blob: 3f38f62ada89b97486e2f800a7baf115b7b5bf8e [file] [log] [blame]
/*******************************************************************************
Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111-1307, USA.
The full GNU General Public License is included in this distribution in the
file called LICENSE.
Contact Information:
Linux NICS <linux.nics@intel.com>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/**********************************************************************
* *
* INTEL CORPORATION *
* *
* This software is supplied under the terms of the license included *
* above. All use of this driver must be in accordance with the terms *
* of that license. *
* *
* Module Name: e100_main.c *
* *
* Abstract: Functions for the driver entry points like load, *
* unload, open and close. All board specific calls made *
* by the network interface section of the driver. *
* *
* Environment: This file is intended to be specific to the Linux *
* operating system. *
* *
**********************************************************************/
/* Change Log
*
* 2.1.24 10/7/02
* o Bug fix: Wrong files under /proc/net/PRO_LAN_Adapters/ when interface
* name is changed
* o Bug fix: Rx skb corruption when Rx polling code and Rx interrupt code
* are executing during stress traffic at shared interrupt system.
* Removed Rx polling code
* o Added detailed printk if selftest failed when insmod
* o Removed misleading printks
*
* 2.1.12 8/2/02
* o Feature: ethtool register dump
* o Bug fix: Driver passes wrong name to /proc/interrupts
* o Bug fix: Ethernet bridging not working
* o Bug fix: Promiscuous mode is not working
* o Bug fix: Checked return value from copy_from_user (William Stinson,
* wstinson@infonie.fr)
* o Bug fix: ARP wake on LAN fails
* o Bug fix: mii-diag does not update driver level's speed, duplex and
* re-configure flow control
* o Bug fix: Ethtool shows wrong speed/duplex when not connected
* o Bug fix: Ethtool shows wrong speed/duplex when reconnected if forced
* speed/duplex
* o Bug fix: PHY loopback diagnostic fails
*
* 2.1.6 7/5/02
*/
#include <linux/config.h>
#include <net/checksum.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include "e100.h"
#include "e100_ucode.h"
#include "e100_config.h"
#include "e100_phy.h"
#include "e100_vendor.h"
#ifdef CONFIG_PROC_FS
extern int e100_create_proc_subdir(struct e100_private *, char *);
extern void e100_remove_proc_subdir(struct e100_private *, char *);
#else
#define e100_create_proc_subdir(X, Y) 0
#define e100_remove_proc_subdir(X, Y) do {} while(0)
#endif
static int e100_do_ethtool_ioctl(struct net_device *, struct ifreq *);
static void e100_get_speed_duplex_caps(struct e100_private *);
static int e100_ethtool_get_settings(struct net_device *, struct ifreq *);
static int e100_ethtool_set_settings(struct net_device *, struct ifreq *);
static int e100_ethtool_get_drvinfo(struct net_device *, struct ifreq *);
static int e100_ethtool_eeprom(struct net_device *, struct ifreq *);
#define E100_EEPROM_MAGIC 0x1234
static int e100_ethtool_glink(struct net_device *, struct ifreq *);
static int e100_ethtool_gregs(struct net_device *, struct ifreq *);
static int e100_ethtool_nway_rst(struct net_device *, struct ifreq *);
static int e100_ethtool_wol(struct net_device *, struct ifreq *);
#ifdef CONFIG_PM
static unsigned char e100_setup_filter(struct e100_private *bdp);
static void e100_do_wol(struct pci_dev *pcid, struct e100_private *bdp);
#endif
static u16 e100_get_ip_lbytes(struct net_device *dev);
extern void e100_config_wol(struct e100_private *bdp);
extern u32 e100_run_diag(struct net_device *dev, u64 *test_info, u32 flags);
static int e100_ethtool_test(struct net_device *, struct ifreq *);
static int e100_ethtool_gstrings(struct net_device *, struct ifreq *);
static char *test_strings[] = {
"E100_EEPROM_TEST_FAIL",
"E100_CHIP_TIMEOUT",
"E100_ROM_TEST_FAIL",
"E100_REG_TEST_FAIL",
"E100_MAC_TEST_FAIL",
"E100_LPBK_MAC_FAIL",
"E100_LPBK_PHY_FAIL"
};
static int e100_ethtool_led_blink(struct net_device *, struct ifreq *);
#include <linux/mii.h>
static int e100_mii_ioctl(struct net_device *, struct ifreq *, int);
static unsigned char e100_delayed_exec_non_cu_cmd(struct e100_private *,
nxmit_cb_entry_t *);
static void e100_free_nontx_list(struct e100_private *);
static void e100_non_tx_background(unsigned long);
/* Global Data structures and variables */
char e100_copyright[] __devinitdata = "Copyright (c) 2002 Intel Corporation";
char e100_driver_version[]="2.1.24-k2";
const char *e100_full_driver_name = "Intel(R) PRO/100 Network Driver";
char e100_short_driver_name[] = "e100";
static int e100nics = 0;
#ifdef CONFIG_PM
static int e100_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
static int e100_suspend(struct pci_dev *pcid, u32 state);
static int e100_resume(struct pci_dev *pcid);
struct notifier_block e100_notifier_reboot = {
.notifier_call = e100_notify_reboot,
.next = NULL,
.priority = 0
};
#endif
static int e100_notify_netdev(struct notifier_block *, unsigned long event, void *ptr);
struct notifier_block e100_notifier_netdev = {
.notifier_call = e100_notify_netdev,
.next = NULL,
.priority = 0
};
static void e100_get_mdix_status(struct e100_private *bdp);
/*********************************************************************/
/*! This is a GCC extension to ANSI C.
* See the item "Labeled Elements in Initializers" in the section
* "Extensions to the C Language Family" of the GCC documentation.
*********************************************************************/
#define E100_PARAM_INIT { [0 ... E100_MAX_NIC] = -1 }
/* All parameters are treated the same, as an integer array of values.
* This macro just reduces the need to repeat the same declaration code
* over and over (plus this helps to avoid typo bugs).
*/
#define E100_PARAM(X, S) \
static const int X[E100_MAX_NIC + 1] = E100_PARAM_INIT; \
MODULE_PARM(X, "1-" __MODULE_STRING(E100_MAX_NIC) "i"); \
MODULE_PARM_DESC(X, S);
/* ====================================================================== */
static u8 e100_D101M_checksum(struct e100_private *, struct sk_buff *);
static u8 e100_D102_check_checksum(rfd_t *);
static int e100_ioctl(struct net_device *, struct ifreq *, int);
static int e100_open(struct net_device *);
static int e100_close(struct net_device *);
static int e100_change_mtu(struct net_device *, int);
static int e100_xmit_frame(struct sk_buff *, struct net_device *);
static unsigned char e100_init(struct e100_private *);
static int e100_set_mac(struct net_device *, void *);
struct net_device_stats *e100_get_stats(struct net_device *);
static void e100intr(int, void *, struct pt_regs *);
static void e100_print_brd_conf(struct e100_private *);
static void e100_set_multi(struct net_device *);
void e100_set_speed_duplex(struct e100_private *);
char *e100_get_brand_msg(struct e100_private *);
static u8 e100_pci_setup(struct pci_dev *, struct e100_private *);
static u8 e100_sw_init(struct e100_private *);
static unsigned char e100_alloc_space(struct e100_private *);
static void e100_dealloc_space(struct e100_private *);
static int e100_alloc_tcb_pool(struct e100_private *);
static void e100_setup_tcb_pool(tcb_t *, unsigned int, struct e100_private *);
static void e100_free_tcb_pool(struct e100_private *);
static int e100_alloc_rfd_pool(struct e100_private *);
static void e100_free_rfd_pool(struct e100_private *);
static void e100_rd_eaddr(struct e100_private *);
static void e100_rd_pwa_no(struct e100_private *);
extern u16 e100_eeprom_read(struct e100_private *, u16);
extern void e100_eeprom_write_block(struct e100_private *, u16, u16 *, u16);
extern u16 e100_eeprom_size(struct e100_private *);
u16 e100_eeprom_calculate_chksum(struct e100_private *adapter);
static unsigned char e100_clr_cntrs(struct e100_private *);
static unsigned char e100_load_microcode(struct e100_private *);
static unsigned char e100_hw_init(struct e100_private *, u32);
static unsigned char e100_setup_iaaddr(struct e100_private *, u8 *);
static unsigned char e100_update_stats(struct e100_private *bdp);
static void e100_start_ru(struct e100_private *);
static void e100_dump_stats_cntrs(struct e100_private *);
static void e100_check_options(int board, struct e100_private *bdp);
static void e100_set_int_option(int *, int, int, int, int, char *);
static void e100_set_bool_option(struct e100_private *bdp, int, u32, int,
char *);
unsigned char e100_wait_exec_cmplx(struct e100_private *, u32, u8);
void e100_exec_cmplx(struct e100_private *, u32, u8);
/**
* e100_get_rx_struct - retrieve cell to hold skb buff from the pool
* @bdp: atapter's private data struct
*
* Returns the new cell to hold sk_buff or %NULL.
*/
static inline struct rx_list_elem *
e100_get_rx_struct(struct e100_private *bdp)
{
struct rx_list_elem *rx_struct = NULL;
if (!list_empty(&(bdp->rx_struct_pool))) {
rx_struct = list_entry(bdp->rx_struct_pool.next,
struct rx_list_elem, list_elem);
list_del(&(rx_struct->list_elem));
}
return rx_struct;
}
/**
* e100_alloc_skb - allocate an skb for the adapter
* @bdp: atapter's private data struct
*
* Allocates skb with enough room for rfd, and data, and reserve non-data space.
* Returns the new cell with sk_buff or %NULL.
*/
static inline struct rx_list_elem *
e100_alloc_skb(struct e100_private *bdp)
{
struct sk_buff *new_skb;
u32 skb_size = sizeof (rfd_t);
struct rx_list_elem *rx_struct;
new_skb = (struct sk_buff *) dev_alloc_skb(skb_size);
if (new_skb) {
/* The IP data should be
DWORD aligned. since the ethernet header is 14 bytes long,
we need to reserve 2 extra bytes so that the TCP/IP headers
will be DWORD aligned. */
skb_reserve(new_skb, 2);
if ((rx_struct = e100_get_rx_struct(bdp)) == NULL)
goto err;
rx_struct->skb = new_skb;
rx_struct->dma_addr = pci_map_single(bdp->pdev, new_skb->data,
sizeof (rfd_t),
PCI_DMA_FROMDEVICE);
if (!rx_struct->dma_addr)
goto err;
skb_reserve(new_skb, bdp->rfd_size);
return rx_struct;
} else {
return NULL;
}
err:
dev_kfree_skb_irq(new_skb);
return NULL;
}
/**
* e100_add_skb_to_end - add an skb to the end of our rfd list
* @bdp: atapter's private data struct
* @rx_struct: rx_list_elem with the new skb
*
* Adds a newly allocated skb to the end of our rfd list.
*/
inline void
e100_add_skb_to_end(struct e100_private *bdp, struct rx_list_elem *rx_struct)
{
rfd_t *rfdn; /* The new rfd */
rfd_t *rfd; /* The old rfd */
struct rx_list_elem *rx_struct_last;
(rx_struct->skb)->dev = bdp->device;
rfdn = RFD_POINTER(rx_struct->skb, bdp);
rfdn->rfd_header.cb_status = 0;
rfdn->rfd_header.cb_cmd = __constant_cpu_to_le16(RFD_EL_BIT);
rfdn->rfd_act_cnt = 0;
rfdn->rfd_sz = __constant_cpu_to_le16(RFD_DATA_SIZE);
pci_dma_sync_single(bdp->pdev, rx_struct->dma_addr, bdp->rfd_size,
PCI_DMA_TODEVICE);
if (!list_empty(&(bdp->active_rx_list))) {
rx_struct_last = list_entry(bdp->active_rx_list.prev,
struct rx_list_elem, list_elem);
rfd = RFD_POINTER(rx_struct_last->skb, bdp);
pci_dma_sync_single(bdp->pdev, rx_struct_last->dma_addr,
4, PCI_DMA_FROMDEVICE);
put_unaligned(cpu_to_le32(rx_struct->dma_addr),
((u32 *) (&(rfd->rfd_header.cb_lnk_ptr))));
pci_dma_sync_single(bdp->pdev, rx_struct_last->dma_addr,
8, PCI_DMA_TODEVICE);
rfd->rfd_header.cb_cmd &=
__constant_cpu_to_le16((u16) ~RFD_EL_BIT);
pci_dma_sync_single(bdp->pdev, rx_struct_last->dma_addr,
4, PCI_DMA_TODEVICE);
}
list_add_tail(&(rx_struct->list_elem), &(bdp->active_rx_list));
}
static inline void
e100_alloc_skbs(struct e100_private *bdp)
{
for (; bdp->skb_req > 0; bdp->skb_req--) {
struct rx_list_elem *rx_struct;
if ((rx_struct = e100_alloc_skb(bdp)) == NULL)
return;
e100_add_skb_to_end(bdp, rx_struct);
}
}
void e100_tx_srv(struct e100_private *);
u32 e100_rx_srv(struct e100_private *);
void e100_watchdog(struct net_device *);
static void e100_do_hwi(struct net_device *);
static void e100_hwi_restore(struct e100_private *);
void e100_refresh_txthld(struct e100_private *);
void e100_manage_adaptive_ifs(struct e100_private *);
void e100_clear_pools(struct e100_private *);
static void e100_clear_structs(struct net_device *);
static inline tcb_t *e100_prepare_xmit_buff(struct e100_private *,
struct sk_buff *);
static void e100_set_multi_exec(struct net_device *dev);
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/100 Network Driver");
MODULE_LICENSE("GPL");
E100_PARAM(TxDescriptors, "Number of transmit descriptors");
E100_PARAM(RxDescriptors, "Number of receive descriptors");
E100_PARAM(XsumRX, "Disable or enable Receive Checksum offload");
E100_PARAM(e100_speed_duplex, "Speed and Duplex settings");
E100_PARAM(ucode, "Disable or enable microcode loading");
E100_PARAM(ber, "Value for the BER correction algorithm");
E100_PARAM(flow_control, "Disable or enable Ethernet PAUSE frames processing");
E100_PARAM(IntDelay, "Value for CPU saver's interrupt delay");
E100_PARAM(BundleSmallFr, "Disable or enable interrupt bundling of small frames");
E100_PARAM(BundleMax, "Maximum number for CPU saver's packet bundling");
E100_PARAM(IFS, "Disable or enable the adaptive IFS algorithm");
/**
* e100_exec_cmd - issue a comand
* @bdp: atapter's private data struct
* @scb_cmd_low: the command that is to be issued
*
* This general routine will issue a command to the e100.
*/
static inline void
e100_exec_cmd(struct e100_private *bdp, u8 cmd_low)
{
writeb(cmd_low, &(bdp->scb->scb_cmd_low));
readw(&(bdp->scb->scb_status)); /* flushes last write, read-safe */
}
/**
* e100_wait_scb - wait for SCB to clear
* @bdp: atapter's private data struct
*
* This routine checks to see if the e100 has accepted a command.
* It does so by checking the command field in the SCB, which will
* be zeroed by the e100 upon accepting a command. The loop waits
* for up to 1 millisecond for command acceptance.
*
* Returns:
* true if the SCB cleared within 1 millisecond.
* false if it didn't clear within 1 millisecond
*/
unsigned char
e100_wait_scb(struct e100_private *bdp)
{
int i;
/* loop on the scb for a few times */
for (i = 0; i < 100; i++) {
if (!readb(&bdp->scb->scb_cmd_low))
return true;
cpu_relax();
}
/* it didn't work. do it the slow way using udelay()s */
for (i = 0; i < E100_MAX_SCB_WAIT; i++) {
if (!readb(&bdp->scb->scb_cmd_low))
return true;
cpu_relax();
udelay(1);
}
return false;
}
/**
* e100_wait_exec_simple - issue a command
* @bdp: atapter's private data struct
* @scb_cmd_low: the command that is to be issued
*
* This general routine will issue a command to the e100 after waiting for
* the previous command to finish.
*
* Returns:
* true if the command was issued to the chip successfully
* false if the command was not issued to the chip
*/
inline unsigned char
e100_wait_exec_simple(struct e100_private *bdp, u8 scb_cmd_low)
{
if (!e100_wait_scb(bdp)) {
printk(KERN_DEBUG "e100: %s: e100_wait_exec_simple: failed\n",
bdp->device->name);
return false;
}
e100_exec_cmd(bdp, scb_cmd_low);
return true;
}
void
e100_exec_cmplx(struct e100_private *bdp, u32 phys_addr, u8 cmd)
{
writel(phys_addr, &(bdp->scb->scb_gen_ptr));
readw(&(bdp->scb->scb_status)); /* flushes last write, read-safe */
e100_exec_cmd(bdp, cmd);
}
unsigned char
e100_wait_exec_cmplx(struct e100_private *bdp, u32 phys_addr, u8 cmd)
{
if (!e100_wait_scb(bdp)) {
return false;
}
e100_exec_cmplx(bdp, phys_addr, cmd);
return true;
}
inline u8
e100_wait_cus_idle(struct e100_private *bdp)
{
int i;
/* loop on the scb for a few times */
for (i = 0; i < 100; i++) {
if (((readw(&(bdp->scb->scb_status)) & SCB_CUS_MASK) !=
SCB_CUS_ACTIVE)) {
return true;
}
cpu_relax();
}
for (i = 0; i < E100_MAX_CU_IDLE_WAIT; i++) {
if (((readw(&(bdp->scb->scb_status)) & SCB_CUS_MASK) !=
SCB_CUS_ACTIVE)) {
return true;
}
cpu_relax();
udelay(1);
}
return false;
}
/**
* e100_dis_intr - disable interrupts
* @bdp: atapter's private data struct
*
* This routine disables interrupts at the hardware, by setting
* the M (mask) bit in the adapter's CSR SCB command word.
*/
static inline void
e100_dis_intr(struct e100_private *bdp)
{
/* Disable interrupts on our PCI board by setting the mask bit */
writeb(SCB_INT_MASK, &bdp->scb->scb_cmd_hi);
readw(&(bdp->scb->scb_status)); /* flushes last write, read-safe */
}
/**
* e100_set_intr_mask - set interrupts
* @bdp: atapter's private data struct
*
* This routine sets interrupts at the hardware, by resetting
* the M (mask) bit in the adapter's CSR SCB command word
*/
static inline void
e100_set_intr_mask(struct e100_private *bdp)
{
writeb(bdp->intr_mask, &bdp->scb->scb_cmd_hi);
readw(&(bdp->scb->scb_status)); /* flushes last write, read-safe */
}
static inline void
e100_trigger_SWI(struct e100_private *bdp)
{
/* Trigger interrupt on our PCI board by asserting SWI bit */
writeb(SCB_SOFT_INT, &bdp->scb->scb_cmd_hi);
readw(&(bdp->scb->scb_status)); /* flushes last write, read-safe */
}
static int __devinit
e100_found1(struct pci_dev *pcid, const struct pci_device_id *ent)
{
static int first_time = true;
struct net_device *dev = NULL;
struct e100_private *bdp = NULL;
int rc = 0;
u16 cal_checksum, read_checksum;
dev = alloc_etherdev(sizeof (struct e100_private));
if (dev == NULL) {
printk(KERN_ERR "e100: Not able to alloc etherdev struct\n");
rc = -ENODEV;
goto out;
}
SET_MODULE_OWNER(dev);
if (first_time) {
first_time = false;
printk(KERN_NOTICE "%s - version %s\n",
e100_full_driver_name, e100_driver_version);
printk(KERN_NOTICE "%s\n", e100_copyright);
printk(KERN_NOTICE "\n");
}
bdp = dev->priv;
bdp->pdev = pcid;
bdp->device = dev;
pci_set_drvdata(pcid, dev);
if ((rc = e100_alloc_space(bdp)) != 0) {
goto err_dev;
}
bdp->flags = 0;
bdp->ifs_state = 0;
bdp->ifs_value = 0;
bdp->scb = 0;
init_timer(&bdp->nontx_timer_id);
bdp->nontx_timer_id.data = (unsigned long) bdp;
bdp->nontx_timer_id.function = (void *) &e100_non_tx_background;
INIT_LIST_HEAD(&(bdp->non_tx_cmd_list));
bdp->non_tx_command_state = E100_NON_TX_IDLE;
init_timer(&bdp->watchdog_timer);
bdp->watchdog_timer.data = (unsigned long) dev;
bdp->watchdog_timer.function = (void *) &e100_watchdog;
init_timer(&bdp->hwi_timer);
bdp->hwi_timer.data = (unsigned long) dev;
bdp->hwi_timer.function = (void *) &e100_do_hwi;
if ((rc = e100_pci_setup(pcid, bdp)) != 0) {
goto err_dealloc;
}
if (((bdp->pdev->device > 0x1030)
&& (bdp->pdev->device < 0x103F))
|| (bdp->pdev->device == 0x2449)
|| (bdp->pdev->device == 0x2459)
|| (bdp->pdev->device == 0x245D)) {
bdp->rev_id = D101MA_REV_ID; /* workaround for ICH3 */
bdp->flags |= IS_ICH;
}
if (bdp->rev_id == 0xff)
bdp->rev_id = 1;
if ((u8) bdp->rev_id >= D101A4_REV_ID)
bdp->flags |= IS_BACHELOR;
if ((u8) bdp->rev_id >= D102_REV_ID) {
bdp->flags |= USE_IPCB;
bdp->rfd_size = 32;
} else {
bdp->rfd_size = 16;
}
e100_check_options(e100nics, bdp);
if (!e100_init(bdp)) {
printk(KERN_ERR "e100: Failed to initialize, instance #%d\n",
e100nics);
rc = -ENODEV;
goto err_pci;
}
/* Check if checksum is valid */
cal_checksum = e100_eeprom_calculate_chksum(bdp);
read_checksum = e100_eeprom_read(bdp, (bdp->eeprom_size - 1));
if (cal_checksum != read_checksum) {
printk(KERN_ERR "e100: Corrupted EERPROM on instance #%d\n",
e100nics);
rc = -ENODEV;
goto err_pci;
}
dev->irq = pcid->irq;
dev->open = &e100_open;
dev->hard_start_xmit = &e100_xmit_frame;
dev->stop = &e100_close;
dev->change_mtu = &e100_change_mtu;
dev->get_stats = &e100_get_stats;
dev->set_multicast_list = &e100_set_multi;
dev->set_mac_address = &e100_set_mac;
dev->do_ioctl = &e100_ioctl;
if (bdp->flags & USE_IPCB) {
dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
}
e100nics++;
e100_get_speed_duplex_caps(bdp);
if ((rc = register_netdev(dev)) != 0) {
goto err_pci;
}
memcpy(bdp->ifname, dev->name, IFNAMSIZ);
bdp->ifname[IFNAMSIZ-1] = 0;
bdp->device_type = ent->driver_data;
printk(KERN_NOTICE
"e100: %s: %s\n",
bdp->device->name, e100_get_brand_msg(bdp));
e100_print_brd_conf(bdp);
bdp->id_string = e100_get_brand_msg(bdp);
e100_get_mdix_status(bdp);
if (netif_carrier_ok(bdp->device))
bdp->cable_status = "Cable OK";
else {
if (bdp->rev_id < D102_REV_ID)
bdp->cable_status = "Not supported";
else
bdp->cable_status = "Not available";
}
if (e100_create_proc_subdir(bdp, bdp->ifname) < 0) {
printk(KERN_ERR "e100: Failed to create proc dir for %s\n",
bdp->device->name);
}
/* Disabling all WOLs as initialization */
bdp->wolsupported = bdp->wolopts = 0;
if (bdp->rev_id >= D101A4_REV_ID) {
bdp->wolsupported = WAKE_PHY | WAKE_MAGIC;
if (bdp->rev_id >= D101MA_REV_ID)
bdp->wolsupported |= WAKE_UCAST | WAKE_ARP;
bdp->wolopts = WAKE_MAGIC;
}
printk(KERN_NOTICE "\n");
goto out;
err_pci:
iounmap(bdp->scb);
pci_release_regions(pcid);
pci_disable_device(pcid);
err_dealloc:
e100_dealloc_space(bdp);
err_dev:
pci_set_drvdata(pcid, NULL);
kfree(dev);
out:
return rc;
}
/**
* e100_clear_structs - free resources
* @dev: adapter's net_device struct
*
* Free all device specific structs, unmap i/o address, etc.
*/
static void __devexit
e100_clear_structs(struct net_device *dev)
{
struct e100_private *bdp = dev->priv;
iounmap(bdp->scb);
pci_release_regions(bdp->pdev);
pci_disable_device(bdp->pdev);
e100_dealloc_space(bdp);
pci_set_drvdata(bdp->pdev, NULL);
kfree(dev);
}
static void __devexit
e100_remove1(struct pci_dev *pcid)
{
struct net_device *dev;
struct e100_private *bdp;
if (!(dev = (struct net_device *) pci_get_drvdata(pcid)))
return;
bdp = dev->priv;
unregister_netdev(dev);
e100_remove_proc_subdir(bdp, bdp->ifname);
e100_sw_reset(bdp, PORT_SELECTIVE_RESET);
if (bdp->non_tx_command_state != E100_NON_TX_IDLE) {
del_timer_sync(&bdp->nontx_timer_id);
e100_free_nontx_list(bdp);
bdp->non_tx_command_state = E100_NON_TX_IDLE;
}
e100_clear_structs(dev);
--e100nics;
}
MODULE_DEVICE_TABLE(pci, e100_id_table);
static struct pci_driver e100_driver = {
.name = "e100",
.id_table = e100_id_table,
.probe = e100_found1,
.remove = __devexit_p(e100_remove1),
#ifdef CONFIG_PM
.suspend = e100_suspend,
.resume = e100_resume,
#endif
};
static int __init
e100_init_module(void)
{
int ret;
ret = pci_module_init(&e100_driver);
if(ret >= 0) {
#ifdef CONFIG_PM
register_reboot_notifier(&e100_notifier_reboot);
#endif
register_netdevice_notifier(&e100_notifier_netdev);
}
return ret;
}
static void __exit
e100_cleanup_module(void)
{
#ifdef CONFIG_PM
unregister_reboot_notifier(&e100_notifier_reboot);
#endif
unregister_netdevice_notifier(&e100_notifier_netdev);
pci_unregister_driver(&e100_driver);
}
module_init(e100_init_module);
module_exit(e100_cleanup_module);
/**
* e100_check_options - check command line options
* @board: board number
* @bdp: atapter's private data struct
*
* This routine does range checking on command-line options
*/
void __devinit
e100_check_options(int board, struct e100_private *bdp)
{
if (board >= E100_MAX_NIC) {
printk(KERN_NOTICE
"e100: No configuration available for board #%d\n",
board);
printk(KERN_NOTICE "e100: Using defaults for all values\n");
board = E100_MAX_NIC;
}
e100_set_int_option(&(bdp->params.TxDescriptors), TxDescriptors[board],
E100_MIN_TCB, E100_MAX_TCB, E100_DEFAULT_TCB,
"TxDescriptor count");
e100_set_int_option(&(bdp->params.RxDescriptors), RxDescriptors[board],
E100_MIN_RFD, E100_MAX_RFD, E100_DEFAULT_RFD,
"RxDescriptor count");
e100_set_int_option(&(bdp->params.e100_speed_duplex),
e100_speed_duplex[board], 0, 4,
E100_DEFAULT_SPEED_DUPLEX, "speed/duplex mode");
e100_set_int_option(&(bdp->params.ber), ber[board], 0, ZLOCK_MAX_ERRORS,
E100_DEFAULT_BER, "Bit Error Rate count");
e100_set_bool_option(bdp, XsumRX[board], PRM_XSUMRX, E100_DEFAULT_XSUM,
"XsumRX value");
/* Default ucode value depended on controller revision */
if (bdp->rev_id >= D101MA_REV_ID) {
e100_set_bool_option(bdp, ucode[board], PRM_UCODE,
E100_DEFAULT_UCODE, "ucode value");
} else {
e100_set_bool_option(bdp, ucode[board], PRM_UCODE, false,
"ucode value");
}
e100_set_bool_option(bdp, flow_control[board], PRM_FC, E100_DEFAULT_FC,
"flow control value");
e100_set_bool_option(bdp, IFS[board], PRM_IFS, E100_DEFAULT_IFS,
"IFS value");
e100_set_bool_option(bdp, BundleSmallFr[board], PRM_BUNDLE_SMALL,
E100_DEFAULT_BUNDLE_SMALL_FR,
"CPU saver bundle small frames value");
e100_set_int_option(&(bdp->params.IntDelay), IntDelay[board], 0x0,
0xFFFF, E100_DEFAULT_CPUSAVER_INTERRUPT_DELAY,
"CPU saver interrupt delay value");
e100_set_int_option(&(bdp->params.BundleMax), BundleMax[board], 0x1,
0xFFFF, E100_DEFAULT_CPUSAVER_BUNDLE_MAX,
"CPU saver bundle max value");
}
/**
* e100_set_int_option - check and set an integer option
* @option: a pointer to the relevant option field
* @val: the value specified
* @min: the minimum valid value
* @max: the maximum valid value
* @default_val: the default value
* @name: the name of the option
*
* This routine does range checking on a command-line option.
* If the option's value is '-1' use the specified default.
* Otherwise, if the value is invalid, change it to the default.
*/
void __devinit
e100_set_int_option(int *option, int val, int min, int max, int default_val,
char *name)
{
if (val == -1) { /* no value specified. use default */
*option = default_val;
} else if ((val < min) || (val > max)) {
printk(KERN_NOTICE
"e100: Invalid %s specified (%i). "
"Valid range is %i-%i\n",
name, val, min, max);
printk(KERN_NOTICE "e100: Using default %s of %i\n", name,
default_val);
*option = default_val;
} else {
printk(KERN_INFO "e100: Using specified %s of %i\n", name, val);
*option = val;
}
}
/**
* e100_set_bool_option - check and set a boolean option
* @bdp: atapter's private data struct
* @val: the value specified
* @mask: the mask for the relevant option
* @default_val: the default value
* @name: the name of the option
*
* This routine checks a boolean command-line option.
* If the option's value is '-1' use the specified default.
* Otherwise, if the value is invalid (not 0 or 1),
* change it to the default.
*/
void __devinit
e100_set_bool_option(struct e100_private *bdp, int val, u32 mask,
int default_val, char *name)
{
if (val == -1) {
if (default_val)
bdp->params.b_params |= mask;
} else if ((val != true) && (val != false)) {
printk(KERN_NOTICE
"e100: Invalid %s specified (%i). "
"Valid values are %i/%i\n",
name, val, false, true);
printk(KERN_NOTICE "e100: Using default %s of %i\n", name,
default_val);
if (default_val)
bdp->params.b_params |= mask;
} else {
printk(KERN_INFO "e100: Using specified %s of %i\n", name, val);
if (val)
bdp->params.b_params |= mask;
}
}
static int
e100_open(struct net_device *dev)
{
struct e100_private *bdp;
int rc = 0;
bdp = dev->priv;
/* setup the tcb pool */
if (!e100_alloc_tcb_pool(bdp)) {
rc = -ENOMEM;
goto err_exit;
}
bdp->last_tcb = NULL;
bdp->tcb_pool.head = 0;
bdp->tcb_pool.tail = 1;
e100_setup_tcb_pool((tcb_t *) bdp->tcb_pool.data,
bdp->params.TxDescriptors, bdp);
if (!e100_alloc_rfd_pool(bdp)) {
rc = -ENOMEM;
goto err_exit;
}
if (!e100_wait_exec_cmplx(bdp, 0, SCB_CUC_LOAD_BASE)) {
rc = -EAGAIN;
goto err_exit;
}
if (!e100_wait_exec_cmplx(bdp, 0, SCB_RUC_LOAD_BASE)) {
rc = -EAGAIN;
goto err_exit;
}
mod_timer(&(bdp->watchdog_timer), jiffies + (2 * HZ));
netif_start_queue(dev);
e100_start_ru(bdp);
if ((rc = request_irq(dev->irq, &e100intr, SA_SHIRQ,
dev->name, dev)) != 0) {
del_timer_sync(&bdp->watchdog_timer);
goto err_exit;
}
bdp->intr_mask = 0;
e100_set_intr_mask(bdp);
e100_force_config(bdp);
goto exit;
err_exit:
e100_clear_pools(bdp);
exit:
return rc;
}
static int
e100_close(struct net_device *dev)
{
struct e100_private *bdp = dev->priv;
bdp->intr_mask = SCB_INT_MASK;
e100_isolate_driver(bdp);
netif_carrier_off(bdp->device);
bdp->cur_line_speed = 0;
bdp->cur_dplx_mode = 0;
free_irq(dev->irq, dev);
e100_clear_pools(bdp);
return 0;
}
static int
e100_change_mtu(struct net_device *dev, int new_mtu)
{
if ((new_mtu < 68) || (new_mtu > (ETH_DATA_LEN + VLAN_SIZE)))
return -EINVAL;
dev->mtu = new_mtu;
return 0;
}
static int
e100_xmit_frame(struct sk_buff *skb, struct net_device *dev)
{
int rc = 0;
int notify_stop = false;
struct e100_private *bdp = dev->priv;
if (!spin_trylock(&bdp->bd_non_tx_lock)) {
notify_stop = true;
rc = 1;
goto exit2;
}
if (!TCBS_AVAIL(bdp->tcb_pool) ||
(bdp->non_tx_command_state != E100_NON_TX_IDLE)) {
notify_stop = true;
rc = 1;
goto exit1;
}
e100_prepare_xmit_buff(bdp, skb);
bdp->drv_stats.net_stats.tx_bytes += skb->len;
dev->trans_start = jiffies;
exit1:
spin_unlock(&bdp->bd_non_tx_lock);
exit2:
if (notify_stop) {
netif_stop_queue(dev);
}
return rc;
}
/**
* e100_get_stats - get driver statistics
* @dev: adapter's net_device struct
*
* This routine is called when the OS wants the adapter's stats returned.
* It returns the address of the net_device_stats stucture for the device.
* If the statistics are currently being updated, then they might be incorrect
* for a short while. However, since this cannot actually cause damage, no
* locking is used.
*/
struct net_device_stats *
e100_get_stats(struct net_device *dev)
{
struct e100_private *bdp = dev->priv;
bdp->drv_stats.net_stats.tx_errors =
bdp->drv_stats.net_stats.tx_carrier_errors +
bdp->drv_stats.net_stats.tx_aborted_errors;
bdp->drv_stats.net_stats.rx_errors =
bdp->drv_stats.net_stats.rx_crc_errors +
bdp->drv_stats.net_stats.rx_frame_errors +
bdp->drv_stats.net_stats.rx_length_errors +
bdp->drv_stats.rcv_cdt_frames;
return &(bdp->drv_stats.net_stats);
}
/**
* e100_set_mac - set the MAC address
* @dev: adapter's net_device struct
* @addr: the new address
*
* This routine sets the ethernet address of the board
* Returns:
* 0 - if successful
* -1 - otherwise
*/
static int
e100_set_mac(struct net_device *dev, void *addr)
{
struct e100_private *bdp;
int rc = -1;
struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
bdp = dev->priv;
if (e100_setup_iaaddr(bdp, (u8 *) (p_sockaddr->sa_data))) {
memcpy(&(dev->dev_addr[0]), p_sockaddr->sa_data, ETH_ALEN);
rc = 0;
}
return rc;
}
static void
e100_set_multi_exec(struct net_device *dev)
{
struct e100_private *bdp = dev->priv;
mltcst_cb_t *mcast_buff;
cb_header_t *cb_hdr;
struct dev_mc_list *mc_list;
unsigned int i;
nxmit_cb_entry_t *cmd = e100_alloc_non_tx_cmd(bdp);
if (cmd != NULL) {
mcast_buff = &((cmd->non_tx_cmd)->ntcb.multicast);
cb_hdr = &((cmd->non_tx_cmd)->ntcb.multicast.mc_cbhdr);
} else {
return;
}
/* initialize the multi cast command */
cb_hdr->cb_cmd = __constant_cpu_to_le16(CB_MULTICAST);
/* now fill in the rest of the multicast command */
*(u16 *) (&(mcast_buff->mc_count)) = cpu_to_le16(dev->mc_count * 6);
for (i = 0, mc_list = dev->mc_list;
(i < dev->mc_count) && (i < MAX_MULTICAST_ADDRS);
i++, mc_list = mc_list->next) {
/* copy into the command */
memcpy(&(mcast_buff->mc_addr[i * ETH_ALEN]),
(u8 *) &(mc_list->dmi_addr), ETH_ALEN);
}
if (!e100_exec_non_cu_cmd(bdp, cmd)) {
printk(KERN_WARNING "e100: %s: Multicast setup failed\n",
dev->name);
}
}
/**
* e100_set_multi - set multicast status
* @dev: adapter's net_device struct
*
* This routine is called to add or remove multicast addresses, and/or to
* change the adapter's promiscuous state.
*/
static void
e100_set_multi(struct net_device *dev)
{
struct e100_private *bdp = dev->priv;
unsigned char promisc_enbl;
unsigned char mulcast_enbl;
promisc_enbl = ((dev->flags & IFF_PROMISC) == IFF_PROMISC);
mulcast_enbl = ((dev->flags & IFF_ALLMULTI) ||
(dev->mc_count > MAX_MULTICAST_ADDRS));
e100_config_promisc(bdp, promisc_enbl);
e100_config_mulcast_enbl(bdp, mulcast_enbl);
/* reconfigure the chip if something has changed in its config space */
e100_config(bdp);
if (promisc_enbl || mulcast_enbl) {
return; /* no need for Multicast Cmd */
}
/* get the multicast CB */
e100_set_multi_exec(dev);
}
static int
e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCETHTOOL:
return e100_do_ethtool_ioctl(dev, ifr);
break;
case SIOCGMIIPHY: /* Get address of MII PHY in use. */
case SIOCGMIIREG: /* Read MII PHY register. */
case SIOCSMIIREG: /* Write to MII PHY register. */
return e100_mii_ioctl(dev, ifr, cmd);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
/**
* e100init - initialize the adapter
* @bdp: atapter's private data struct
*
* This routine is called when this driver is loaded. This is the initialization
* routine which allocates memory, configures the adapter and determines the
* system resources.
*
* Returns:
* true: if successful
* false: otherwise
*/
static unsigned char __devinit
e100_init(struct e100_private *bdp)
{
u32 st_timeout = 0;
u32 st_result = 0;
e100_sw_init(bdp);
if (!e100_selftest(bdp, &st_timeout, &st_result)) {
if (st_timeout) {
printk(KERN_ERR "e100: selftest timeout\n");
} else {
printk(KERN_ERR "e100: selftest failed. Results: %x\n",
st_result);
}
return false;
}
else
printk(KERN_DEBUG "e100: selftest OK.\n");
/* read the MAC address from the eprom */
e100_rd_eaddr(bdp);
/* read NIC's part number */
e100_rd_pwa_no(bdp);
if (!e100_hw_init(bdp, PORT_SOFTWARE_RESET)) {
printk(KERN_ERR "e100: hw init failed\n");
return false;
}
e100_dis_intr(bdp);
return true;
}
/**
* e100_sw_init - initialize software structs
* @bdp: atapter's private data struct
*
* This routine initializes all software structures. Sets up the
* circular structures for the RFD's & TCB's. Allocates the per board
* structure for storing adapter information. The CSR is also memory
* mapped in this routine.
*
* Returns :
* true: if S/W was successfully initialized
* false: otherwise
*/
static unsigned char __devinit
e100_sw_init(struct e100_private *bdp)
{
bdp->next_cu_cmd = START_WAIT; // init the next cu state
/*
* Set the value for # of good xmits per underrun. the value assigned
* here is an intelligent suggested default. Nothing magical about it.
*/
bdp->tx_per_underrun = DEFAULT_TX_PER_UNDERRUN;
/* get the default transmit threshold value */
bdp->tx_thld = TX_THRSHLD;
/* get the EPROM size */
bdp->eeprom_size = e100_eeprom_size(bdp);
/* Initialize our spinlocks */
spin_lock_init(&(bdp->bd_lock));
spin_lock_init(&(bdp->bd_non_tx_lock));
spin_lock_init(&(bdp->config_lock));
spin_lock_init(&(bdp->mdi_access_lock));
return 1;
}
/**
* e100_hw_init - initialized tthe hardware
* @bdp: atapter's private data struct
* @reset_cmd: s/w reset or selective reset
*
* This routine performs a reset on the adapter, and configures the adapter.
* This includes configuring the 82557 LAN controller, validating and setting
* the node address, detecting and configuring the Phy chip on the adapter,
* and initializing all of the on chip counters.
*
* Returns:
* true - If the adapter was initialized
* false - If the adapter failed initialization
*/
unsigned char __devinit
e100_hw_init(struct e100_private *bdp, u32 reset_cmd)
{
if (!e100_phy_init(bdp))
return false;
/* Issue a software reset to the e100 */
e100_sw_reset(bdp, reset_cmd);
/* Load the CU BASE (set to 0, because we use linear mode) */
if (!e100_wait_exec_cmplx(bdp, 0, SCB_CUC_LOAD_BASE))
return false;
if (!e100_wait_exec_cmplx(bdp, 0, SCB_RUC_LOAD_BASE))
return false;
/* Load interrupt microcode */
if (e100_load_microcode(bdp)) {
bdp->flags |= DF_UCODE_LOADED;
}
e100_config_init(bdp);
if (!e100_config(bdp)) {
return false;
}
if (!e100_setup_iaaddr(bdp, bdp->device->dev_addr))
return false;
/* Clear the internal counters */
if (!e100_clr_cntrs(bdp))
return false;
/* Change for 82558 enhancement */
/* If 82558/9 and if the user has enabled flow control, set up the
* Flow Control Reg. in the CSR */
if ((bdp->flags & IS_BACHELOR)
&& (bdp->params.b_params & PRM_FC)) {
writeb(DFLT_FC_THLD, &bdp->scb->scb_ext.d101_scb.scb_fc_thld);
writeb(DFLT_FC_CMD,
&bdp->scb->scb_ext.d101_scb.scb_fc_xon_xoff);
}
return true;
}
/**
* e100_setup_tcb_pool - setup TCB circular list
* @head: Pointer to head of the allocated TCBs
* @qlen: Number of elements in the queue
* @bdp: atapter's private data struct
*
* This routine arranges the contigiously allocated TCB's in a circular list.
* Also does the one time initialization of the TCBs.
*/
static void
e100_setup_tcb_pool(tcb_t *head, unsigned int qlen, struct e100_private *bdp)
{
int ele_no;
tcb_t *pcurr_tcb; /* point to current tcb */
u32 next_phys; /* the next phys addr */
u16 txcommand = CB_S_BIT | CB_TX_SF_BIT;
if (bdp->flags & USE_IPCB) {
txcommand |= CB_IPCB_TRANSMIT | CB_CID_DEFAULT;
} else if (bdp->flags & IS_BACHELOR) {
txcommand |= CB_TRANSMIT | CB_CID_DEFAULT;
} else {
txcommand |= CB_TRANSMIT;
}
for (ele_no = 0, next_phys = bdp->tcb_phys, pcurr_tcb = head;
ele_no < qlen; ele_no++, pcurr_tcb++) {
/* set the phys addr for this TCB, next_phys has not incr. yet */
pcurr_tcb->tcb_phys = next_phys;
next_phys += sizeof (tcb_t);
/* set the link to next tcb */
if (ele_no == (qlen - 1))
pcurr_tcb->tcb_hdr.cb_lnk_ptr =
cpu_to_le32(bdp->tcb_phys);
else
pcurr_tcb->tcb_hdr.cb_lnk_ptr = cpu_to_le32(next_phys);
pcurr_tcb->tcb_hdr.cb_status = 0;
pcurr_tcb->tcb_hdr.cb_cmd = cpu_to_le16(txcommand);
pcurr_tcb->tcb_cnt = 0;
pcurr_tcb->tcb_thrshld = bdp->tx_thld;
if (ele_no < 2) {
pcurr_tcb->tcb_hdr.cb_status =
cpu_to_le16(CB_STATUS_COMPLETE);
}
pcurr_tcb->tcb_tbd_num = 1;
if (bdp->flags & IS_BACHELOR) {
pcurr_tcb->tcb_tbd_ptr =
__constant_cpu_to_le32(0xFFFFFFFF);
} else {
pcurr_tcb->tcb_tbd_ptr =
cpu_to_le32(pcurr_tcb->tcb_phys + 0x10);
}
if (bdp->flags & IS_BACHELOR) {
pcurr_tcb->tcb_tbd_expand_ptr =
cpu_to_le32(pcurr_tcb->tcb_phys + 0x20);
} else {
pcurr_tcb->tcb_tbd_expand_ptr =
cpu_to_le32(pcurr_tcb->tcb_phys + 0x10);
}
pcurr_tcb->tcb_tbd_dflt_ptr = pcurr_tcb->tcb_tbd_ptr;
if (bdp->flags & USE_IPCB) {
pcurr_tcb->tbd_ptr = &(pcurr_tcb->tcbu.tbd_array[1]);
pcurr_tcb->tcbu.ipcb.ip_activation_high =
IPCB_IP_ACTIVATION_DEFAULT;
pcurr_tcb->tcbu.ipcb.vlan = 0;
} else {
pcurr_tcb->tbd_ptr = &(pcurr_tcb->tcbu.tbd_array[0]);
}
pcurr_tcb->tcb_skb = NULL;
}
wmb();
}
/***************************************************************************/
/***************************************************************************/
/* Memory Management Routines */
/***************************************************************************/
/**
* e100_alloc_space - allocate private driver data
* @bdp: atapter's private data struct
*
* This routine allocates memory for the driver. Memory allocated is for the
* selftest and statistics structures.
*
* Returns:
* 0: if the operation was successful
* %-ENOMEM: if memory allocation failed
*/
unsigned char __devinit
e100_alloc_space(struct e100_private *bdp)
{
unsigned long off;
/* allocate all the dma-able structures in one call:
* selftest results, adapter stats, and non-tx cb commands */
if (!(bdp->dma_able =
pci_alloc_consistent(bdp->pdev, sizeof (bd_dma_able_t),
&(bdp->dma_able_phys)))) {
goto err;
}
/* now assign the various pointers into the struct we've just allocated */
off = offsetof(bd_dma_able_t, selftest);
bdp->selftest = (self_test_t *) (bdp->dma_able + off);
bdp->selftest_phys = bdp->dma_able_phys + off;
off = offsetof(bd_dma_able_t, stats_counters);
bdp->stats_counters = (max_counters_t *) (bdp->dma_able + off);
bdp->stat_cnt_phys = bdp->dma_able_phys + off;
return 0;
err:
printk(KERN_ERR
"e100: Failed to allocate memory\n");
return -ENOMEM;
}
/**
* e100_alloc_tcb_pool - allocate TCB circular list
* @bdp: atapter's private data struct
*
* This routine allocates memory for the circular list of transmit descriptors.
*
* Returns:
* 0: if allocation has failed.
* 1: Otherwise.
*/
int
e100_alloc_tcb_pool(struct e100_private *bdp)
{
int stcb = sizeof (tcb_t) * bdp->params.TxDescriptors;
/* allocate space for the TCBs */
if (!(bdp->tcb_pool.data =
pci_alloc_consistent(bdp->pdev, stcb, &bdp->tcb_phys)))
return 0;
memset(bdp->tcb_pool.data, 0x00, stcb);
return 1;
}
void
e100_free_tcb_pool(struct e100_private *bdp)
{
pci_free_consistent(bdp->pdev,
sizeof (tcb_t) * bdp->params.TxDescriptors,
bdp->tcb_pool.data, bdp->tcb_phys);
bdp->tcb_phys = 0;
}
static void
e100_dealloc_space(struct e100_private *bdp)
{
if (bdp->dma_able) {
pci_free_consistent(bdp->pdev, sizeof (bd_dma_able_t),
bdp->dma_able, bdp->dma_able_phys);
}
bdp->selftest_phys = 0;
bdp->stat_cnt_phys = 0;
bdp->dma_able_phys = 0;
bdp->dma_able = 0;
}
static void
e100_free_rfd_pool(struct e100_private *bdp)
{
struct rx_list_elem *rx_struct;
while (!list_empty(&(bdp->active_rx_list))) {
rx_struct = list_entry(bdp->active_rx_list.next,
struct rx_list_elem, list_elem);
list_del(&(rx_struct->list_elem));
pci_unmap_single(bdp->pdev, rx_struct->dma_addr,
sizeof (rfd_t), PCI_DMA_TODEVICE);
dev_kfree_skb(rx_struct->skb);
kfree(rx_struct);
}
while (!list_empty(&(bdp->rx_struct_pool))) {
rx_struct = list_entry(bdp->rx_struct_pool.next,
struct rx_list_elem, list_elem);
list_del(&(rx_struct->list_elem));
kfree(rx_struct);
}
}
/**
* e100_alloc_rfd_pool - allocate RFDs
* @bdp: atapter's private data struct
*
* Allocates initial pool of skb which holds both rfd and data,
* and return a pointer to the head of the list
*/
static int
e100_alloc_rfd_pool(struct e100_private *bdp)
{
struct rx_list_elem *rx_struct;
int i;
INIT_LIST_HEAD(&(bdp->active_rx_list));
INIT_LIST_HEAD(&(bdp->rx_struct_pool));
bdp->skb_req = bdp->params.RxDescriptors;
for (i = 0; i < bdp->skb_req; i++) {
rx_struct = kmalloc(sizeof (struct rx_list_elem), GFP_ATOMIC);
list_add(&(rx_struct->list_elem), &(bdp->rx_struct_pool));
}
e100_alloc_skbs(bdp);
return !list_empty(&(bdp->active_rx_list));
}
void
e100_clear_pools(struct e100_private *bdp)
{
bdp->last_tcb = NULL;
e100_free_rfd_pool(bdp);
e100_free_tcb_pool(bdp);
}
/*****************************************************************************/
/*****************************************************************************/
/* Run Time Functions */
/*****************************************************************************/
/**
* e100_watchdog
* @dev: adapter's net_device struct
*
* This routine runs every 2 seconds and updates our statitics and link state,
* and refreshs txthld value.
*/
void
e100_watchdog(struct net_device *dev)
{
struct e100_private *bdp = dev->priv;
if (!netif_running(dev)) {
return;
}
e100_get_mdix_status(bdp);
/* check if link state has changed */
if (e100_phy_check(bdp)) {
if (netif_carrier_ok(dev)) {
printk(KERN_ERR
"e100: %s NIC Link is Up %d Mbps %s duplex\n",
bdp->device->name, bdp->cur_line_speed,
(bdp->cur_dplx_mode == HALF_DUPLEX) ?
"Half" : "Full");
e100_config_fc(bdp);
e100_config(bdp);
bdp->cable_status = "Cable OK";
} else {
printk(KERN_ERR "e100: %s NIC Link is Down\n",
bdp->device->name);
if (bdp->rev_id < D102_REV_ID)
bdp->cable_status = "Not supported";
else {
/* Initiate hwi, ie, cable diagnostic */
bdp->saved_open_circut = 0xffff;
bdp->saved_short_circut = 0xffff;
bdp->saved_distance = 0xffff;
bdp->saved_i = 0;
bdp->saved_same = 0;
bdp->hwi_started = 1;
/* Disable MDI/MDI-X auto switching */
e100_mdi_write(bdp, MII_NCONFIG, bdp->phy_addr,
MDI_MDIX_RESET_ALL_MASK);
/* Set to 100 Full as required by hwi test */
e100_mdi_write(bdp, MII_BMCR, bdp->phy_addr,
BMCR_SPEED100 | BMCR_FULLDPLX);
/* Enable and execute HWI test */
e100_mdi_write(bdp, HWI_CONTROL_REG, bdp->phy_addr,
(HWI_TEST_ENABLE | HWI_TEST_EXECUTE));
/* Launch hwi timer in 1 msec */
mod_timer(&(bdp->hwi_timer), jiffies + (HZ / 1000) );
}
}
}
// toggle the tx queue according to link status
// this also resolves a race condition between tx & non-cu cmd flows
if (netif_carrier_ok(dev)) {
if (netif_running(dev))
netif_wake_queue(dev);
} else {
netif_stop_queue(dev);
}
rmb();
if (e100_update_stats(bdp)) {
/* Check if a change in the IFS parameter is needed,
and configure the device accordingly */
if (bdp->params.b_params & PRM_IFS)
e100_manage_adaptive_ifs(bdp);
/* Now adjust our dynamic tx threshold value */
e100_refresh_txthld(bdp);
/* Now if we are on a 557 and we havn't received any frames then we
* should issue a multicast command to reset the RU */
if (bdp->rev_id < D101A4_REV_ID) {
if (!(bdp->stats_counters->basic_stats.rcv_gd_frames)) {
e100_set_multi(dev);
}
}
/* Update the statistics needed by the upper interface */
/* This should be the last statistic related command
* as it's async. now */
e100_dump_stats_cntrs(bdp);
}
wmb();
/* relaunch watchdog timer in 2 sec */
mod_timer(&(bdp->watchdog_timer), jiffies + (2 * HZ));
if (list_empty(&bdp->active_rx_list))
e100_trigger_SWI(bdp);
}
/**
* e100_manage_adaptive_ifs
* @bdp: atapter's private data struct
*
* This routine manages the adaptive Inter-Frame Spacing algorithm
* using a state machine.
*/
void
e100_manage_adaptive_ifs(struct e100_private *bdp)
{
static u16 state_table[9][4] = { // rows are states
{2, 0, 0, 0}, // state0 // column0: next state if increasing
{2, 0, 5, 30}, // state1 // column1: next state if decreasing
{5, 1, 5, 30}, // state2 // column2: IFS value for 100 mbit
{5, 3, 0, 0}, // state3 // column3: IFS value for 10 mbit
{5, 3, 10, 60}, // state4
{8, 4, 10, 60}, // state5
{8, 6, 0, 0}, // state6
{8, 6, 20, 60}, // state7
{8, 7, 20, 60} // state8
};
u32 transmits =
le32_to_cpu(bdp->stats_counters->basic_stats.xmt_gd_frames);
u32 collisions =
le32_to_cpu(bdp->stats_counters->basic_stats.xmt_ttl_coll);
u32 state = bdp->ifs_state;
u32 old_value = bdp->ifs_value;
int next_col;
u32 min_transmits;
if (bdp->cur_dplx_mode == FULL_DUPLEX) {
bdp->ifs_state = 0;
bdp->ifs_value = 0;
} else { /* Half Duplex */
/* Set speed specific parameters */
if (bdp->cur_line_speed == 100) {
next_col = 2;
min_transmits = MIN_NUMBER_OF_TRANSMITS_100;
} else { /* 10 Mbps */
next_col = 3;
min_transmits = MIN_NUMBER_OF_TRANSMITS_10;
}
if ((transmits / 32 < collisions)
&& (transmits > min_transmits)) {
state = state_table[state][0]; /* increment */
} else if (transmits < min_transmits) {
state = state_table[state][1]; /* decrement */
}
bdp->ifs_value = state_table[state][next_col];
bdp->ifs_state = state;
}
/* If the IFS value has changed, configure the device */
if (bdp->ifs_value != old_value) {
e100_config_ifs(bdp);
e100_config(bdp);
}
}
/**
* e100intr - interrupt handler
* @irq: the IRQ number
* @dev_inst: the net_device struct
* @regs: registers (unused)
*
* This routine is the ISR for the e100 board. It services
* the RX & TX queues & starts the RU if it has stopped due
* to no resources.
*/
void
e100intr(int irq, void *dev_inst, struct pt_regs *regs)
{
struct net_device *dev;
struct e100_private *bdp;
u16 intr_status;
dev = dev_inst;
bdp = dev->priv;
intr_status = readw(&bdp->scb->scb_status);
if (!intr_status || (intr_status == 0xffff)) {
return;
}
/* disable intr before we ack & after identifying the intr as ours */
e100_dis_intr(bdp);
writew(intr_status, &bdp->scb->scb_status); /* ack intrs */
readw(&bdp->scb->scb_status);
/* the device is closed, don't continue or else bad things may happen. */
if (!netif_running(dev)) {
e100_set_intr_mask(bdp);
return;
}
/* SWI intr (triggered by watchdog) is signal to allocate new skb buffers */
if (intr_status & SCB_STATUS_ACK_SWI) {
e100_alloc_skbs(bdp);
}
/* do recv work if any */
if (intr_status &
(SCB_STATUS_ACK_FR | SCB_STATUS_ACK_RNR | SCB_STATUS_ACK_SWI))
bdp->drv_stats.rx_intr_pkts += e100_rx_srv(bdp);
/* clean up after tx'ed packets */
if (intr_status & (SCB_STATUS_ACK_CNA | SCB_STATUS_ACK_CX)) {
bdp->tx_count = 0; /* restart tx interrupt batch count */
e100_tx_srv(bdp);
}
e100_set_intr_mask(bdp);
}
/**
* e100_tx_skb_free - free TX skbs resources
* @bdp: atapter's private data struct
* @tcb: associated tcb of the freed skb
*
* This routine frees resources of TX skbs.
*/
static inline void
e100_tx_skb_free(struct e100_private *bdp, tcb_t *tcb)
{
if (tcb->tcb_skb) {
int i;
tbd_t *tbd_arr = tcb->tbd_ptr;
int frags = skb_shinfo(tcb->tcb_skb)->nr_frags;
for (i = 0; i <= frags; i++, tbd_arr++) {
pci_unmap_single(bdp->pdev,
le32_to_cpu(tbd_arr->tbd_buf_addr),
le16_to_cpu(tbd_arr->tbd_buf_cnt),
PCI_DMA_TODEVICE);
}
dev_kfree_skb_irq(tcb->tcb_skb);
tcb->tcb_skb = NULL;
}
}
/**
* e100_tx_srv - service TX queues
* @bdp: atapter's private data struct
*
* This routine services the TX queues. It reclaims the TCB's & TBD's & other
* resources used during the transmit of this buffer. It is called from the ISR.
* We don't need a tx_lock since we always access buffers which were already
* prepared.
*/
void
e100_tx_srv(struct e100_private *bdp)
{
tcb_t *tcb;
int i;
/* go over at most TxDescriptors buffers */
for (i = 0; i < bdp->params.TxDescriptors; i++) {
tcb = bdp->tcb_pool.data;
tcb += bdp->tcb_pool.head;
rmb();
/* if the buffer at 'head' is not complete, break */
if (!(tcb->tcb_hdr.cb_status &
__constant_cpu_to_le16(CB_STATUS_COMPLETE)))
break;
/* service next buffer, clear the out of resource condition */
e100_tx_skb_free(bdp, tcb);
if (netif_running(bdp->device))
netif_wake_queue(bdp->device);
/* if we've caught up with 'tail', break */
if (NEXT_TCB_TOUSE(bdp->tcb_pool.head) == bdp->tcb_pool.tail) {
break;
}
bdp->tcb_pool.head = NEXT_TCB_TOUSE(bdp->tcb_pool.head);
}
}
/**
* e100_rx_srv - service RX queue
* @bdp: atapter's private data struct
* @max_number_of_rfds: max number of RFDs to process
* @rx_congestion: flag pointer, to inform the calling function of congestion.
*
* This routine processes the RX interrupt & services the RX queues.
* For each successful RFD, it allocates a new msg block, links that
* into the RFD list, and sends the old msg upstream.
* The new RFD is then put at the end of the free list of RFD's.
* It returns the number of serviced RFDs.
*/
u32
e100_rx_srv(struct e100_private *bdp)
{
rfd_t *rfd; /* new rfd, received rfd */
int i;
u16 rfd_status;
struct sk_buff *skb;
struct net_device *dev;
unsigned int data_sz;
struct rx_list_elem *rx_struct;
u32 rfd_cnt = 0;
dev = bdp->device;
/* current design of rx is as following:
* 1. socket buffer (skb) used to pass network packet to upper layer
* 2. all HW host memory structures (like RFDs, RBDs and data buffers)
* are placed in a skb's data room
* 3. when rx process is complete, we change skb internal pointers to exclude
* from data area all unrelated things (RFD, RDB) and to leave
* just rx'ed packet netto
* 4. for each skb passed to upper layer, new one is allocated instead.
* 5. if no skb left, in 2 sec another atempt to allocate skbs will be made
* (watchdog trigger SWI intr and isr should allocate new skbs)
*/
for (i = 0; i < bdp->params.RxDescriptors; i++) {
if (list_empty(&(bdp->active_rx_list))) {
break;
}
rx_struct = list_entry(bdp->active_rx_list.next,
struct rx_list_elem, list_elem);
skb = rx_struct->skb;
rfd = RFD_POINTER(skb, bdp); /* locate RFD within skb */
// sync only the RFD header
pci_dma_sync_single(bdp->pdev, rx_struct->dma_addr,
bdp->rfd_size, PCI_DMA_FROMDEVICE);
rfd_status = le16_to_cpu(rfd->rfd_header.cb_status); /* get RFD's status */
if (!(rfd_status & RFD_STATUS_COMPLETE)) /* does not contains data yet - exit */
break;
/* to allow manipulation with current skb we need to unlink it */
list_del(&(rx_struct->list_elem));
/* do not free & unmap badly recieved packet.
* move it to the end of skb list for reuse */
if (!(rfd_status & RFD_STATUS_OK)) {
e100_add_skb_to_end(bdp, rx_struct);
continue;
}
data_sz = min_t(u16, (le16_to_cpu(rfd->rfd_act_cnt) & 0x3fff),
(sizeof (rfd_t) - bdp->rfd_size));
/* now sync all the data */
pci_dma_sync_single(bdp->pdev, rx_struct->dma_addr,
(data_sz + bdp->rfd_size),
PCI_DMA_FROMDEVICE);
pci_unmap_single(bdp->pdev, rx_struct->dma_addr,
sizeof (rfd_t), PCI_DMA_FROMDEVICE);
list_add(&(rx_struct->list_elem), &(bdp->rx_struct_pool));
/* end of dma access to rfd */
bdp->skb_req++; /* incr number of requested skbs */
e100_alloc_skbs(bdp); /* and get them */
/* set packet size, excluding checksum (2 last bytes) if it is present */
if ((bdp->flags & DF_CSUM_OFFLOAD)
&& (bdp->rev_id < D102_REV_ID))
skb_put(skb, (int) data_sz - 2);
else
skb_put(skb, (int) data_sz);
/* set the protocol */
skb->protocol = eth_type_trans(skb, dev);
/* set the checksum info */
if (bdp->flags & DF_CSUM_OFFLOAD) {
if (bdp->rev_id >= D102_REV_ID) {
skb->ip_summed = e100_D102_check_checksum(rfd);
} else {
skb->ip_summed = e100_D101M_checksum(bdp, skb);
}
} else {
skb->ip_summed = CHECKSUM_NONE;
}
switch (netif_rx(skb)) {
case NET_RX_BAD:
case NET_RX_DROP:
case NET_RX_CN_MOD:
case NET_RX_CN_HIGH:
break;
default:
bdp->drv_stats.net_stats.rx_bytes += skb->len;
break;
}
rfd_cnt++;
} /* end of rfd loop */
/* restart the RU if it has stopped */
if ((readw(&bdp->scb->scb_status) & SCB_RUS_MASK) != SCB_RUS_READY) {
e100_start_ru(bdp);
}
return rfd_cnt;
}
void
e100_refresh_txthld(struct e100_private *bdp)
{
basic_cntr_t *pstat = &(bdp->stats_counters->basic_stats);
/* as long as tx_per_underrun is not 0, we can go about dynamically *
* adjusting the xmit threshold. we stop doing that & resort to defaults
* * once the adjustments become meaningless. the value is adjusted by *
* dumping the error counters & checking the # of xmit underrun errors *
* we've had. */
if (bdp->tx_per_underrun) {
/* We are going to last values dumped from the dump statistics
* command */
if (le32_to_cpu(pstat->xmt_gd_frames)) {
if (le32_to_cpu(pstat->xmt_uruns)) {
/*
* if we have had more than one underrun per "DEFAULT #
* OF XMITS ALLOWED PER UNDERRUN" good xmits, raise the
* THRESHOLD.
*/
if ((le32_to_cpu(pstat->xmt_gd_frames) /
le32_to_cpu(pstat->xmt_uruns)) <
bdp->tx_per_underrun) {
bdp->tx_thld += 3;
}
}
/*
* if we've had less than one underrun per the DEFAULT number of
* of good xmits allowed, lower the THOLD but not less than 0
*/
if (le32_to_cpu(pstat->xmt_gd_frames) >
bdp->tx_per_underrun) {
bdp->tx_thld--;
if (bdp->tx_thld < 6)
bdp->tx_thld = 6;
}
}
/* end good xmits */
/*
* * if our adjustments are becoming unresonable, stop adjusting &
* resort * to defaults & pray. A THOLD value > 190 means that the
* adapter will * wait for 190*8=1520 bytes in TX FIFO before it
* starts xmit. Since * MTU is 1514, it doesn't make any sense for
* further increase. */
if (bdp->tx_thld >= 190) {
bdp->tx_per_underrun = 0;
bdp->tx_thld = 189;
}
} /* end underrun check */
}
/**
* e100_pseudo_hdr_csum - compute IP pseudo-header checksum
* @ip: points to the header of the IP packet
*
* Return the 16 bit checksum of the IP pseudo-header.,which is computed
* on the fields: IP src, IP dst, next protocol, payload length.
* The checksum vaule is returned in network byte order.
*/
static inline u16
e100_pseudo_hdr_csum(const struct iphdr *ip)
{
u32 pseudo = 0;
u32 payload_len = 0;
payload_len = ntohs(ip->tot_len) - (ip->ihl * 4);
pseudo += htons(payload_len);
pseudo += (ip->protocol << 8);
pseudo += ip->saddr & 0x0000ffff;
pseudo += (ip->saddr & 0xffff0000) >> 16;
pseudo += ip->daddr & 0x0000ffff;
pseudo += (ip->daddr & 0xffff0000) >> 16;
return FOLD_CSUM(pseudo);
}
/**
* e100_prepare_xmit_buff - prepare a buffer for transmission
* @bdp: atapter's private data struct
* @skb: skb to send
*
* This routine prepare a buffer for transmission. It checks
* the message length for the appropiate size. It picks up a
* free tcb from the TCB pool and sets up the corresponding
* TBD's. If the number of fragments are more than the number
* of TBD/TCB it copies all the fragments in a coalesce buffer.
* It returns a pointer to the prepared TCB.
*/
static inline tcb_t *
e100_prepare_xmit_buff(struct e100_private *bdp, struct sk_buff *skb)
{
tcb_t *tcb, *prev_tcb;
tcb = bdp->tcb_pool.data;
tcb += TCB_TO_USE(bdp->tcb_pool);
if (bdp->flags & USE_IPCB) {
tcb->tcbu.ipcb.ip_activation_high = IPCB_IP_ACTIVATION_DEFAULT;
tcb->tcbu.ipcb.ip_schedule &= ~IPCB_TCP_PACKET;
tcb->tcbu.ipcb.ip_schedule &= ~IPCB_TCPUDP_CHECKSUM_ENABLE;
}
tcb->tcb_hdr.cb_status = 0;
tcb->tcb_thrshld = bdp->tx_thld;
tcb->tcb_hdr.cb_cmd |= __constant_cpu_to_le16(CB_S_BIT);
/* set the I bit on the modulo tcbs, so we will get an interrupt * to
* clean things up */
if (!(++bdp->tx_count % TX_FRAME_CNT)) {
tcb->tcb_hdr.cb_cmd |= __constant_cpu_to_le16(CB_I_BIT);
}
tcb->tcb_skb = skb;
if (skb->ip_summed == CHECKSUM_HW) {
const struct iphdr *ip = skb->nh.iph;
if ((ip->protocol == IPPROTO_TCP) ||
(ip->protocol == IPPROTO_UDP)) {
u16 *chksum;
tcb->tcbu.ipcb.ip_activation_high =
IPCB_HARDWAREPARSING_ENABLE;
tcb->tcbu.ipcb.ip_schedule |=
IPCB_TCPUDP_CHECKSUM_ENABLE;
if (ip->protocol == IPPROTO_TCP) {
struct tcphdr *tcp;
tcp = (struct tcphdr *) ((u32 *) ip + ip->ihl);
chksum = &(tcp->check);
tcb->tcbu.ipcb.ip_schedule |= IPCB_TCP_PACKET;
} else {
struct udphdr *udp;
udp = (struct udphdr *) ((u32 *) ip + ip->ihl);
chksum = &(udp->check);
}
*chksum = e100_pseudo_hdr_csum(ip);
}
}
if (!skb_shinfo(skb)->nr_frags) {
(tcb->tbd_ptr)->tbd_buf_addr =
cpu_to_le32(pci_map_single(bdp->pdev, skb->data,
skb->len, PCI_DMA_TODEVICE));
(tcb->tbd_ptr)->tbd_buf_cnt = cpu_to_le16(skb->len);
tcb->tcb_tbd_num = 1;
tcb->tcb_tbd_ptr = tcb->tcb_tbd_dflt_ptr;
} else {
int i;
void *addr;
tbd_t *tbd_arr_ptr = &(tcb->tbd_ptr[1]);
skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
(tcb->tbd_ptr)->tbd_buf_addr =
cpu_to_le32(pci_map_single(bdp->pdev, skb->data,
(skb->len - skb->data_len),
PCI_DMA_TODEVICE));
(tcb->tbd_ptr)->tbd_buf_cnt =
cpu_to_le16(skb->len - skb->data_len);
for (i = 0; i < skb_shinfo(skb)->nr_frags;
i++, tbd_arr_ptr++, frag++) {
addr = ((void *) page_address(frag->page) +
frag->page_offset);
tbd_arr_ptr->tbd_buf_addr =
cpu_to_le32(pci_map_single(bdp->pdev,
addr, frag->size,
PCI_DMA_TODEVICE));
tbd_arr_ptr->tbd_buf_cnt = cpu_to_le16(frag->size);
}
tcb->tcb_tbd_num = skb_shinfo(skb)->nr_frags + 1;
tcb->tcb_tbd_ptr = tcb->tcb_tbd_expand_ptr;
}
/* clear the S-BIT on the previous tcb */
prev_tcb = bdp->tcb_pool.data;
prev_tcb += PREV_TCB_USED(bdp->tcb_pool);
prev_tcb->tcb_hdr.cb_cmd &= __constant_cpu_to_le16((u16) ~CB_S_BIT);
bdp->tcb_pool.tail = NEXT_TCB_TOUSE(bdp->tcb_pool.tail);
wmb();
e100_start_cu(bdp, tcb);
return tcb;
}
/* Changed for 82558 enhancement */
/**
* e100_start_cu - start the adapter's CU
* @bdp: atapter's private data struct
* @tcb: TCB to be transmitted
*
* This routine issues a CU Start or CU Resume command to the 82558/9.
* This routine was added because the prepare_ext_xmit_buff takes advantage
* of the 82558/9's Dynamic TBD chaining feature and has to start the CU as
* soon as the first TBD is ready.
*
* e100_start_cu must be called while holding the tx_lock !
*/
void
e100_start_cu(struct e100_private *bdp, tcb_t *tcb)
{
unsigned long lock_flag;
spin_lock_irqsave(&(bdp->bd_lock), lock_flag);
switch (bdp->next_cu_cmd) {
case RESUME_NO_WAIT:
/*last cu command was a CU_RESMUE if this is a 558 or newer we dont need to
* wait for command word to clear, we reach here only if we are bachlor
*/
e100_exec_cmd(bdp, SCB_CUC_RESUME);
break;
case RESUME_WAIT:
if ((bdp->flags & IS_ICH) &&
(bdp->cur_line_speed == 10) &&
(bdp->cur_dplx_mode == HALF_DUPLEX)) {
e100_wait_exec_simple(bdp, SCB_CUC_NOOP);
udelay(1);
}
if ((e100_wait_exec_simple(bdp, SCB_CUC_RESUME)) &&
(bdp->flags & IS_BACHELOR) && (!(bdp->flags & IS_ICH))) {
bdp->next_cu_cmd = RESUME_NO_WAIT;
}
break;
case START_WAIT:
// The last command was a non_tx CU command
if (!e100_wait_cus_idle(bdp))
printk(KERN_DEBUG
"e100: %s: cu_start: timeout waiting for cu\n",
bdp->device->name);
if (!e100_wait_exec_cmplx(bdp, (u32) (tcb->tcb_phys),
SCB_CUC_START)) {
printk(KERN_DEBUG
"e100: %s: cu_start: timeout waiting for scb\n",
bdp->device->name);
e100_exec_cmplx(bdp, (u32) (tcb->tcb_phys),
SCB_CUC_START);
}
bdp->next_cu_cmd = RESUME_WAIT;
break;
}
/* save the last tcb */
bdp->last_tcb = tcb;
spin_unlock_irqrestore(&(bdp->bd_lock), lock_flag);
}
/* ====================================================================== */
/* hw */
/* ====================================================================== */
/**
* e100_selftest - perform H/W self test
* @bdp: atapter's private data struct
* @st_timeout: address to return timeout value, if fails
* @st_result: address to return selftest result, if fails
*
* This routine will issue PORT Self-test command to test the e100.
* The self-test will fail if the adapter's master-enable bit is not
* set in the PCI Command Register, or if the adapter is not seated
* in a PCI master-enabled slot. we also disable interrupts when the
* command is completed.
*
* Returns:
* true: if adapter passes self_test
* false: otherwise
*/
unsigned char
e100_selftest(struct e100_private *bdp, u32 *st_timeout, u32 *st_result)
{
u32 selftest_cmd;
/* initialize the nic state before running test */
e100_sw_reset(bdp, PORT_SOFTWARE_RESET);
/* Setup the address of the self_test area */
selftest_cmd = bdp->selftest_phys;
/* Setup SELF TEST Command Code in D3 - D0 */
selftest_cmd |= PORT_SELFTEST;
/* Initialize the self-test signature and results DWORDS */
bdp->selftest->st_sign = 0;
bdp->selftest->st_result = 0xffffffff;
/* Do the port command */
writel(selftest_cmd, &bdp->scb->scb_port);
readw(&(bdp->scb->scb_status)); /* flushes last write, read-safe */
/* Wait at least 10 milliseconds for the self-test to complete */
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ / 100 + 1);
/* disable interrupts since the're now enabled */
e100_dis_intr(bdp);
/* if The First Self Test DWORD Still Zero, We've timed out. If the
* second DWORD is not zero then we have an error. */
if ((bdp->selftest->st_sign == 0) || (bdp->selftest->st_result != 0)) {
if (st_timeout)
*st_timeout = !(le32_to_cpu(bdp->selftest->st_sign));
if (st_result)
*st_result = le32_to_cpu(bdp->selftest->st_result);
return false;
}
return true;
}
/**
* e100_setup_iaaddr - issue IA setup sommand
* @bdp: atapter's private data struct
* @eaddr: new ethernet address
*
* This routine will issue the IA setup command. This command
* will notify the 82557 (e100) of what its individual (node)
* address is. This command will be executed in polled mode.
*
* Returns:
* true: if the IA setup command was successfully issued and completed
* false: otherwise
*/
unsigned char
e100_setup_iaaddr(struct e100_private *bdp, u8 *eaddr)
{
unsigned int i;
cb_header_t *ntcb_hdr;
unsigned char res;
nxmit_cb_entry_t *cmd;
if ((cmd = e100_alloc_non_tx_cmd(bdp)) == NULL) {
res = false;
goto exit;
}
ntcb_hdr = (cb_header_t *) cmd->non_tx_cmd;
ntcb_hdr->cb_cmd = __constant_cpu_to_le16(CB_IA_ADDRESS);
for (i = 0; i < ETH_ALEN; i++) {
(cmd->non_tx_cmd)->ntcb.setup.ia_addr[i] = eaddr[i];
}
res = e100_exec_non_cu_cmd(bdp, cmd);
if (!res)
printk(KERN_WARNING "e100: %s: IA setup failed\n",
bdp->device->name);
exit:
return res;
}
/**
* e100_start_ru - start the RU if needed
* @bdp: atapter's private data struct
*
* This routine checks the status of the 82557's receive unit(RU),
* and starts the RU if it was not already active. However,
* before restarting the RU, the driver gives the RU the buffers
* it freed up during the servicing of the ISR. If there are
* no free buffers to give to the RU, (i.e. we have reached a
* no resource condition) the RU will not be started till the
* next ISR.
*/
void
e100_start_ru(struct e100_private *bdp)
{
struct rx_list_elem *rx_struct = NULL;
int buffer_found = 0;
struct list_head *entry_ptr;
list_for_each(entry_ptr, &(bdp->active_rx_list)) {
rx_struct =
list_entry(entry_ptr, struct rx_list_elem, list_elem);
pci_dma_sync_single(bdp->pdev, rx_struct->dma_addr,
bdp->rfd_size, PCI_DMA_FROMDEVICE);
if (!((SKB_RFD_STATUS(rx_struct->skb, bdp) &
__constant_cpu_to_le16(RFD_STATUS_COMPLETE)))) {
buffer_found = 1;
break;
}
}
/* No available buffers */
if (!buffer_found) {
return;
}
spin_lock(&bdp->bd_lock);
if (!e100_wait_exec_cmplx(bdp, rx_struct->dma_addr, SCB_RUC_START)) {
printk(KERN_DEBUG
"e100: %s: start_ru: wait_scb failed\n",
bdp->device->name);
e100_exec_cmplx(bdp, rx_struct->dma_addr, SCB_RUC_START);
}
if (bdp->next_cu_cmd == RESUME_NO_WAIT) {
bdp->next_cu_cmd = RESUME_WAIT;
}
spin_unlock(&bdp->bd_lock);
}
/**
* e100_cmd_complete_location
* @bdp: atapter's private data struct
*
* This routine returns a pointer to the location of the command-complete
* DWord in the dump statistical counters area, according to the statistical
* counters mode (557 - basic, 558 - extended, or 559 - TCO mode).
* See e100_config_init() for the setting of the statistical counters mode.
*/
static u32 *
e100_cmd_complete_location(struct e100_private *bdp)
{
u32 *cmd_complete;
max_counters_t *stats = bdp->stats_counters;
switch (bdp->stat_mode) {
case E100_EXTENDED_STATS:
cmd_complete =
(u32 *) &(((err_cntr_558_t *) (stats))->cmd_complete);
break;
case E100_TCO_STATS:
cmd_complete =
(u32 *) &(((err_cntr_559_t *) (stats))->cmd_complete);
break;
case E100_BASIC_STATS:
default:
cmd_complete =
(u32 *) &(((err_cntr_557_t *) (stats))->cmd_complete);
break;
}
return cmd_complete;
}
/**
* e100_clr_cntrs - clear statistics counters
* @bdp: atapter's private data struct
*
* This routine will clear the adapter error statistic counters.
*
* Returns:
* true: if successfully cleared stat counters
* false: otherwise
*/
static unsigned char __devinit
e100_clr_cntrs(struct e100_private *bdp)
{
volatile u32 *pcmd_complete;
/* clear the dump counter complete word */
pcmd_complete = e100_cmd_complete_location(bdp);
*pcmd_complete = 0;
wmb();
if (!e100_wait_exec_cmplx(bdp, bdp->stat_cnt_phys, SCB_CUC_DUMP_ADDR))
return false;
/* wait 10 microseconds for the command to complete */
udelay(10);
if (!e100_wait_exec_simple(bdp, SCB_CUC_DUMP_RST_STAT))
return false;
if (bdp->next_cu_cmd == RESUME_NO_WAIT) {
bdp->next_cu_cmd = RESUME_WAIT;
}
return true;
}
static unsigned char
e100_update_stats(struct e100_private *bdp)
{
u32 *pcmd_complete;
basic_cntr_t *pstat = &(bdp->stats_counters->basic_stats);
// check if last dump command completed
pcmd_complete = e100_cmd_complete_location(bdp);
if (*pcmd_complete != le32_to_cpu(DUMP_RST_STAT_COMPLETED) &&
*pcmd_complete != le32_to_cpu(DUMP_STAT_COMPLETED)) {
return false;
}
/* increment the statistics */
bdp->drv_stats.net_stats.rx_packets +=
le32_to_cpu(pstat->rcv_gd_frames);
bdp->drv_stats.net_stats.tx_packets +=
le32_to_cpu(pstat->xmt_gd_frames);
bdp->drv_stats.net_stats.rx_dropped += le32_to_cpu(pstat->rcv_rsrc_err);
bdp->drv_stats.net_stats.collisions += le32_to_cpu(pstat->xmt_ttl_coll);
bdp->drv_stats.net_stats.rx_length_errors +=
le32_to_cpu(pstat->rcv_shrt_frames);
bdp->drv_stats.net_stats.rx_over_errors +=
le32_to_cpu(pstat->rcv_rsrc_err);
bdp->drv_stats.net_stats.rx_crc_errors +=
le32_to_cpu(pstat->rcv_crc_errs);
bdp->drv_stats.net_stats.rx_frame_errors +=
le32_to_cpu(pstat->rcv_algn_errs);
bdp->drv_stats.net_stats.rx_fifo_errors +=
le32_to_cpu(pstat->rcv_oruns);
bdp->drv_stats.net_stats.tx_aborted_errors +=
le32_to_cpu(pstat->xmt_max_coll);
bdp->drv_stats.net_stats.tx_carrier_errors +=
le32_to_cpu(pstat->xmt_lost_crs);
bdp->drv_stats.net_stats.tx_fifo_errors +=
le32_to_cpu(pstat->xmt_uruns);
bdp->drv_stats.tx_late_col += le32_to_cpu(pstat->xmt_late_coll);
bdp->drv_stats.tx_ok_defrd += le32_to_cpu(pstat->xmt_deferred);
bdp->drv_stats.tx_one_retry += le32_to_cpu(pstat->xmt_sngl_coll);
bdp->drv_stats.tx_mt_one_retry += le32_to_cpu(pstat->xmt_mlt_coll);
bdp->drv_stats.rcv_cdt_frames += le32_to_cpu(pstat->rcv_err_coll);
if (bdp->stat_mode != E100_BASIC_STATS) {
ext_cntr_t *pex_stat = &bdp->stats_counters->extended_stats;
bdp->drv_stats.xmt_fc_pkts +=
le32_to_cpu(pex_stat->xmt_fc_frames);
bdp->drv_stats.rcv_fc_pkts +=
le32_to_cpu(pex_stat->rcv_fc_frames);
bdp->drv_stats.rcv_fc_unsupported +=
le32_to_cpu(pex_stat->rcv_fc_unsupported);
}
if (bdp->stat_mode == E100_TCO_STATS) {
tco_cntr_t *ptco_stat = &bdp->stats_counters->tco_stats;
bdp->drv_stats.xmt_tco_pkts +=
le16_to_cpu(ptco_stat->xmt_tco_frames);
bdp->drv_stats.rcv_tco_pkts +=
le16_to_cpu(ptco_stat->rcv_tco_frames);
}
*pcmd_complete = 0;
return true;
}
/**
* e100_dump_stat_cntrs
* @bdp: atapter's private data struct
*
* This routine will dump the board statistical counters without waiting
* for stat_dump to complete. Any access to this stats should verify the completion
* of the command
*/
void
e100_dump_stats_cntrs(struct e100_private *bdp)
{
unsigned long lock_flag_bd;
spin_lock_irqsave(&(bdp->bd_lock), lock_flag_bd);
/* dump h/w stats counters */
if (e100_wait_exec_simple(bdp, SCB_CUC_DUMP_RST_STAT)) {
if (bdp->next_cu_cmd == RESUME_NO_WAIT) {
bdp->next_cu_cmd = RESUME_WAIT;
}
}
spin_unlock_irqrestore(&(bdp->bd_lock), lock_flag_bd);
}
/**
* e100_exec_non_cu_cmd
* @bdp: atapter's private data struct
* @command: the non-cu command to execute
*
* This routine will submit a command block to be executed,
*/
unsigned char
e100_exec_non_cu_cmd(struct e100_private *bdp, nxmit_cb_entry_t *command)
{
cb_header_t *ntcb_hdr;
unsigned long lock_flag;
unsigned long expiration_time;
unsigned char rc = true;
ntcb_hdr = (cb_header_t *) command->non_tx_cmd; /* get hdr of non tcb cmd */
/* Set the Command Block to be the last command block */
ntcb_hdr->cb_cmd |= __constant_cpu_to_le16(CB_EL_BIT);
ntcb_hdr->cb_status = 0;
ntcb_hdr->cb_lnk_ptr = 0;
wmb();
if (in_interrupt())
return e100_delayed_exec_non_cu_cmd(bdp, command);
if (netif_running(bdp->device) && netif_carrier_ok(bdp->device))
return e100_delayed_exec_non_cu_cmd(bdp, command);
spin_lock_bh(&(bdp->bd_non_tx_lock));
if (bdp->non_tx_command_state != E100_NON_TX_IDLE) {
goto delayed_exec;
}
if (bdp->last_tcb) {
rmb();
if ((bdp->last_tcb->tcb_hdr.cb_status &
__constant_cpu_to_le16(CB_STATUS_COMPLETE)) == 0)
goto delayed_exec;
}
if ((readw(&bdp->scb->scb_status) & SCB_CUS_MASK) == SCB_CUS_ACTIVE) {
goto delayed_exec;
}
spin_lock_irqsave(&bdp->bd_lock, lock_flag);
if (!e100_wait_exec_cmplx(bdp, command->dma_addr, SCB_CUC_START)) {
spin_unlock_irqrestore(&(bdp->bd_lock), lock_flag);
rc = false;
goto exit;
}
bdp->next_cu_cmd = START_WAIT;
spin_unlock_irqrestore(&(bdp->bd_lock), lock_flag);
/* now wait for completion of non-cu CB up to 20 msec */
expiration_time = jiffies + HZ / 50 + 1;
rmb();
while (!(ntcb_hdr->cb_status &
__constant_cpu_to_le16(CB_STATUS_COMPLETE))) {
if (time_before(jiffies, expiration_time)) {
spin_unlock_bh(&(bdp->bd_non_tx_lock));
yield();
spin_lock_bh(&(bdp->bd_non_tx_lock));
} else {
rc = false;
goto exit;
}
rmb();
}
exit:
e100_free_non_tx_cmd(bdp, command);
if (netif_running(bdp->device))
netif_wake_queue(bdp->device);
spin_unlock_bh(&(bdp->bd_non_tx_lock));
return rc;
delayed_exec:
spin_unlock_bh(&(bdp->bd_non_tx_lock));
return e100_delayed_exec_non_cu_cmd(bdp, command);
}
/**
* e100_sw_reset
* @bdp: atapter's private data struct
* @reset_cmd: s/w reset or selective reset
*
* This routine will issue a software reset to the adapter. It
* will also disable interrupts, as the are enabled after reset.
*/
void
e100_sw_reset(struct e100_private *bdp, u32 reset_cmd)
{
/* Do a selective reset first to avoid a potential PCI hang */
writel(PORT_SELECTIVE_RESET, &bdp->scb->scb_port);
readw(&(bdp->scb->scb_status)); /* flushes last write, read-safe */
/* wait for the reset to take effect */
udelay(20);
if (reset_cmd == PORT_SOFTWARE_RESET) {
writel(PORT_SOFTWARE_RESET, &bdp->scb->scb_port);
/* wait 20 micro seconds for the reset to take effect */
udelay(20);
}
/* Mask off our interrupt line -- its unmasked after reset */
e100_dis_intr(bdp);
}
/**
* e100_load_microcode - Download microsocde to controller.
* @bdp: atapter's private data struct
*
* This routine downloads microcode on to the controller. This
* microcode is available for the 82558/9, 82550. Currently the
* microcode handles interrupt bundling and TCO workaround.
*
* Returns:
* true: if successfull
* false: otherwise
*/
static unsigned char
e100_load_microcode(struct e100_private *bdp)
{
static struct {
u8 rev_id;
u32 ucode[UCODE_MAX_DWORDS + 1];
int timer_dword;
int bundle_dword;
int min_size_dword;
} ucode_opts[] = {
{ D101A4_REV_ID,
D101_A_RCVBUNDLE_UCODE,
D101_CPUSAVER_TIMER_DWORD,
D101_CPUSAVER_BUNDLE_DWORD,
D101_CPUSAVER_MIN_SIZE_DWORD },
{ D101B0_REV_ID,
D101_B0_RCVBUNDLE_UCODE,
D101_CPUSAVER_TIMER_DWORD,
D101_CPUSAVER_BUNDLE_DWORD,
D101_CPUSAVER_MIN_SIZE_DWORD },
{ D101MA_REV_ID,
D101M_B_RCVBUNDLE_UCODE,
D101M_CPUSAVER_TIMER_DWORD,
D101M_CPUSAVER_BUNDLE_DWORD,
D101M_CPUSAVER_MIN_SIZE_DWORD },
{ D101S_REV_ID,
D101S_RCVBUNDLE_UCODE,
D101S_CPUSAVER_TIMER_DWORD,
D101S_CPUSAVER_BUNDLE_DWORD,
D101S_CPUSAVER_MIN_SIZE_DWORD },
{ D102_REV_ID,
D102_B_RCVBUNDLE_UCODE,
D102_B_CPUSAVER_TIMER_DWORD,
D102_B_CPUSAVER_BUNDLE_DWORD,
D102_B_CPUSAVER_MIN_SIZE_DWORD },
{ D102C_REV_ID,
D102_C_RCVBUNDLE_UCODE,
D102_C_CPUSAVER_TIMER_DWORD,
D102_C_CPUSAVER_BUNDLE_DWORD,
D102_C_CPUSAVER_MIN_SIZE_DWORD },
{ D102E_REV_ID,
D102_E_RCVBUNDLE_UCODE,
D102_E_CPUSAVER_TIMER_DWORD,
D102_E_CPUSAVER_BUNDLE_DWORD,
D102_E_CPUSAVER_MIN_SIZE_DWORD },
{ 0, {0}, 0, 0, 0}
}, *opts;
opts = ucode_opts;
/* User turned ucode loading off */
if (!(bdp->params.b_params & PRM_UCODE))
return false;
/* These controllers do not need ucode */
if (bdp->flags & IS_ICH)
return false;
/* Search for ucode match against h/w rev_id */
while (opts->rev_id) {
if (bdp->rev_id == opts->rev_id) {
int i;
u32 *ucode_dword;
load_ucode_cb_t *ucode_cmd_ptr;
nxmit_cb_entry_t *cmd = e100_alloc_non_tx_cmd(bdp);
if (cmd != NULL) {
ucode_cmd_ptr =
(load_ucode_cb_t *) cmd->non_tx_cmd;
ucode_dword = ucode_cmd_ptr->ucode_dword;
} else {
return false;
}
memcpy(ucode_dword, opts->ucode, sizeof (opts->ucode));
/* Insert user-tunable settings */
ucode_dword[opts->timer_dword] &= 0xFFFF0000;
ucode_dword[opts->timer_dword] |=
(u16) bdp->params.IntDelay;
ucode_dword[opts->bundle_dword] &= 0xFFFF0000;
ucode_dword[opts->bundle_dword] |=
(u16) bdp->params.BundleMax;
ucode_dword[opts->min_size_dword] &= 0xFFFF0000;
ucode_dword[opts->min_size_dword] |=
(bdp->params.b_params & PRM_BUNDLE_SMALL) ?
0xFFFF : 0xFF80;
for (i = 0; i < UCODE_MAX_DWORDS; i++)
cpu_to_le32s(&(ucode_dword[i]));
ucode_cmd_ptr->load_ucode_cbhdr.cb_cmd =
__constant_cpu_to_le16(CB_LOAD_MICROCODE);
return e100_exec_non_cu_cmd(bdp, cmd);
}
opts++;
}
return false;
}
/***************************************************************************/
/***************************************************************************/
/* EEPROM Functions */
/***************************************************************************/
/* Read PWA (printed wired assembly) number */
void __devinit
e100_rd_pwa_no(struct e100_private *bdp)
{
bdp->pwa_no = e100_eeprom_read(bdp, EEPROM_PWA_NO);
bdp->pwa_no <<= 16;
bdp->pwa_no |= e100_eeprom_read(bdp, EEPROM_PWA_NO + 1);
}
/* Read the permanent ethernet address from the eprom. */
void __devinit
e100_rd_eaddr(struct e100_private *bdp)
{
int i;
u16 eeprom_word;
for (i = 0; i < 6; i += 2) {
eeprom_word =
e100_eeprom_read(bdp,
EEPROM_NODE_ADDRESS_BYTE_0 + (i / 2));
bdp->device->dev_addr[i] =
bdp->perm_node_address[i] = (u8) eeprom_word;
bdp->device->dev_addr[i + 1] =
bdp->perm_node_address[i + 1] = (u8) (eeprom_word >> 8);
}
}
/* Check the D102 RFD flags to see if the checksum passed */
static unsigned char
e100_D102_check_checksum(rfd_t *rfd)
{
if (((le16_to_cpu(rfd->rfd_header.cb_status)) & RFD_PARSE_BIT)
&& (((rfd->rcvparserstatus & CHECKSUM_PROTOCOL_MASK) ==
RFD_TCP_PACKET)
|| ((rfd->rcvparserstatus & CHECKSUM_PROTOCOL_MASK) ==
RFD_UDP_PACKET))
&& (rfd->checksumstatus & TCPUDP_CHECKSUM_BIT_VALID)
&& (rfd->checksumstatus & TCPUDP_CHECKSUM_VALID)) {
return CHECKSUM_UNNECESSARY;
}
return CHECKSUM_NONE;
}
/**
* e100_D101M_checksum
* @bdp: atapter's private data struct
* @skb: skb received
*
* Sets the skb->csum value from D101 csum found at the end of the Rx frame. The
* D101M sums all words in frame excluding the ethernet II header (14 bytes) so
* in case the packet is ethernet II and the protocol is IP, all is need is to
* assign this value to skb->csum.
*/
static unsigned char
e100_D101M_checksum(struct e100_private *bdp, struct sk_buff *skb)
{
unsigned short proto = (skb->protocol);
if (proto == __constant_htons(ETH_P_IP)) {
skb->csum = get_unaligned((u16 *) (skb->tail));
return CHECKSUM_HW;
}
return CHECKSUM_NONE;
}
/***************************************************************************/
/***************************************************************************/
/***************************************************************************/
/***************************************************************************/
/* Auxilary Functions */
/***************************************************************************/
/* Print the board's configuration */
void __devinit
e100_print_brd_conf(struct e100_private *bdp)
{
if (netif_carrier_ok(bdp->device)) {
printk(KERN_NOTICE
" Mem:0x%08lx IRQ:%d Speed:%d Mbps Dx:%s\n",
(unsigned long) bdp->device->mem_start,
bdp->device->irq, bdp->cur_line_speed,
(bdp->cur_dplx_mode == FULL_DUPLEX) ? "Full" : "Half");
} else {
printk(KERN_NOTICE
" Mem:0x%08lx IRQ:%d Speed:%d Mbps Dx:%s\n",
(unsigned long) bdp->device->mem_start,
bdp->device->irq, 0, "N/A");
}
/* Print the string if checksum Offloading was enabled */
if (bdp->flags & DF_CSUM_OFFLOAD)
printk(KERN_NOTICE " Hardware receive checksums enabled\n");
else {
if (bdp->rev_id >= D101MA_REV_ID)
printk(KERN_NOTICE " Hardware receive checksums disabled\n");
}
if ((bdp->flags & DF_UCODE_LOADED))
printk(KERN_NOTICE " cpu cycle saver enabled\n");
}
/**
* e100_get_brand_msg
* @bdp: atapter's private data struct
*
* This routine checks if there is specified branding message for a given board
* type and returns a pointer to the string containing the branding message.
*/
char *
e100_get_brand_msg(struct e100_private *bdp)
{
int i;
for (i = 0; e100_vendor_info_array[i].idstr != NULL; i++) {
if (e100_vendor_info_array[i].device_type == bdp->device_type) {
return e100_vendor_info_array[i].idstr;
}
}
return e100_vendor_info_array[E100_ALL_BOARDS].idstr;
}
/**
* e100_pci_setup - setup the adapter's PCI information
* @pcid: adapter's pci_dev struct
* @bdp: atapter's private data struct
*
* This routine sets up all PCI information for the adapter. It enables the bus
* master bit (some BIOS don't do this), requests memory ans I/O regions, and
* calls ioremap() on the adapter's memory region.
*
* Returns:
* true: if successfull
* false: otherwise
*/
static unsigned char __devinit
e100_pci_setup(struct pci_dev *pcid, struct e100_private *bdp)
{
struct net_device *dev = bdp->device;
int rc = 0;
if ((rc = pci_enable_device(pcid)) != 0) {
goto err;
}
/* dev and ven ID have already been checked so it is our device */
pci_read_config_byte(pcid, PCI_REVISION_ID, (u8 *) &(bdp->rev_id));
/* address #0 is a memory region */
dev->mem_start = pci_resource_start(pcid, 0);
dev->mem_end = dev->mem_start + sizeof (scb_t);
/* address #1 is a IO region */
dev->base_addr = pci_resource_start(pcid, 1);
if ((rc = pci_request_regions(pcid, e100_short_driver_name)) != 0) {
goto err_disable;
}
pci_enable_wake(pcid, 0, 0);
/* if Bus Mastering is off, turn it on! */
pci_set_master(pcid);
/* address #0 is a memory mapping */
bdp->scb = (scb_t *) ioremap_nocache(dev->mem_start, sizeof (scb_t));
if (!bdp->scb) {
printk(KERN_ERR "e100: %s: Failed to map PCI address 0x%lX\n",
dev->name, pci_resource_start(pcid, 0));
rc = -ENOMEM;
goto err_region;
}
return 0;
err_region:
pci_release_regions(pcid);
err_disable:
pci_disable_device(pcid);
err:
return rc;
}
void
e100_isolate_driver(struct e100_private *bdp)
{
if (netif_running(bdp->device)) {
e100_dis_intr(bdp);
del_timer_sync(&bdp->watchdog_timer);
del_timer_sync(&bdp->hwi_timer);
/* If in middle of cable diag, */
if (bdp->hwi_started) {
bdp->hwi_started = 0;
e100_hwi_restore(bdp);
}
netif_carrier_off(bdp->device);
netif_stop_queue(bdp->device);
bdp->last_tcb = NULL;
}
e100_sw_reset(bdp, PORT_SELECTIVE_RESET);
}
void
e100_set_speed_duplex(struct e100_private *bdp)
{
if (netif_carrier_ok(bdp->device))
e100_isolate_driver(bdp);
e100_phy_set_speed_duplex(bdp, true);
e100_config_fc(bdp); /* re-config flow-control if necessary */
e100_config(bdp);
if (netif_carrier_ok(bdp->device))
e100_deisolate_driver(bdp, false);
}
static void
e100_tcb_add_C_bit(struct e100_private *bdp)
{
tcb_t *tcb = (tcb_t *) bdp->tcb_pool.data;
int i;
for (i = 0; i < bdp->params.TxDescriptors; i++, tcb++) {
tcb->tcb_hdr.cb_status |= cpu_to_le16(CB_STATUS_COMPLETE);
}
}
/*
* Procedure: e100_hw_reset_recover
*
* Description: This routine will recover the hw after reset.
*
* Arguments:
* bdp - Ptr to this card's e100_bdconfig structure
* reset_cmd - s/w reset or selective reset.
*
* Returns:
* true upon success
* false upon failure
*/
unsigned char
e100_hw_reset_recover(struct e100_private *bdp, u32 reset_cmd)
{
bdp->last_tcb = NULL;
if (reset_cmd == PORT_SOFTWARE_RESET) {
/*load CU & RU base */
if (!e100_wait_exec_cmplx(bdp, 0, SCB_CUC_LOAD_BASE)) {
return false;
}
if (e100_load_microcode(bdp)) {
bdp->flags |= DF_UCODE_LOADED;
}
if (!e100_wait_exec_cmplx(bdp, 0, SCB_RUC_LOAD_BASE)) {
return false;
}
/* Issue the load dump counters address command */
if (!e100_wait_exec_cmplx(bdp, bdp->stat_cnt_phys,
SCB_CUC_DUMP_ADDR)) {
return false;
}
if (!e100_setup_iaaddr(bdp, bdp->device->dev_addr)) {
printk(KERN_ERR
"e100: e100_hw_reset_recover: "
"setup iaaddr failed\n");
return false;
}
e100_set_multi_exec(bdp->device);
/* Change for 82558 enhancement */
/* If 82558/9 and if the user has enabled flow control, set up * the
* Flow Control Reg. in the CSR */
if ((bdp->flags & IS_BACHELOR)
&& (bdp->params.b_params & PRM_FC)) {
writeb(DFLT_FC_THLD,
&bdp->scb->scb_ext.d101_scb.scb_fc_thld);
writeb(DFLT_FC_CMD,
&bdp->scb->scb_ext.d101_scb.scb_fc_xon_xoff);
}
}
e100_force_config(bdp);
return true;
}
void
e100_deisolate_driver(struct e100_private *bdp, u8 full_reset)
{
u32 cmd = full_reset ? PORT_SOFTWARE_RESET : PORT_SELECTIVE_RESET;
e100_sw_reset(bdp, cmd);
if (cmd == PORT_SOFTWARE_RESET) {
if (!e100_hw_reset_recover(bdp, cmd))
printk(KERN_ERR "e100: e100_deisolate_driver:"
" device configuration failed\n");
}
if (netif_running(bdp->device)) {
bdp->next_cu_cmd = START_WAIT;
bdp->last_tcb = NULL;
e100_start_ru(bdp);
/* relaunch watchdog timer in 2 sec */
mod_timer(&(bdp->watchdog_timer), jiffies + (2 * HZ));
// we must clear tcbs since we may have lost Tx intrrupt
// or have unsent frames on the tcb chain
e100_tcb_add_C_bit(bdp);
e100_tx_srv(bdp);
netif_wake_queue(bdp->device);
e100_set_intr_mask(bdp);
}
}
static int
e100_do_ethtool_ioctl(struct net_device *dev, struct ifreq *ifr)
{
struct ethtool_cmd ecmd;
int rc = -EOPNOTSUPP;
if (copy_from_user(&ecmd, ifr->ifr_data, sizeof (ecmd.cmd)))
return -EFAULT;
switch (ecmd.cmd) {
case ETHTOOL_GSET:
rc = e100_ethtool_get_settings(dev, ifr);
break;
case ETHTOOL_SSET:
rc = e100_ethtool_set_settings(dev, ifr);
break;
case ETHTOOL_GDRVINFO:
rc = e100_ethtool_get_drvinfo(dev, ifr);
break;
case ETHTOOL_GREGS:
rc = e100_ethtool_gregs(dev, ifr);
break;
case ETHTOOL_NWAY_RST:
rc = e100_ethtool_nway_rst(dev, ifr);
break;
case ETHTOOL_GLINK:
rc = e100_ethtool_glink(dev, ifr);
break;
case ETHTOOL_GEEPROM:
case ETHTOOL_SEEPROM:
rc = e100_ethtool_eeprom(dev, ifr);
break;
case ETHTOOL_GWOL:
case ETHTOOL_SWOL:
rc = e100_ethtool_wol(dev, ifr);
break;
case ETHTOOL_TEST:
rc = e100_ethtool_test(dev, ifr);
break;
case ETHTOOL_GSTRINGS:
rc = e100_ethtool_gstrings(dev,ifr);
break;
case ETHTOOL_PHYS_ID:
rc = e100_ethtool_led_blink(dev,ifr);
break;
default:
break;
} //switch
return rc;
}
static int
e100_ethtool_get_settings(struct net_device *dev, struct ifreq *ifr)
{
struct e100_private *bdp;
struct ethtool_cmd ecmd;
u16 advert = 0;
memset((void *) &ecmd, 0, sizeof (ecmd));
bdp = dev->priv;
ecmd.supported = bdp->speed_duplex_caps;
ecmd.port =
(bdp->speed_duplex_caps & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
ecmd.transceiver = XCVR_INTERNAL;
ecmd.phy_address = bdp->phy_addr;
if (netif_carrier_ok(bdp->device)) {
ecmd.speed = bdp->cur_line_speed;
ecmd.duplex =
(bdp->cur_dplx_mode == HALF_DUPLEX) ? DUPLEX_HALF : DUPLEX_FULL;
}
else {
ecmd.speed = -1;
ecmd.duplex = -1;
}
ecmd.advertising = ADVERTISED_TP;
if (bdp->params.e100_speed_duplex == E100_AUTONEG) {
ecmd.autoneg = AUTONEG_ENABLE;
ecmd.advertising |= ADVERTISED_Autoneg;
} else {
ecmd.autoneg = AUTONEG_DISABLE;
}
if (bdp->speed_duplex_caps & SUPPORTED_MII) {
e100_mdi_read(bdp, MII_ADVERTISE, bdp->phy_addr, &advert);
if (advert & ADVERTISE_10HALF)
ecmd.advertising |= ADVERTISED_10baseT_Half;
if (advert & ADVERTISE_10FULL)
ecmd.advertising |= ADVERTISED_10baseT_Full;
if (advert & ADVERTISE_100HALF)
ecmd.advertising |= ADVERTISED_100baseT_Half;
if (advert & ADVERTISE_100FULL)
ecmd.advertising |= ADVERTISED_100baseT_Full;
} else {
ecmd.autoneg = AUTONEG_DISABLE;
ecmd.advertising &= ~ADVERTISED_Autoneg;
}
if (copy_to_user(ifr->ifr_data, &ecmd, sizeof (ecmd)))
return -EFAULT;
return 0;
}
static int
e100_ethtool_set_settings(struct net_device *dev, struct ifreq *ifr)
{
struct e100_private *bdp;
int current_duplex;
int e100_new_speed_duplex;
int ethtool_new_speed_duplex;
int speed_duplex_change_required;
struct ethtool_cmd ecmd;
if (!capable(CAP_NET_ADMIN)) {
return -EPERM;
}
bdp = dev->priv;
if (netif_running(dev)) {
return -EBUSY;
}
if (copy_from_user(&ecmd, ifr->ifr_data, sizeof (ecmd))) {
return -EFAULT;
}
current_duplex =
(bdp->cur_dplx_mode == HALF_DUPLEX) ? DUPLEX_HALF : DUPLEX_FULL;
speed_duplex_change_required = (ecmd.speed != bdp->cur_line_speed)
|| (ecmd.duplex != current_duplex);
if ((ecmd.autoneg == AUTONEG_ENABLE) && speed_duplex_change_required) {
return -EINVAL;
}
if ((ecmd.autoneg == AUTONEG_ENABLE)
&& (bdp->speed_duplex_caps & SUPPORTED_Autoneg)) {
bdp->params.e100_speed_duplex = E100_AUTONEG;
e100_set_speed_duplex(bdp);
} else {
if (speed_duplex_change_required) {
if (ecmd.speed == SPEED_10) {
if (ecmd.duplex == DUPLEX_HALF) {
e100_new_speed_duplex =
E100_SPEED_10_HALF;
ethtool_new_speed_duplex =
SUPPORTED_10baseT_Half;
} else {
e100_new_speed_duplex =
E100_SPEED_10_FULL;
ethtool_new_speed_duplex =
SUPPORTED_10baseT_Full;
}
} else {
if (ecmd.duplex == DUPLEX_HALF) {
e100_new_speed_duplex =
E100_SPEED_100_HALF;
ethtool_new_speed_duplex =
SUPPORTED_100baseT_Half;
} else {
e100_new_speed_duplex =
E100_SPEED_100_FULL;
ethtool_new_speed_duplex =
SUPPORTED_100baseT_Full;
}
}
if (bdp->speed_duplex_caps & ethtool_new_speed_duplex) {
bdp->params.e100_speed_duplex =
e100_new_speed_duplex;
e100_set_speed_duplex(bdp);
} else {
return -EOPNOTSUPP;
}
}
}
return 0;
}
static int
e100_ethtool_glink(struct net_device *dev, struct ifreq *ifr)
{
struct e100_private *bdp;
struct ethtool_value info;
memset((void *) &info, 0, sizeof (info));
bdp = dev->priv;
info.cmd = ETHTOOL_GLINK;
/* Consider both PHY link and netif_running */
info.data = e100_update_link_state(bdp);
if (copy_to_user(ifr->ifr_data, &info, sizeof (info)))
return -EFAULT;
return 0;
}
static int
e100_ethtool_test(struct net_device *dev, struct ifreq *ifr)
{
struct ethtool_test *info;
int rc = -EFAULT;
info = kmalloc(sizeof(*info) + E100_MAX_TEST_RES * sizeof(u64),
GFP_ATOMIC);
if (!info)
return -ENOMEM;
memset((void *) info, 0, sizeof(*info) +
E100_MAX_TEST_RES * sizeof(u64));
if (copy_from_user(info, ifr->ifr_data, sizeof(*info)))
goto exit;
info->flags = e100_run_diag(dev, info->data, info->flags);
if (!copy_to_user(ifr->ifr_data, info,
sizeof(*info) + E100_MAX_TEST_RES * sizeof(u64)))
rc = 0;
exit:
kfree(info);
return rc;
}
static int
e100_ethtool_gregs(struct net_device *dev, struct ifreq *ifr)
{
struct e100_private *bdp;
u32 regs_buff[E100_REGS_LEN];
struct ethtool_regs regs = {ETHTOOL_GREGS};
void *addr = ifr->ifr_data;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
bdp = dev->priv;
if(copy_from_user(&regs, addr, sizeof(regs)))
return -EFAULT;
regs.version = (1 << 24) | bdp->rev_id;
regs_buff[0] = readb(&(bdp->scb->scb_cmd_hi)) << 24 |
readb(&(bdp->scb->scb_cmd_low)) << 16 |
readw(&(bdp->scb->scb_status));
if(copy_to_user(addr, &regs, sizeof(regs)))
return -EFAULT;
addr += offsetof(struct ethtool_regs, data);
if(copy_to_user(addr, regs_buff, regs.len))
return -EFAULT;
return 0;
}
static int
e100_ethtool_nway_rst(struct net_device *dev, struct ifreq *ifr)
{
struct e100_private *bdp;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
bdp = dev->priv;
if ((bdp->speed_duplex_caps & SUPPORTED_Autoneg) &&
(bdp->params.e100_speed_duplex == E100_AUTONEG)) {
e100_set_speed_duplex(bdp);
} else {
return -EFAULT;
}
return 0;
}
static int
e100_ethtool_get_drvinfo(struct net_device *dev, struct ifreq *ifr)
{
struct e100_private *bdp;
struct ethtool_drvinfo info;
memset((void *) &info, 0, sizeof (info));
bdp = dev->priv;
strncpy(info.driver, e100_short_driver_name, sizeof (info.driver) - 1);
strncpy(info.version, e100_driver_version, sizeof (info.version) - 1);
strncpy(info.fw_version, "N/A",
sizeof (info.fw_version) - 1);
strncpy(info.bus_info, bdp->pdev->slot_name,
sizeof (info.bus_info) - 1);
info.regdump_len = E100_REGS_LEN * sizeof(u32);
info.eedump_len = (bdp->eeprom_size << 1);
info.testinfo_len = E100_MAX_TEST_RES;
if (copy_to_user(ifr->ifr_data, &info, sizeof (info)))
return -EFAULT;
return 0;
}
static int
e100_ethtool_eeprom(struct net_device *dev, struct ifreq *ifr)
{
struct e100_private *bdp;
struct ethtool_eeprom ecmd;
u16 eeprom_data[256];
u16 *usr_eeprom_ptr;
u16 first_word, last_word;
int i, max_len;
void *ptr;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
bdp = dev->priv;
if (copy_from_user(&ecmd, ifr->ifr_data, sizeof (ecmd)))
return -EFAULT;
usr_eeprom_ptr =
(u16 *) (ifr->ifr_data + offsetof(struct ethtool_eeprom, data));
max_len = bdp->eeprom_size * 2;
if (ecmd.offset > ecmd.offset + ecmd.len)
return -EINVAL;
if ((ecmd.offset + ecmd.len) > max_len)
ecmd.len = (max_len - ecmd.offset);
first_word = ecmd.offset >> 1;
last_word = (ecmd.offset + ecmd.len - 1) >> 1;
if (first_word >= bdp->eeprom_size)
return -EFAULT;
if (ecmd.cmd == ETHTOOL_GEEPROM) {
for(i = 0; i <= (last_word - first_word); i++)
eeprom_data[i] = e100_eeprom_read(bdp, first_word + i);
ecmd.magic = E100_EEPROM_MAGIC;
if (copy_to_user(ifr->ifr_data, &ecmd, sizeof (ecmd)))
return -EFAULT;
if (copy_to_user(usr_eeprom_ptr, eeprom_data, ecmd.len))
return -EFAULT;
} else {
if (ecmd.magic != E100_EEPROM_MAGIC)
return -EFAULT;
ptr = (void *)eeprom_data;
if(ecmd.offset & 1) {
/* need modification of first changed EEPROM word */
/* only the second byte of the word is being modified */
eeprom_data[0] = e100_eeprom_read(bdp, first_word);
ptr++;
}
if((ecmd.offset + ecmd.len) & 1) {
/* need modification of last changed EEPROM word */
/* only the first byte of the word is being modified */
eeprom_data[last_word - first_word] =
e100_eeprom_read(bdp, last_word);
}
if(copy_from_user(ptr, usr_eeprom_ptr, ecmd.len))
return -EFAULT;
e100_eeprom_write_block(bdp, first_word, eeprom_data,
last_word - first_word + 1);
if (copy_to_user(ifr->ifr_data, &ecmd, sizeof (ecmd)))
return -EFAULT;
}
return 0;
}
#define E100_BLINK_INTERVAL (HZ/4)
/**
* e100_led_control
* @bdp: atapter's private data struct
* @led_mdi_op: led operation
*
* Software control over adapter's led. The possible operations are:
* TURN LED OFF, TURN LED ON and RETURN LED CONTROL TO HARDWARE.
*/
static void
e100_led_control(struct e100_private *bdp, u16 led_mdi_op)
{
e100_mdi_write(bdp, PHY_82555_LED_SWITCH_CONTROL,
bdp->phy_addr, led_mdi_op);
}
/**
* e100_led_blink_callback
* @data: pointer to atapter's private data struct
*
* Blink timer callback function. Toggles ON/OFF led status bit and calls
* led hardware access function.
*/
static void
e100_led_blink_callback(unsigned long data)
{
struct e100_private *bdp = (struct e100_private *) data;
if(bdp->flags & LED_IS_ON) {
bdp->flags &= ~LED_IS_ON;
e100_led_control(bdp, PHY_82555_LED_OFF);
} else {
bdp->flags |= LED_IS_ON;
if (bdp->rev_id >= D101MA_REV_ID)
e100_led_control(bdp, PHY_82555_LED_ON_559);
else
e100_led_control(bdp, PHY_82555_LED_ON_PRE_559);
}
mod_timer(&bdp->blink_timer, jiffies + E100_BLINK_INTERVAL);
}
/**
* e100_ethtool_led_blink
* @dev: pointer to atapter's net_device struct
* @ifr: pointer to ioctl request structure
*
* Blink led ioctl handler. Initialtes blink timer and sleeps until
* blink period expires. Than it kills timer and returns. The led control
* is returned back to hardware when blink timer is killed.
*/
static int
e100_ethtool_led_blink(struct net_device *dev, struct ifreq *ifr)
{
struct e100_private *bdp;
struct ethtool_value ecmd;
bdp = dev->priv;
if (copy_from_user(&ecmd, ifr->ifr_data, sizeof (ecmd)))
return -EFAULT;
if(!bdp->blink_timer.function) {
init_timer(&bdp->blink_timer);
bdp->blink_timer.function = e100_led_blink_callback;
bdp->blink_timer.data = (unsigned long) bdp;
}
mod_timer(&bdp->blink_timer, jiffies);
set_current_state(TASK_INTERRUPTIBLE);
if ((!ecmd.data) || (ecmd.data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)))
ecmd.data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
schedule_timeout(ecmd.data * HZ);
del_timer_sync(&bdp->blink_timer);
e100_led_control(bdp, PHY_82555_LED_NORMAL_CONTROL);
return 0;
}
static inline int __devinit
e100_10BaseT_adapter(struct e100_private *bdp)
{
return ((bdp->pdev->device == 0x1229) &&
(bdp->pdev->subsystem_vendor == 0x8086) &&
(bdp->pdev->subsystem_device == 0x0003));
}
static void __devinit
e100_get_speed_duplex_caps(struct e100_private *bdp)
{
u16 status;
e100_mdi_read(bdp, MII_BMSR, bdp->phy_addr, &status);
bdp->speed_duplex_caps = 0;
bdp->speed_duplex_caps |=
(status & BMSR_ANEGCAPABLE) ? SUPPORTED_Autoneg : 0;
bdp->speed_duplex_caps |=
(status & BMSR_10HALF) ? SUPPORTED_10baseT_Half : 0;
bdp->speed_duplex_caps |=
(status & BMSR_10FULL) ? SUPPORTED_10baseT_Full : 0;
bdp->speed_duplex_caps |=
(status & BMSR_100HALF) ? SUPPORTED_100baseT_Half : 0;
bdp->speed_duplex_caps |=
(status & BMSR_100FULL) ? SUPPORTED_100baseT_Full : 0;
if (IS_NC3133(bdp))
bdp->speed_duplex_caps =
(SUPPORTED_FIBRE | SUPPORTED_100baseT_Full);
else
bdp->speed_duplex_caps |= SUPPORTED_TP;
if ((status == 0xFFFF) && e100_10BaseT_adapter(bdp)) {
bdp->speed_duplex_caps =
(SUPPORTED_10baseT_Half | SUPPORTED_TP);
} else {
bdp->speed_duplex_caps |= SUPPORTED_MII;
}
}
#ifdef CONFIG_PM
static unsigned char
e100_setup_filter(struct e100_private *bdp)
{
cb_header_t *ntcb_hdr;
unsigned char res = false;
nxmit_cb_entry_t *cmd;
if ((cmd = e100_alloc_non_tx_cmd(bdp)) == NULL) {
goto exit;
}
ntcb_hdr = (cb_header_t *) cmd->non_tx_cmd;
ntcb_hdr->cb_cmd = __constant_cpu_to_le16(CB_LOAD_FILTER);
/* Set EL and FIX bit */
(cmd->non_tx_cmd)->ntcb.filter.filter_data[0] =
__constant_cpu_to_le32(CB_FILTER_EL | CB_FILTER_FIX);
if (bdp->wolopts & WAKE_UCAST) {
(cmd->non_tx_cmd)->ntcb.filter.filter_data[0] |=
__constant_cpu_to_le32(CB_FILTER_IA_MATCH);
}
if (bdp->wolopts & WAKE_ARP) {
/* Setup ARP bit and lower IP parts */
/* bdp->ip_lbytes contains 2 lower bytes of IP address in network byte order */
(cmd->non_tx_cmd)->ntcb.filter.filter_data[0] |=
cpu_to_le32(CB_FILTER_ARP | bdp->ip_lbytes);
}
res = e100_exec_non_cu_cmd(bdp, cmd);
if (!res)
printk(KERN_WARNING "e100: %s: Filter setup failed\n",
bdp->device->name);
exit:
return res;
}
static void
e100_do_wol(struct pci_dev *pcid, struct e100_private *bdp)
{
e100_config_wol(bdp);
if (e100_config(bdp)) {
if (bdp->wolopts & (WAKE_UCAST | WAKE_ARP))
if (!e100_setup_filter(bdp))
printk(KERN_ERR
"e100: WOL options failed\n");
} else {
printk(KERN_ERR "e100: config WOL failed\n");
}
}
#endif
static u16
e100_get_ip_lbytes(struct net_device *dev)
{
struct in_ifaddr *ifa;
struct in_device *in_dev;
u32 res = 0;
in_dev = (struct in_device *) dev->ip_ptr;
/* Check if any in_device bound to interface */
if (in_dev) {
/* Check if any IP address is bound to interface */
if ((ifa = in_dev->ifa_list) != NULL) {
res = __constant_ntohl(ifa->ifa_address);
res = __constant_htons(res & 0x0000ffff);
}
}
return res;
}
static int
e100_ethtool_wol(struct net_device *dev, struct ifreq *ifr)
{
struct e100_private *bdp;
struct ethtool_wolinfo wolinfo;
int res = 0;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
bdp = dev->priv;
if (copy_from_user(&wolinfo, ifr->ifr_data, sizeof (wolinfo))) {
return -EFAULT;
}
switch (wolinfo.cmd) {
case ETHTOOL_GWOL:
wolinfo.supported = bdp->wolsupported;
wolinfo.wolopts = bdp->wolopts;
if (copy_to_user(ifr->ifr_data, &wolinfo, sizeof (wolinfo)))
res = -EFAULT;
break;
case ETHTOOL_SWOL:
/* If ALL requests are supported or request is DISABLE wol */
if (((wolinfo.wolopts & bdp->wolsupported) == wolinfo.wolopts)
|| (wolinfo.wolopts == 0)) {
bdp->wolopts = wolinfo.wolopts;
} else {
res = -EOPNOTSUPP;
}
if (wolinfo.wolopts & WAKE_ARP)
bdp->ip_lbytes = e100_get_ip_lbytes(dev);
break;
default:
break;
}
return res;
}
static int e100_ethtool_gstrings(struct net_device *dev, struct ifreq *ifr)
{
struct ethtool_gstrings info;
char *strings = NULL;
char *usr_strings;
int i;
memset((void *) &info, 0, sizeof(info));
usr_strings = (u8 *) (ifr->ifr_data +
offsetof(struct ethtool_gstrings, data));
if (copy_from_user(&info, ifr->ifr_data, sizeof (info)))
return -EFAULT;
switch (info.string_set) {
case ETH_SS_TEST:
if (info.len > E100_MAX_TEST_RES)
info.len = E100_MAX_TEST_RES;
strings = kmalloc(info.len * ETH_GSTRING_LEN, GFP_ATOMIC);
if (!strings)
return -ENOMEM;
memset(strings, 0, info.len * ETH_GSTRING_LEN);
for (i = 0; i < info.len; i++) {
sprintf(strings + i * ETH_GSTRING_LEN, "%-31s",
test_strings[i]);
}
break;
default:
return -EOPNOTSUPP;
}
if (copy_to_user(ifr->ifr_data, &info, sizeof (info)))
return -EFAULT;
if (copy_to_user(usr_strings, strings, info.len * ETH_GSTRING_LEN))
return -EFAULT;
kfree(strings);
return 0;
}
static int
e100_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct e100_private *bdp;
struct mii_ioctl_data *data_ptr =
(struct mii_ioctl_data *) &(ifr->ifr_data);
bdp = dev->priv;
switch (cmd) {
case SIOCGMIIPHY:
data_ptr->phy_id = bdp->phy_addr & 0x1f;
break;
case SIOCGMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
e100_mdi_read(bdp, data_ptr->reg_num & 0x1f, bdp->phy_addr,
&(data_ptr->val_out));
break;
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (netif_running(dev)) {
return -EBUSY;
}
/* If reg = 0 && change speed/duplex */
if (data_ptr->reg_num == 0 &&
(data_ptr->val_in == (BMCR_ANENABLE | BMCR_ANRESTART) /* restart cmd */
|| data_ptr->val_in == (BMCR_RESET) /* reset cmd */
|| data_ptr->val_in & (BMCR_SPEED100 | BMCR_FULLDPLX)
|| data_ptr->val_in == 0)) {
if (data_ptr->val_in == (BMCR_ANENABLE | BMCR_ANRESTART)
|| data_ptr->val_in == (BMCR_RESET))
bdp->params.e100_speed_duplex = E100_AUTONEG;
else if (data_ptr->val_in == (BMCR_SPEED100 | BMCR_FULLDPLX))
bdp->params.e100_speed_duplex = E100_SPEED_100_FULL;
else if (data_ptr->val_in == (BMCR_SPEED100))
bdp->params.e100_speed_duplex = E100_SPEED_100_HALF;
else if (data_ptr->val_in == (BMCR_FULLDPLX))
bdp->params.e100_speed_duplex = E100_SPEED_10_FULL;
else
bdp->params.e100_speed_duplex = E100_SPEED_10_HALF;
e100_set_speed_duplex(bdp);
}
else {
e100_mdi_write(bdp, data_ptr->reg_num, bdp->phy_addr,
data_ptr->val_in);
}
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
nxmit_cb_entry_t *
e100_alloc_non_tx_cmd(struct e100_private *bdp)
{
nxmit_cb_entry_t *non_tx_cmd_elem;
if (!(non_tx_cmd_elem = (nxmit_cb_entry_t *)
kmalloc(sizeof (nxmit_cb_entry_t), GFP_ATOMIC))) {
return NULL;
}
non_tx_cmd_elem->non_tx_cmd =
pci_alloc_consistent(bdp->pdev, sizeof (nxmit_cb_t),
&(non_tx_cmd_elem->dma_addr));
if (non_tx_cmd_elem->non_tx_cmd == NULL) {
kfree(non_tx_cmd_elem);
return NULL;
}
return non_tx_cmd_elem;
}
void
e100_free_non_tx_cmd(struct e100_private *bdp,
nxmit_cb_entry_t *non_tx_cmd_elem)
{
pci_free_consistent(bdp->pdev, sizeof (nxmit_cb_t),
non_tx_cmd_elem->non_tx_cmd,
non_tx_cmd_elem->dma_addr);
kfree(non_tx_cmd_elem);
}
static void
e100_free_nontx_list(struct e100_private *bdp)
{
nxmit_cb_entry_t *command;
int i;
while (!list_empty(&bdp->non_tx_cmd_list)) {
command = list_entry(bdp->non_tx_cmd_list.next,
nxmit_cb_entry_t, list_elem);
list_del(&(command->list_elem));
e100_free_non_tx_cmd(bdp, command);
}
for (i = 0; i < CB_MAX_NONTX_CMD; i++) {
bdp->same_cmd_entry[i] = NULL;
}
}
static unsigned char
e100_delayed_exec_non_cu_cmd(struct e100_private *bdp,
nxmit_cb_entry_t *command)
{
nxmit_cb_entry_t *same_command;
cb_header_t *ntcb_hdr;
u16 cmd;
ntcb_hdr = (cb_header_t *) command->non_tx_cmd;
cmd = CB_CMD_MASK & le16_to_cpu(ntcb_hdr->cb_cmd);
spin_lock_bh(&(bdp->bd_non_tx_lock));
same_command = bdp->same_cmd_entry[cmd];
if (same_command != NULL) {
memcpy((void *) (same_command->non_tx_cmd),
(void *) (command->non_tx_cmd), sizeof (nxmit_cb_t));
e100_free_non_tx_cmd(bdp, command);
} else {
list_add_tail(&(command->list_elem), &(bdp->non_tx_cmd_list));
bdp->same_cmd_entry[cmd] = command;
}
if (bdp->non_tx_command_state == E100_NON_TX_IDLE) {
bdp->non_tx_command_state = E100_WAIT_TX_FINISH;
mod_timer(&(bdp->nontx_timer_id), jiffies + 1);
}
spin_unlock_bh(&(bdp->bd_non_tx_lock));
return true;
}
static void
e100_non_tx_background(unsigned long ptr)
{
struct e100_private *bdp = (struct e100_private *) ptr;
nxmit_cb_entry_t *active_command;
int restart = true;
spin_lock_bh(&(bdp->bd_non_tx_lock));
switch (bdp->non_tx_command_state) {
case E100_WAIT_TX_FINISH:
if (bdp->last_tcb != NULL) {
rmb();
if ((bdp->last_tcb->tcb_hdr.cb_status &
__constant_cpu_to_le16(CB_STATUS_COMPLETE)) == 0)
goto exit;
}
if ((readw(&bdp->scb->scb_status) & SCB_CUS_MASK) ==
SCB_CUS_ACTIVE) {
goto exit;
}
break;
case E100_WAIT_NON_TX_FINISH:
active_command = list_entry(bdp->non_tx_cmd_list.next,
nxmit_cb_entry_t, list_elem);
rmb();
if (((((cb_header_t *) (active_command->non_tx_cmd))->cb_status
& __constant_cpu_to_le16(CB_STATUS_COMPLETE)) == 0)
&& time_before(jiffies, active_command->expiration_time)) {
goto exit;
} else {
list_del(&(active_command->list_elem));
e100_free_non_tx_cmd(bdp, active_command);
}
break;
default:
break;
} //switch
if (list_empty(&bdp->non_tx_cmd_list)) {
bdp->non_tx_command_state = E100_NON_TX_IDLE;
spin_lock_irq(&(bdp->bd_lock));
bdp->next_cu_cmd = START_WAIT;
spin_unlock_irq(&(bdp->bd_lock));
restart = false;
goto exit;
} else {
u16 cmd_type;
bdp->non_tx_command_state = E100_WAIT_NON_TX_FINISH;
active_command = list_entry(bdp->non_tx_cmd_list.next,
nxmit_cb_entry_t, list_elem);
spin_lock_irq(&(bdp->bd_lock));
e100_wait_exec_cmplx(bdp, active_command->dma_addr,
SCB_CUC_START);
spin_unlock_irq(&(bdp->bd_lock));
active_command->expiration_time = jiffies + HZ;
cmd_type = CB_CMD_MASK &
le16_to_cpu(((cb_header_t *)
(active_command->non_tx_cmd))->cb_cmd);
bdp->same_cmd_entry[cmd_type] = NULL;
}
exit:
if (restart) {
mod_timer(&(bdp->nontx_timer_id), jiffies + 1);
} else {
if (netif_running(bdp->device))
netif_wake_queue(bdp->device);
}
spin_unlock_bh(&(bdp->bd_non_tx_lock));
}
int e100_notify_netdev(struct notifier_block *nb, unsigned long event, void *p)
{
struct e100_private *bdp;
struct net_device *netdev = p;
if(netdev == NULL)
return NOTIFY_DONE;
switch(event) {
case NETDEV_CHANGENAME:
if(netdev->open == e100_open) {
bdp = netdev->priv;
/* rename the proc nodes the easy way */
e100_remove_proc_subdir(bdp, bdp->ifname);
memcpy(bdp->ifname, netdev->name, IFNAMSIZ);
bdp->ifname[IFNAMSIZ-1] = 0;
e100_create_proc_subdir(bdp, bdp->ifname);
}
break;
}
return NOTIFY_DONE;
}
#ifdef CONFIG_PM
static int
e100_notify_reboot(struct notifier_block *nb, unsigned long event, void *p)
{
struct pci_dev *pdev;
switch(event) {
case SYS_DOWN:
case SYS_HALT:
case SYS_POWER_OFF:
pci_for_each_dev(pdev) {
if(pci_dev_driver(pdev) == &e100_driver) {
/* If net_device struct is allocated? */
if (pci_get_drvdata(pdev))
e100_suspend(pdev, 3);
}
}
}
return NOTIFY_DONE;
}
static int
e100_suspend(struct pci_dev *pcid, u32 state)
{
struct net_device *netdev = pci_get_drvdata(pcid);
struct e100_private *bdp = netdev->priv;
e100_isolate_driver(bdp);
pci_save_state(pcid, bdp->pci_state);
/* If wol is enabled */
if (bdp->wolopts) {
e100_do_wol(pcid, bdp);
pci_enable_wake(pcid, 3, 1); /* Enable PME for power state D3 */
pci_set_power_state(pcid, 3); /* Set power state to D3. */
} else {
/* Disable bus mastering */
pci_disable_device(pcid);
pci_set_power_state(pcid, state);
}
return 0;
}
static int
e100_resume(struct pci_dev *pcid)
{
struct net_device *netdev = pci_get_drvdata(pcid);
struct e100_private *bdp = netdev->priv;
u8 full_reset = false;
pci_set_power_state(pcid, 0);
pci_enable_wake(pcid, 0, 0); /* Clear PME status and disable PME */
pci_restore_state(pcid, bdp->pci_state);
if (bdp->wolopts & (WAKE_UCAST | WAKE_ARP)) {
full_reset = true;
}
e100_deisolate_driver(bdp, full_reset);
return 0;
}
#endif /* CONFIG_PM */
static void
e100_get_mdix_status(struct e100_private *bdp)
{
if (bdp->rev_id < D102_REV_ID) {
if (netif_carrier_ok(bdp->device))
bdp->mdix_status = "MDI";
else
bdp->mdix_status = "None";
} else {
u16 ctrl_reg;
/* Read the MDIX control register */
e100_mdi_read(bdp, MII_NCONFIG, bdp->phy_addr, &ctrl_reg);
if (ctrl_reg & MDI_MDIX_CONFIG_IS_OK) {
if (ctrl_reg & MDI_MDIX_STATUS)
bdp->mdix_status = "MDI-X";
else
bdp->mdix_status = "MDI";
} else
bdp->mdix_status = "None";
}
}
static void
e100_do_hwi(struct net_device *dev)
{
struct e100_private *bdp = dev->priv;
u16 ctrl_reg;
int distance, open_circut, short_circut;
e100_mdi_read(bdp, HWI_CONTROL_REG, bdp->phy_addr, &ctrl_reg);
distance = ctrl_reg & HWI_TEST_DISTANCE;
open_circut = ctrl_reg & HWI_TEST_HIGHZ_PROBLEM;
short_circut = ctrl_reg & HWI_TEST_LOWZ_PROBLEM;
if ((distance == bdp->saved_distance) &&
(open_circut == bdp->saved_open_circut) &&
(short_circut == bdp->saved_short_circut))
bdp->saved_same++;
else {
bdp->saved_same = 0;
bdp->saved_distance = distance;
bdp->saved_open_circut = open_circut;
bdp->saved_short_circut = short_circut;
}
if (bdp->saved_same == MAX_SAME_RESULTS) {
if ((open_circut && !(short_circut)) ||
(!(open_circut) && short_circut)) {
u8 near_end = ((distance * HWI_REGISTER_GRANULARITY) <
HWI_NEAR_END_BOUNDARY);
if (open_circut) {
if (near_end)
bdp->cable_status = "Open Circut Near End";
else
bdp->cable_status = "Open Circut Far End";
} else {
if (near_end)
bdp->cable_status = "Short Circut Near End";
else
bdp->cable_status = "Short Circut Far End";
}
goto done;
}
}
else if (bdp->saved_i == HWI_MAX_LOOP) {
bdp->cable_status = "Test failed";
goto done;
}
/* Do another hwi test */
e100_mdi_write(bdp, HWI_CONTROL_REG, bdp->phy_addr,
(HWI_TEST_ENABLE | HWI_TEST_EXECUTE));
bdp->saved_i++;
/* relaunch hwi timer in 1 msec */
mod_timer(&(bdp->hwi_timer), jiffies + (HZ / 1000) );
return;
done:
e100_hwi_restore(bdp);
bdp->hwi_started = 0;
return;
}
static void e100_hwi_restore(struct e100_private *bdp)
{
u16 control = 0;
/* Restore speed, duplex and autoneg before */
/* hwi test, i.e., cable diagnostic */
/* Reset hwi test */
e100_mdi_write(bdp, HWI_CONTROL_REG, bdp->phy_addr, HWI_RESET_ALL_MASK);
if ((bdp->params.e100_speed_duplex == E100_AUTONEG) &&
(bdp->rev_id >= D102_REV_ID))
/* Enable MDI/MDI-X auto switching */
e100_mdi_write(bdp, MII_NCONFIG, bdp->phy_addr,
MDI_MDIX_AUTO_SWITCH_ENABLE);
switch (bdp->params.e100_speed_duplex) {
case E100_SPEED_10_HALF:
break;
case E100_SPEED_10_FULL:
control = BMCR_FULLDPLX;
break;
case E100_SPEED_100_HALF:
control = BMCR_SPEED100;
break;
case E100_SPEED_100_FULL:
control = BMCR_SPEED100 | BMCR_FULLDPLX;
break;
case E100_AUTONEG:
control = BMCR_ANENABLE | BMCR_ANRESTART;
break;
}
/* Restore original speed/duplex */
e100_mdi_write(bdp, MII_BMCR, bdp->phy_addr, control);
return;
}