blob: 244d6683550847cb1d12c8cf7e49dc17c07fa11d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Clocksource driver for Loongson-1 SoC
*
* Copyright (c) 2023 Keguang Zhang <keguang.zhang@gmail.com>
*/
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/sizes.h>
#include "timer-of.h"
/* Loongson-1 PWM Timer Register Definitions */
#define PWM_CNTR 0x0
#define PWM_HRC 0x4
#define PWM_LRC 0x8
#define PWM_CTRL 0xc
/* PWM Control Register Bits */
#define INT_LRC_EN BIT(11)
#define INT_HRC_EN BIT(10)
#define CNTR_RST BIT(7)
#define INT_SR BIT(6)
#define INT_EN BIT(5)
#define PWM_SINGLE BIT(4)
#define PWM_OE BIT(3)
#define CNT_EN BIT(0)
#define CNTR_WIDTH 24
static DEFINE_RAW_SPINLOCK(ls1x_timer_lock);
struct ls1x_clocksource {
void __iomem *reg_base;
unsigned long ticks_per_jiffy;
struct clocksource clksrc;
};
static inline struct ls1x_clocksource *to_ls1x_clksrc(struct clocksource *c)
{
return container_of(c, struct ls1x_clocksource, clksrc);
}
static inline void ls1x_pwmtimer_set_period(unsigned int period,
struct timer_of *to)
{
writel(period, timer_of_base(to) + PWM_LRC);
writel(period, timer_of_base(to) + PWM_HRC);
}
static inline void ls1x_pwmtimer_clear(struct timer_of *to)
{
writel(0, timer_of_base(to) + PWM_CNTR);
}
static inline void ls1x_pwmtimer_start(struct timer_of *to)
{
writel((INT_EN | PWM_OE | CNT_EN), timer_of_base(to) + PWM_CTRL);
}
static inline void ls1x_pwmtimer_stop(struct timer_of *to)
{
writel(0, timer_of_base(to) + PWM_CTRL);
}
static inline void ls1x_pwmtimer_irq_ack(struct timer_of *to)
{
int val;
val = readl(timer_of_base(to) + PWM_CTRL);
val |= INT_SR;
writel(val, timer_of_base(to) + PWM_CTRL);
}
static irqreturn_t ls1x_clockevent_isr(int irq, void *dev_id)
{
struct clock_event_device *clkevt = dev_id;
struct timer_of *to = to_timer_of(clkevt);
ls1x_pwmtimer_irq_ack(to);
ls1x_pwmtimer_clear(to);
ls1x_pwmtimer_start(to);
clkevt->event_handler(clkevt);
return IRQ_HANDLED;
}
static int ls1x_clockevent_set_state_periodic(struct clock_event_device *clkevt)
{
struct timer_of *to = to_timer_of(clkevt);
raw_spin_lock(&ls1x_timer_lock);
ls1x_pwmtimer_set_period(timer_of_period(to), to);
ls1x_pwmtimer_clear(to);
ls1x_pwmtimer_start(to);
raw_spin_unlock(&ls1x_timer_lock);
return 0;
}
static int ls1x_clockevent_tick_resume(struct clock_event_device *clkevt)
{
raw_spin_lock(&ls1x_timer_lock);
ls1x_pwmtimer_start(to_timer_of(clkevt));
raw_spin_unlock(&ls1x_timer_lock);
return 0;
}
static int ls1x_clockevent_set_state_shutdown(struct clock_event_device *clkevt)
{
raw_spin_lock(&ls1x_timer_lock);
ls1x_pwmtimer_stop(to_timer_of(clkevt));
raw_spin_unlock(&ls1x_timer_lock);
return 0;
}
static int ls1x_clockevent_set_next(unsigned long evt,
struct clock_event_device *clkevt)
{
struct timer_of *to = to_timer_of(clkevt);
raw_spin_lock(&ls1x_timer_lock);
ls1x_pwmtimer_set_period(evt, to);
ls1x_pwmtimer_clear(to);
ls1x_pwmtimer_start(to);
raw_spin_unlock(&ls1x_timer_lock);
return 0;
}
static struct timer_of ls1x_to = {
.flags = TIMER_OF_IRQ | TIMER_OF_BASE | TIMER_OF_CLOCK,
.clkevt = {
.name = "ls1x-pwmtimer",
.features = CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_ONESHOT,
.rating = 300,
.set_next_event = ls1x_clockevent_set_next,
.set_state_periodic = ls1x_clockevent_set_state_periodic,
.set_state_oneshot = ls1x_clockevent_set_state_shutdown,
.set_state_shutdown = ls1x_clockevent_set_state_shutdown,
.tick_resume = ls1x_clockevent_tick_resume,
},
.of_irq = {
.handler = ls1x_clockevent_isr,
.flags = IRQF_TIMER,
},
};
/*
* Since the PWM timer overflows every two ticks, its not very useful
* to just read by itself. So use jiffies to emulate a free
* running counter:
*/
static u64 ls1x_clocksource_read(struct clocksource *cs)
{
struct ls1x_clocksource *ls1x_cs = to_ls1x_clksrc(cs);
unsigned long flags;
int count;
u32 jifs;
static int old_count;
static u32 old_jifs;
raw_spin_lock_irqsave(&ls1x_timer_lock, flags);
/*
* Although our caller may have the read side of xtime_lock,
* this is now a seqlock, and we are cheating in this routine
* by having side effects on state that we cannot undo if
* there is a collision on the seqlock and our caller has to
* retry. (Namely, old_jifs and old_count.) So we must treat
* jiffies as volatile despite the lock. We read jiffies
* before latching the timer count to guarantee that although
* the jiffies value might be older than the count (that is,
* the counter may underflow between the last point where
* jiffies was incremented and the point where we latch the
* count), it cannot be newer.
*/
jifs = jiffies;
/* read the count */
count = readl(ls1x_cs->reg_base + PWM_CNTR);
/*
* It's possible for count to appear to go the wrong way for this
* reason:
*
* The timer counter underflows, but we haven't handled the resulting
* interrupt and incremented jiffies yet.
*
* Previous attempts to handle these cases intelligently were buggy, so
* we just do the simple thing now.
*/
if (count < old_count && jifs == old_jifs)
count = old_count;
old_count = count;
old_jifs = jifs;
raw_spin_unlock_irqrestore(&ls1x_timer_lock, flags);
return (u64)(jifs * ls1x_cs->ticks_per_jiffy) + count;
}
static struct ls1x_clocksource ls1x_clocksource = {
.clksrc = {
.name = "ls1x-pwmtimer",
.rating = 300,
.read = ls1x_clocksource_read,
.mask = CLOCKSOURCE_MASK(CNTR_WIDTH),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
},
};
static int __init ls1x_pwm_clocksource_init(struct device_node *np)
{
struct timer_of *to = &ls1x_to;
int ret;
ret = timer_of_init(np, to);
if (ret)
return ret;
clockevents_config_and_register(&to->clkevt, timer_of_rate(to),
0x1, GENMASK(CNTR_WIDTH - 1, 0));
ls1x_clocksource.reg_base = timer_of_base(to);
ls1x_clocksource.ticks_per_jiffy = timer_of_period(to);
return clocksource_register_hz(&ls1x_clocksource.clksrc,
timer_of_rate(to));
}
TIMER_OF_DECLARE(ls1x_pwm_clocksource, "loongson,ls1b-pwmtimer",
ls1x_pwm_clocksource_init);