| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/anon_inodes.h> |
| #include <linux/exportfs.h> |
| #include <linux/file.h> |
| #include <linux/fs.h> |
| #include <linux/cgroup.h> |
| #include <linux/magic.h> |
| #include <linux/mount.h> |
| #include <linux/pid.h> |
| #include <linux/pidfs.h> |
| #include <linux/pid_namespace.h> |
| #include <linux/poll.h> |
| #include <linux/proc_fs.h> |
| #include <linux/proc_ns.h> |
| #include <linux/pseudo_fs.h> |
| #include <linux/ptrace.h> |
| #include <linux/seq_file.h> |
| #include <uapi/linux/pidfd.h> |
| #include <linux/ipc_namespace.h> |
| #include <linux/time_namespace.h> |
| #include <linux/utsname.h> |
| #include <net/net_namespace.h> |
| |
| #include "internal.h" |
| #include "mount.h" |
| |
| static struct kmem_cache *pidfs_cachep __ro_after_init; |
| |
| /* |
| * Stashes information that userspace needs to access even after the |
| * process has been reaped. |
| */ |
| struct pidfs_exit_info { |
| __u64 cgroupid; |
| __s32 exit_code; |
| }; |
| |
| struct pidfs_inode { |
| struct pidfs_exit_info __pei; |
| struct pidfs_exit_info *exit_info; |
| struct inode vfs_inode; |
| }; |
| |
| static inline struct pidfs_inode *pidfs_i(struct inode *inode) |
| { |
| return container_of(inode, struct pidfs_inode, vfs_inode); |
| } |
| |
| static struct rb_root pidfs_ino_tree = RB_ROOT; |
| |
| #if BITS_PER_LONG == 32 |
| static inline unsigned long pidfs_ino(u64 ino) |
| { |
| return lower_32_bits(ino); |
| } |
| |
| /* On 32 bit the generation number are the upper 32 bits. */ |
| static inline u32 pidfs_gen(u64 ino) |
| { |
| return upper_32_bits(ino); |
| } |
| |
| #else |
| |
| /* On 64 bit simply return ino. */ |
| static inline unsigned long pidfs_ino(u64 ino) |
| { |
| return ino; |
| } |
| |
| /* On 64 bit the generation number is 0. */ |
| static inline u32 pidfs_gen(u64 ino) |
| { |
| return 0; |
| } |
| #endif |
| |
| static int pidfs_ino_cmp(struct rb_node *a, const struct rb_node *b) |
| { |
| struct pid *pid_a = rb_entry(a, struct pid, pidfs_node); |
| struct pid *pid_b = rb_entry(b, struct pid, pidfs_node); |
| u64 pid_ino_a = pid_a->ino; |
| u64 pid_ino_b = pid_b->ino; |
| |
| if (pid_ino_a < pid_ino_b) |
| return -1; |
| if (pid_ino_a > pid_ino_b) |
| return 1; |
| return 0; |
| } |
| |
| void pidfs_add_pid(struct pid *pid) |
| { |
| static u64 pidfs_ino_nr = 2; |
| |
| /* |
| * On 64 bit nothing special happens. The 64bit number assigned |
| * to struct pid is the inode number. |
| * |
| * On 32 bit the 64 bit number assigned to struct pid is split |
| * into two 32 bit numbers. The lower 32 bits are used as the |
| * inode number and the upper 32 bits are used as the inode |
| * generation number. |
| * |
| * On 32 bit pidfs_ino() will return the lower 32 bit. When |
| * pidfs_ino() returns zero a wrap around happened. When a |
| * wraparound happens the 64 bit number will be incremented by 2 |
| * so inode numbering starts at 2 again. |
| * |
| * On 64 bit comparing two pidfds is as simple as comparing |
| * inode numbers. |
| * |
| * When a wraparound happens on 32 bit multiple pidfds with the |
| * same inode number are likely to exist (This isn't a problem |
| * since before pidfs pidfds used the anonymous inode meaning |
| * all pidfds had the same inode number.). Userspace can |
| * reconstruct the 64 bit identifier by retrieving both the |
| * inode number and the inode generation number to compare or |
| * use file handles. |
| */ |
| if (pidfs_ino(pidfs_ino_nr) == 0) |
| pidfs_ino_nr += 2; |
| |
| pid->ino = pidfs_ino_nr; |
| pid->stashed = NULL; |
| pidfs_ino_nr++; |
| |
| write_seqcount_begin(&pidmap_lock_seq); |
| rb_find_add_rcu(&pid->pidfs_node, &pidfs_ino_tree, pidfs_ino_cmp); |
| write_seqcount_end(&pidmap_lock_seq); |
| } |
| |
| void pidfs_remove_pid(struct pid *pid) |
| { |
| write_seqcount_begin(&pidmap_lock_seq); |
| rb_erase(&pid->pidfs_node, &pidfs_ino_tree); |
| write_seqcount_end(&pidmap_lock_seq); |
| } |
| |
| #ifdef CONFIG_PROC_FS |
| /** |
| * pidfd_show_fdinfo - print information about a pidfd |
| * @m: proc fdinfo file |
| * @f: file referencing a pidfd |
| * |
| * Pid: |
| * This function will print the pid that a given pidfd refers to in the |
| * pid namespace of the procfs instance. |
| * If the pid namespace of the process is not a descendant of the pid |
| * namespace of the procfs instance 0 will be shown as its pid. This is |
| * similar to calling getppid() on a process whose parent is outside of |
| * its pid namespace. |
| * |
| * NSpid: |
| * If pid namespaces are supported then this function will also print |
| * the pid of a given pidfd refers to for all descendant pid namespaces |
| * starting from the current pid namespace of the instance, i.e. the |
| * Pid field and the first entry in the NSpid field will be identical. |
| * If the pid namespace of the process is not a descendant of the pid |
| * namespace of the procfs instance 0 will be shown as its first NSpid |
| * entry and no others will be shown. |
| * Note that this differs from the Pid and NSpid fields in |
| * /proc/<pid>/status where Pid and NSpid are always shown relative to |
| * the pid namespace of the procfs instance. The difference becomes |
| * obvious when sending around a pidfd between pid namespaces from a |
| * different branch of the tree, i.e. where no ancestral relation is |
| * present between the pid namespaces: |
| * - create two new pid namespaces ns1 and ns2 in the initial pid |
| * namespace (also take care to create new mount namespaces in the |
| * new pid namespace and mount procfs) |
| * - create a process with a pidfd in ns1 |
| * - send pidfd from ns1 to ns2 |
| * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid |
| * have exactly one entry, which is 0 |
| */ |
| static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) |
| { |
| struct pid *pid = pidfd_pid(f); |
| struct pid_namespace *ns; |
| pid_t nr = -1; |
| |
| if (likely(pid_has_task(pid, PIDTYPE_PID))) { |
| ns = proc_pid_ns(file_inode(m->file)->i_sb); |
| nr = pid_nr_ns(pid, ns); |
| } |
| |
| seq_put_decimal_ll(m, "Pid:\t", nr); |
| |
| #ifdef CONFIG_PID_NS |
| seq_put_decimal_ll(m, "\nNSpid:\t", nr); |
| if (nr > 0) { |
| int i; |
| |
| /* If nr is non-zero it means that 'pid' is valid and that |
| * ns, i.e. the pid namespace associated with the procfs |
| * instance, is in the pid namespace hierarchy of pid. |
| * Start at one below the already printed level. |
| */ |
| for (i = ns->level + 1; i <= pid->level; i++) |
| seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); |
| } |
| #endif |
| seq_putc(m, '\n'); |
| } |
| #endif |
| |
| /* |
| * Poll support for process exit notification. |
| */ |
| static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) |
| { |
| struct pid *pid = pidfd_pid(file); |
| struct task_struct *task; |
| __poll_t poll_flags = 0; |
| |
| poll_wait(file, &pid->wait_pidfd, pts); |
| /* |
| * Don't wake waiters if the thread-group leader exited |
| * prematurely. They either get notified when the last subthread |
| * exits or not at all if one of the remaining subthreads execs |
| * and assumes the struct pid of the old thread-group leader. |
| */ |
| guard(rcu)(); |
| task = pid_task(pid, PIDTYPE_PID); |
| if (!task) |
| poll_flags = EPOLLIN | EPOLLRDNORM | EPOLLHUP; |
| else if (task->exit_state && !delay_group_leader(task)) |
| poll_flags = EPOLLIN | EPOLLRDNORM; |
| |
| return poll_flags; |
| } |
| |
| static inline bool pid_in_current_pidns(const struct pid *pid) |
| { |
| const struct pid_namespace *ns = task_active_pid_ns(current); |
| |
| if (ns->level <= pid->level) |
| return pid->numbers[ns->level].ns == ns; |
| |
| return false; |
| } |
| |
| static long pidfd_info(struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| struct pidfd_info __user *uinfo = (struct pidfd_info __user *)arg; |
| struct inode *inode = file_inode(file); |
| struct pid *pid = pidfd_pid(file); |
| size_t usize = _IOC_SIZE(cmd); |
| struct pidfd_info kinfo = {}; |
| struct pidfs_exit_info *exit_info; |
| struct user_namespace *user_ns; |
| struct task_struct *task; |
| const struct cred *c; |
| __u64 mask; |
| |
| if (!uinfo) |
| return -EINVAL; |
| if (usize < PIDFD_INFO_SIZE_VER0) |
| return -EINVAL; /* First version, no smaller struct possible */ |
| |
| if (copy_from_user(&mask, &uinfo->mask, sizeof(mask))) |
| return -EFAULT; |
| |
| /* |
| * Restrict information retrieval to tasks within the caller's pid |
| * namespace hierarchy. |
| */ |
| if (!pid_in_current_pidns(pid)) |
| return -ESRCH; |
| |
| if (mask & PIDFD_INFO_EXIT) { |
| exit_info = READ_ONCE(pidfs_i(inode)->exit_info); |
| if (exit_info) { |
| kinfo.mask |= PIDFD_INFO_EXIT; |
| #ifdef CONFIG_CGROUPS |
| kinfo.cgroupid = exit_info->cgroupid; |
| kinfo.mask |= PIDFD_INFO_CGROUPID; |
| #endif |
| kinfo.exit_code = exit_info->exit_code; |
| } |
| } |
| |
| task = get_pid_task(pid, PIDTYPE_PID); |
| if (!task) { |
| /* |
| * If the task has already been reaped, only exit |
| * information is available |
| */ |
| if (!(mask & PIDFD_INFO_EXIT)) |
| return -ESRCH; |
| |
| goto copy_out; |
| } |
| |
| c = get_task_cred(task); |
| if (!c) |
| return -ESRCH; |
| |
| /* Unconditionally return identifiers and credentials, the rest only on request */ |
| |
| user_ns = current_user_ns(); |
| kinfo.ruid = from_kuid_munged(user_ns, c->uid); |
| kinfo.rgid = from_kgid_munged(user_ns, c->gid); |
| kinfo.euid = from_kuid_munged(user_ns, c->euid); |
| kinfo.egid = from_kgid_munged(user_ns, c->egid); |
| kinfo.suid = from_kuid_munged(user_ns, c->suid); |
| kinfo.sgid = from_kgid_munged(user_ns, c->sgid); |
| kinfo.fsuid = from_kuid_munged(user_ns, c->fsuid); |
| kinfo.fsgid = from_kgid_munged(user_ns, c->fsgid); |
| kinfo.mask |= PIDFD_INFO_CREDS; |
| put_cred(c); |
| |
| #ifdef CONFIG_CGROUPS |
| if (!kinfo.cgroupid) { |
| struct cgroup *cgrp; |
| |
| rcu_read_lock(); |
| cgrp = task_dfl_cgroup(task); |
| kinfo.cgroupid = cgroup_id(cgrp); |
| kinfo.mask |= PIDFD_INFO_CGROUPID; |
| rcu_read_unlock(); |
| } |
| #endif |
| |
| /* |
| * Copy pid/tgid last, to reduce the chances the information might be |
| * stale. Note that it is not possible to ensure it will be valid as the |
| * task might return as soon as the copy_to_user finishes, but that's ok |
| * and userspace expects that might happen and can act accordingly, so |
| * this is just best-effort. What we can do however is checking that all |
| * the fields are set correctly, or return ESRCH to avoid providing |
| * incomplete information. */ |
| |
| kinfo.ppid = task_ppid_nr_ns(task, NULL); |
| kinfo.tgid = task_tgid_vnr(task); |
| kinfo.pid = task_pid_vnr(task); |
| kinfo.mask |= PIDFD_INFO_PID; |
| |
| if (kinfo.pid == 0 || kinfo.tgid == 0 || (kinfo.ppid == 0 && kinfo.pid != 1)) |
| return -ESRCH; |
| |
| copy_out: |
| /* |
| * If userspace and the kernel have the same struct size it can just |
| * be copied. If userspace provides an older struct, only the bits that |
| * userspace knows about will be copied. If userspace provides a new |
| * struct, only the bits that the kernel knows about will be copied. |
| */ |
| return copy_struct_to_user(uinfo, usize, &kinfo, sizeof(kinfo), NULL); |
| } |
| |
| static bool pidfs_ioctl_valid(unsigned int cmd) |
| { |
| switch (cmd) { |
| case FS_IOC_GETVERSION: |
| case PIDFD_GET_CGROUP_NAMESPACE: |
| case PIDFD_GET_IPC_NAMESPACE: |
| case PIDFD_GET_MNT_NAMESPACE: |
| case PIDFD_GET_NET_NAMESPACE: |
| case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE: |
| case PIDFD_GET_TIME_NAMESPACE: |
| case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE: |
| case PIDFD_GET_UTS_NAMESPACE: |
| case PIDFD_GET_USER_NAMESPACE: |
| case PIDFD_GET_PID_NAMESPACE: |
| return true; |
| } |
| |
| /* Extensible ioctls require some more careful checks. */ |
| switch (_IOC_NR(cmd)) { |
| case _IOC_NR(PIDFD_GET_INFO): |
| /* |
| * Try to prevent performing a pidfd ioctl when someone |
| * erronously mistook the file descriptor for a pidfd. |
| * This is not perfect but will catch most cases. |
| */ |
| return (_IOC_TYPE(cmd) == _IOC_TYPE(PIDFD_GET_INFO)); |
| } |
| |
| return false; |
| } |
| |
| static long pidfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| struct task_struct *task __free(put_task) = NULL; |
| struct nsproxy *nsp __free(put_nsproxy) = NULL; |
| struct ns_common *ns_common = NULL; |
| struct pid_namespace *pid_ns; |
| |
| if (!pidfs_ioctl_valid(cmd)) |
| return -ENOIOCTLCMD; |
| |
| if (cmd == FS_IOC_GETVERSION) { |
| if (!arg) |
| return -EINVAL; |
| |
| __u32 __user *argp = (__u32 __user *)arg; |
| return put_user(file_inode(file)->i_generation, argp); |
| } |
| |
| /* Extensible IOCTL that does not open namespace FDs, take a shortcut */ |
| if (_IOC_NR(cmd) == _IOC_NR(PIDFD_GET_INFO)) |
| return pidfd_info(file, cmd, arg); |
| |
| task = get_pid_task(pidfd_pid(file), PIDTYPE_PID); |
| if (!task) |
| return -ESRCH; |
| |
| if (arg) |
| return -EINVAL; |
| |
| scoped_guard(task_lock, task) { |
| nsp = task->nsproxy; |
| if (nsp) |
| get_nsproxy(nsp); |
| } |
| if (!nsp) |
| return -ESRCH; /* just pretend it didn't exist */ |
| |
| /* |
| * We're trying to open a file descriptor to the namespace so perform a |
| * filesystem cred ptrace check. Also, we mirror nsfs behavior. |
| */ |
| if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) |
| return -EACCES; |
| |
| switch (cmd) { |
| /* Namespaces that hang of nsproxy. */ |
| case PIDFD_GET_CGROUP_NAMESPACE: |
| if (IS_ENABLED(CONFIG_CGROUPS)) { |
| get_cgroup_ns(nsp->cgroup_ns); |
| ns_common = to_ns_common(nsp->cgroup_ns); |
| } |
| break; |
| case PIDFD_GET_IPC_NAMESPACE: |
| if (IS_ENABLED(CONFIG_IPC_NS)) { |
| get_ipc_ns(nsp->ipc_ns); |
| ns_common = to_ns_common(nsp->ipc_ns); |
| } |
| break; |
| case PIDFD_GET_MNT_NAMESPACE: |
| get_mnt_ns(nsp->mnt_ns); |
| ns_common = to_ns_common(nsp->mnt_ns); |
| break; |
| case PIDFD_GET_NET_NAMESPACE: |
| if (IS_ENABLED(CONFIG_NET_NS)) { |
| ns_common = to_ns_common(nsp->net_ns); |
| get_net_ns(ns_common); |
| } |
| break; |
| case PIDFD_GET_PID_FOR_CHILDREN_NAMESPACE: |
| if (IS_ENABLED(CONFIG_PID_NS)) { |
| get_pid_ns(nsp->pid_ns_for_children); |
| ns_common = to_ns_common(nsp->pid_ns_for_children); |
| } |
| break; |
| case PIDFD_GET_TIME_NAMESPACE: |
| if (IS_ENABLED(CONFIG_TIME_NS)) { |
| get_time_ns(nsp->time_ns); |
| ns_common = to_ns_common(nsp->time_ns); |
| } |
| break; |
| case PIDFD_GET_TIME_FOR_CHILDREN_NAMESPACE: |
| if (IS_ENABLED(CONFIG_TIME_NS)) { |
| get_time_ns(nsp->time_ns_for_children); |
| ns_common = to_ns_common(nsp->time_ns_for_children); |
| } |
| break; |
| case PIDFD_GET_UTS_NAMESPACE: |
| if (IS_ENABLED(CONFIG_UTS_NS)) { |
| get_uts_ns(nsp->uts_ns); |
| ns_common = to_ns_common(nsp->uts_ns); |
| } |
| break; |
| /* Namespaces that don't hang of nsproxy. */ |
| case PIDFD_GET_USER_NAMESPACE: |
| if (IS_ENABLED(CONFIG_USER_NS)) { |
| rcu_read_lock(); |
| ns_common = to_ns_common(get_user_ns(task_cred_xxx(task, user_ns))); |
| rcu_read_unlock(); |
| } |
| break; |
| case PIDFD_GET_PID_NAMESPACE: |
| if (IS_ENABLED(CONFIG_PID_NS)) { |
| rcu_read_lock(); |
| pid_ns = task_active_pid_ns(task); |
| if (pid_ns) |
| ns_common = to_ns_common(get_pid_ns(pid_ns)); |
| rcu_read_unlock(); |
| } |
| break; |
| default: |
| return -ENOIOCTLCMD; |
| } |
| |
| if (!ns_common) |
| return -EOPNOTSUPP; |
| |
| /* open_namespace() unconditionally consumes the reference */ |
| return open_namespace(ns_common); |
| } |
| |
| static const struct file_operations pidfs_file_operations = { |
| .poll = pidfd_poll, |
| #ifdef CONFIG_PROC_FS |
| .show_fdinfo = pidfd_show_fdinfo, |
| #endif |
| .unlocked_ioctl = pidfd_ioctl, |
| .compat_ioctl = compat_ptr_ioctl, |
| }; |
| |
| struct pid *pidfd_pid(const struct file *file) |
| { |
| if (file->f_op != &pidfs_file_operations) |
| return ERR_PTR(-EBADF); |
| return file_inode(file)->i_private; |
| } |
| |
| /* |
| * We're called from release_task(). We know there's at least one |
| * reference to struct pid being held that won't be released until the |
| * task has been reaped which cannot happen until we're out of |
| * release_task(). |
| * |
| * If this struct pid is referred to by a pidfd then |
| * stashed_dentry_get() will return the dentry and inode for that struct |
| * pid. Since we've taken a reference on it there's now an additional |
| * reference from the exit path on it. Which is fine. We're going to put |
| * it again in a second and we know that the pid is kept alive anyway. |
| * |
| * Worst case is that we've filled in the info and immediately free the |
| * dentry and inode afterwards since the pidfd has been closed. Since |
| * pidfs_exit() currently is placed after exit_task_work() we know that |
| * it cannot be us aka the exiting task holding a pidfd to ourselves. |
| */ |
| void pidfs_exit(struct task_struct *tsk) |
| { |
| struct dentry *dentry; |
| |
| might_sleep(); |
| |
| dentry = stashed_dentry_get(&task_pid(tsk)->stashed); |
| if (dentry) { |
| struct inode *inode = d_inode(dentry); |
| struct pidfs_exit_info *exit_info = &pidfs_i(inode)->__pei; |
| #ifdef CONFIG_CGROUPS |
| struct cgroup *cgrp; |
| |
| rcu_read_lock(); |
| cgrp = task_dfl_cgroup(tsk); |
| exit_info->cgroupid = cgroup_id(cgrp); |
| rcu_read_unlock(); |
| #endif |
| exit_info->exit_code = tsk->exit_code; |
| |
| /* Ensure that PIDFD_GET_INFO sees either all or nothing. */ |
| smp_store_release(&pidfs_i(inode)->exit_info, &pidfs_i(inode)->__pei); |
| dput(dentry); |
| } |
| } |
| |
| static struct vfsmount *pidfs_mnt __ro_after_init; |
| |
| /* |
| * The vfs falls back to simple_setattr() if i_op->setattr() isn't |
| * implemented. Let's reject it completely until we have a clean |
| * permission concept for pidfds. |
| */ |
| static int pidfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, |
| struct iattr *attr) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| |
| /* |
| * User space expects pidfs inodes to have no file type in st_mode. |
| * |
| * In particular, 'lsof' has this legacy logic: |
| * |
| * type = s->st_mode & S_IFMT; |
| * switch (type) { |
| * ... |
| * case 0: |
| * if (!strcmp(p, "anon_inode")) |
| * Lf->ntype = Ntype = N_ANON_INODE; |
| * |
| * to detect our old anon_inode logic. |
| * |
| * Rather than mess with our internal sane inode data, just fix it |
| * up here in getattr() by masking off the format bits. |
| */ |
| static int pidfs_getattr(struct mnt_idmap *idmap, const struct path *path, |
| struct kstat *stat, u32 request_mask, |
| unsigned int query_flags) |
| { |
| struct inode *inode = d_inode(path->dentry); |
| |
| generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); |
| stat->mode &= ~S_IFMT; |
| return 0; |
| } |
| |
| static const struct inode_operations pidfs_inode_operations = { |
| .getattr = pidfs_getattr, |
| .setattr = pidfs_setattr, |
| }; |
| |
| static void pidfs_evict_inode(struct inode *inode) |
| { |
| struct pid *pid = inode->i_private; |
| |
| clear_inode(inode); |
| put_pid(pid); |
| } |
| |
| static struct inode *pidfs_alloc_inode(struct super_block *sb) |
| { |
| struct pidfs_inode *pi; |
| |
| pi = alloc_inode_sb(sb, pidfs_cachep, GFP_KERNEL); |
| if (!pi) |
| return NULL; |
| |
| memset(&pi->__pei, 0, sizeof(pi->__pei)); |
| pi->exit_info = NULL; |
| |
| return &pi->vfs_inode; |
| } |
| |
| static void pidfs_free_inode(struct inode *inode) |
| { |
| kmem_cache_free(pidfs_cachep, pidfs_i(inode)); |
| } |
| |
| static const struct super_operations pidfs_sops = { |
| .alloc_inode = pidfs_alloc_inode, |
| .drop_inode = generic_delete_inode, |
| .evict_inode = pidfs_evict_inode, |
| .free_inode = pidfs_free_inode, |
| .statfs = simple_statfs, |
| }; |
| |
| /* |
| * 'lsof' has knowledge of out historical anon_inode use, and expects |
| * the pidfs dentry name to start with 'anon_inode'. |
| */ |
| static char *pidfs_dname(struct dentry *dentry, char *buffer, int buflen) |
| { |
| return dynamic_dname(buffer, buflen, "anon_inode:[pidfd]"); |
| } |
| |
| const struct dentry_operations pidfs_dentry_operations = { |
| .d_dname = pidfs_dname, |
| .d_prune = stashed_dentry_prune, |
| }; |
| |
| static int pidfs_encode_fh(struct inode *inode, u32 *fh, int *max_len, |
| struct inode *parent) |
| { |
| const struct pid *pid = inode->i_private; |
| |
| if (*max_len < 2) { |
| *max_len = 2; |
| return FILEID_INVALID; |
| } |
| |
| *max_len = 2; |
| *(u64 *)fh = pid->ino; |
| return FILEID_KERNFS; |
| } |
| |
| static int pidfs_ino_find(const void *key, const struct rb_node *node) |
| { |
| const u64 pid_ino = *(u64 *)key; |
| const struct pid *pid = rb_entry(node, struct pid, pidfs_node); |
| |
| if (pid_ino < pid->ino) |
| return -1; |
| if (pid_ino > pid->ino) |
| return 1; |
| return 0; |
| } |
| |
| /* Find a struct pid based on the inode number. */ |
| static struct pid *pidfs_ino_get_pid(u64 ino) |
| { |
| struct pid *pid; |
| struct rb_node *node; |
| unsigned int seq; |
| |
| guard(rcu)(); |
| do { |
| seq = read_seqcount_begin(&pidmap_lock_seq); |
| node = rb_find_rcu(&ino, &pidfs_ino_tree, pidfs_ino_find); |
| if (node) |
| break; |
| } while (read_seqcount_retry(&pidmap_lock_seq, seq)); |
| |
| if (!node) |
| return NULL; |
| |
| pid = rb_entry(node, struct pid, pidfs_node); |
| |
| /* Within our pid namespace hierarchy? */ |
| if (pid_vnr(pid) == 0) |
| return NULL; |
| |
| return get_pid(pid); |
| } |
| |
| static struct dentry *pidfs_fh_to_dentry(struct super_block *sb, |
| struct fid *fid, int fh_len, |
| int fh_type) |
| { |
| int ret; |
| u64 pid_ino; |
| struct path path; |
| struct pid *pid; |
| |
| if (fh_len < 2) |
| return NULL; |
| |
| switch (fh_type) { |
| case FILEID_KERNFS: |
| pid_ino = *(u64 *)fid; |
| break; |
| default: |
| return NULL; |
| } |
| |
| pid = pidfs_ino_get_pid(pid_ino); |
| if (!pid) |
| return NULL; |
| |
| ret = path_from_stashed(&pid->stashed, pidfs_mnt, pid, &path); |
| if (ret < 0) |
| return ERR_PTR(ret); |
| |
| mntput(path.mnt); |
| return path.dentry; |
| } |
| |
| /* |
| * Make sure that we reject any nonsensical flags that users pass via |
| * open_by_handle_at(). Note that PIDFD_THREAD is defined as O_EXCL, and |
| * PIDFD_NONBLOCK as O_NONBLOCK. |
| */ |
| #define VALID_FILE_HANDLE_OPEN_FLAGS \ |
| (O_RDONLY | O_WRONLY | O_RDWR | O_NONBLOCK | O_CLOEXEC | O_EXCL) |
| |
| static int pidfs_export_permission(struct handle_to_path_ctx *ctx, |
| unsigned int oflags) |
| { |
| if (oflags & ~(VALID_FILE_HANDLE_OPEN_FLAGS | O_LARGEFILE)) |
| return -EINVAL; |
| |
| /* |
| * pidfd_ino_get_pid() will verify that the struct pid is part |
| * of the caller's pid namespace hierarchy. No further |
| * permission checks are needed. |
| */ |
| return 0; |
| } |
| |
| static inline bool pidfs_pid_valid(struct pid *pid, const struct path *path, |
| unsigned int flags) |
| { |
| enum pid_type type; |
| |
| if (flags & PIDFD_CLONE) |
| return true; |
| |
| /* |
| * Make sure that if a pidfd is created PIDFD_INFO_EXIT |
| * information will be available. So after an inode for the |
| * pidfd has been allocated perform another check that the pid |
| * is still alive. If it is exit information is available even |
| * if the task gets reaped before the pidfd is returned to |
| * userspace. The only exception is PIDFD_CLONE where no task |
| * linkage has been established for @pid yet and the kernel is |
| * in the middle of process creation so there's nothing for |
| * pidfs to miss. |
| */ |
| if (flags & PIDFD_THREAD) |
| type = PIDTYPE_PID; |
| else |
| type = PIDTYPE_TGID; |
| |
| /* |
| * Since pidfs_exit() is called before struct pid's task linkage |
| * is removed the case where the task got reaped but a dentry |
| * was already attached to struct pid and exit information was |
| * recorded and published can be handled correctly. |
| */ |
| if (unlikely(!pid_has_task(pid, type))) { |
| struct inode *inode = d_inode(path->dentry); |
| return !!READ_ONCE(pidfs_i(inode)->exit_info); |
| } |
| |
| return true; |
| } |
| |
| static struct file *pidfs_export_open(struct path *path, unsigned int oflags) |
| { |
| if (!pidfs_pid_valid(d_inode(path->dentry)->i_private, path, oflags)) |
| return ERR_PTR(-ESRCH); |
| |
| /* |
| * Clear O_LARGEFILE as open_by_handle_at() forces it and raise |
| * O_RDWR as pidfds always are. |
| */ |
| oflags &= ~O_LARGEFILE; |
| return dentry_open(path, oflags | O_RDWR, current_cred()); |
| } |
| |
| static const struct export_operations pidfs_export_operations = { |
| .encode_fh = pidfs_encode_fh, |
| .fh_to_dentry = pidfs_fh_to_dentry, |
| .open = pidfs_export_open, |
| .permission = pidfs_export_permission, |
| }; |
| |
| static int pidfs_init_inode(struct inode *inode, void *data) |
| { |
| const struct pid *pid = data; |
| |
| inode->i_private = data; |
| inode->i_flags |= S_PRIVATE; |
| inode->i_mode |= S_IRWXU; |
| inode->i_op = &pidfs_inode_operations; |
| inode->i_fop = &pidfs_file_operations; |
| inode->i_ino = pidfs_ino(pid->ino); |
| inode->i_generation = pidfs_gen(pid->ino); |
| return 0; |
| } |
| |
| static void pidfs_put_data(void *data) |
| { |
| struct pid *pid = data; |
| put_pid(pid); |
| } |
| |
| static const struct stashed_operations pidfs_stashed_ops = { |
| .init_inode = pidfs_init_inode, |
| .put_data = pidfs_put_data, |
| }; |
| |
| static int pidfs_init_fs_context(struct fs_context *fc) |
| { |
| struct pseudo_fs_context *ctx; |
| |
| ctx = init_pseudo(fc, PID_FS_MAGIC); |
| if (!ctx) |
| return -ENOMEM; |
| |
| ctx->ops = &pidfs_sops; |
| ctx->eops = &pidfs_export_operations; |
| ctx->dops = &pidfs_dentry_operations; |
| fc->s_fs_info = (void *)&pidfs_stashed_ops; |
| return 0; |
| } |
| |
| static struct file_system_type pidfs_type = { |
| .name = "pidfs", |
| .init_fs_context = pidfs_init_fs_context, |
| .kill_sb = kill_anon_super, |
| }; |
| |
| struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags) |
| { |
| struct file *pidfd_file; |
| struct path path __free(path_put) = {}; |
| int ret; |
| |
| /* |
| * Ensure that PIDFD_CLONE can be passed as a flag without |
| * overloading other uapi pidfd flags. |
| */ |
| BUILD_BUG_ON(PIDFD_CLONE == PIDFD_THREAD); |
| BUILD_BUG_ON(PIDFD_CLONE == PIDFD_NONBLOCK); |
| |
| ret = path_from_stashed(&pid->stashed, pidfs_mnt, get_pid(pid), &path); |
| if (ret < 0) |
| return ERR_PTR(ret); |
| |
| if (!pidfs_pid_valid(pid, &path, flags)) |
| return ERR_PTR(-ESRCH); |
| |
| flags &= ~PIDFD_CLONE; |
| pidfd_file = dentry_open(&path, flags, current_cred()); |
| /* Raise PIDFD_THREAD explicitly as do_dentry_open() strips it. */ |
| if (!IS_ERR(pidfd_file)) |
| pidfd_file->f_flags |= (flags & PIDFD_THREAD); |
| |
| return pidfd_file; |
| } |
| |
| static void pidfs_inode_init_once(void *data) |
| { |
| struct pidfs_inode *pi = data; |
| |
| inode_init_once(&pi->vfs_inode); |
| } |
| |
| void __init pidfs_init(void) |
| { |
| pidfs_cachep = kmem_cache_create("pidfs_cache", sizeof(struct pidfs_inode), 0, |
| (SLAB_HWCACHE_ALIGN | SLAB_RECLAIM_ACCOUNT | |
| SLAB_ACCOUNT | SLAB_PANIC), |
| pidfs_inode_init_once); |
| pidfs_mnt = kern_mount(&pidfs_type); |
| if (IS_ERR(pidfs_mnt)) |
| panic("Failed to mount pidfs pseudo filesystem"); |
| } |