|  | /* | 
|  | * address space "slices" (meta-segments) support | 
|  | * | 
|  | * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation. | 
|  | * | 
|  | * Based on hugetlb implementation | 
|  | * | 
|  | * Copyright (C) 2003 David Gibson, IBM Corporation. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | */ | 
|  |  | 
|  | #undef DEBUG | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/export.h> | 
|  | #include <asm/mman.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <asm/spu.h> | 
|  |  | 
|  | static DEFINE_SPINLOCK(slice_convert_lock); | 
|  |  | 
|  |  | 
|  | #ifdef DEBUG | 
|  | int _slice_debug = 1; | 
|  |  | 
|  | static void slice_print_mask(const char *label, struct slice_mask mask) | 
|  | { | 
|  | char	*p, buf[16 + 3 + 16 + 1]; | 
|  | int	i; | 
|  |  | 
|  | if (!_slice_debug) | 
|  | return; | 
|  | p = buf; | 
|  | for (i = 0; i < SLICE_NUM_LOW; i++) | 
|  | *(p++) = (mask.low_slices & (1 << i)) ? '1' : '0'; | 
|  | *(p++) = ' '; | 
|  | *(p++) = '-'; | 
|  | *(p++) = ' '; | 
|  | for (i = 0; i < SLICE_NUM_HIGH; i++) | 
|  | *(p++) = (mask.high_slices & (1 << i)) ? '1' : '0'; | 
|  | *(p++) = 0; | 
|  |  | 
|  | printk(KERN_DEBUG "%s:%s\n", label, buf); | 
|  | } | 
|  |  | 
|  | #define slice_dbg(fmt...) do { if (_slice_debug) pr_debug(fmt); } while(0) | 
|  |  | 
|  | #else | 
|  |  | 
|  | static void slice_print_mask(const char *label, struct slice_mask mask) {} | 
|  | #define slice_dbg(fmt...) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static struct slice_mask slice_range_to_mask(unsigned long start, | 
|  | unsigned long len) | 
|  | { | 
|  | unsigned long end = start + len - 1; | 
|  | struct slice_mask ret = { 0, 0 }; | 
|  |  | 
|  | if (start < SLICE_LOW_TOP) { | 
|  | unsigned long mend = min(end, SLICE_LOW_TOP); | 
|  | unsigned long mstart = min(start, SLICE_LOW_TOP); | 
|  |  | 
|  | ret.low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1)) | 
|  | - (1u << GET_LOW_SLICE_INDEX(mstart)); | 
|  | } | 
|  |  | 
|  | if ((start + len) > SLICE_LOW_TOP) | 
|  | ret.high_slices = (1u << (GET_HIGH_SLICE_INDEX(end) + 1)) | 
|  | - (1u << GET_HIGH_SLICE_INDEX(start)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int slice_area_is_free(struct mm_struct *mm, unsigned long addr, | 
|  | unsigned long len) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | if ((mm->task_size - len) < addr) | 
|  | return 0; | 
|  | vma = find_vma(mm, addr); | 
|  | return (!vma || (addr + len) <= vma->vm_start); | 
|  | } | 
|  |  | 
|  | static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice) | 
|  | { | 
|  | return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT, | 
|  | 1ul << SLICE_LOW_SHIFT); | 
|  | } | 
|  |  | 
|  | static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice) | 
|  | { | 
|  | unsigned long start = slice << SLICE_HIGH_SHIFT; | 
|  | unsigned long end = start + (1ul << SLICE_HIGH_SHIFT); | 
|  |  | 
|  | /* Hack, so that each addresses is controlled by exactly one | 
|  | * of the high or low area bitmaps, the first high area starts | 
|  | * at 4GB, not 0 */ | 
|  | if (start == 0) | 
|  | start = SLICE_LOW_TOP; | 
|  |  | 
|  | return !slice_area_is_free(mm, start, end - start); | 
|  | } | 
|  |  | 
|  | static struct slice_mask slice_mask_for_free(struct mm_struct *mm) | 
|  | { | 
|  | struct slice_mask ret = { 0, 0 }; | 
|  | unsigned long i; | 
|  |  | 
|  | for (i = 0; i < SLICE_NUM_LOW; i++) | 
|  | if (!slice_low_has_vma(mm, i)) | 
|  | ret.low_slices |= 1u << i; | 
|  |  | 
|  | if (mm->task_size <= SLICE_LOW_TOP) | 
|  | return ret; | 
|  |  | 
|  | for (i = 0; i < SLICE_NUM_HIGH; i++) | 
|  | if (!slice_high_has_vma(mm, i)) | 
|  | ret.high_slices |= 1u << i; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct slice_mask slice_mask_for_size(struct mm_struct *mm, int psize) | 
|  | { | 
|  | struct slice_mask ret = { 0, 0 }; | 
|  | unsigned long i; | 
|  | u64 psizes; | 
|  |  | 
|  | psizes = mm->context.low_slices_psize; | 
|  | for (i = 0; i < SLICE_NUM_LOW; i++) | 
|  | if (((psizes >> (i * 4)) & 0xf) == psize) | 
|  | ret.low_slices |= 1u << i; | 
|  |  | 
|  | psizes = mm->context.high_slices_psize; | 
|  | for (i = 0; i < SLICE_NUM_HIGH; i++) | 
|  | if (((psizes >> (i * 4)) & 0xf) == psize) | 
|  | ret.high_slices |= 1u << i; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int slice_check_fit(struct slice_mask mask, struct slice_mask available) | 
|  | { | 
|  | return (mask.low_slices & available.low_slices) == mask.low_slices && | 
|  | (mask.high_slices & available.high_slices) == mask.high_slices; | 
|  | } | 
|  |  | 
|  | static void slice_flush_segments(void *parm) | 
|  | { | 
|  | struct mm_struct *mm = parm; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (mm != current->active_mm) | 
|  | return; | 
|  |  | 
|  | /* update the paca copy of the context struct */ | 
|  | get_paca()->context = current->active_mm->context; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | slb_flush_and_rebolt(); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static void slice_convert(struct mm_struct *mm, struct slice_mask mask, int psize) | 
|  | { | 
|  | /* Write the new slice psize bits */ | 
|  | u64 lpsizes, hpsizes; | 
|  | unsigned long i, flags; | 
|  |  | 
|  | slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize); | 
|  | slice_print_mask(" mask", mask); | 
|  |  | 
|  | /* We need to use a spinlock here to protect against | 
|  | * concurrent 64k -> 4k demotion ... | 
|  | */ | 
|  | spin_lock_irqsave(&slice_convert_lock, flags); | 
|  |  | 
|  | lpsizes = mm->context.low_slices_psize; | 
|  | for (i = 0; i < SLICE_NUM_LOW; i++) | 
|  | if (mask.low_slices & (1u << i)) | 
|  | lpsizes = (lpsizes & ~(0xful << (i * 4))) | | 
|  | (((unsigned long)psize) << (i * 4)); | 
|  |  | 
|  | hpsizes = mm->context.high_slices_psize; | 
|  | for (i = 0; i < SLICE_NUM_HIGH; i++) | 
|  | if (mask.high_slices & (1u << i)) | 
|  | hpsizes = (hpsizes & ~(0xful << (i * 4))) | | 
|  | (((unsigned long)psize) << (i * 4)); | 
|  |  | 
|  | mm->context.low_slices_psize = lpsizes; | 
|  | mm->context.high_slices_psize = hpsizes; | 
|  |  | 
|  | slice_dbg(" lsps=%lx, hsps=%lx\n", | 
|  | mm->context.low_slices_psize, | 
|  | mm->context.high_slices_psize); | 
|  |  | 
|  | spin_unlock_irqrestore(&slice_convert_lock, flags); | 
|  |  | 
|  | #ifdef CONFIG_SPU_BASE | 
|  | spu_flush_all_slbs(mm); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static unsigned long slice_find_area_bottomup(struct mm_struct *mm, | 
|  | unsigned long len, | 
|  | struct slice_mask available, | 
|  | int psize, int use_cache) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long start_addr, addr; | 
|  | struct slice_mask mask; | 
|  | int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); | 
|  |  | 
|  | if (use_cache) { | 
|  | if (len <= mm->cached_hole_size) { | 
|  | start_addr = addr = TASK_UNMAPPED_BASE; | 
|  | mm->cached_hole_size = 0; | 
|  | } else | 
|  | start_addr = addr = mm->free_area_cache; | 
|  | } else | 
|  | start_addr = addr = TASK_UNMAPPED_BASE; | 
|  |  | 
|  | full_search: | 
|  | for (;;) { | 
|  | addr = _ALIGN_UP(addr, 1ul << pshift); | 
|  | if ((TASK_SIZE - len) < addr) | 
|  | break; | 
|  | vma = find_vma(mm, addr); | 
|  | BUG_ON(vma && (addr >= vma->vm_end)); | 
|  |  | 
|  | mask = slice_range_to_mask(addr, len); | 
|  | if (!slice_check_fit(mask, available)) { | 
|  | if (addr < SLICE_LOW_TOP) | 
|  | addr = _ALIGN_UP(addr + 1,  1ul << SLICE_LOW_SHIFT); | 
|  | else | 
|  | addr = _ALIGN_UP(addr + 1,  1ul << SLICE_HIGH_SHIFT); | 
|  | continue; | 
|  | } | 
|  | if (!vma || addr + len <= vma->vm_start) { | 
|  | /* | 
|  | * Remember the place where we stopped the search: | 
|  | */ | 
|  | if (use_cache) | 
|  | mm->free_area_cache = addr + len; | 
|  | return addr; | 
|  | } | 
|  | if (use_cache && (addr + mm->cached_hole_size) < vma->vm_start) | 
|  | mm->cached_hole_size = vma->vm_start - addr; | 
|  | addr = vma->vm_end; | 
|  | } | 
|  |  | 
|  | /* Make sure we didn't miss any holes */ | 
|  | if (use_cache && start_addr != TASK_UNMAPPED_BASE) { | 
|  | start_addr = addr = TASK_UNMAPPED_BASE; | 
|  | mm->cached_hole_size = 0; | 
|  | goto full_search; | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static unsigned long slice_find_area_topdown(struct mm_struct *mm, | 
|  | unsigned long len, | 
|  | struct slice_mask available, | 
|  | int psize, int use_cache) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long addr; | 
|  | struct slice_mask mask; | 
|  | int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); | 
|  |  | 
|  | /* check if free_area_cache is useful for us */ | 
|  | if (use_cache) { | 
|  | if (len <= mm->cached_hole_size) { | 
|  | mm->cached_hole_size = 0; | 
|  | mm->free_area_cache = mm->mmap_base; | 
|  | } | 
|  |  | 
|  | /* either no address requested or can't fit in requested | 
|  | * address hole | 
|  | */ | 
|  | addr = mm->free_area_cache; | 
|  |  | 
|  | /* make sure it can fit in the remaining address space */ | 
|  | if (addr > len) { | 
|  | addr = _ALIGN_DOWN(addr - len, 1ul << pshift); | 
|  | mask = slice_range_to_mask(addr, len); | 
|  | if (slice_check_fit(mask, available) && | 
|  | slice_area_is_free(mm, addr, len)) | 
|  | /* remember the address as a hint for | 
|  | * next time | 
|  | */ | 
|  | return (mm->free_area_cache = addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | addr = mm->mmap_base; | 
|  | while (addr > len) { | 
|  | /* Go down by chunk size */ | 
|  | addr = _ALIGN_DOWN(addr - len, 1ul << pshift); | 
|  |  | 
|  | /* Check for hit with different page size */ | 
|  | mask = slice_range_to_mask(addr, len); | 
|  | if (!slice_check_fit(mask, available)) { | 
|  | if (addr < SLICE_LOW_TOP) | 
|  | addr = _ALIGN_DOWN(addr, 1ul << SLICE_LOW_SHIFT); | 
|  | else if (addr < (1ul << SLICE_HIGH_SHIFT)) | 
|  | addr = SLICE_LOW_TOP; | 
|  | else | 
|  | addr = _ALIGN_DOWN(addr, 1ul << SLICE_HIGH_SHIFT); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookup failure means no vma is above this address, | 
|  | * else if new region fits below vma->vm_start, | 
|  | * return with success: | 
|  | */ | 
|  | vma = find_vma(mm, addr); | 
|  | if (!vma || (addr + len) <= vma->vm_start) { | 
|  | /* remember the address as a hint for next time */ | 
|  | if (use_cache) | 
|  | mm->free_area_cache = addr; | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* remember the largest hole we saw so far */ | 
|  | if (use_cache && (addr + mm->cached_hole_size) < vma->vm_start) | 
|  | mm->cached_hole_size = vma->vm_start - addr; | 
|  |  | 
|  | /* try just below the current vma->vm_start */ | 
|  | addr = vma->vm_start; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A failed mmap() very likely causes application failure, | 
|  | * so fall back to the bottom-up function here. This scenario | 
|  | * can happen with large stack limits and large mmap() | 
|  | * allocations. | 
|  | */ | 
|  | addr = slice_find_area_bottomup(mm, len, available, psize, 0); | 
|  |  | 
|  | /* | 
|  | * Restore the topdown base: | 
|  | */ | 
|  | if (use_cache) { | 
|  | mm->free_area_cache = mm->mmap_base; | 
|  | mm->cached_hole_size = ~0UL; | 
|  | } | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  |  | 
|  | static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len, | 
|  | struct slice_mask mask, int psize, | 
|  | int topdown, int use_cache) | 
|  | { | 
|  | if (topdown) | 
|  | return slice_find_area_topdown(mm, len, mask, psize, use_cache); | 
|  | else | 
|  | return slice_find_area_bottomup(mm, len, mask, psize, use_cache); | 
|  | } | 
|  |  | 
|  | #define or_mask(dst, src)	do {			\ | 
|  | (dst).low_slices |= (src).low_slices;		\ | 
|  | (dst).high_slices |= (src).high_slices;		\ | 
|  | } while (0) | 
|  |  | 
|  | #define andnot_mask(dst, src)	do {			\ | 
|  | (dst).low_slices &= ~(src).low_slices;		\ | 
|  | (dst).high_slices &= ~(src).high_slices;	\ | 
|  | } while (0) | 
|  |  | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | #define MMU_PAGE_BASE	MMU_PAGE_64K | 
|  | #else | 
|  | #define MMU_PAGE_BASE	MMU_PAGE_4K | 
|  | #endif | 
|  |  | 
|  | unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len, | 
|  | unsigned long flags, unsigned int psize, | 
|  | int topdown, int use_cache) | 
|  | { | 
|  | struct slice_mask mask = {0, 0}; | 
|  | struct slice_mask good_mask; | 
|  | struct slice_mask potential_mask = {0,0} /* silence stupid warning */; | 
|  | struct slice_mask compat_mask = {0, 0}; | 
|  | int fixed = (flags & MAP_FIXED); | 
|  | int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned long newaddr; | 
|  |  | 
|  | /* Sanity checks */ | 
|  | BUG_ON(mm->task_size == 0); | 
|  |  | 
|  | slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize); | 
|  | slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d, use_cache=%d\n", | 
|  | addr, len, flags, topdown, use_cache); | 
|  |  | 
|  | if (len > mm->task_size) | 
|  | return -ENOMEM; | 
|  | if (len & ((1ul << pshift) - 1)) | 
|  | return -EINVAL; | 
|  | if (fixed && (addr & ((1ul << pshift) - 1))) | 
|  | return -EINVAL; | 
|  | if (fixed && addr > (mm->task_size - len)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* If hint, make sure it matches our alignment restrictions */ | 
|  | if (!fixed && addr) { | 
|  | addr = _ALIGN_UP(addr, 1ul << pshift); | 
|  | slice_dbg(" aligned addr=%lx\n", addr); | 
|  | /* Ignore hint if it's too large or overlaps a VMA */ | 
|  | if (addr > mm->task_size - len || | 
|  | !slice_area_is_free(mm, addr, len)) | 
|  | addr = 0; | 
|  | } | 
|  |  | 
|  | /* First make up a "good" mask of slices that have the right size | 
|  | * already | 
|  | */ | 
|  | good_mask = slice_mask_for_size(mm, psize); | 
|  | slice_print_mask(" good_mask", good_mask); | 
|  |  | 
|  | /* | 
|  | * Here "good" means slices that are already the right page size, | 
|  | * "compat" means slices that have a compatible page size (i.e. | 
|  | * 4k in a 64k pagesize kernel), and "free" means slices without | 
|  | * any VMAs. | 
|  | * | 
|  | * If MAP_FIXED: | 
|  | *	check if fits in good | compat => OK | 
|  | *	check if fits in good | compat | free => convert free | 
|  | *	else bad | 
|  | * If have hint: | 
|  | *	check if hint fits in good => OK | 
|  | *	check if hint fits in good | free => convert free | 
|  | * Otherwise: | 
|  | *	search in good, found => OK | 
|  | *	search in good | free, found => convert free | 
|  | *	search in good | compat | free, found => convert free. | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | /* If we support combo pages, we can allow 64k pages in 4k slices */ | 
|  | if (psize == MMU_PAGE_64K) { | 
|  | compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K); | 
|  | if (fixed) | 
|  | or_mask(good_mask, compat_mask); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* First check hint if it's valid or if we have MAP_FIXED */ | 
|  | if (addr != 0 || fixed) { | 
|  | /* Build a mask for the requested range */ | 
|  | mask = slice_range_to_mask(addr, len); | 
|  | slice_print_mask(" mask", mask); | 
|  |  | 
|  | /* Check if we fit in the good mask. If we do, we just return, | 
|  | * nothing else to do | 
|  | */ | 
|  | if (slice_check_fit(mask, good_mask)) { | 
|  | slice_dbg(" fits good !\n"); | 
|  | return addr; | 
|  | } | 
|  | } else { | 
|  | /* Now let's see if we can find something in the existing | 
|  | * slices for that size | 
|  | */ | 
|  | newaddr = slice_find_area(mm, len, good_mask, psize, topdown, | 
|  | use_cache); | 
|  | if (newaddr != -ENOMEM) { | 
|  | /* Found within the good mask, we don't have to setup, | 
|  | * we thus return directly | 
|  | */ | 
|  | slice_dbg(" found area at 0x%lx\n", newaddr); | 
|  | return newaddr; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We don't fit in the good mask, check what other slices are | 
|  | * empty and thus can be converted | 
|  | */ | 
|  | potential_mask = slice_mask_for_free(mm); | 
|  | or_mask(potential_mask, good_mask); | 
|  | slice_print_mask(" potential", potential_mask); | 
|  |  | 
|  | if ((addr != 0 || fixed) && slice_check_fit(mask, potential_mask)) { | 
|  | slice_dbg(" fits potential !\n"); | 
|  | goto convert; | 
|  | } | 
|  |  | 
|  | /* If we have MAP_FIXED and failed the above steps, then error out */ | 
|  | if (fixed) | 
|  | return -EBUSY; | 
|  |  | 
|  | slice_dbg(" search...\n"); | 
|  |  | 
|  | /* If we had a hint that didn't work out, see if we can fit | 
|  | * anywhere in the good area. | 
|  | */ | 
|  | if (addr) { | 
|  | addr = slice_find_area(mm, len, good_mask, psize, topdown, | 
|  | use_cache); | 
|  | if (addr != -ENOMEM) { | 
|  | slice_dbg(" found area at 0x%lx\n", addr); | 
|  | return addr; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now let's see if we can find something in the existing slices | 
|  | * for that size plus free slices | 
|  | */ | 
|  | addr = slice_find_area(mm, len, potential_mask, psize, topdown, | 
|  | use_cache); | 
|  |  | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | if (addr == -ENOMEM && psize == MMU_PAGE_64K) { | 
|  | /* retry the search with 4k-page slices included */ | 
|  | or_mask(potential_mask, compat_mask); | 
|  | addr = slice_find_area(mm, len, potential_mask, psize, | 
|  | topdown, use_cache); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (addr == -ENOMEM) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mask = slice_range_to_mask(addr, len); | 
|  | slice_dbg(" found potential area at 0x%lx\n", addr); | 
|  | slice_print_mask(" mask", mask); | 
|  |  | 
|  | convert: | 
|  | andnot_mask(mask, good_mask); | 
|  | andnot_mask(mask, compat_mask); | 
|  | if (mask.low_slices || mask.high_slices) { | 
|  | slice_convert(mm, mask, psize); | 
|  | if (psize > MMU_PAGE_BASE) | 
|  | on_each_cpu(slice_flush_segments, mm, 1); | 
|  | } | 
|  | return addr; | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(slice_get_unmapped_area); | 
|  |  | 
|  | unsigned long arch_get_unmapped_area(struct file *filp, | 
|  | unsigned long addr, | 
|  | unsigned long len, | 
|  | unsigned long pgoff, | 
|  | unsigned long flags) | 
|  | { | 
|  | return slice_get_unmapped_area(addr, len, flags, | 
|  | current->mm->context.user_psize, | 
|  | 0, 1); | 
|  | } | 
|  |  | 
|  | unsigned long arch_get_unmapped_area_topdown(struct file *filp, | 
|  | const unsigned long addr0, | 
|  | const unsigned long len, | 
|  | const unsigned long pgoff, | 
|  | const unsigned long flags) | 
|  | { | 
|  | return slice_get_unmapped_area(addr0, len, flags, | 
|  | current->mm->context.user_psize, | 
|  | 1, 1); | 
|  | } | 
|  |  | 
|  | unsigned int get_slice_psize(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | u64 psizes; | 
|  | int index; | 
|  |  | 
|  | if (addr < SLICE_LOW_TOP) { | 
|  | psizes = mm->context.low_slices_psize; | 
|  | index = GET_LOW_SLICE_INDEX(addr); | 
|  | } else { | 
|  | psizes = mm->context.high_slices_psize; | 
|  | index = GET_HIGH_SLICE_INDEX(addr); | 
|  | } | 
|  |  | 
|  | return (psizes >> (index * 4)) & 0xf; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_slice_psize); | 
|  |  | 
|  | /* | 
|  | * This is called by hash_page when it needs to do a lazy conversion of | 
|  | * an address space from real 64K pages to combo 4K pages (typically | 
|  | * when hitting a non cacheable mapping on a processor or hypervisor | 
|  | * that won't allow them for 64K pages). | 
|  | * | 
|  | * This is also called in init_new_context() to change back the user | 
|  | * psize from whatever the parent context had it set to | 
|  | * N.B. This may be called before mm->context.id has been set. | 
|  | * | 
|  | * This function will only change the content of the {low,high)_slice_psize | 
|  | * masks, it will not flush SLBs as this shall be handled lazily by the | 
|  | * caller. | 
|  | */ | 
|  | void slice_set_user_psize(struct mm_struct *mm, unsigned int psize) | 
|  | { | 
|  | unsigned long flags, lpsizes, hpsizes; | 
|  | unsigned int old_psize; | 
|  | int i; | 
|  |  | 
|  | slice_dbg("slice_set_user_psize(mm=%p, psize=%d)\n", mm, psize); | 
|  |  | 
|  | spin_lock_irqsave(&slice_convert_lock, flags); | 
|  |  | 
|  | old_psize = mm->context.user_psize; | 
|  | slice_dbg(" old_psize=%d\n", old_psize); | 
|  | if (old_psize == psize) | 
|  | goto bail; | 
|  |  | 
|  | mm->context.user_psize = psize; | 
|  | wmb(); | 
|  |  | 
|  | lpsizes = mm->context.low_slices_psize; | 
|  | for (i = 0; i < SLICE_NUM_LOW; i++) | 
|  | if (((lpsizes >> (i * 4)) & 0xf) == old_psize) | 
|  | lpsizes = (lpsizes & ~(0xful << (i * 4))) | | 
|  | (((unsigned long)psize) << (i * 4)); | 
|  |  | 
|  | hpsizes = mm->context.high_slices_psize; | 
|  | for (i = 0; i < SLICE_NUM_HIGH; i++) | 
|  | if (((hpsizes >> (i * 4)) & 0xf) == old_psize) | 
|  | hpsizes = (hpsizes & ~(0xful << (i * 4))) | | 
|  | (((unsigned long)psize) << (i * 4)); | 
|  |  | 
|  | mm->context.low_slices_psize = lpsizes; | 
|  | mm->context.high_slices_psize = hpsizes; | 
|  |  | 
|  | slice_dbg(" lsps=%lx, hsps=%lx\n", | 
|  | mm->context.low_slices_psize, | 
|  | mm->context.high_slices_psize); | 
|  |  | 
|  | bail: | 
|  | spin_unlock_irqrestore(&slice_convert_lock, flags); | 
|  | } | 
|  |  | 
|  | void slice_set_psize(struct mm_struct *mm, unsigned long address, | 
|  | unsigned int psize) | 
|  | { | 
|  | unsigned long i, flags; | 
|  | u64 *p; | 
|  |  | 
|  | spin_lock_irqsave(&slice_convert_lock, flags); | 
|  | if (address < SLICE_LOW_TOP) { | 
|  | i = GET_LOW_SLICE_INDEX(address); | 
|  | p = &mm->context.low_slices_psize; | 
|  | } else { | 
|  | i = GET_HIGH_SLICE_INDEX(address); | 
|  | p = &mm->context.high_slices_psize; | 
|  | } | 
|  | *p = (*p & ~(0xful << (i * 4))) | ((unsigned long) psize << (i * 4)); | 
|  | spin_unlock_irqrestore(&slice_convert_lock, flags); | 
|  |  | 
|  | #ifdef CONFIG_SPU_BASE | 
|  | spu_flush_all_slbs(mm); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void slice_set_range_psize(struct mm_struct *mm, unsigned long start, | 
|  | unsigned long len, unsigned int psize) | 
|  | { | 
|  | struct slice_mask mask = slice_range_to_mask(start, len); | 
|  |  | 
|  | slice_convert(mm, mask, psize); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * is_hugepage_only_range() is used by generic code to verify wether | 
|  | * a normal mmap mapping (non hugetlbfs) is valid on a given area. | 
|  | * | 
|  | * until the generic code provides a more generic hook and/or starts | 
|  | * calling arch get_unmapped_area for MAP_FIXED (which our implementation | 
|  | * here knows how to deal with), we hijack it to keep standard mappings | 
|  | * away from us. | 
|  | * | 
|  | * because of that generic code limitation, MAP_FIXED mapping cannot | 
|  | * "convert" back a slice with no VMAs to the standard page size, only | 
|  | * get_unmapped_area() can. It would be possible to fix it here but I | 
|  | * prefer working on fixing the generic code instead. | 
|  | * | 
|  | * WARNING: This will not work if hugetlbfs isn't enabled since the | 
|  | * generic code will redefine that function as 0 in that. This is ok | 
|  | * for now as we only use slices with hugetlbfs enabled. This should | 
|  | * be fixed as the generic code gets fixed. | 
|  | */ | 
|  | int is_hugepage_only_range(struct mm_struct *mm, unsigned long addr, | 
|  | unsigned long len) | 
|  | { | 
|  | struct slice_mask mask, available; | 
|  | unsigned int psize = mm->context.user_psize; | 
|  |  | 
|  | mask = slice_range_to_mask(addr, len); | 
|  | available = slice_mask_for_size(mm, psize); | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | /* We need to account for 4k slices too */ | 
|  | if (psize == MMU_PAGE_64K) { | 
|  | struct slice_mask compat_mask; | 
|  | compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K); | 
|  | or_mask(available, compat_mask); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if 0 /* too verbose */ | 
|  | slice_dbg("is_hugepage_only_range(mm=%p, addr=%lx, len=%lx)\n", | 
|  | mm, addr, len); | 
|  | slice_print_mask(" mask", mask); | 
|  | slice_print_mask(" available", available); | 
|  | #endif | 
|  | return !slice_check_fit(mask, available); | 
|  | } | 
|  |  |