blob: 2cbfca9aed43cdf258c26444eec8b07fd68eb8e3 [file] [log] [blame]
/*
* IP32 timer calibration
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2001 Keith M Wesolowski
*/
#include <linux/bcd.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/mc146818rtc.h>
#include <linux/timex.h>
#include <asm/mipsregs.h>
#include <asm/param.h>
#include <asm/ip32/crime.h>
#include <asm/ip32/ip32_ints.h>
#include <asm/bootinfo.h>
#include <asm/cpu.h>
#include <asm/mipsregs.h>
#include <asm/io.h>
#include <asm/irq.h>
extern volatile unsigned long wall_jiffies;
extern rwlock_t xtime_lock;
u32 cc_interval;
/* Cycle counter value at the previous timer interrupt.. */
static unsigned int timerhi, timerlo;
/* An arbitrary time; this can be decreased if reliability looks good */
#define WAIT_MS 10
#define PER_MHZ (1000000 / 2 / HZ)
/*
* Change this if you have some constant time drift
*/
#define USECS_PER_JIFFY (1000000/HZ)
void __init ip32_timer_setup (struct irqaction *irq)
{
u64 crime_time;
u32 cc_tick;
printk("Calibrating system timer... ");
crime_time = crime_read_64 (CRIME_TIME) & CRIME_TIME_MASK;
cc_tick = read_c0_count();
while ((crime_read_64 (CRIME_TIME) & CRIME_TIME_MASK) - crime_time
< WAIT_MS * 1000000 / CRIME_NS_PER_TICK)
;
cc_tick = read_c0_count() - cc_tick;
cc_interval = cc_tick / HZ * (1000 / WAIT_MS);
/* The round-off seems unnecessary; in testing, the error of the
* above procedure is < 100 ticks, which means it gets filtered
* out by the HZ adjustment.
*/
cc_interval = (cc_interval / PER_MHZ) * PER_MHZ;
printk("%d MHz CPU detected\n", (int) (cc_interval / PER_MHZ));
setup_irq (CLOCK_IRQ, irq);
}
struct irqaction irq0 = { NULL, SA_INTERRUPT, 0,
"timer", NULL, NULL};
void cc_timer_interrupt(int irq, void *dev_id, struct pt_regs * regs)
{
u32 count;
/*
* The cycle counter is only 32 bit which is good for about
* a minute at current count rates of upto 150MHz or so.
*/
count = read_c0_count();
timerhi += (count < timerlo); /* Wrap around */
timerlo = count;
write_c0_compare(
(u32) (count + cc_interval));
kstat_cpu(0).irqs[irq]++;
do_timer (regs);
if (!jiffies)
{
/*
* If jiffies has overflowed in this timer_interrupt we must
* update the timer[hi]/[lo] to make do_fast_gettimeoffset()
* quotient calc still valid. -arca
*/
timerhi = timerlo = 0;
}
}
/*
* On MIPS only R4000 and better have a cycle counter.
*
* FIXME: Does playing with the RP bit in c0_status interfere with this code?
*/
static unsigned long do_gettimeoffset(void)
{
u32 count;
unsigned long res, tmp;
/* Last jiffy when do_fast_gettimeoffset() was called. */
static unsigned long last_jiffies;
u32 quotient;
/*
* Cached "1/(clocks per usec)*2^32" value.
* It has to be recalculated once each jiffy.
*/
static u32 cached_quotient;
tmp = jiffies;
quotient = cached_quotient;
if (tmp && last_jiffies != tmp) {
last_jiffies = tmp;
__asm__(".set\tnoreorder\n\t"
".set\tnoat\n\t"
".set\tmips3\n\t"
"lwu\t%0,%2\n\t"
"dsll32\t$1,%1,0\n\t"
"or\t$1,$1,%0\n\t"
"ddivu\t$0,$1,%3\n\t"
"mflo\t$1\n\t"
"dsll32\t%0,%4,0\n\t"
"nop\n\t"
"ddivu\t$0,%0,$1\n\t"
"mflo\t%0\n\t"
".set\tmips0\n\t"
".set\tat\n\t"
".set\treorder"
:"=&r" (quotient)
:"r" (timerhi),
"m" (timerlo),
"r" (tmp),
"r" (USECS_PER_JIFFY)
:"$1");
cached_quotient = quotient;
}
/* Get last timer tick in absolute kernel time */
count = read_c0_count();
/* .. relative to previous jiffy (32 bits is enough) */
count -= timerlo;
__asm__("multu\t%1,%2\n\t"
"mfhi\t%0"
:"=r" (res)
:"r" (count),
"r" (quotient));
/*
* Due to possible jiffies inconsistencies, we need to check
* the result so that we'll get a timer that is monotonic.
*/
if (res >= USECS_PER_JIFFY)
res = USECS_PER_JIFFY-1;
return res;
}
void __init ip32_time_init(void)
{
unsigned int epoch = 0, year, mon, day, hour, min, sec;
int i;
/* The Linux interpretation of the CMOS clock register contents:
* When the Update-In-Progress (UIP) flag goes from 1 to 0, the
* RTC registers show the second which has precisely just started.
* Let's hope other operating systems interpret the RTC the same way.
*/
/* read RTC exactly on falling edge of update flag */
for (i = 0 ; i < 1000000 ; i++) /* may take up to 1 second... */
if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
break;
for (i = 0 ; i < 1000000 ; i++) /* must try at least 2.228 ms */
if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
break;
do { /* Isn't this overkill ? UIP above should guarantee consistency */
sec = CMOS_READ(RTC_SECONDS);
min = CMOS_READ(RTC_MINUTES);
hour = CMOS_READ(RTC_HOURS);
day = CMOS_READ(RTC_DAY_OF_MONTH);
mon = CMOS_READ(RTC_MONTH);
year = CMOS_READ(RTC_YEAR);
} while (sec != CMOS_READ(RTC_SECONDS));
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
BCD2BIN(sec);
BCD2BIN(min);
BCD2BIN(hour);
BCD2BIN(day);
BCD2BIN(mon);
BCD2BIN(year);
}
/* Attempt to guess the epoch. This is the same heuristic as in
* rtc.c so no stupid things will happen to timekeeping. Who knows,
* maybe Ultrix also uses 1952 as epoch ...
*/
if (year > 10 && year < 44)
epoch = 1980;
else if (year < 96)
epoch = 1952;
year += epoch;
write_lock_irq (&xtime_lock);
xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
xtime.tv_nsec = 0;
write_unlock_irq (&xtime_lock);
write_c0_count(0);
irq0.handler = cc_timer_interrupt;
ip32_timer_setup (&irq0);
#define ALLINTS (IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3 | IE_IRQ4 | IE_IRQ5)
/* Set ourselves up for future interrupts */
write_c0_compare(
read_c0_count()
+ cc_interval);
change_c0_status(ST0_IM, ALLINTS);
sti ();
}