| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * mm/mremap.c |
| * |
| * (C) Copyright 1996 Linus Torvalds |
| * |
| * Address space accounting code <alan@lxorguk.ukuu.org.uk> |
| * (C) Copyright 2002 Red Hat Inc, All Rights Reserved |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/mm_inline.h> |
| #include <linux/hugetlb.h> |
| #include <linux/shm.h> |
| #include <linux/ksm.h> |
| #include <linux/mman.h> |
| #include <linux/swap.h> |
| #include <linux/capability.h> |
| #include <linux/fs.h> |
| #include <linux/swapops.h> |
| #include <linux/highmem.h> |
| #include <linux/security.h> |
| #include <linux/syscalls.h> |
| #include <linux/mmu_notifier.h> |
| #include <linux/uaccess.h> |
| #include <linux/userfaultfd_k.h> |
| #include <linux/mempolicy.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/tlb.h> |
| #include <asm/pgalloc.h> |
| |
| #include "internal.h" |
| |
| /* Classify the kind of remap operation being performed. */ |
| enum mremap_type { |
| MREMAP_INVALID, /* Initial state. */ |
| MREMAP_NO_RESIZE, /* old_len == new_len, if not moved, do nothing. */ |
| MREMAP_SHRINK, /* old_len > new_len. */ |
| MREMAP_EXPAND, /* old_len < new_len. */ |
| }; |
| |
| /* |
| * Describes a VMA mremap() operation and is threaded throughout it. |
| * |
| * Any of the fields may be mutated by the operation, however these values will |
| * always accurately reflect the remap (for instance, we may adjust lengths and |
| * delta to account for hugetlb alignment). |
| */ |
| struct vma_remap_struct { |
| /* User-provided state. */ |
| unsigned long addr; /* User-specified address from which we remap. */ |
| unsigned long old_len; /* Length of range being remapped. */ |
| unsigned long new_len; /* Desired new length of mapping. */ |
| unsigned long flags; /* user-specified MREMAP_* flags. */ |
| unsigned long new_addr; /* Optionally, desired new address. */ |
| |
| /* uffd state. */ |
| struct vm_userfaultfd_ctx *uf; |
| struct list_head *uf_unmap_early; |
| struct list_head *uf_unmap; |
| |
| /* VMA state, determined in do_mremap(). */ |
| struct vm_area_struct *vma; |
| |
| /* Internal state, determined in do_mremap(). */ |
| unsigned long delta; /* Absolute delta of old_len,new_len. */ |
| bool mlocked; /* Was the VMA mlock()'d? */ |
| enum mremap_type remap_type; /* expand, shrink, etc. */ |
| bool mmap_locked; /* Is mm currently write-locked? */ |
| unsigned long charged; /* If VM_ACCOUNT, # pages to account. */ |
| }; |
| |
| static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr) |
| { |
| pgd_t *pgd; |
| p4d_t *p4d; |
| pud_t *pud; |
| |
| pgd = pgd_offset(mm, addr); |
| if (pgd_none_or_clear_bad(pgd)) |
| return NULL; |
| |
| p4d = p4d_offset(pgd, addr); |
| if (p4d_none_or_clear_bad(p4d)) |
| return NULL; |
| |
| pud = pud_offset(p4d, addr); |
| if (pud_none_or_clear_bad(pud)) |
| return NULL; |
| |
| return pud; |
| } |
| |
| static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr) |
| { |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| pud = get_old_pud(mm, addr); |
| if (!pud) |
| return NULL; |
| |
| pmd = pmd_offset(pud, addr); |
| if (pmd_none(*pmd)) |
| return NULL; |
| |
| return pmd; |
| } |
| |
| static pud_t *alloc_new_pud(struct mm_struct *mm, unsigned long addr) |
| { |
| pgd_t *pgd; |
| p4d_t *p4d; |
| |
| pgd = pgd_offset(mm, addr); |
| p4d = p4d_alloc(mm, pgd, addr); |
| if (!p4d) |
| return NULL; |
| |
| return pud_alloc(mm, p4d, addr); |
| } |
| |
| static pmd_t *alloc_new_pmd(struct mm_struct *mm, unsigned long addr) |
| { |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| pud = alloc_new_pud(mm, addr); |
| if (!pud) |
| return NULL; |
| |
| pmd = pmd_alloc(mm, pud, addr); |
| if (!pmd) |
| return NULL; |
| |
| VM_BUG_ON(pmd_trans_huge(*pmd)); |
| |
| return pmd; |
| } |
| |
| static void take_rmap_locks(struct vm_area_struct *vma) |
| { |
| if (vma->vm_file) |
| i_mmap_lock_write(vma->vm_file->f_mapping); |
| if (vma->anon_vma) |
| anon_vma_lock_write(vma->anon_vma); |
| } |
| |
| static void drop_rmap_locks(struct vm_area_struct *vma) |
| { |
| if (vma->anon_vma) |
| anon_vma_unlock_write(vma->anon_vma); |
| if (vma->vm_file) |
| i_mmap_unlock_write(vma->vm_file->f_mapping); |
| } |
| |
| static pte_t move_soft_dirty_pte(pte_t pte) |
| { |
| /* |
| * Set soft dirty bit so we can notice |
| * in userspace the ptes were moved. |
| */ |
| #ifdef CONFIG_MEM_SOFT_DIRTY |
| if (pte_present(pte)) |
| pte = pte_mksoft_dirty(pte); |
| else if (is_swap_pte(pte)) |
| pte = pte_swp_mksoft_dirty(pte); |
| #endif |
| return pte; |
| } |
| |
| static int move_ptes(struct pagetable_move_control *pmc, |
| unsigned long extent, pmd_t *old_pmd, pmd_t *new_pmd) |
| { |
| struct vm_area_struct *vma = pmc->old; |
| bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); |
| struct mm_struct *mm = vma->vm_mm; |
| pte_t *old_pte, *new_pte, pte; |
| pmd_t dummy_pmdval; |
| spinlock_t *old_ptl, *new_ptl; |
| bool force_flush = false; |
| unsigned long old_addr = pmc->old_addr; |
| unsigned long new_addr = pmc->new_addr; |
| unsigned long old_end = old_addr + extent; |
| unsigned long len = old_end - old_addr; |
| int err = 0; |
| |
| /* |
| * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma |
| * locks to ensure that rmap will always observe either the old or the |
| * new ptes. This is the easiest way to avoid races with |
| * truncate_pagecache(), page migration, etc... |
| * |
| * When need_rmap_locks is false, we use other ways to avoid |
| * such races: |
| * |
| * - During exec() shift_arg_pages(), we use a specially tagged vma |
| * which rmap call sites look for using vma_is_temporary_stack(). |
| * |
| * - During mremap(), new_vma is often known to be placed after vma |
| * in rmap traversal order. This ensures rmap will always observe |
| * either the old pte, or the new pte, or both (the page table locks |
| * serialize access to individual ptes, but only rmap traversal |
| * order guarantees that we won't miss both the old and new ptes). |
| */ |
| if (pmc->need_rmap_locks) |
| take_rmap_locks(vma); |
| |
| /* |
| * We don't have to worry about the ordering of src and dst |
| * pte locks because exclusive mmap_lock prevents deadlock. |
| */ |
| old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl); |
| if (!old_pte) { |
| err = -EAGAIN; |
| goto out; |
| } |
| /* |
| * Now new_pte is none, so hpage_collapse_scan_file() path can not find |
| * this by traversing file->f_mapping, so there is no concurrency with |
| * retract_page_tables(). In addition, we already hold the exclusive |
| * mmap_lock, so this new_pte page is stable, so there is no need to get |
| * pmdval and do pmd_same() check. |
| */ |
| new_pte = pte_offset_map_rw_nolock(mm, new_pmd, new_addr, &dummy_pmdval, |
| &new_ptl); |
| if (!new_pte) { |
| pte_unmap_unlock(old_pte, old_ptl); |
| err = -EAGAIN; |
| goto out; |
| } |
| if (new_ptl != old_ptl) |
| spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); |
| flush_tlb_batched_pending(vma->vm_mm); |
| arch_enter_lazy_mmu_mode(); |
| |
| for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE, |
| new_pte++, new_addr += PAGE_SIZE) { |
| VM_WARN_ON_ONCE(!pte_none(*new_pte)); |
| |
| if (pte_none(ptep_get(old_pte))) |
| continue; |
| |
| pte = ptep_get_and_clear(mm, old_addr, old_pte); |
| /* |
| * If we are remapping a valid PTE, make sure |
| * to flush TLB before we drop the PTL for the |
| * PTE. |
| * |
| * NOTE! Both old and new PTL matter: the old one |
| * for racing with folio_mkclean(), the new one to |
| * make sure the physical page stays valid until |
| * the TLB entry for the old mapping has been |
| * flushed. |
| */ |
| if (pte_present(pte)) |
| force_flush = true; |
| pte = move_pte(pte, old_addr, new_addr); |
| pte = move_soft_dirty_pte(pte); |
| |
| if (need_clear_uffd_wp && pte_marker_uffd_wp(pte)) |
| pte_clear(mm, new_addr, new_pte); |
| else { |
| if (need_clear_uffd_wp) { |
| if (pte_present(pte)) |
| pte = pte_clear_uffd_wp(pte); |
| else if (is_swap_pte(pte)) |
| pte = pte_swp_clear_uffd_wp(pte); |
| } |
| set_pte_at(mm, new_addr, new_pte, pte); |
| } |
| } |
| |
| arch_leave_lazy_mmu_mode(); |
| if (force_flush) |
| flush_tlb_range(vma, old_end - len, old_end); |
| if (new_ptl != old_ptl) |
| spin_unlock(new_ptl); |
| pte_unmap(new_pte - 1); |
| pte_unmap_unlock(old_pte - 1, old_ptl); |
| out: |
| if (pmc->need_rmap_locks) |
| drop_rmap_locks(vma); |
| return err; |
| } |
| |
| #ifndef arch_supports_page_table_move |
| #define arch_supports_page_table_move arch_supports_page_table_move |
| static inline bool arch_supports_page_table_move(void) |
| { |
| return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) || |
| IS_ENABLED(CONFIG_HAVE_MOVE_PUD); |
| } |
| #endif |
| |
| #ifdef CONFIG_HAVE_MOVE_PMD |
| static bool move_normal_pmd(struct pagetable_move_control *pmc, |
| pmd_t *old_pmd, pmd_t *new_pmd) |
| { |
| spinlock_t *old_ptl, *new_ptl; |
| struct vm_area_struct *vma = pmc->old; |
| struct mm_struct *mm = vma->vm_mm; |
| bool res = false; |
| pmd_t pmd; |
| |
| if (!arch_supports_page_table_move()) |
| return false; |
| /* |
| * The destination pmd shouldn't be established, free_pgtables() |
| * should have released it. |
| * |
| * However, there's a case during execve() where we use mremap |
| * to move the initial stack, and in that case the target area |
| * may overlap the source area (always moving down). |
| * |
| * If everything is PMD-aligned, that works fine, as moving |
| * each pmd down will clear the source pmd. But if we first |
| * have a few 4kB-only pages that get moved down, and then |
| * hit the "now the rest is PMD-aligned, let's do everything |
| * one pmd at a time", we will still have the old (now empty |
| * of any 4kB pages, but still there) PMD in the page table |
| * tree. |
| * |
| * Warn on it once - because we really should try to figure |
| * out how to do this better - but then say "I won't move |
| * this pmd". |
| * |
| * One alternative might be to just unmap the target pmd at |
| * this point, and verify that it really is empty. We'll see. |
| */ |
| if (WARN_ON_ONCE(!pmd_none(*new_pmd))) |
| return false; |
| |
| /* If this pmd belongs to a uffd vma with remap events disabled, we need |
| * to ensure that the uffd-wp state is cleared from all pgtables. This |
| * means recursing into lower page tables in move_page_tables(), and we |
| * can reuse the existing code if we simply treat the entry as "not |
| * moved". |
| */ |
| if (vma_has_uffd_without_event_remap(vma)) |
| return false; |
| |
| /* |
| * We don't have to worry about the ordering of src and dst |
| * ptlocks because exclusive mmap_lock prevents deadlock. |
| */ |
| old_ptl = pmd_lock(mm, old_pmd); |
| new_ptl = pmd_lockptr(mm, new_pmd); |
| if (new_ptl != old_ptl) |
| spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); |
| |
| pmd = *old_pmd; |
| |
| /* Racing with collapse? */ |
| if (unlikely(!pmd_present(pmd) || pmd_leaf(pmd))) |
| goto out_unlock; |
| /* Clear the pmd */ |
| pmd_clear(old_pmd); |
| res = true; |
| |
| VM_BUG_ON(!pmd_none(*new_pmd)); |
| |
| pmd_populate(mm, new_pmd, pmd_pgtable(pmd)); |
| flush_tlb_range(vma, pmc->old_addr, pmc->old_addr + PMD_SIZE); |
| out_unlock: |
| if (new_ptl != old_ptl) |
| spin_unlock(new_ptl); |
| spin_unlock(old_ptl); |
| |
| return res; |
| } |
| #else |
| static inline bool move_normal_pmd(struct pagetable_move_control *pmc, |
| pmd_t *old_pmd, pmd_t *new_pmd) |
| { |
| return false; |
| } |
| #endif |
| |
| #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD) |
| static bool move_normal_pud(struct pagetable_move_control *pmc, |
| pud_t *old_pud, pud_t *new_pud) |
| { |
| spinlock_t *old_ptl, *new_ptl; |
| struct vm_area_struct *vma = pmc->old; |
| struct mm_struct *mm = vma->vm_mm; |
| pud_t pud; |
| |
| if (!arch_supports_page_table_move()) |
| return false; |
| /* |
| * The destination pud shouldn't be established, free_pgtables() |
| * should have released it. |
| */ |
| if (WARN_ON_ONCE(!pud_none(*new_pud))) |
| return false; |
| |
| /* If this pud belongs to a uffd vma with remap events disabled, we need |
| * to ensure that the uffd-wp state is cleared from all pgtables. This |
| * means recursing into lower page tables in move_page_tables(), and we |
| * can reuse the existing code if we simply treat the entry as "not |
| * moved". |
| */ |
| if (vma_has_uffd_without_event_remap(vma)) |
| return false; |
| |
| /* |
| * We don't have to worry about the ordering of src and dst |
| * ptlocks because exclusive mmap_lock prevents deadlock. |
| */ |
| old_ptl = pud_lock(mm, old_pud); |
| new_ptl = pud_lockptr(mm, new_pud); |
| if (new_ptl != old_ptl) |
| spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); |
| |
| /* Clear the pud */ |
| pud = *old_pud; |
| pud_clear(old_pud); |
| |
| VM_BUG_ON(!pud_none(*new_pud)); |
| |
| pud_populate(mm, new_pud, pud_pgtable(pud)); |
| flush_tlb_range(vma, pmc->old_addr, pmc->old_addr + PUD_SIZE); |
| if (new_ptl != old_ptl) |
| spin_unlock(new_ptl); |
| spin_unlock(old_ptl); |
| |
| return true; |
| } |
| #else |
| static inline bool move_normal_pud(struct pagetable_move_control *pmc, |
| pud_t *old_pud, pud_t *new_pud) |
| { |
| return false; |
| } |
| #endif |
| |
| #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) |
| static bool move_huge_pud(struct pagetable_move_control *pmc, |
| pud_t *old_pud, pud_t *new_pud) |
| { |
| spinlock_t *old_ptl, *new_ptl; |
| struct vm_area_struct *vma = pmc->old; |
| struct mm_struct *mm = vma->vm_mm; |
| pud_t pud; |
| |
| /* |
| * The destination pud shouldn't be established, free_pgtables() |
| * should have released it. |
| */ |
| if (WARN_ON_ONCE(!pud_none(*new_pud))) |
| return false; |
| |
| /* |
| * We don't have to worry about the ordering of src and dst |
| * ptlocks because exclusive mmap_lock prevents deadlock. |
| */ |
| old_ptl = pud_lock(mm, old_pud); |
| new_ptl = pud_lockptr(mm, new_pud); |
| if (new_ptl != old_ptl) |
| spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); |
| |
| /* Clear the pud */ |
| pud = *old_pud; |
| pud_clear(old_pud); |
| |
| VM_BUG_ON(!pud_none(*new_pud)); |
| |
| /* Set the new pud */ |
| /* mark soft_ditry when we add pud level soft dirty support */ |
| set_pud_at(mm, pmc->new_addr, new_pud, pud); |
| flush_pud_tlb_range(vma, pmc->old_addr, pmc->old_addr + HPAGE_PUD_SIZE); |
| if (new_ptl != old_ptl) |
| spin_unlock(new_ptl); |
| spin_unlock(old_ptl); |
| |
| return true; |
| } |
| #else |
| static bool move_huge_pud(struct pagetable_move_control *pmc, |
| pud_t *old_pud, pud_t *new_pud) |
| |
| { |
| WARN_ON_ONCE(1); |
| return false; |
| |
| } |
| #endif |
| |
| enum pgt_entry { |
| NORMAL_PMD, |
| HPAGE_PMD, |
| NORMAL_PUD, |
| HPAGE_PUD, |
| }; |
| |
| /* |
| * Returns an extent of the corresponding size for the pgt_entry specified if |
| * valid. Else returns a smaller extent bounded by the end of the source and |
| * destination pgt_entry. |
| */ |
| static __always_inline unsigned long get_extent(enum pgt_entry entry, |
| struct pagetable_move_control *pmc) |
| { |
| unsigned long next, extent, mask, size; |
| unsigned long old_addr = pmc->old_addr; |
| unsigned long old_end = pmc->old_end; |
| unsigned long new_addr = pmc->new_addr; |
| |
| switch (entry) { |
| case HPAGE_PMD: |
| case NORMAL_PMD: |
| mask = PMD_MASK; |
| size = PMD_SIZE; |
| break; |
| case HPAGE_PUD: |
| case NORMAL_PUD: |
| mask = PUD_MASK; |
| size = PUD_SIZE; |
| break; |
| default: |
| BUILD_BUG(); |
| break; |
| } |
| |
| next = (old_addr + size) & mask; |
| /* even if next overflowed, extent below will be ok */ |
| extent = next - old_addr; |
| if (extent > old_end - old_addr) |
| extent = old_end - old_addr; |
| next = (new_addr + size) & mask; |
| if (extent > next - new_addr) |
| extent = next - new_addr; |
| return extent; |
| } |
| |
| /* |
| * Should move_pgt_entry() acquire the rmap locks? This is either expressed in |
| * the PMC, or overridden in the case of normal, larger page tables. |
| */ |
| static bool should_take_rmap_locks(struct pagetable_move_control *pmc, |
| enum pgt_entry entry) |
| { |
| switch (entry) { |
| case NORMAL_PMD: |
| case NORMAL_PUD: |
| return true; |
| default: |
| return pmc->need_rmap_locks; |
| } |
| } |
| |
| /* |
| * Attempts to speedup the move by moving entry at the level corresponding to |
| * pgt_entry. Returns true if the move was successful, else false. |
| */ |
| static bool move_pgt_entry(struct pagetable_move_control *pmc, |
| enum pgt_entry entry, void *old_entry, void *new_entry) |
| { |
| bool moved = false; |
| bool need_rmap_locks = should_take_rmap_locks(pmc, entry); |
| |
| /* See comment in move_ptes() */ |
| if (need_rmap_locks) |
| take_rmap_locks(pmc->old); |
| |
| switch (entry) { |
| case NORMAL_PMD: |
| moved = move_normal_pmd(pmc, old_entry, new_entry); |
| break; |
| case NORMAL_PUD: |
| moved = move_normal_pud(pmc, old_entry, new_entry); |
| break; |
| case HPAGE_PMD: |
| moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && |
| move_huge_pmd(pmc->old, pmc->old_addr, pmc->new_addr, old_entry, |
| new_entry); |
| break; |
| case HPAGE_PUD: |
| moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && |
| move_huge_pud(pmc, old_entry, new_entry); |
| break; |
| |
| default: |
| WARN_ON_ONCE(1); |
| break; |
| } |
| |
| if (need_rmap_locks) |
| drop_rmap_locks(pmc->old); |
| |
| return moved; |
| } |
| |
| /* |
| * A helper to check if aligning down is OK. The aligned address should fall |
| * on *no mapping*. For the stack moving down, that's a special move within |
| * the VMA that is created to span the source and destination of the move, |
| * so we make an exception for it. |
| */ |
| static bool can_align_down(struct pagetable_move_control *pmc, |
| struct vm_area_struct *vma, unsigned long addr_to_align, |
| unsigned long mask) |
| { |
| unsigned long addr_masked = addr_to_align & mask; |
| |
| /* |
| * If @addr_to_align of either source or destination is not the beginning |
| * of the corresponding VMA, we can't align down or we will destroy part |
| * of the current mapping. |
| */ |
| if (!pmc->for_stack && vma->vm_start != addr_to_align) |
| return false; |
| |
| /* In the stack case we explicitly permit in-VMA alignment. */ |
| if (pmc->for_stack && addr_masked >= vma->vm_start) |
| return true; |
| |
| /* |
| * Make sure the realignment doesn't cause the address to fall on an |
| * existing mapping. |
| */ |
| return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL; |
| } |
| |
| /* |
| * Determine if are in fact able to realign for efficiency to a higher page |
| * table boundary. |
| */ |
| static bool can_realign_addr(struct pagetable_move_control *pmc, |
| unsigned long pagetable_mask) |
| { |
| unsigned long align_mask = ~pagetable_mask; |
| unsigned long old_align = pmc->old_addr & align_mask; |
| unsigned long new_align = pmc->new_addr & align_mask; |
| unsigned long pagetable_size = align_mask + 1; |
| unsigned long old_align_next = pagetable_size - old_align; |
| |
| /* |
| * We don't want to have to go hunting for VMAs from the end of the old |
| * VMA to the next page table boundary, also we want to make sure the |
| * operation is wortwhile. |
| * |
| * So ensure that we only perform this realignment if the end of the |
| * range being copied reaches or crosses the page table boundary. |
| * |
| * boundary boundary |
| * .<- old_align -> . |
| * . |----------------.-----------| |
| * . | vma . | |
| * . |----------------.-----------| |
| * . <----------------.-----------> |
| * . len_in |
| * <-------------------------------> |
| * . pagetable_size . |
| * . <----------------> |
| * . old_align_next . |
| */ |
| if (pmc->len_in < old_align_next) |
| return false; |
| |
| /* Skip if the addresses are already aligned. */ |
| if (old_align == 0) |
| return false; |
| |
| /* Only realign if the new and old addresses are mutually aligned. */ |
| if (old_align != new_align) |
| return false; |
| |
| /* Ensure realignment doesn't cause overlap with existing mappings. */ |
| if (!can_align_down(pmc, pmc->old, pmc->old_addr, pagetable_mask) || |
| !can_align_down(pmc, pmc->new, pmc->new_addr, pagetable_mask)) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * Opportunistically realign to specified boundary for faster copy. |
| * |
| * Consider an mremap() of a VMA with page table boundaries as below, and no |
| * preceding VMAs from the lower page table boundary to the start of the VMA, |
| * with the end of the range reaching or crossing the page table boundary. |
| * |
| * boundary boundary |
| * . |----------------.-----------| |
| * . | vma . | |
| * . |----------------.-----------| |
| * . pmc->old_addr . pmc->old_end |
| * . <----------------------------> |
| * . move these page tables |
| * |
| * If we proceed with moving page tables in this scenario, we will have a lot of |
| * work to do traversing old page tables and establishing new ones in the |
| * destination across multiple lower level page tables. |
| * |
| * The idea here is simply to align pmc->old_addr, pmc->new_addr down to the |
| * page table boundary, so we can simply copy a single page table entry for the |
| * aligned portion of the VMA instead: |
| * |
| * boundary boundary |
| * . |----------------.-----------| |
| * . | vma . | |
| * . |----------------.-----------| |
| * pmc->old_addr . pmc->old_end |
| * <-------------------------------------------> |
| * . move these page tables |
| */ |
| static void try_realign_addr(struct pagetable_move_control *pmc, |
| unsigned long pagetable_mask) |
| { |
| |
| if (!can_realign_addr(pmc, pagetable_mask)) |
| return; |
| |
| /* |
| * Simply align to page table boundaries. Note that we do NOT update the |
| * pmc->old_end value, and since the move_page_tables() operation spans |
| * from [old_addr, old_end) (offsetting new_addr as it is performed), |
| * this simply changes the start of the copy, not the end. |
| */ |
| pmc->old_addr &= pagetable_mask; |
| pmc->new_addr &= pagetable_mask; |
| } |
| |
| /* Is the page table move operation done? */ |
| static bool pmc_done(struct pagetable_move_control *pmc) |
| { |
| return pmc->old_addr >= pmc->old_end; |
| } |
| |
| /* Advance to the next page table, offset by extent bytes. */ |
| static void pmc_next(struct pagetable_move_control *pmc, unsigned long extent) |
| { |
| pmc->old_addr += extent; |
| pmc->new_addr += extent; |
| } |
| |
| /* |
| * Determine how many bytes in the specified input range have had their page |
| * tables moved so far. |
| */ |
| static unsigned long pmc_progress(struct pagetable_move_control *pmc) |
| { |
| unsigned long orig_old_addr = pmc->old_end - pmc->len_in; |
| unsigned long old_addr = pmc->old_addr; |
| |
| /* |
| * Prevent negative return values when {old,new}_addr was realigned but |
| * we broke out of the loop in move_page_tables() for the first PMD |
| * itself. |
| */ |
| return old_addr < orig_old_addr ? 0 : old_addr - orig_old_addr; |
| } |
| |
| unsigned long move_page_tables(struct pagetable_move_control *pmc) |
| { |
| unsigned long extent; |
| struct mmu_notifier_range range; |
| pmd_t *old_pmd, *new_pmd; |
| pud_t *old_pud, *new_pud; |
| struct mm_struct *mm = pmc->old->vm_mm; |
| |
| if (!pmc->len_in) |
| return 0; |
| |
| if (is_vm_hugetlb_page(pmc->old)) |
| return move_hugetlb_page_tables(pmc->old, pmc->new, pmc->old_addr, |
| pmc->new_addr, pmc->len_in); |
| |
| /* |
| * If possible, realign addresses to PMD boundary for faster copy. |
| * Only realign if the mremap copying hits a PMD boundary. |
| */ |
| try_realign_addr(pmc, PMD_MASK); |
| |
| flush_cache_range(pmc->old, pmc->old_addr, pmc->old_end); |
| mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, mm, |
| pmc->old_addr, pmc->old_end); |
| mmu_notifier_invalidate_range_start(&range); |
| |
| for (; !pmc_done(pmc); pmc_next(pmc, extent)) { |
| cond_resched(); |
| /* |
| * If extent is PUD-sized try to speed up the move by moving at the |
| * PUD level if possible. |
| */ |
| extent = get_extent(NORMAL_PUD, pmc); |
| |
| old_pud = get_old_pud(mm, pmc->old_addr); |
| if (!old_pud) |
| continue; |
| new_pud = alloc_new_pud(mm, pmc->new_addr); |
| if (!new_pud) |
| break; |
| if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) { |
| if (extent == HPAGE_PUD_SIZE) { |
| move_pgt_entry(pmc, HPAGE_PUD, old_pud, new_pud); |
| /* We ignore and continue on error? */ |
| continue; |
| } |
| } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) { |
| if (move_pgt_entry(pmc, NORMAL_PUD, old_pud, new_pud)) |
| continue; |
| } |
| |
| extent = get_extent(NORMAL_PMD, pmc); |
| old_pmd = get_old_pmd(mm, pmc->old_addr); |
| if (!old_pmd) |
| continue; |
| new_pmd = alloc_new_pmd(mm, pmc->new_addr); |
| if (!new_pmd) |
| break; |
| again: |
| if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) || |
| pmd_devmap(*old_pmd)) { |
| if (extent == HPAGE_PMD_SIZE && |
| move_pgt_entry(pmc, HPAGE_PMD, old_pmd, new_pmd)) |
| continue; |
| split_huge_pmd(pmc->old, old_pmd, pmc->old_addr); |
| } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) && |
| extent == PMD_SIZE) { |
| /* |
| * If the extent is PMD-sized, try to speed the move by |
| * moving at the PMD level if possible. |
| */ |
| if (move_pgt_entry(pmc, NORMAL_PMD, old_pmd, new_pmd)) |
| continue; |
| } |
| if (pmd_none(*old_pmd)) |
| continue; |
| if (pte_alloc(pmc->new->vm_mm, new_pmd)) |
| break; |
| if (move_ptes(pmc, extent, old_pmd, new_pmd) < 0) |
| goto again; |
| } |
| |
| mmu_notifier_invalidate_range_end(&range); |
| |
| return pmc_progress(pmc); |
| } |
| |
| /* Set vrm->delta to the difference in VMA size specified by user. */ |
| static void vrm_set_delta(struct vma_remap_struct *vrm) |
| { |
| vrm->delta = abs_diff(vrm->old_len, vrm->new_len); |
| } |
| |
| /* Determine what kind of remap this is - shrink, expand or no resize at all. */ |
| static enum mremap_type vrm_remap_type(struct vma_remap_struct *vrm) |
| { |
| if (vrm->delta == 0) |
| return MREMAP_NO_RESIZE; |
| |
| if (vrm->old_len > vrm->new_len) |
| return MREMAP_SHRINK; |
| |
| return MREMAP_EXPAND; |
| } |
| |
| /* |
| * When moving a VMA to vrm->new_adr, does this result in the new and old VMAs |
| * overlapping? |
| */ |
| static bool vrm_overlaps(struct vma_remap_struct *vrm) |
| { |
| unsigned long start_old = vrm->addr; |
| unsigned long start_new = vrm->new_addr; |
| unsigned long end_old = vrm->addr + vrm->old_len; |
| unsigned long end_new = vrm->new_addr + vrm->new_len; |
| |
| /* |
| * start_old end_old |
| * |-----------| |
| * | | |
| * |-----------| |
| * |-------------| |
| * | | |
| * |-------------| |
| * start_new end_new |
| */ |
| if (end_old > start_new && end_new > start_old) |
| return true; |
| |
| return false; |
| } |
| |
| /* Do the mremap() flags require that the new_addr parameter be specified? */ |
| static bool vrm_implies_new_addr(struct vma_remap_struct *vrm) |
| { |
| return vrm->flags & (MREMAP_FIXED | MREMAP_DONTUNMAP); |
| } |
| |
| /* |
| * Find an unmapped area for the requested vrm->new_addr. |
| * |
| * If MREMAP_FIXED then this is equivalent to a MAP_FIXED mmap() call. If only |
| * MREMAP_DONTUNMAP is set, then this is equivalent to providing a hint to |
| * mmap(), otherwise this is equivalent to mmap() specifying a NULL address. |
| * |
| * Returns 0 on success (with vrm->new_addr updated), or an error code upon |
| * failure. |
| */ |
| static unsigned long vrm_set_new_addr(struct vma_remap_struct *vrm) |
| { |
| struct vm_area_struct *vma = vrm->vma; |
| unsigned long map_flags = 0; |
| /* Page Offset _into_ the VMA. */ |
| pgoff_t internal_pgoff = (vrm->addr - vma->vm_start) >> PAGE_SHIFT; |
| pgoff_t pgoff = vma->vm_pgoff + internal_pgoff; |
| unsigned long new_addr = vrm_implies_new_addr(vrm) ? vrm->new_addr : 0; |
| unsigned long res; |
| |
| if (vrm->flags & MREMAP_FIXED) |
| map_flags |= MAP_FIXED; |
| if (vma->vm_flags & VM_MAYSHARE) |
| map_flags |= MAP_SHARED; |
| |
| res = get_unmapped_area(vma->vm_file, new_addr, vrm->new_len, pgoff, |
| map_flags); |
| if (IS_ERR_VALUE(res)) |
| return res; |
| |
| vrm->new_addr = res; |
| return 0; |
| } |
| |
| /* |
| * Keep track of pages which have been added to the memory mapping. If the VMA |
| * is accounted, also check to see if there is sufficient memory. |
| * |
| * Returns true on success, false if insufficient memory to charge. |
| */ |
| static bool vrm_charge(struct vma_remap_struct *vrm) |
| { |
| unsigned long charged; |
| |
| if (!(vrm->vma->vm_flags & VM_ACCOUNT)) |
| return true; |
| |
| /* |
| * If we don't unmap the old mapping, then we account the entirety of |
| * the length of the new one. Otherwise it's just the delta in size. |
| */ |
| if (vrm->flags & MREMAP_DONTUNMAP) |
| charged = vrm->new_len >> PAGE_SHIFT; |
| else |
| charged = vrm->delta >> PAGE_SHIFT; |
| |
| |
| /* This accounts 'charged' pages of memory. */ |
| if (security_vm_enough_memory_mm(current->mm, charged)) |
| return false; |
| |
| vrm->charged = charged; |
| return true; |
| } |
| |
| /* |
| * an error has occurred so we will not be using vrm->charged memory. Unaccount |
| * this memory if the VMA is accounted. |
| */ |
| static void vrm_uncharge(struct vma_remap_struct *vrm) |
| { |
| if (!(vrm->vma->vm_flags & VM_ACCOUNT)) |
| return; |
| |
| vm_unacct_memory(vrm->charged); |
| vrm->charged = 0; |
| } |
| |
| /* |
| * Update mm exec_vm, stack_vm, data_vm, and locked_vm fields as needed to |
| * account for 'bytes' memory used, and if locked, indicate this in the VRM so |
| * we can handle this correctly later. |
| */ |
| static void vrm_stat_account(struct vma_remap_struct *vrm, |
| unsigned long bytes) |
| { |
| unsigned long pages = bytes >> PAGE_SHIFT; |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma = vrm->vma; |
| |
| vm_stat_account(mm, vma->vm_flags, pages); |
| if (vma->vm_flags & VM_LOCKED) { |
| mm->locked_vm += pages; |
| vrm->mlocked = true; |
| } |
| } |
| |
| /* |
| * Perform checks before attempting to write a VMA prior to it being |
| * moved. |
| */ |
| static unsigned long prep_move_vma(struct vma_remap_struct *vrm) |
| { |
| unsigned long err = 0; |
| struct vm_area_struct *vma = vrm->vma; |
| unsigned long old_addr = vrm->addr; |
| unsigned long old_len = vrm->old_len; |
| unsigned long dummy = vma->vm_flags; |
| |
| /* |
| * We'd prefer to avoid failure later on in do_munmap: |
| * which may split one vma into three before unmapping. |
| */ |
| if (current->mm->map_count >= sysctl_max_map_count - 3) |
| return -ENOMEM; |
| |
| if (vma->vm_ops && vma->vm_ops->may_split) { |
| if (vma->vm_start != old_addr) |
| err = vma->vm_ops->may_split(vma, old_addr); |
| if (!err && vma->vm_end != old_addr + old_len) |
| err = vma->vm_ops->may_split(vma, old_addr + old_len); |
| if (err) |
| return err; |
| } |
| |
| /* |
| * Advise KSM to break any KSM pages in the area to be moved: |
| * it would be confusing if they were to turn up at the new |
| * location, where they happen to coincide with different KSM |
| * pages recently unmapped. But leave vma->vm_flags as it was, |
| * so KSM can come around to merge on vma and new_vma afterwards. |
| */ |
| err = ksm_madvise(vma, old_addr, old_addr + old_len, |
| MADV_UNMERGEABLE, &dummy); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| /* |
| * Unmap source VMA for VMA move, turning it from a copy to a move, being |
| * careful to ensure we do not underflow memory account while doing so if an |
| * accountable move. |
| * |
| * This is best effort, if we fail to unmap then we simply try to correct |
| * accounting and exit. |
| */ |
| static void unmap_source_vma(struct vma_remap_struct *vrm) |
| { |
| struct mm_struct *mm = current->mm; |
| unsigned long addr = vrm->addr; |
| unsigned long len = vrm->old_len; |
| struct vm_area_struct *vma = vrm->vma; |
| VMA_ITERATOR(vmi, mm, addr); |
| int err; |
| unsigned long vm_start; |
| unsigned long vm_end; |
| /* |
| * It might seem odd that we check for MREMAP_DONTUNMAP here, given this |
| * function implies that we unmap the original VMA, which seems |
| * contradictory. |
| * |
| * However, this occurs when this operation was attempted and an error |
| * arose, in which case we _do_ wish to unmap the _new_ VMA, which means |
| * we actually _do_ want it be unaccounted. |
| */ |
| bool accountable_move = (vma->vm_flags & VM_ACCOUNT) && |
| !(vrm->flags & MREMAP_DONTUNMAP); |
| |
| /* |
| * So we perform a trick here to prevent incorrect accounting. Any merge |
| * or new VMA allocation performed in copy_vma() does not adjust |
| * accounting, it is expected that callers handle this. |
| * |
| * And indeed we already have, accounting appropriately in the case of |
| * both in vrm_charge(). |
| * |
| * However, when we unmap the existing VMA (to effect the move), this |
| * code will, if the VMA has VM_ACCOUNT set, attempt to unaccount |
| * removed pages. |
| * |
| * To avoid this we temporarily clear this flag, reinstating on any |
| * portions of the original VMA that remain. |
| */ |
| if (accountable_move) { |
| vm_flags_clear(vma, VM_ACCOUNT); |
| /* We are about to split vma, so store the start/end. */ |
| vm_start = vma->vm_start; |
| vm_end = vma->vm_end; |
| } |
| |
| err = do_vmi_munmap(&vmi, mm, addr, len, vrm->uf_unmap, /* unlock= */false); |
| vrm->vma = NULL; /* Invalidated. */ |
| if (err) { |
| /* OOM: unable to split vma, just get accounts right */ |
| vm_acct_memory(len >> PAGE_SHIFT); |
| return; |
| } |
| |
| /* |
| * If we mremap() from a VMA like this: |
| * |
| * addr end |
| * | | |
| * v v |
| * |-------------| |
| * | | |
| * |-------------| |
| * |
| * Having cleared VM_ACCOUNT from the whole VMA, after we unmap above |
| * we'll end up with: |
| * |
| * addr end |
| * | | |
| * v v |
| * |---| |---| |
| * | A | | B | |
| * |---| |---| |
| * |
| * The VMI is still pointing at addr, so vma_prev() will give us A, and |
| * a subsequent or lone vma_next() will give as B. |
| * |
| * do_vmi_munmap() will have restored the VMI back to addr. |
| */ |
| if (accountable_move) { |
| unsigned long end = addr + len; |
| |
| if (vm_start < addr) { |
| struct vm_area_struct *prev = vma_prev(&vmi); |
| |
| vm_flags_set(prev, VM_ACCOUNT); /* Acquires VMA lock. */ |
| } |
| |
| if (vm_end > end) { |
| struct vm_area_struct *next = vma_next(&vmi); |
| |
| vm_flags_set(next, VM_ACCOUNT); /* Acquires VMA lock. */ |
| } |
| } |
| } |
| |
| /* |
| * Copy vrm->vma over to vrm->new_addr possibly adjusting size as part of the |
| * process. Additionally handle an error occurring on moving of page tables, |
| * where we reset vrm state to cause unmapping of the new VMA. |
| * |
| * Outputs the newly installed VMA to new_vma_ptr. Returns 0 on success or an |
| * error code. |
| */ |
| static int copy_vma_and_data(struct vma_remap_struct *vrm, |
| struct vm_area_struct **new_vma_ptr) |
| { |
| unsigned long internal_offset = vrm->addr - vrm->vma->vm_start; |
| unsigned long internal_pgoff = internal_offset >> PAGE_SHIFT; |
| unsigned long new_pgoff = vrm->vma->vm_pgoff + internal_pgoff; |
| unsigned long moved_len; |
| struct vm_area_struct *vma = vrm->vma; |
| struct vm_area_struct *new_vma; |
| int err = 0; |
| PAGETABLE_MOVE(pmc, NULL, NULL, vrm->addr, vrm->new_addr, vrm->old_len); |
| |
| new_vma = copy_vma(&vma, vrm->new_addr, vrm->new_len, new_pgoff, |
| &pmc.need_rmap_locks); |
| if (!new_vma) { |
| vrm_uncharge(vrm); |
| *new_vma_ptr = NULL; |
| return -ENOMEM; |
| } |
| vrm->vma = vma; |
| pmc.old = vma; |
| pmc.new = new_vma; |
| |
| moved_len = move_page_tables(&pmc); |
| if (moved_len < vrm->old_len) |
| err = -ENOMEM; |
| else if (vma->vm_ops && vma->vm_ops->mremap) |
| err = vma->vm_ops->mremap(new_vma); |
| |
| if (unlikely(err)) { |
| PAGETABLE_MOVE(pmc_revert, new_vma, vma, vrm->new_addr, |
| vrm->addr, moved_len); |
| |
| /* |
| * On error, move entries back from new area to old, |
| * which will succeed since page tables still there, |
| * and then proceed to unmap new area instead of old. |
| */ |
| pmc_revert.need_rmap_locks = true; |
| move_page_tables(&pmc_revert); |
| |
| vrm->vma = new_vma; |
| vrm->old_len = vrm->new_len; |
| vrm->addr = vrm->new_addr; |
| } else { |
| mremap_userfaultfd_prep(new_vma, vrm->uf); |
| } |
| |
| fixup_hugetlb_reservations(vma); |
| |
| *new_vma_ptr = new_vma; |
| return err; |
| } |
| |
| /* |
| * Perform final tasks for MADV_DONTUNMAP operation, clearing mlock() and |
| * account flags on remaining VMA by convention (it cannot be mlock()'d any |
| * longer, as pages in range are no longer mapped), and removing anon_vma_chain |
| * links from it (if the entire VMA was copied over). |
| */ |
| static void dontunmap_complete(struct vma_remap_struct *vrm, |
| struct vm_area_struct *new_vma) |
| { |
| unsigned long start = vrm->addr; |
| unsigned long end = vrm->addr + vrm->old_len; |
| unsigned long old_start = vrm->vma->vm_start; |
| unsigned long old_end = vrm->vma->vm_end; |
| |
| /* |
| * We always clear VM_LOCKED[ONFAULT] | VM_ACCOUNT on the old |
| * vma. |
| */ |
| vm_flags_clear(vrm->vma, VM_LOCKED_MASK | VM_ACCOUNT); |
| |
| /* |
| * anon_vma links of the old vma is no longer needed after its page |
| * table has been moved. |
| */ |
| if (new_vma != vrm->vma && start == old_start && end == old_end) |
| unlink_anon_vmas(vrm->vma); |
| |
| /* Because we won't unmap we don't need to touch locked_vm. */ |
| } |
| |
| static unsigned long move_vma(struct vma_remap_struct *vrm) |
| { |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *new_vma; |
| unsigned long hiwater_vm; |
| int err; |
| |
| err = prep_move_vma(vrm); |
| if (err) |
| return err; |
| |
| /* If accounted, charge the number of bytes the operation will use. */ |
| if (!vrm_charge(vrm)) |
| return -ENOMEM; |
| |
| /* We don't want racing faults. */ |
| vma_start_write(vrm->vma); |
| |
| /* Perform copy step. */ |
| err = copy_vma_and_data(vrm, &new_vma); |
| /* |
| * If we established the copied-to VMA, we attempt to recover from the |
| * error by setting the destination VMA to the source VMA and unmapping |
| * it below. |
| */ |
| if (err && !new_vma) |
| return err; |
| |
| /* |
| * If we failed to move page tables we still do total_vm increment |
| * since do_munmap() will decrement it by old_len == new_len. |
| * |
| * Since total_vm is about to be raised artificially high for a |
| * moment, we need to restore high watermark afterwards: if stats |
| * are taken meanwhile, total_vm and hiwater_vm appear too high. |
| * If this were a serious issue, we'd add a flag to do_munmap(). |
| */ |
| hiwater_vm = mm->hiwater_vm; |
| |
| vrm_stat_account(vrm, vrm->new_len); |
| if (unlikely(!err && (vrm->flags & MREMAP_DONTUNMAP))) |
| dontunmap_complete(vrm, new_vma); |
| else |
| unmap_source_vma(vrm); |
| |
| mm->hiwater_vm = hiwater_vm; |
| |
| return err ? (unsigned long)err : vrm->new_addr; |
| } |
| |
| /* |
| * resize_is_valid() - Ensure the vma can be resized to the new length at the give |
| * address. |
| * |
| * Return 0 on success, error otherwise. |
| */ |
| static int resize_is_valid(struct vma_remap_struct *vrm) |
| { |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma = vrm->vma; |
| unsigned long addr = vrm->addr; |
| unsigned long old_len = vrm->old_len; |
| unsigned long new_len = vrm->new_len; |
| unsigned long pgoff; |
| |
| /* |
| * !old_len is a special case where an attempt is made to 'duplicate' |
| * a mapping. This makes no sense for private mappings as it will |
| * instead create a fresh/new mapping unrelated to the original. This |
| * is contrary to the basic idea of mremap which creates new mappings |
| * based on the original. There are no known use cases for this |
| * behavior. As a result, fail such attempts. |
| */ |
| if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) { |
| pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", |
| current->comm, current->pid); |
| return -EINVAL; |
| } |
| |
| if ((vrm->flags & MREMAP_DONTUNMAP) && |
| (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))) |
| return -EINVAL; |
| |
| /* We can't remap across vm area boundaries */ |
| if (old_len > vma->vm_end - addr) |
| return -EFAULT; |
| |
| if (new_len == old_len) |
| return 0; |
| |
| /* Need to be careful about a growing mapping */ |
| pgoff = (addr - vma->vm_start) >> PAGE_SHIFT; |
| pgoff += vma->vm_pgoff; |
| if (pgoff + (new_len >> PAGE_SHIFT) < pgoff) |
| return -EINVAL; |
| |
| if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) |
| return -EFAULT; |
| |
| if (!mlock_future_ok(mm, vma->vm_flags, vrm->delta)) |
| return -EAGAIN; |
| |
| if (!may_expand_vm(mm, vma->vm_flags, vrm->delta >> PAGE_SHIFT)) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /* |
| * The user has requested that the VMA be shrunk (i.e., old_len > new_len), so |
| * execute this, optionally dropping the mmap lock when we do so. |
| * |
| * In both cases this invalidates the VMA, however if we don't drop the lock, |
| * then load the correct VMA into vrm->vma afterwards. |
| */ |
| static unsigned long shrink_vma(struct vma_remap_struct *vrm, |
| bool drop_lock) |
| { |
| struct mm_struct *mm = current->mm; |
| unsigned long unmap_start = vrm->addr + vrm->new_len; |
| unsigned long unmap_bytes = vrm->delta; |
| unsigned long res; |
| VMA_ITERATOR(vmi, mm, unmap_start); |
| |
| VM_BUG_ON(vrm->remap_type != MREMAP_SHRINK); |
| |
| res = do_vmi_munmap(&vmi, mm, unmap_start, unmap_bytes, |
| vrm->uf_unmap, drop_lock); |
| vrm->vma = NULL; /* Invalidated. */ |
| if (res) |
| return res; |
| |
| /* |
| * If we've not dropped the lock, then we should reload the VMA to |
| * replace the invalidated VMA with the one that may have now been |
| * split. |
| */ |
| if (drop_lock) { |
| vrm->mmap_locked = false; |
| } else { |
| vrm->vma = vma_lookup(mm, vrm->addr); |
| if (!vrm->vma) |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * mremap_to() - remap a vma to a new location. |
| * Returns: The new address of the vma or an error. |
| */ |
| static unsigned long mremap_to(struct vma_remap_struct *vrm) |
| { |
| struct mm_struct *mm = current->mm; |
| unsigned long err; |
| |
| /* Is the new length or address silly? */ |
| if (vrm->new_len > TASK_SIZE || |
| vrm->new_addr > TASK_SIZE - vrm->new_len) |
| return -EINVAL; |
| |
| if (vrm_overlaps(vrm)) |
| return -EINVAL; |
| |
| if (vrm->flags & MREMAP_FIXED) { |
| /* |
| * In mremap_to(). |
| * VMA is moved to dst address, and munmap dst first. |
| * do_munmap will check if dst is sealed. |
| */ |
| err = do_munmap(mm, vrm->new_addr, vrm->new_len, |
| vrm->uf_unmap_early); |
| vrm->vma = NULL; /* Invalidated. */ |
| if (err) |
| return err; |
| |
| /* |
| * If we remap a portion of a VMA elsewhere in the same VMA, |
| * this can invalidate the old VMA. Reset. |
| */ |
| vrm->vma = vma_lookup(mm, vrm->addr); |
| if (!vrm->vma) |
| return -EFAULT; |
| } |
| |
| if (vrm->remap_type == MREMAP_SHRINK) { |
| err = shrink_vma(vrm, /* drop_lock= */false); |
| if (err) |
| return err; |
| |
| /* Set up for the move now shrink has been executed. */ |
| vrm->old_len = vrm->new_len; |
| } |
| |
| err = resize_is_valid(vrm); |
| if (err) |
| return err; |
| |
| /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */ |
| if (vrm->flags & MREMAP_DONTUNMAP) { |
| vm_flags_t vm_flags = vrm->vma->vm_flags; |
| unsigned long pages = vrm->old_len >> PAGE_SHIFT; |
| |
| if (!may_expand_vm(mm, vm_flags, pages)) |
| return -ENOMEM; |
| } |
| |
| err = vrm_set_new_addr(vrm); |
| if (err) |
| return err; |
| |
| return move_vma(vrm); |
| } |
| |
| static int vma_expandable(struct vm_area_struct *vma, unsigned long delta) |
| { |
| unsigned long end = vma->vm_end + delta; |
| |
| if (end < vma->vm_end) /* overflow */ |
| return 0; |
| if (find_vma_intersection(vma->vm_mm, vma->vm_end, end)) |
| return 0; |
| if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start, |
| 0, MAP_FIXED) & ~PAGE_MASK) |
| return 0; |
| return 1; |
| } |
| |
| /* Determine whether we are actually able to execute an in-place expansion. */ |
| static bool vrm_can_expand_in_place(struct vma_remap_struct *vrm) |
| { |
| /* Number of bytes from vrm->addr to end of VMA. */ |
| unsigned long suffix_bytes = vrm->vma->vm_end - vrm->addr; |
| |
| /* If end of range aligns to end of VMA, we can just expand in-place. */ |
| if (suffix_bytes != vrm->old_len) |
| return false; |
| |
| /* Check whether this is feasible. */ |
| if (!vma_expandable(vrm->vma, vrm->delta)) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * Are the parameters passed to mremap() valid? If so return 0, otherwise return |
| * error. |
| */ |
| static unsigned long check_mremap_params(struct vma_remap_struct *vrm) |
| |
| { |
| unsigned long addr = vrm->addr; |
| unsigned long flags = vrm->flags; |
| |
| /* Ensure no unexpected flag values. */ |
| if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP)) |
| return -EINVAL; |
| |
| /* Start address must be page-aligned. */ |
| if (offset_in_page(addr)) |
| return -EINVAL; |
| |
| /* |
| * We allow a zero old-len as a special case |
| * for DOS-emu "duplicate shm area" thing. But |
| * a zero new-len is nonsensical. |
| */ |
| if (!PAGE_ALIGN(vrm->new_len)) |
| return -EINVAL; |
| |
| /* Remainder of checks are for cases with specific new_addr. */ |
| if (!vrm_implies_new_addr(vrm)) |
| return 0; |
| |
| /* The new address must be page-aligned. */ |
| if (offset_in_page(vrm->new_addr)) |
| return -EINVAL; |
| |
| /* A fixed address implies a move. */ |
| if (!(flags & MREMAP_MAYMOVE)) |
| return -EINVAL; |
| |
| /* MREMAP_DONTUNMAP does not allow resizing in the process. */ |
| if (flags & MREMAP_DONTUNMAP && vrm->old_len != vrm->new_len) |
| return -EINVAL; |
| |
| /* |
| * move_vma() need us to stay 4 maps below the threshold, otherwise |
| * it will bail out at the very beginning. |
| * That is a problem if we have already unmaped the regions here |
| * (new_addr, and old_addr), because userspace will not know the |
| * state of the vma's after it gets -ENOMEM. |
| * So, to avoid such scenario we can pre-compute if the whole |
| * operation has high chances to success map-wise. |
| * Worst-scenario case is when both vma's (new_addr and old_addr) get |
| * split in 3 before unmapping it. |
| * That means 2 more maps (1 for each) to the ones we already hold. |
| * Check whether current map count plus 2 still leads us to 4 maps below |
| * the threshold, otherwise return -ENOMEM here to be more safe. |
| */ |
| if ((current->mm->map_count + 2) >= sysctl_max_map_count - 3) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /* |
| * We know we can expand the VMA in-place by delta pages, so do so. |
| * |
| * If we discover the VMA is locked, update mm_struct statistics accordingly and |
| * indicate so to the caller. |
| */ |
| static unsigned long expand_vma_in_place(struct vma_remap_struct *vrm) |
| { |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma = vrm->vma; |
| VMA_ITERATOR(vmi, mm, vma->vm_end); |
| |
| if (!vrm_charge(vrm)) |
| return -ENOMEM; |
| |
| /* |
| * Function vma_merge_extend() is called on the |
| * extension we are adding to the already existing vma, |
| * vma_merge_extend() will merge this extension with the |
| * already existing vma (expand operation itself) and |
| * possibly also with the next vma if it becomes |
| * adjacent to the expanded vma and otherwise |
| * compatible. |
| */ |
| vma = vma_merge_extend(&vmi, vma, vrm->delta); |
| if (!vma) { |
| vrm_uncharge(vrm); |
| return -ENOMEM; |
| } |
| vrm->vma = vma; |
| |
| vrm_stat_account(vrm, vrm->delta); |
| |
| return 0; |
| } |
| |
| static bool align_hugetlb(struct vma_remap_struct *vrm) |
| { |
| struct hstate *h __maybe_unused = hstate_vma(vrm->vma); |
| |
| vrm->old_len = ALIGN(vrm->old_len, huge_page_size(h)); |
| vrm->new_len = ALIGN(vrm->new_len, huge_page_size(h)); |
| |
| /* addrs must be huge page aligned */ |
| if (vrm->addr & ~huge_page_mask(h)) |
| return false; |
| if (vrm->new_addr & ~huge_page_mask(h)) |
| return false; |
| |
| /* |
| * Don't allow remap expansion, because the underlying hugetlb |
| * reservation is not yet capable to handle split reservation. |
| */ |
| if (vrm->new_len > vrm->old_len) |
| return false; |
| |
| vrm_set_delta(vrm); |
| |
| return true; |
| } |
| |
| /* |
| * We are mremap()'ing without specifying a fixed address to move to, but are |
| * requesting that the VMA's size be increased. |
| * |
| * Try to do so in-place, if this fails, then move the VMA to a new location to |
| * action the change. |
| */ |
| static unsigned long expand_vma(struct vma_remap_struct *vrm) |
| { |
| unsigned long err; |
| unsigned long addr = vrm->addr; |
| |
| err = resize_is_valid(vrm); |
| if (err) |
| return err; |
| |
| /* |
| * [addr, old_len) spans precisely to the end of the VMA, so try to |
| * expand it in-place. |
| */ |
| if (vrm_can_expand_in_place(vrm)) { |
| err = expand_vma_in_place(vrm); |
| if (err) |
| return err; |
| |
| /* |
| * We want to populate the newly expanded portion of the VMA to |
| * satisfy the expectation that mlock()'ing a VMA maintains all |
| * of its pages in memory. |
| */ |
| if (vrm->mlocked) |
| vrm->new_addr = addr; |
| |
| /* OK we're done! */ |
| return addr; |
| } |
| |
| /* |
| * We weren't able to just expand or shrink the area, |
| * we need to create a new one and move it. |
| */ |
| |
| /* We're not allowed to move the VMA, so error out. */ |
| if (!(vrm->flags & MREMAP_MAYMOVE)) |
| return -ENOMEM; |
| |
| /* Find a new location to move the VMA to. */ |
| err = vrm_set_new_addr(vrm); |
| if (err) |
| return err; |
| |
| return move_vma(vrm); |
| } |
| |
| /* |
| * Attempt to resize the VMA in-place, if we cannot, then move the VMA to the |
| * first available address to perform the operation. |
| */ |
| static unsigned long mremap_at(struct vma_remap_struct *vrm) |
| { |
| unsigned long res; |
| |
| switch (vrm->remap_type) { |
| case MREMAP_INVALID: |
| break; |
| case MREMAP_NO_RESIZE: |
| /* NO-OP CASE - resizing to the same size. */ |
| return vrm->addr; |
| case MREMAP_SHRINK: |
| /* |
| * SHRINK CASE. Can always be done in-place. |
| * |
| * Simply unmap the shrunken portion of the VMA. This does all |
| * the needed commit accounting, and we indicate that the mmap |
| * lock should be dropped. |
| */ |
| res = shrink_vma(vrm, /* drop_lock= */true); |
| if (res) |
| return res; |
| |
| return vrm->addr; |
| case MREMAP_EXPAND: |
| return expand_vma(vrm); |
| } |
| |
| BUG(); |
| } |
| |
| static unsigned long do_mremap(struct vma_remap_struct *vrm) |
| { |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma; |
| unsigned long ret; |
| |
| ret = check_mremap_params(vrm); |
| if (ret) |
| return ret; |
| |
| vrm->old_len = PAGE_ALIGN(vrm->old_len); |
| vrm->new_len = PAGE_ALIGN(vrm->new_len); |
| vrm_set_delta(vrm); |
| |
| if (mmap_write_lock_killable(mm)) |
| return -EINTR; |
| vrm->mmap_locked = true; |
| |
| vma = vrm->vma = vma_lookup(mm, vrm->addr); |
| if (!vma) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| /* If mseal()'d, mremap() is prohibited. */ |
| if (!can_modify_vma(vma)) { |
| ret = -EPERM; |
| goto out; |
| } |
| |
| /* Align to hugetlb page size, if required. */ |
| if (is_vm_hugetlb_page(vma) && !align_hugetlb(vrm)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| vrm->remap_type = vrm_remap_type(vrm); |
| |
| /* Actually execute mremap. */ |
| ret = vrm_implies_new_addr(vrm) ? mremap_to(vrm) : mremap_at(vrm); |
| |
| out: |
| if (vrm->mmap_locked) { |
| mmap_write_unlock(mm); |
| vrm->mmap_locked = false; |
| |
| if (!offset_in_page(ret) && vrm->mlocked && vrm->new_len > vrm->old_len) |
| mm_populate(vrm->new_addr + vrm->old_len, vrm->delta); |
| } |
| |
| userfaultfd_unmap_complete(mm, vrm->uf_unmap_early); |
| mremap_userfaultfd_complete(vrm->uf, vrm->addr, ret, vrm->old_len); |
| userfaultfd_unmap_complete(mm, vrm->uf_unmap); |
| |
| return ret; |
| } |
| |
| /* |
| * Expand (or shrink) an existing mapping, potentially moving it at the |
| * same time (controlled by the MREMAP_MAYMOVE flag and available VM space) |
| * |
| * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise |
| * This option implies MREMAP_MAYMOVE. |
| */ |
| SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, |
| unsigned long, new_len, unsigned long, flags, |
| unsigned long, new_addr) |
| { |
| struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX; |
| LIST_HEAD(uf_unmap_early); |
| LIST_HEAD(uf_unmap); |
| /* |
| * There is a deliberate asymmetry here: we strip the pointer tag |
| * from the old address but leave the new address alone. This is |
| * for consistency with mmap(), where we prevent the creation of |
| * aliasing mappings in userspace by leaving the tag bits of the |
| * mapping address intact. A non-zero tag will cause the subsequent |
| * range checks to reject the address as invalid. |
| * |
| * See Documentation/arch/arm64/tagged-address-abi.rst for more |
| * information. |
| */ |
| struct vma_remap_struct vrm = { |
| .addr = untagged_addr(addr), |
| .old_len = old_len, |
| .new_len = new_len, |
| .flags = flags, |
| .new_addr = new_addr, |
| |
| .uf = &uf, |
| .uf_unmap_early = &uf_unmap_early, |
| .uf_unmap = &uf_unmap, |
| |
| .remap_type = MREMAP_INVALID, /* We set later. */ |
| }; |
| |
| return do_mremap(&vrm); |
| } |