blob: 5904e4ae85d2407f022aba83c7e1f4ce007ee40d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* SHA-1 and HMAC-SHA1 library functions
*/
#include <crypto/hmac.h>
#include <crypto/sha1.h>
#include <linux/bitops.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/unaligned.h>
#include <linux/wordpart.h>
static const struct sha1_block_state sha1_iv = {
.h = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
};
/*
* If you have 32 registers or more, the compiler can (and should)
* try to change the array[] accesses into registers. However, on
* machines with less than ~25 registers, that won't really work,
* and at least gcc will make an unholy mess of it.
*
* So to avoid that mess which just slows things down, we force
* the stores to memory to actually happen (we might be better off
* with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
* suggested by Artur Skawina - that will also make gcc unable to
* try to do the silly "optimize away loads" part because it won't
* see what the value will be).
*
* Ben Herrenschmidt reports that on PPC, the C version comes close
* to the optimized asm with this (ie on PPC you don't want that
* 'volatile', since there are lots of registers).
*
* On ARM we get the best code generation by forcing a full memory barrier
* between each SHA_ROUND, otherwise gcc happily get wild with spilling and
* the stack frame size simply explode and performance goes down the drain.
*/
#ifdef CONFIG_X86
#define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
#elif defined(CONFIG_ARM)
#define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
#else
#define setW(x, val) (W(x) = (val))
#endif
/* This "rolls" over the 512-bit array */
#define W(x) (array[(x)&15])
/*
* Where do we get the source from? The first 16 iterations get it from
* the input data, the next mix it from the 512-bit array.
*/
#define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
#define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
__u32 TEMP = input(t); setW(t, TEMP); \
E += TEMP + rol32(A,5) + (fn) + (constant); \
B = ror32(B, 2); \
TEMP = E; E = D; D = C; C = B; B = A; A = TEMP; } while (0)
#define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E )
/**
* sha1_transform - single block SHA1 transform (deprecated)
*
* @digest: 160 bit digest to update
* @data: 512 bits of data to hash
* @array: 16 words of workspace (see note)
*
* This function executes SHA-1's internal compression function. It updates the
* 160-bit internal state (@digest) with a single 512-bit data block (@data).
*
* Don't use this function. SHA-1 is no longer considered secure. And even if
* you do have to use SHA-1, this isn't the correct way to hash something with
* SHA-1 as this doesn't handle padding and finalization.
*
* Note: If the hash is security sensitive, the caller should be sure
* to clear the workspace. This is left to the caller to avoid
* unnecessary clears between chained hashing operations.
*/
void sha1_transform(__u32 *digest, const char *data, __u32 *array)
{
__u32 A, B, C, D, E;
unsigned int i = 0;
A = digest[0];
B = digest[1];
C = digest[2];
D = digest[3];
E = digest[4];
/* Round 1 - iterations 0-16 take their input from 'data' */
for (; i < 16; ++i)
T_0_15(i, A, B, C, D, E);
/* Round 1 - tail. Input from 512-bit mixing array */
for (; i < 20; ++i)
T_16_19(i, A, B, C, D, E);
/* Round 2 */
for (; i < 40; ++i)
T_20_39(i, A, B, C, D, E);
/* Round 3 */
for (; i < 60; ++i)
T_40_59(i, A, B, C, D, E);
/* Round 4 */
for (; i < 80; ++i)
T_60_79(i, A, B, C, D, E);
digest[0] += A;
digest[1] += B;
digest[2] += C;
digest[3] += D;
digest[4] += E;
}
EXPORT_SYMBOL(sha1_transform);
/**
* sha1_init_raw - initialize the vectors for a SHA1 digest
* @buf: vector to initialize
*/
void sha1_init_raw(__u32 *buf)
{
buf[0] = 0x67452301;
buf[1] = 0xefcdab89;
buf[2] = 0x98badcfe;
buf[3] = 0x10325476;
buf[4] = 0xc3d2e1f0;
}
EXPORT_SYMBOL(sha1_init_raw);
static void __maybe_unused sha1_blocks_generic(struct sha1_block_state *state,
const u8 *data, size_t nblocks)
{
u32 workspace[SHA1_WORKSPACE_WORDS];
do {
sha1_transform(state->h, data, workspace);
data += SHA1_BLOCK_SIZE;
} while (--nblocks);
memzero_explicit(workspace, sizeof(workspace));
}
#ifdef CONFIG_CRYPTO_LIB_SHA1_ARCH
#include "sha1.h" /* $(SRCARCH)/sha1.h */
#else
#define sha1_blocks sha1_blocks_generic
#endif
void sha1_init(struct sha1_ctx *ctx)
{
ctx->state = sha1_iv;
ctx->bytecount = 0;
}
EXPORT_SYMBOL_GPL(sha1_init);
void sha1_update(struct sha1_ctx *ctx, const u8 *data, size_t len)
{
size_t partial = ctx->bytecount % SHA1_BLOCK_SIZE;
ctx->bytecount += len;
if (partial + len >= SHA1_BLOCK_SIZE) {
size_t nblocks;
if (partial) {
size_t l = SHA1_BLOCK_SIZE - partial;
memcpy(&ctx->buf[partial], data, l);
data += l;
len -= l;
sha1_blocks(&ctx->state, ctx->buf, 1);
}
nblocks = len / SHA1_BLOCK_SIZE;
len %= SHA1_BLOCK_SIZE;
if (nblocks) {
sha1_blocks(&ctx->state, data, nblocks);
data += nblocks * SHA1_BLOCK_SIZE;
}
partial = 0;
}
if (len)
memcpy(&ctx->buf[partial], data, len);
}
EXPORT_SYMBOL_GPL(sha1_update);
static void __sha1_final(struct sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE])
{
u64 bitcount = ctx->bytecount << 3;
size_t partial = ctx->bytecount % SHA1_BLOCK_SIZE;
ctx->buf[partial++] = 0x80;
if (partial > SHA1_BLOCK_SIZE - 8) {
memset(&ctx->buf[partial], 0, SHA1_BLOCK_SIZE - partial);
sha1_blocks(&ctx->state, ctx->buf, 1);
partial = 0;
}
memset(&ctx->buf[partial], 0, SHA1_BLOCK_SIZE - 8 - partial);
*(__be64 *)&ctx->buf[SHA1_BLOCK_SIZE - 8] = cpu_to_be64(bitcount);
sha1_blocks(&ctx->state, ctx->buf, 1);
for (size_t i = 0; i < SHA1_DIGEST_SIZE; i += 4)
put_unaligned_be32(ctx->state.h[i / 4], out + i);
}
void sha1_final(struct sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE])
{
__sha1_final(ctx, out);
memzero_explicit(ctx, sizeof(*ctx));
}
EXPORT_SYMBOL_GPL(sha1_final);
void sha1(const u8 *data, size_t len, u8 out[SHA1_DIGEST_SIZE])
{
struct sha1_ctx ctx;
sha1_init(&ctx);
sha1_update(&ctx, data, len);
sha1_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(sha1);
static void __hmac_sha1_preparekey(struct sha1_block_state *istate,
struct sha1_block_state *ostate,
const u8 *raw_key, size_t raw_key_len)
{
union {
u8 b[SHA1_BLOCK_SIZE];
unsigned long w[SHA1_BLOCK_SIZE / sizeof(unsigned long)];
} derived_key = { 0 };
if (unlikely(raw_key_len > SHA1_BLOCK_SIZE))
sha1(raw_key, raw_key_len, derived_key.b);
else
memcpy(derived_key.b, raw_key, raw_key_len);
for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++)
derived_key.w[i] ^= REPEAT_BYTE(HMAC_IPAD_VALUE);
*istate = sha1_iv;
sha1_blocks(istate, derived_key.b, 1);
for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++)
derived_key.w[i] ^= REPEAT_BYTE(HMAC_OPAD_VALUE ^
HMAC_IPAD_VALUE);
*ostate = sha1_iv;
sha1_blocks(ostate, derived_key.b, 1);
memzero_explicit(&derived_key, sizeof(derived_key));
}
void hmac_sha1_preparekey(struct hmac_sha1_key *key,
const u8 *raw_key, size_t raw_key_len)
{
__hmac_sha1_preparekey(&key->istate, &key->ostate,
raw_key, raw_key_len);
}
EXPORT_SYMBOL_GPL(hmac_sha1_preparekey);
void hmac_sha1_init(struct hmac_sha1_ctx *ctx, const struct hmac_sha1_key *key)
{
ctx->sha_ctx.state = key->istate;
ctx->sha_ctx.bytecount = SHA1_BLOCK_SIZE;
ctx->ostate = key->ostate;
}
EXPORT_SYMBOL_GPL(hmac_sha1_init);
void hmac_sha1_init_usingrawkey(struct hmac_sha1_ctx *ctx,
const u8 *raw_key, size_t raw_key_len)
{
__hmac_sha1_preparekey(&ctx->sha_ctx.state, &ctx->ostate,
raw_key, raw_key_len);
ctx->sha_ctx.bytecount = SHA1_BLOCK_SIZE;
}
EXPORT_SYMBOL_GPL(hmac_sha1_init_usingrawkey);
void hmac_sha1_final(struct hmac_sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE])
{
/* Generate the padded input for the outer hash in ctx->sha_ctx.buf. */
__sha1_final(&ctx->sha_ctx, ctx->sha_ctx.buf);
memset(&ctx->sha_ctx.buf[SHA1_DIGEST_SIZE], 0,
SHA1_BLOCK_SIZE - SHA1_DIGEST_SIZE);
ctx->sha_ctx.buf[SHA1_DIGEST_SIZE] = 0x80;
*(__be32 *)&ctx->sha_ctx.buf[SHA1_BLOCK_SIZE - 4] =
cpu_to_be32(8 * (SHA1_BLOCK_SIZE + SHA1_DIGEST_SIZE));
/* Compute the outer hash, which gives the HMAC value. */
sha1_blocks(&ctx->ostate, ctx->sha_ctx.buf, 1);
for (size_t i = 0; i < SHA1_DIGEST_SIZE; i += 4)
put_unaligned_be32(ctx->ostate.h[i / 4], out + i);
memzero_explicit(ctx, sizeof(*ctx));
}
EXPORT_SYMBOL_GPL(hmac_sha1_final);
void hmac_sha1(const struct hmac_sha1_key *key,
const u8 *data, size_t data_len, u8 out[SHA1_DIGEST_SIZE])
{
struct hmac_sha1_ctx ctx;
hmac_sha1_init(&ctx, key);
hmac_sha1_update(&ctx, data, data_len);
hmac_sha1_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(hmac_sha1);
void hmac_sha1_usingrawkey(const u8 *raw_key, size_t raw_key_len,
const u8 *data, size_t data_len,
u8 out[SHA1_DIGEST_SIZE])
{
struct hmac_sha1_ctx ctx;
hmac_sha1_init_usingrawkey(&ctx, raw_key, raw_key_len);
hmac_sha1_update(&ctx, data, data_len);
hmac_sha1_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(hmac_sha1_usingrawkey);
#ifdef sha1_mod_init_arch
static int __init sha1_mod_init(void)
{
sha1_mod_init_arch();
return 0;
}
subsys_initcall(sha1_mod_init);
static void __exit sha1_mod_exit(void)
{
}
module_exit(sha1_mod_exit);
#endif
MODULE_DESCRIPTION("SHA-1 and HMAC-SHA1 library functions");
MODULE_LICENSE("GPL");