| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright 2025 NXP |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/clk.h> |
| #include <linux/iopoll.h> |
| #include <linux/of_irq.h> |
| #include <linux/platform_device.h> |
| #include <linux/rtc.h> |
| |
| #define RTCC_OFFSET 0x4ul |
| #define RTCS_OFFSET 0x8ul |
| #define APIVAL_OFFSET 0x10ul |
| |
| /* RTCC fields */ |
| #define RTCC_CNTEN BIT(31) |
| #define RTCC_APIEN BIT(15) |
| #define RTCC_APIIE BIT(14) |
| #define RTCC_CLKSEL_MASK GENMASK(13, 12) |
| #define RTCC_DIV512EN BIT(11) |
| #define RTCC_DIV32EN BIT(10) |
| |
| /* RTCS fields */ |
| #define RTCS_INV_API BIT(17) |
| #define RTCS_APIF BIT(13) |
| |
| #define APIVAL_MAX_VAL GENMASK(31, 0) |
| #define RTC_SYNCH_TIMEOUT (100 * USEC_PER_MSEC) |
| |
| /* |
| * S32G2 and S32G3 SoCs have RTC clock source1 reserved and |
| * should not be used. |
| */ |
| #define RTC_CLK_SRC1_RESERVED BIT(1) |
| |
| /* |
| * S32G RTC module has a 512 value and a 32 value hardware frequency |
| * divisors (DIV512 and DIV32) which could be used to achieve higher |
| * counter ranges by lowering the RTC frequency. |
| */ |
| enum { |
| DIV1 = 1, |
| DIV32 = 32, |
| DIV512 = 512, |
| DIV512_32 = 16384 |
| }; |
| |
| static const char *const rtc_clk_src[] = { |
| "source0", |
| "source1", |
| "source2", |
| "source3" |
| }; |
| |
| struct rtc_priv { |
| struct rtc_device *rdev; |
| void __iomem *rtc_base; |
| struct clk *ipg; |
| struct clk *clk_src; |
| const struct rtc_soc_data *rtc_data; |
| u64 rtc_hz; |
| time64_t sleep_sec; |
| int irq; |
| u32 clk_src_idx; |
| }; |
| |
| struct rtc_soc_data { |
| u32 clk_div; |
| u32 reserved_clk_mask; |
| }; |
| |
| static const struct rtc_soc_data rtc_s32g2_data = { |
| .clk_div = DIV512_32, |
| .reserved_clk_mask = RTC_CLK_SRC1_RESERVED, |
| }; |
| |
| static irqreturn_t s32g_rtc_handler(int irq, void *dev) |
| { |
| struct rtc_priv *priv = platform_get_drvdata(dev); |
| u32 status; |
| |
| status = readl(priv->rtc_base + RTCS_OFFSET); |
| |
| if (status & RTCS_APIF) { |
| writel(0x0, priv->rtc_base + APIVAL_OFFSET); |
| writel(status | RTCS_APIF, priv->rtc_base + RTCS_OFFSET); |
| } |
| |
| rtc_update_irq(priv->rdev, 1, RTC_IRQF | RTC_AF); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * The function is not really getting time from the RTC since the S32G RTC |
| * has several limitations. Thus, to setup alarm use system time. |
| */ |
| static int s32g_rtc_read_time(struct device *dev, |
| struct rtc_time *tm) |
| { |
| struct rtc_priv *priv = dev_get_drvdata(dev); |
| time64_t sec; |
| |
| if (check_add_overflow(ktime_get_real_seconds(), |
| priv->sleep_sec, &sec)) |
| return -ERANGE; |
| |
| rtc_time64_to_tm(sec, tm); |
| |
| return 0; |
| } |
| |
| static int s32g_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| struct rtc_priv *priv = dev_get_drvdata(dev); |
| u32 rtcc, rtcs; |
| |
| rtcc = readl(priv->rtc_base + RTCC_OFFSET); |
| rtcs = readl(priv->rtc_base + RTCS_OFFSET); |
| |
| alrm->enabled = rtcc & RTCC_APIIE; |
| if (alrm->enabled) |
| alrm->pending = !(rtcs & RTCS_APIF); |
| |
| return 0; |
| } |
| |
| static int s32g_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) |
| { |
| struct rtc_priv *priv = dev_get_drvdata(dev); |
| u32 rtcc; |
| |
| /* RTC API functionality is used both for triggering interrupts |
| * and as a wakeup event. Hence it should always be enabled. |
| */ |
| rtcc = readl(priv->rtc_base + RTCC_OFFSET); |
| rtcc |= RTCC_APIEN | RTCC_APIIE; |
| writel(rtcc, priv->rtc_base + RTCC_OFFSET); |
| |
| return 0; |
| } |
| |
| static int s32g_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) |
| { |
| struct rtc_priv *priv = dev_get_drvdata(dev); |
| unsigned long long cycles; |
| long long t_offset; |
| time64_t alrm_time; |
| u32 rtcs; |
| int ret; |
| |
| alrm_time = rtc_tm_to_time64(&alrm->time); |
| t_offset = alrm_time - ktime_get_real_seconds() - priv->sleep_sec; |
| if (t_offset < 0) |
| return -ERANGE; |
| |
| cycles = t_offset * priv->rtc_hz; |
| if (cycles > APIVAL_MAX_VAL) |
| return -ERANGE; |
| |
| /* APIVAL could have been reset from the IRQ handler. |
| * Hence, we wait in case there is a synchronization process. |
| */ |
| ret = read_poll_timeout(readl, rtcs, !(rtcs & RTCS_INV_API), |
| 0, RTC_SYNCH_TIMEOUT, false, priv->rtc_base + RTCS_OFFSET); |
| if (ret) |
| return ret; |
| |
| writel(cycles, priv->rtc_base + APIVAL_OFFSET); |
| |
| return read_poll_timeout(readl, rtcs, !(rtcs & RTCS_INV_API), |
| 0, RTC_SYNCH_TIMEOUT, false, priv->rtc_base + RTCS_OFFSET); |
| } |
| |
| /* |
| * Disable the 32-bit free running counter. |
| * This allows Clock Source and Divisors selection |
| * to be performed without causing synchronization issues. |
| */ |
| static void s32g_rtc_disable(struct rtc_priv *priv) |
| { |
| u32 rtcc = readl(priv->rtc_base + RTCC_OFFSET); |
| |
| rtcc &= ~RTCC_CNTEN; |
| writel(rtcc, priv->rtc_base + RTCC_OFFSET); |
| } |
| |
| static void s32g_rtc_enable(struct rtc_priv *priv) |
| { |
| u32 rtcc = readl(priv->rtc_base + RTCC_OFFSET); |
| |
| rtcc |= RTCC_CNTEN; |
| writel(rtcc, priv->rtc_base + RTCC_OFFSET); |
| } |
| |
| static int rtc_clk_src_setup(struct rtc_priv *priv) |
| { |
| u32 rtcc; |
| |
| rtcc = FIELD_PREP(RTCC_CLKSEL_MASK, priv->clk_src_idx); |
| |
| switch (priv->rtc_data->clk_div) { |
| case DIV512_32: |
| rtcc |= RTCC_DIV512EN; |
| rtcc |= RTCC_DIV32EN; |
| break; |
| case DIV512: |
| rtcc |= RTCC_DIV512EN; |
| break; |
| case DIV32: |
| rtcc |= RTCC_DIV32EN; |
| break; |
| case DIV1: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| rtcc |= RTCC_APIEN | RTCC_APIIE; |
| /* |
| * Make sure the CNTEN is 0 before we configure |
| * the clock source and dividers. |
| */ |
| s32g_rtc_disable(priv); |
| writel(rtcc, priv->rtc_base + RTCC_OFFSET); |
| s32g_rtc_enable(priv); |
| |
| return 0; |
| } |
| |
| static const struct rtc_class_ops rtc_ops = { |
| .read_time = s32g_rtc_read_time, |
| .read_alarm = s32g_rtc_read_alarm, |
| .set_alarm = s32g_rtc_set_alarm, |
| .alarm_irq_enable = s32g_rtc_alarm_irq_enable, |
| }; |
| |
| static int rtc_clk_dts_setup(struct rtc_priv *priv, |
| struct device *dev) |
| { |
| u32 i; |
| |
| priv->ipg = devm_clk_get_enabled(dev, "ipg"); |
| if (IS_ERR(priv->ipg)) |
| return dev_err_probe(dev, PTR_ERR(priv->ipg), |
| "Failed to get 'ipg' clock\n"); |
| |
| for (i = 0; i < ARRAY_SIZE(rtc_clk_src); i++) { |
| if (priv->rtc_data->reserved_clk_mask & BIT(i)) |
| return -EOPNOTSUPP; |
| |
| priv->clk_src = devm_clk_get_enabled(dev, rtc_clk_src[i]); |
| if (!IS_ERR(priv->clk_src)) { |
| priv->clk_src_idx = i; |
| break; |
| } |
| } |
| |
| if (IS_ERR(priv->clk_src)) |
| return dev_err_probe(dev, PTR_ERR(priv->clk_src), |
| "Failed to get rtc module clock source\n"); |
| |
| return 0; |
| } |
| |
| static int s32g_rtc_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct rtc_priv *priv; |
| unsigned long rtc_hz; |
| int ret; |
| |
| priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); |
| if (!priv) |
| return -ENOMEM; |
| |
| priv->rtc_data = of_device_get_match_data(dev); |
| if (!priv->rtc_data) |
| return -ENODEV; |
| |
| priv->rtc_base = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(priv->rtc_base)) |
| return PTR_ERR(priv->rtc_base); |
| |
| device_init_wakeup(dev, true); |
| |
| ret = rtc_clk_dts_setup(priv, dev); |
| if (ret) |
| return ret; |
| |
| priv->rdev = devm_rtc_allocate_device(dev); |
| if (IS_ERR(priv->rdev)) |
| return PTR_ERR(priv->rdev); |
| |
| ret = rtc_clk_src_setup(priv); |
| if (ret) |
| return ret; |
| |
| priv->irq = platform_get_irq(pdev, 0); |
| if (priv->irq < 0) { |
| ret = priv->irq; |
| goto disable_rtc; |
| } |
| |
| rtc_hz = clk_get_rate(priv->clk_src); |
| if (!rtc_hz) { |
| dev_err(dev, "Failed to get RTC frequency\n"); |
| ret = -EINVAL; |
| goto disable_rtc; |
| } |
| |
| priv->rtc_hz = DIV_ROUND_UP(rtc_hz, priv->rtc_data->clk_div); |
| |
| platform_set_drvdata(pdev, priv); |
| priv->rdev->ops = &rtc_ops; |
| |
| ret = devm_request_irq(dev, priv->irq, |
| s32g_rtc_handler, 0, dev_name(dev), pdev); |
| if (ret) { |
| dev_err(dev, "Request interrupt %d failed, error: %d\n", |
| priv->irq, ret); |
| goto disable_rtc; |
| } |
| |
| ret = devm_rtc_register_device(priv->rdev); |
| if (ret) |
| goto disable_rtc; |
| |
| return 0; |
| |
| disable_rtc: |
| s32g_rtc_disable(priv); |
| return ret; |
| } |
| |
| static int s32g_rtc_suspend(struct device *dev) |
| { |
| struct rtc_priv *priv = dev_get_drvdata(dev); |
| u32 apival = readl(priv->rtc_base + APIVAL_OFFSET); |
| |
| if (check_add_overflow(priv->sleep_sec, div64_u64(apival, priv->rtc_hz), |
| &priv->sleep_sec)) { |
| dev_warn(dev, "Overflow on sleep cycles occurred. Resetting to 0.\n"); |
| priv->sleep_sec = 0; |
| } |
| |
| return 0; |
| } |
| |
| static int s32g_rtc_resume(struct device *dev) |
| { |
| struct rtc_priv *priv = dev_get_drvdata(dev); |
| |
| /* The transition from resume to run is a reset event. |
| * This leads to the RTC registers being reset after resume from |
| * suspend. It is uncommon, but this behaviour has been observed |
| * on S32G RTC after issuing a Suspend to RAM operation. |
| * Thus, reconfigure RTC registers on the resume path. |
| */ |
| return rtc_clk_src_setup(priv); |
| } |
| |
| static const struct of_device_id rtc_dt_ids[] = { |
| { .compatible = "nxp,s32g2-rtc", .data = &rtc_s32g2_data }, |
| { /* sentinel */ }, |
| }; |
| |
| static DEFINE_SIMPLE_DEV_PM_OPS(s32g_rtc_pm_ops, |
| s32g_rtc_suspend, s32g_rtc_resume); |
| |
| static struct platform_driver s32g_rtc_driver = { |
| .driver = { |
| .name = "s32g-rtc", |
| .pm = pm_sleep_ptr(&s32g_rtc_pm_ops), |
| .of_match_table = rtc_dt_ids, |
| }, |
| .probe = s32g_rtc_probe, |
| }; |
| module_platform_driver(s32g_rtc_driver); |
| |
| MODULE_AUTHOR("NXP"); |
| MODULE_DESCRIPTION("NXP RTC driver for S32G2/S32G3"); |
| MODULE_LICENSE("GPL"); |