffer(preq->request.sg, | 
|  | preq->request.num_mapped_sgs, | 
|  | seg->bounce_buf, new_buff_len, enqd_len); | 
|  | seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, | 
|  | max_pkt, DMA_TO_DEVICE); | 
|  | } else { | 
|  | seg->bounce_dma = dma_map_single(dev, seg->bounce_buf, | 
|  | max_pkt, DMA_FROM_DEVICE); | 
|  | } | 
|  |  | 
|  | if (dma_mapping_error(dev, seg->bounce_dma)) { | 
|  | /* Try without aligning.*/ | 
|  | dev_warn(pdev->dev, | 
|  | "Failed mapping bounce buffer, not aligning\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *trb_buff_len = new_buff_len; | 
|  | seg->bounce_len = new_buff_len; | 
|  | seg->bounce_offs = enqd_len; | 
|  |  | 
|  | trace_cdnsp_bounce_map(preq, new_buff_len, enqd_len, seg->bounce_dma, | 
|  | unalign); | 
|  |  | 
|  | /* | 
|  | * Bounce buffer successful aligned and seg->bounce_dma will be used | 
|  | * in transfer TRB as new transfer buffer address. | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int cdnsp_queue_bulk_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq) | 
|  | { | 
|  | unsigned int enqd_len, block_len, trb_buff_len, full_len; | 
|  | unsigned int start_cycle, num_sgs = 0; | 
|  | struct cdnsp_generic_trb *start_trb; | 
|  | u32 field, length_field, remainder; | 
|  | struct scatterlist *sg = NULL; | 
|  | bool more_trbs_coming = true; | 
|  | bool need_zero_pkt = false; | 
|  | bool zero_len_trb = false; | 
|  | struct cdnsp_ring *ring; | 
|  | bool first_trb = true; | 
|  | unsigned int num_trbs; | 
|  | struct cdnsp_ep *pep; | 
|  | u64 addr, send_addr; | 
|  | int sent_len, ret; | 
|  |  | 
|  | ring = cdnsp_request_to_transfer_ring(pdev, preq); | 
|  | if (!ring) | 
|  | return -EINVAL; | 
|  |  | 
|  | full_len = preq->request.length; | 
|  |  | 
|  | if (preq->request.num_sgs) { | 
|  | num_sgs = preq->request.num_sgs; | 
|  | sg = preq->request.sg; | 
|  | addr = (u64)sg_dma_address(sg); | 
|  | block_len = sg_dma_len(sg); | 
|  | num_trbs = count_sg_trbs_needed(preq); | 
|  | } else { | 
|  | num_trbs = count_trbs_needed(preq); | 
|  | addr = (u64)preq->request.dma; | 
|  | block_len = full_len; | 
|  | } | 
|  |  | 
|  | pep = preq->pep; | 
|  |  | 
|  | /* Deal with request.zero - need one more td/trb. */ | 
|  | if (preq->request.zero && preq->request.length && | 
|  | IS_ALIGNED(full_len, usb_endpoint_maxp(pep->endpoint.desc))) { | 
|  | need_zero_pkt = true; | 
|  | num_trbs++; | 
|  | } | 
|  |  | 
|  | ret = cdnsp_prepare_transfer(pdev, preq, num_trbs); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * workaround 1: STOP EP command on LINK TRB with TC bit set to 1 | 
|  | * causes that internal cycle bit can have incorrect state after | 
|  | * command complete. In consequence empty transfer ring can be | 
|  | * incorrectly detected when EP is resumed. | 
|  | * NOP TRB before LINK TRB avoid such scenario. STOP EP command is | 
|  | * then on NOP TRB and internal cycle bit is not changed and have | 
|  | * correct value. | 
|  | */ | 
|  | if (pep->wa1_nop_trb) { | 
|  | field = le32_to_cpu(pep->wa1_nop_trb->trans_event.flags); | 
|  | field ^= TRB_CYCLE; | 
|  |  | 
|  | pep->wa1_nop_trb->trans_event.flags = cpu_to_le32(field); | 
|  | pep->wa1_nop_trb = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't give the first TRB to the hardware (by toggling the cycle bit) | 
|  | * until we've finished creating all the other TRBs. The ring's cycle | 
|  | * state may change as we enqueue the other TRBs, so save it too. | 
|  | */ | 
|  | start_trb = &ring->enqueue->generic; | 
|  | start_cycle = ring->cycle_state; | 
|  | send_addr = addr; | 
|  |  | 
|  | /* Queue the TRBs, even if they are zero-length */ | 
|  | for (enqd_len = 0; zero_len_trb || first_trb || enqd_len < full_len; | 
|  | enqd_len += trb_buff_len) { | 
|  | field = TRB_TYPE(TRB_NORMAL); | 
|  |  | 
|  | /* TRB buffer should not cross 64KB boundaries */ | 
|  | trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); | 
|  | trb_buff_len = min(trb_buff_len, block_len); | 
|  | if (enqd_len + trb_buff_len > full_len) | 
|  | trb_buff_len = full_len - enqd_len; | 
|  |  | 
|  | /* Don't change the cycle bit of the first TRB until later */ | 
|  | if (first_trb) { | 
|  | first_trb = false; | 
|  | if (start_cycle == 0) | 
|  | field |= TRB_CYCLE; | 
|  | } else { | 
|  | field |= ring->cycle_state; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Chain all the TRBs together; clear the chain bit in the last | 
|  | * TRB to indicate it's the last TRB in the chain. | 
|  | */ | 
|  | if (enqd_len + trb_buff_len < full_len || need_zero_pkt) { | 
|  | field |= TRB_CHAIN; | 
|  | if (cdnsp_trb_is_link(ring->enqueue + 1)) { | 
|  | if (cdnsp_align_td(pdev, preq, enqd_len, | 
|  | &trb_buff_len, | 
|  | ring->enq_seg)) { | 
|  | send_addr = ring->enq_seg->bounce_dma; | 
|  | /* Assuming TD won't span 2 segs */ | 
|  | preq->td.bounce_seg = ring->enq_seg; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (enqd_len + trb_buff_len >= full_len) { | 
|  | if (need_zero_pkt && !zero_len_trb) { | 
|  | zero_len_trb = true; | 
|  | } else { | 
|  | zero_len_trb = false; | 
|  | field &= ~TRB_CHAIN; | 
|  | field |= TRB_IOC; | 
|  | more_trbs_coming = false; | 
|  | need_zero_pkt = false; | 
|  | preq->td.last_trb = ring->enqueue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Only set interrupt on short packet for OUT endpoints. */ | 
|  | if (!preq->direction) | 
|  | field |= TRB_ISP; | 
|  |  | 
|  | /* Set the TRB length, TD size, and interrupter fields. */ | 
|  | remainder = cdnsp_td_remainder(pdev, enqd_len, trb_buff_len, | 
|  | full_len, preq, | 
|  | more_trbs_coming, | 
|  | zero_len_trb); | 
|  |  | 
|  | length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) | | 
|  | TRB_INTR_TARGET(0); | 
|  |  | 
|  | cdnsp_queue_trb(pdev, ring, more_trbs_coming, | 
|  | lower_32_bits(send_addr), | 
|  | upper_32_bits(send_addr), | 
|  | length_field, | 
|  | field); | 
|  |  | 
|  | addr += trb_buff_len; | 
|  | sent_len = trb_buff_len; | 
|  | while (sg && sent_len >= block_len) { | 
|  | /* New sg entry */ | 
|  | --num_sgs; | 
|  | sent_len -= block_len; | 
|  | if (num_sgs != 0) { | 
|  | sg = sg_next(sg); | 
|  | block_len = sg_dma_len(sg); | 
|  | addr = (u64)sg_dma_address(sg); | 
|  | addr += sent_len; | 
|  | } | 
|  | } | 
|  | block_len -= sent_len; | 
|  | send_addr = addr; | 
|  | } | 
|  |  | 
|  | if (cdnsp_trb_is_link(ring->enqueue + 1)) { | 
|  | field = TRB_TYPE(TRB_TR_NOOP) | TRB_IOC; | 
|  | if (!ring->cycle_state) | 
|  | field |= TRB_CYCLE; | 
|  |  | 
|  | pep->wa1_nop_trb = ring->enqueue; | 
|  |  | 
|  | cdnsp_queue_trb(pdev, ring, 0, 0x0, 0x0, | 
|  | TRB_INTR_TARGET(0), field); | 
|  | } | 
|  |  | 
|  | cdnsp_check_trb_math(preq, enqd_len); | 
|  | ret = cdnsp_giveback_first_trb(pdev, pep, preq->request.stream_id, | 
|  | start_cycle, start_trb); | 
|  |  | 
|  | if (ret) | 
|  | preq->td.drbl = 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cdnsp_queue_ctrl_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq) | 
|  | { | 
|  | u32 field, length_field, zlp = 0; | 
|  | struct cdnsp_ep *pep = preq->pep; | 
|  | struct cdnsp_ring *ep_ring; | 
|  | int num_trbs; | 
|  | u32 maxp; | 
|  | int ret; | 
|  |  | 
|  | ep_ring = cdnsp_request_to_transfer_ring(pdev, preq); | 
|  | if (!ep_ring) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* 1 TRB for data, 1 for status */ | 
|  | num_trbs = (pdev->three_stage_setup) ? 2 : 1; | 
|  |  | 
|  | maxp = usb_endpoint_maxp(pep->endpoint.desc); | 
|  |  | 
|  | if (preq->request.zero && preq->request.length && | 
|  | (preq->request.length % maxp == 0)) { | 
|  | num_trbs++; | 
|  | zlp = 1; | 
|  | } | 
|  |  | 
|  | ret = cdnsp_prepare_transfer(pdev, preq, num_trbs); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* If there's data, queue data TRBs */ | 
|  | if (preq->request.length > 0) { | 
|  | field = TRB_TYPE(TRB_DATA); | 
|  |  | 
|  | if (zlp) | 
|  | field |= TRB_CHAIN; | 
|  | else | 
|  | field |= TRB_IOC | (pdev->ep0_expect_in ? 0 : TRB_ISP); | 
|  |  | 
|  | if (pdev->ep0_expect_in) | 
|  | field |= TRB_DIR_IN; | 
|  |  | 
|  | length_field = TRB_LEN(preq->request.length) | | 
|  | TRB_TD_SIZE(zlp) | TRB_INTR_TARGET(0); | 
|  |  | 
|  | cdnsp_queue_trb(pdev, ep_ring, true, | 
|  | lower_32_bits(preq->request.dma), | 
|  | upper_32_bits(preq->request.dma), length_field, | 
|  | field | ep_ring->cycle_state | | 
|  | TRB_SETUPID(pdev->setup_id) | | 
|  | pdev->setup_speed); | 
|  |  | 
|  | if (zlp) { | 
|  | field = TRB_TYPE(TRB_NORMAL) | TRB_IOC; | 
|  |  | 
|  | if (!pdev->ep0_expect_in) | 
|  | field = TRB_ISP; | 
|  |  | 
|  | cdnsp_queue_trb(pdev, ep_ring, true, | 
|  | lower_32_bits(preq->request.dma), | 
|  | upper_32_bits(preq->request.dma), 0, | 
|  | field | ep_ring->cycle_state | | 
|  | TRB_SETUPID(pdev->setup_id) | | 
|  | pdev->setup_speed); | 
|  | } | 
|  |  | 
|  | pdev->ep0_stage = CDNSP_DATA_STAGE; | 
|  | } | 
|  |  | 
|  | /* Save the DMA address of the last TRB in the TD. */ | 
|  | preq->td.last_trb = ep_ring->enqueue; | 
|  |  | 
|  | /* Queue status TRB. */ | 
|  | if (preq->request.length == 0) | 
|  | field = ep_ring->cycle_state; | 
|  | else | 
|  | field = (ep_ring->cycle_state ^ 1); | 
|  |  | 
|  | if (preq->request.length > 0 && pdev->ep0_expect_in) | 
|  | field |= TRB_DIR_IN; | 
|  |  | 
|  | if (pep->ep_state & EP0_HALTED_STATUS) { | 
|  | pep->ep_state &= ~EP0_HALTED_STATUS; | 
|  | field |= TRB_SETUPSTAT(TRB_SETUPSTAT_STALL); | 
|  | } else { | 
|  | field |= TRB_SETUPSTAT(TRB_SETUPSTAT_ACK); | 
|  | } | 
|  |  | 
|  | cdnsp_queue_trb(pdev, ep_ring, false, 0, 0, TRB_INTR_TARGET(0), | 
|  | field | TRB_IOC | TRB_SETUPID(pdev->setup_id) | | 
|  | TRB_TYPE(TRB_STATUS) | pdev->setup_speed); | 
|  |  | 
|  | cdnsp_ring_ep_doorbell(pdev, pep, preq->request.stream_id); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cdnsp_cmd_stop_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep) | 
|  | { | 
|  | u32 ep_state = GET_EP_CTX_STATE(pep->out_ctx); | 
|  | int ret = 0; | 
|  |  | 
|  | if (ep_state == EP_STATE_STOPPED || ep_state == EP_STATE_DISABLED || | 
|  | ep_state == EP_STATE_HALTED) { | 
|  | trace_cdnsp_ep_stopped_or_disabled(pep->out_ctx); | 
|  | goto ep_stopped; | 
|  | } | 
|  |  | 
|  | cdnsp_queue_stop_endpoint(pdev, pep->idx); | 
|  | cdnsp_ring_cmd_db(pdev); | 
|  | ret = cdnsp_wait_for_cmd_compl(pdev); | 
|  |  | 
|  | trace_cdnsp_handle_cmd_stop_ep(pep->out_ctx); | 
|  |  | 
|  | ep_stopped: | 
|  | pep->ep_state |= EP_STOPPED; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The transfer burst count field of the isochronous TRB defines the number of | 
|  | * bursts that are required to move all packets in this TD. Only SuperSpeed | 
|  | * devices can burst up to bMaxBurst number of packets per service interval. | 
|  | * This field is zero based, meaning a value of zero in the field means one | 
|  | * burst. Basically, for everything but SuperSpeed devices, this field will be | 
|  | * zero. | 
|  | */ | 
|  | static unsigned int cdnsp_get_burst_count(struct cdnsp_device *pdev, | 
|  | struct cdnsp_request *preq, | 
|  | unsigned int total_packet_count) | 
|  | { | 
|  | unsigned int max_burst; | 
|  |  | 
|  | if (pdev->gadget.speed < USB_SPEED_SUPER) | 
|  | return 0; | 
|  |  | 
|  | max_burst = preq->pep->endpoint.comp_desc->bMaxBurst; | 
|  | return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the number of packets in the last "burst" of packets. This field is | 
|  | * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so | 
|  | * the last burst packet count is equal to the total number of packets in the | 
|  | * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst | 
|  | * must contain (bMaxBurst + 1) number of packets, but the last burst can | 
|  | * contain 1 to (bMaxBurst + 1) packets. | 
|  | */ | 
|  | static unsigned int | 
|  | cdnsp_get_last_burst_packet_count(struct cdnsp_device *pdev, | 
|  | struct cdnsp_request *preq, | 
|  | unsigned int total_packet_count) | 
|  | { | 
|  | unsigned int max_burst; | 
|  | unsigned int residue; | 
|  |  | 
|  | if (pdev->gadget.speed >= USB_SPEED_SUPER) { | 
|  | /* bMaxBurst is zero based: 0 means 1 packet per burst. */ | 
|  | max_burst = preq->pep->endpoint.comp_desc->bMaxBurst; | 
|  | residue = total_packet_count % (max_burst + 1); | 
|  |  | 
|  | /* | 
|  | * If residue is zero, the last burst contains (max_burst + 1) | 
|  | * number of packets, but the TLBPC field is zero-based. | 
|  | */ | 
|  | if (residue == 0) | 
|  | return max_burst; | 
|  |  | 
|  | return residue - 1; | 
|  | } | 
|  | if (total_packet_count == 0) | 
|  | return 0; | 
|  |  | 
|  | return total_packet_count - 1; | 
|  | } | 
|  |  | 
|  | /* Queue function isoc transfer */ | 
|  | int cdnsp_queue_isoc_tx(struct cdnsp_device *pdev, | 
|  | struct cdnsp_request *preq) | 
|  | { | 
|  | unsigned int trb_buff_len, td_len, td_remain_len, block_len; | 
|  | unsigned int burst_count, last_burst_pkt; | 
|  | unsigned int total_pkt_count, max_pkt; | 
|  | struct cdnsp_generic_trb *start_trb; | 
|  | struct scatterlist *sg = NULL; | 
|  | bool more_trbs_coming = true; | 
|  | struct cdnsp_ring *ep_ring; | 
|  | unsigned int num_sgs = 0; | 
|  | int running_total = 0; | 
|  | u32 field, length_field; | 
|  | u64 addr, send_addr; | 
|  | int start_cycle; | 
|  | int trbs_per_td; | 
|  | int i, sent_len, ret; | 
|  |  | 
|  | ep_ring = preq->pep->ring; | 
|  |  | 
|  | td_len = preq->request.length; | 
|  |  | 
|  | if (preq->request.num_sgs) { | 
|  | num_sgs = preq->request.num_sgs; | 
|  | sg = preq->request.sg; | 
|  | addr = (u64)sg_dma_address(sg); | 
|  | block_len = sg_dma_len(sg); | 
|  | trbs_per_td = count_sg_trbs_needed(preq); | 
|  | } else { | 
|  | addr = (u64)preq->request.dma; | 
|  | block_len = td_len; | 
|  | trbs_per_td = count_trbs_needed(preq); | 
|  | } | 
|  |  | 
|  | ret = cdnsp_prepare_transfer(pdev, preq, trbs_per_td); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | start_trb = &ep_ring->enqueue->generic; | 
|  | start_cycle = ep_ring->cycle_state; | 
|  | td_remain_len = td_len; | 
|  | send_addr = addr; | 
|  |  | 
|  | max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc); | 
|  | total_pkt_count = DIV_ROUND_UP(td_len, max_pkt); | 
|  |  | 
|  | /* A zero-length transfer still involves at least one packet. */ | 
|  | if (total_pkt_count == 0) | 
|  | total_pkt_count++; | 
|  |  | 
|  | burst_count = cdnsp_get_burst_count(pdev, preq, total_pkt_count); | 
|  | last_burst_pkt = cdnsp_get_last_burst_packet_count(pdev, preq, | 
|  | total_pkt_count); | 
|  |  | 
|  | /* | 
|  | * Set isoc specific data for the first TRB in a TD. | 
|  | * Prevent HW from getting the TRBs by keeping the cycle state | 
|  | * inverted in the first TDs isoc TRB. | 
|  | */ | 
|  | field = TRB_TYPE(TRB_ISOC) | TRB_TLBPC(last_burst_pkt) | | 
|  | TRB_SIA | TRB_TBC(burst_count); | 
|  |  | 
|  | if (!start_cycle) | 
|  | field |= TRB_CYCLE; | 
|  |  | 
|  | /* Fill the rest of the TRB fields, and remaining normal TRBs. */ | 
|  | for (i = 0; i < trbs_per_td; i++) { | 
|  | u32 remainder; | 
|  |  | 
|  | /* Calculate TRB length. */ | 
|  | trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr); | 
|  | trb_buff_len = min(trb_buff_len, block_len); | 
|  | if (trb_buff_len > td_remain_len) | 
|  | trb_buff_len = td_remain_len; | 
|  |  | 
|  | /* Set the TRB length, TD size, & interrupter fields. */ | 
|  | remainder = cdnsp_td_remainder(pdev, running_total, | 
|  | trb_buff_len, td_len, preq, | 
|  | more_trbs_coming, 0); | 
|  |  | 
|  | length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) | | 
|  | TRB_INTR_TARGET(0); | 
|  |  | 
|  | /* Only first TRB is isoc, overwrite otherwise. */ | 
|  | if (i) { | 
|  | field = TRB_TYPE(TRB_NORMAL) | ep_ring->cycle_state; | 
|  | length_field |= TRB_TD_SIZE(remainder); | 
|  | } else { | 
|  | length_field |= TRB_TD_SIZE_TBC(burst_count); | 
|  | } | 
|  |  | 
|  | /* Only set interrupt on short packet for OUT EPs. */ | 
|  | if (usb_endpoint_dir_out(preq->pep->endpoint.desc)) | 
|  | field |= TRB_ISP; | 
|  |  | 
|  | /* Set the chain bit for all except the last TRB. */ | 
|  | if (i < trbs_per_td - 1) { | 
|  | more_trbs_coming = true; | 
|  | field |= TRB_CHAIN; | 
|  | } else { | 
|  | more_trbs_coming = false; | 
|  | preq->td.last_trb = ep_ring->enqueue; | 
|  | field |= TRB_IOC; | 
|  | } | 
|  |  | 
|  | cdnsp_queue_trb(pdev, ep_ring, more_trbs_coming, | 
|  | lower_32_bits(send_addr), upper_32_bits(send_addr), | 
|  | length_field, field); | 
|  |  | 
|  | running_total += trb_buff_len; | 
|  | addr += trb_buff_len; | 
|  | td_remain_len -= trb_buff_len; | 
|  |  | 
|  | sent_len = trb_buff_len; | 
|  | while (sg && sent_len >= block_len) { | 
|  | /* New sg entry */ | 
|  | --num_sgs; | 
|  | sent_len -= block_len; | 
|  | if (num_sgs != 0) { | 
|  | sg = sg_next(sg); | 
|  | block_len = sg_dma_len(sg); | 
|  | addr = (u64)sg_dma_address(sg); | 
|  | addr += sent_len; | 
|  | } | 
|  | } | 
|  | block_len -= sent_len; | 
|  | send_addr = addr; | 
|  | } | 
|  |  | 
|  | /* Check TD length */ | 
|  | if (running_total != td_len) { | 
|  | dev_err(pdev->dev, "ISOC TD length unmatch\n"); | 
|  | ret = -EINVAL; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | cdnsp_giveback_first_trb(pdev, preq->pep, preq->request.stream_id, | 
|  | start_cycle, start_trb); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | cleanup: | 
|  | /* Clean up a partially enqueued isoc transfer. */ | 
|  | list_del_init(&preq->td.td_list); | 
|  | ep_ring->num_tds--; | 
|  |  | 
|  | /* | 
|  | * Use the first TD as a temporary variable to turn the TDs we've | 
|  | * queued into No-ops with a software-owned cycle bit. | 
|  | * That way the hardware won't accidentally start executing bogus TDs | 
|  | * when we partially overwrite them. | 
|  | * td->first_trb and td->start_seg are already set. | 
|  | */ | 
|  | preq->td.last_trb = ep_ring->enqueue; | 
|  | /* Every TRB except the first & last will have its cycle bit flipped. */ | 
|  | cdnsp_td_to_noop(pdev, ep_ring, &preq->td, true); | 
|  |  | 
|  | /* Reset the ring enqueue back to the first TRB and its cycle bit. */ | 
|  | ep_ring->enqueue = preq->td.first_trb; | 
|  | ep_ring->enq_seg = preq->td.start_seg; | 
|  | ep_ring->cycle_state = start_cycle; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /****		Command Ring Operations		****/ | 
|  | /* | 
|  | * Generic function for queuing a command TRB on the command ring. | 
|  | * Driver queue only one command to ring in the moment. | 
|  | */ | 
|  | static void cdnsp_queue_command(struct cdnsp_device *pdev, | 
|  | u32 field1, | 
|  | u32 field2, | 
|  | u32 field3, | 
|  | u32 field4) | 
|  | { | 
|  | cdnsp_prepare_ring(pdev, pdev->cmd_ring, EP_STATE_RUNNING, 1, | 
|  | GFP_ATOMIC); | 
|  |  | 
|  | pdev->cmd.command_trb = pdev->cmd_ring->enqueue; | 
|  |  | 
|  | cdnsp_queue_trb(pdev, pdev->cmd_ring, false, field1, field2, | 
|  | field3, field4 | pdev->cmd_ring->cycle_state); | 
|  | } | 
|  |  | 
|  | /* Queue a slot enable or disable request on the command ring */ | 
|  | void cdnsp_queue_slot_control(struct cdnsp_device *pdev, u32 trb_type) | 
|  | { | 
|  | cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(trb_type) | | 
|  | SLOT_ID_FOR_TRB(pdev->slot_id)); | 
|  | } | 
|  |  | 
|  | /* Queue an address device command TRB */ | 
|  | void cdnsp_queue_address_device(struct cdnsp_device *pdev, | 
|  | dma_addr_t in_ctx_ptr, | 
|  | enum cdnsp_setup_dev setup) | 
|  | { | 
|  | cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr), | 
|  | upper_32_bits(in_ctx_ptr), 0, | 
|  | TRB_TYPE(TRB_ADDR_DEV) | | 
|  | SLOT_ID_FOR_TRB(pdev->slot_id) | | 
|  | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0)); | 
|  | } | 
|  |  | 
|  | /* Queue a reset device command TRB */ | 
|  | void cdnsp_queue_reset_device(struct cdnsp_device *pdev) | 
|  | { | 
|  | cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_RESET_DEV) | | 
|  | SLOT_ID_FOR_TRB(pdev->slot_id)); | 
|  | } | 
|  |  | 
|  | /* Queue a configure endpoint command TRB */ | 
|  | void cdnsp_queue_configure_endpoint(struct cdnsp_device *pdev, | 
|  | dma_addr_t in_ctx_ptr) | 
|  | { | 
|  | cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr), | 
|  | upper_32_bits(in_ctx_ptr), 0, | 
|  | TRB_TYPE(TRB_CONFIG_EP) | | 
|  | SLOT_ID_FOR_TRB(pdev->slot_id)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop | 
|  | * activity on an endpoint that is about to be suspended. | 
|  | */ | 
|  | void cdnsp_queue_stop_endpoint(struct cdnsp_device *pdev, unsigned int ep_index) | 
|  | { | 
|  | cdnsp_queue_command(pdev, 0, 0, 0, SLOT_ID_FOR_TRB(pdev->slot_id) | | 
|  | EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_STOP_RING)); | 
|  | } | 
|  |  | 
|  | /* Set Transfer Ring Dequeue Pointer command. */ | 
|  | void cdnsp_queue_new_dequeue_state(struct cdnsp_device *pdev, | 
|  | struct cdnsp_ep *pep, | 
|  | struct cdnsp_dequeue_state *deq_state) | 
|  | { | 
|  | u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id); | 
|  | u32 trb_slot_id = SLOT_ID_FOR_TRB(pdev->slot_id); | 
|  | u32 type = TRB_TYPE(TRB_SET_DEQ); | 
|  | u32 trb_sct = 0; | 
|  | dma_addr_t addr; | 
|  |  | 
|  | addr = cdnsp_trb_virt_to_dma(deq_state->new_deq_seg, | 
|  | deq_state->new_deq_ptr); | 
|  |  | 
|  | if (deq_state->stream_id) | 
|  | trb_sct = SCT_FOR_TRB(SCT_PRI_TR); | 
|  |  | 
|  | cdnsp_queue_command(pdev, lower_32_bits(addr) | trb_sct | | 
|  | deq_state->new_cycle_state, upper_32_bits(addr), | 
|  | trb_stream_id, trb_slot_id | | 
|  | EP_ID_FOR_TRB(pep->idx) | type); | 
|  | } | 
|  |  | 
|  | void cdnsp_queue_reset_ep(struct cdnsp_device *pdev, unsigned int ep_index) | 
|  | { | 
|  | return cdnsp_queue_command(pdev, 0, 0, 0, | 
|  | SLOT_ID_FOR_TRB(pdev->slot_id) | | 
|  | EP_ID_FOR_TRB(ep_index) | | 
|  | TRB_TYPE(TRB_RESET_EP)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue a halt endpoint request on the command ring. | 
|  | */ | 
|  | void cdnsp_queue_halt_endpoint(struct cdnsp_device *pdev, unsigned int ep_index) | 
|  | { | 
|  | cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_HALT_ENDPOINT) | | 
|  | SLOT_ID_FOR_TRB(pdev->slot_id) | | 
|  | EP_ID_FOR_TRB(ep_index)); | 
|  | } | 
|  |  | 
|  | void cdnsp_force_header_wakeup(struct cdnsp_device *pdev, int intf_num) | 
|  | { | 
|  | u32 lo, mid; | 
|  |  | 
|  | lo = TRB_FH_TO_PACKET_TYPE(TRB_FH_TR_PACKET) | | 
|  | TRB_FH_TO_DEVICE_ADDRESS(pdev->device_address); | 
|  | mid = TRB_FH_TR_PACKET_DEV_NOT | | 
|  | TRB_FH_TO_NOT_TYPE(TRB_FH_TR_PACKET_FUNCTION_WAKE) | | 
|  | TRB_FH_TO_INTERFACE(intf_num); | 
|  |  | 
|  | cdnsp_queue_command(pdev, lo, mid, 0, | 
|  | TRB_TYPE(TRB_FORCE_HEADER) | SET_PORT_ID(2)); | 
|  | } |