| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * SHA-224, SHA-256, HMAC-SHA224, and HMAC-SHA256 library functions |
| * |
| * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com> |
| * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk> |
| * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> |
| * Copyright (c) 2014 Red Hat Inc. |
| * Copyright 2025 Google LLC |
| */ |
| |
| #include <crypto/hmac.h> |
| #include <crypto/sha2.h> |
| #include <linux/export.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/string.h> |
| #include <linux/unaligned.h> |
| #include <linux/wordpart.h> |
| |
| static const struct sha256_block_state sha224_iv = { |
| .h = { |
| SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3, |
| SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7, |
| }, |
| }; |
| |
| static const struct sha256_block_state sha256_iv = { |
| .h = { |
| SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, |
| SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7, |
| }, |
| }; |
| |
| static const u32 sha256_K[64] = { |
| 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, |
| 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, |
| 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, |
| 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
| 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, |
| 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, |
| 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, |
| 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
| 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, |
| 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, |
| 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, |
| }; |
| |
| #define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) |
| #define Maj(x, y, z) (((x) & (y)) | ((z) & ((x) | (y)))) |
| #define e0(x) (ror32((x), 2) ^ ror32((x), 13) ^ ror32((x), 22)) |
| #define e1(x) (ror32((x), 6) ^ ror32((x), 11) ^ ror32((x), 25)) |
| #define s0(x) (ror32((x), 7) ^ ror32((x), 18) ^ ((x) >> 3)) |
| #define s1(x) (ror32((x), 17) ^ ror32((x), 19) ^ ((x) >> 10)) |
| |
| static inline void LOAD_OP(int I, u32 *W, const u8 *input) |
| { |
| W[I] = get_unaligned_be32((__u32 *)input + I); |
| } |
| |
| static inline void BLEND_OP(int I, u32 *W) |
| { |
| W[I] = s1(W[I - 2]) + W[I - 7] + s0(W[I - 15]) + W[I - 16]; |
| } |
| |
| #define SHA256_ROUND(i, a, b, c, d, e, f, g, h) \ |
| do { \ |
| u32 t1, t2; \ |
| t1 = h + e1(e) + Ch(e, f, g) + sha256_K[i] + W[i]; \ |
| t2 = e0(a) + Maj(a, b, c); \ |
| d += t1; \ |
| h = t1 + t2; \ |
| } while (0) |
| |
| static void sha256_block_generic(struct sha256_block_state *state, |
| const u8 *input, u32 W[64]) |
| { |
| u32 a, b, c, d, e, f, g, h; |
| int i; |
| |
| /* load the input */ |
| for (i = 0; i < 16; i += 8) { |
| LOAD_OP(i + 0, W, input); |
| LOAD_OP(i + 1, W, input); |
| LOAD_OP(i + 2, W, input); |
| LOAD_OP(i + 3, W, input); |
| LOAD_OP(i + 4, W, input); |
| LOAD_OP(i + 5, W, input); |
| LOAD_OP(i + 6, W, input); |
| LOAD_OP(i + 7, W, input); |
| } |
| |
| /* now blend */ |
| for (i = 16; i < 64; i += 8) { |
| BLEND_OP(i + 0, W); |
| BLEND_OP(i + 1, W); |
| BLEND_OP(i + 2, W); |
| BLEND_OP(i + 3, W); |
| BLEND_OP(i + 4, W); |
| BLEND_OP(i + 5, W); |
| BLEND_OP(i + 6, W); |
| BLEND_OP(i + 7, W); |
| } |
| |
| /* load the state into our registers */ |
| a = state->h[0]; |
| b = state->h[1]; |
| c = state->h[2]; |
| d = state->h[3]; |
| e = state->h[4]; |
| f = state->h[5]; |
| g = state->h[6]; |
| h = state->h[7]; |
| |
| /* now iterate */ |
| for (i = 0; i < 64; i += 8) { |
| SHA256_ROUND(i + 0, a, b, c, d, e, f, g, h); |
| SHA256_ROUND(i + 1, h, a, b, c, d, e, f, g); |
| SHA256_ROUND(i + 2, g, h, a, b, c, d, e, f); |
| SHA256_ROUND(i + 3, f, g, h, a, b, c, d, e); |
| SHA256_ROUND(i + 4, e, f, g, h, a, b, c, d); |
| SHA256_ROUND(i + 5, d, e, f, g, h, a, b, c); |
| SHA256_ROUND(i + 6, c, d, e, f, g, h, a, b); |
| SHA256_ROUND(i + 7, b, c, d, e, f, g, h, a); |
| } |
| |
| state->h[0] += a; |
| state->h[1] += b; |
| state->h[2] += c; |
| state->h[3] += d; |
| state->h[4] += e; |
| state->h[5] += f; |
| state->h[6] += g; |
| state->h[7] += h; |
| } |
| |
| static void __maybe_unused |
| sha256_blocks_generic(struct sha256_block_state *state, |
| const u8 *data, size_t nblocks) |
| { |
| u32 W[64]; |
| |
| do { |
| sha256_block_generic(state, data, W); |
| data += SHA256_BLOCK_SIZE; |
| } while (--nblocks); |
| |
| memzero_explicit(W, sizeof(W)); |
| } |
| |
| #if defined(CONFIG_CRYPTO_LIB_SHA256_ARCH) && !defined(__DISABLE_EXPORTS) |
| #include "sha256.h" /* $(SRCARCH)/sha256.h */ |
| #else |
| #define sha256_blocks sha256_blocks_generic |
| #endif |
| |
| static void __sha256_init(struct __sha256_ctx *ctx, |
| const struct sha256_block_state *iv, |
| u64 initial_bytecount) |
| { |
| ctx->state = *iv; |
| ctx->bytecount = initial_bytecount; |
| } |
| |
| void sha224_init(struct sha224_ctx *ctx) |
| { |
| __sha256_init(&ctx->ctx, &sha224_iv, 0); |
| } |
| EXPORT_SYMBOL_GPL(sha224_init); |
| |
| void sha256_init(struct sha256_ctx *ctx) |
| { |
| __sha256_init(&ctx->ctx, &sha256_iv, 0); |
| } |
| EXPORT_SYMBOL_GPL(sha256_init); |
| |
| void __sha256_update(struct __sha256_ctx *ctx, const u8 *data, size_t len) |
| { |
| size_t partial = ctx->bytecount % SHA256_BLOCK_SIZE; |
| |
| ctx->bytecount += len; |
| |
| if (partial + len >= SHA256_BLOCK_SIZE) { |
| size_t nblocks; |
| |
| if (partial) { |
| size_t l = SHA256_BLOCK_SIZE - partial; |
| |
| memcpy(&ctx->buf[partial], data, l); |
| data += l; |
| len -= l; |
| |
| sha256_blocks(&ctx->state, ctx->buf, 1); |
| } |
| |
| nblocks = len / SHA256_BLOCK_SIZE; |
| len %= SHA256_BLOCK_SIZE; |
| |
| if (nblocks) { |
| sha256_blocks(&ctx->state, data, nblocks); |
| data += nblocks * SHA256_BLOCK_SIZE; |
| } |
| partial = 0; |
| } |
| if (len) |
| memcpy(&ctx->buf[partial], data, len); |
| } |
| EXPORT_SYMBOL(__sha256_update); |
| |
| static void __sha256_final(struct __sha256_ctx *ctx, |
| u8 *out, size_t digest_size) |
| { |
| u64 bitcount = ctx->bytecount << 3; |
| size_t partial = ctx->bytecount % SHA256_BLOCK_SIZE; |
| |
| ctx->buf[partial++] = 0x80; |
| if (partial > SHA256_BLOCK_SIZE - 8) { |
| memset(&ctx->buf[partial], 0, SHA256_BLOCK_SIZE - partial); |
| sha256_blocks(&ctx->state, ctx->buf, 1); |
| partial = 0; |
| } |
| memset(&ctx->buf[partial], 0, SHA256_BLOCK_SIZE - 8 - partial); |
| *(__be64 *)&ctx->buf[SHA256_BLOCK_SIZE - 8] = cpu_to_be64(bitcount); |
| sha256_blocks(&ctx->state, ctx->buf, 1); |
| |
| for (size_t i = 0; i < digest_size; i += 4) |
| put_unaligned_be32(ctx->state.h[i / 4], out + i); |
| } |
| |
| void sha224_final(struct sha224_ctx *ctx, u8 out[SHA224_DIGEST_SIZE]) |
| { |
| __sha256_final(&ctx->ctx, out, SHA224_DIGEST_SIZE); |
| memzero_explicit(ctx, sizeof(*ctx)); |
| } |
| EXPORT_SYMBOL(sha224_final); |
| |
| void sha256_final(struct sha256_ctx *ctx, u8 out[SHA256_DIGEST_SIZE]) |
| { |
| __sha256_final(&ctx->ctx, out, SHA256_DIGEST_SIZE); |
| memzero_explicit(ctx, sizeof(*ctx)); |
| } |
| EXPORT_SYMBOL(sha256_final); |
| |
| void sha224(const u8 *data, size_t len, u8 out[SHA224_DIGEST_SIZE]) |
| { |
| struct sha224_ctx ctx; |
| |
| sha224_init(&ctx); |
| sha224_update(&ctx, data, len); |
| sha224_final(&ctx, out); |
| } |
| EXPORT_SYMBOL(sha224); |
| |
| void sha256(const u8 *data, size_t len, u8 out[SHA256_DIGEST_SIZE]) |
| { |
| struct sha256_ctx ctx; |
| |
| sha256_init(&ctx); |
| sha256_update(&ctx, data, len); |
| sha256_final(&ctx, out); |
| } |
| EXPORT_SYMBOL(sha256); |
| |
| /* pre-boot environment (as indicated by __DISABLE_EXPORTS) doesn't need HMAC */ |
| #ifndef __DISABLE_EXPORTS |
| static void __hmac_sha256_preparekey(struct sha256_block_state *istate, |
| struct sha256_block_state *ostate, |
| const u8 *raw_key, size_t raw_key_len, |
| const struct sha256_block_state *iv) |
| { |
| union { |
| u8 b[SHA256_BLOCK_SIZE]; |
| unsigned long w[SHA256_BLOCK_SIZE / sizeof(unsigned long)]; |
| } derived_key = { 0 }; |
| |
| if (unlikely(raw_key_len > SHA256_BLOCK_SIZE)) { |
| if (iv == &sha224_iv) |
| sha224(raw_key, raw_key_len, derived_key.b); |
| else |
| sha256(raw_key, raw_key_len, derived_key.b); |
| } else { |
| memcpy(derived_key.b, raw_key, raw_key_len); |
| } |
| |
| for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++) |
| derived_key.w[i] ^= REPEAT_BYTE(HMAC_IPAD_VALUE); |
| *istate = *iv; |
| sha256_blocks(istate, derived_key.b, 1); |
| |
| for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++) |
| derived_key.w[i] ^= REPEAT_BYTE(HMAC_OPAD_VALUE ^ |
| HMAC_IPAD_VALUE); |
| *ostate = *iv; |
| sha256_blocks(ostate, derived_key.b, 1); |
| |
| memzero_explicit(&derived_key, sizeof(derived_key)); |
| } |
| |
| void hmac_sha224_preparekey(struct hmac_sha224_key *key, |
| const u8 *raw_key, size_t raw_key_len) |
| { |
| __hmac_sha256_preparekey(&key->key.istate, &key->key.ostate, |
| raw_key, raw_key_len, &sha224_iv); |
| } |
| EXPORT_SYMBOL_GPL(hmac_sha224_preparekey); |
| |
| void hmac_sha256_preparekey(struct hmac_sha256_key *key, |
| const u8 *raw_key, size_t raw_key_len) |
| { |
| __hmac_sha256_preparekey(&key->key.istate, &key->key.ostate, |
| raw_key, raw_key_len, &sha256_iv); |
| } |
| EXPORT_SYMBOL_GPL(hmac_sha256_preparekey); |
| |
| void __hmac_sha256_init(struct __hmac_sha256_ctx *ctx, |
| const struct __hmac_sha256_key *key) |
| { |
| __sha256_init(&ctx->sha_ctx, &key->istate, SHA256_BLOCK_SIZE); |
| ctx->ostate = key->ostate; |
| } |
| EXPORT_SYMBOL_GPL(__hmac_sha256_init); |
| |
| void hmac_sha224_init_usingrawkey(struct hmac_sha224_ctx *ctx, |
| const u8 *raw_key, size_t raw_key_len) |
| { |
| __hmac_sha256_preparekey(&ctx->ctx.sha_ctx.state, &ctx->ctx.ostate, |
| raw_key, raw_key_len, &sha224_iv); |
| ctx->ctx.sha_ctx.bytecount = SHA256_BLOCK_SIZE; |
| } |
| EXPORT_SYMBOL_GPL(hmac_sha224_init_usingrawkey); |
| |
| void hmac_sha256_init_usingrawkey(struct hmac_sha256_ctx *ctx, |
| const u8 *raw_key, size_t raw_key_len) |
| { |
| __hmac_sha256_preparekey(&ctx->ctx.sha_ctx.state, &ctx->ctx.ostate, |
| raw_key, raw_key_len, &sha256_iv); |
| ctx->ctx.sha_ctx.bytecount = SHA256_BLOCK_SIZE; |
| } |
| EXPORT_SYMBOL_GPL(hmac_sha256_init_usingrawkey); |
| |
| static void __hmac_sha256_final(struct __hmac_sha256_ctx *ctx, |
| u8 *out, size_t digest_size) |
| { |
| /* Generate the padded input for the outer hash in ctx->sha_ctx.buf. */ |
| __sha256_final(&ctx->sha_ctx, ctx->sha_ctx.buf, digest_size); |
| memset(&ctx->sha_ctx.buf[digest_size], 0, |
| SHA256_BLOCK_SIZE - digest_size); |
| ctx->sha_ctx.buf[digest_size] = 0x80; |
| *(__be32 *)&ctx->sha_ctx.buf[SHA256_BLOCK_SIZE - 4] = |
| cpu_to_be32(8 * (SHA256_BLOCK_SIZE + digest_size)); |
| |
| /* Compute the outer hash, which gives the HMAC value. */ |
| sha256_blocks(&ctx->ostate, ctx->sha_ctx.buf, 1); |
| for (size_t i = 0; i < digest_size; i += 4) |
| put_unaligned_be32(ctx->ostate.h[i / 4], out + i); |
| |
| memzero_explicit(ctx, sizeof(*ctx)); |
| } |
| |
| void hmac_sha224_final(struct hmac_sha224_ctx *ctx, |
| u8 out[SHA224_DIGEST_SIZE]) |
| { |
| __hmac_sha256_final(&ctx->ctx, out, SHA224_DIGEST_SIZE); |
| } |
| EXPORT_SYMBOL_GPL(hmac_sha224_final); |
| |
| void hmac_sha256_final(struct hmac_sha256_ctx *ctx, |
| u8 out[SHA256_DIGEST_SIZE]) |
| { |
| __hmac_sha256_final(&ctx->ctx, out, SHA256_DIGEST_SIZE); |
| } |
| EXPORT_SYMBOL_GPL(hmac_sha256_final); |
| |
| void hmac_sha224(const struct hmac_sha224_key *key, |
| const u8 *data, size_t data_len, u8 out[SHA224_DIGEST_SIZE]) |
| { |
| struct hmac_sha224_ctx ctx; |
| |
| hmac_sha224_init(&ctx, key); |
| hmac_sha224_update(&ctx, data, data_len); |
| hmac_sha224_final(&ctx, out); |
| } |
| EXPORT_SYMBOL_GPL(hmac_sha224); |
| |
| void hmac_sha256(const struct hmac_sha256_key *key, |
| const u8 *data, size_t data_len, u8 out[SHA256_DIGEST_SIZE]) |
| { |
| struct hmac_sha256_ctx ctx; |
| |
| hmac_sha256_init(&ctx, key); |
| hmac_sha256_update(&ctx, data, data_len); |
| hmac_sha256_final(&ctx, out); |
| } |
| EXPORT_SYMBOL_GPL(hmac_sha256); |
| |
| void hmac_sha224_usingrawkey(const u8 *raw_key, size_t raw_key_len, |
| const u8 *data, size_t data_len, |
| u8 out[SHA224_DIGEST_SIZE]) |
| { |
| struct hmac_sha224_ctx ctx; |
| |
| hmac_sha224_init_usingrawkey(&ctx, raw_key, raw_key_len); |
| hmac_sha224_update(&ctx, data, data_len); |
| hmac_sha224_final(&ctx, out); |
| } |
| EXPORT_SYMBOL_GPL(hmac_sha224_usingrawkey); |
| |
| void hmac_sha256_usingrawkey(const u8 *raw_key, size_t raw_key_len, |
| const u8 *data, size_t data_len, |
| u8 out[SHA256_DIGEST_SIZE]) |
| { |
| struct hmac_sha256_ctx ctx; |
| |
| hmac_sha256_init_usingrawkey(&ctx, raw_key, raw_key_len); |
| hmac_sha256_update(&ctx, data, data_len); |
| hmac_sha256_final(&ctx, out); |
| } |
| EXPORT_SYMBOL_GPL(hmac_sha256_usingrawkey); |
| #endif /* !__DISABLE_EXPORTS */ |
| |
| #ifdef sha256_mod_init_arch |
| static int __init sha256_mod_init(void) |
| { |
| sha256_mod_init_arch(); |
| return 0; |
| } |
| subsys_initcall(sha256_mod_init); |
| |
| static void __exit sha256_mod_exit(void) |
| { |
| } |
| module_exit(sha256_mod_exit); |
| #endif |
| |
| MODULE_DESCRIPTION("SHA-224, SHA-256, HMAC-SHA224, and HMAC-SHA256 library functions"); |
| MODULE_LICENSE("GPL"); |