| /* | 
 |  * linux/mm/slab.c | 
 |  * Written by Mark Hemment, 1996/97. | 
 |  * (markhe@nextd.demon.co.uk) | 
 |  * | 
 |  * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | 
 |  * | 
 |  * Major cleanup, different bufctl logic, per-cpu arrays | 
 |  *	(c) 2000 Manfred Spraul | 
 |  * | 
 |  * Cleanup, make the head arrays unconditional, preparation for NUMA | 
 |  * 	(c) 2002 Manfred Spraul | 
 |  * | 
 |  * An implementation of the Slab Allocator as described in outline in; | 
 |  *	UNIX Internals: The New Frontiers by Uresh Vahalia | 
 |  *	Pub: Prentice Hall	ISBN 0-13-101908-2 | 
 |  * or with a little more detail in; | 
 |  *	The Slab Allocator: An Object-Caching Kernel Memory Allocator | 
 |  *	Jeff Bonwick (Sun Microsystems). | 
 |  *	Presented at: USENIX Summer 1994 Technical Conference | 
 |  * | 
 |  * The memory is organized in caches, one cache for each object type. | 
 |  * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | 
 |  * Each cache consists out of many slabs (they are small (usually one | 
 |  * page long) and always contiguous), and each slab contains multiple | 
 |  * initialized objects. | 
 |  * | 
 |  * This means, that your constructor is used only for newly allocated | 
 |  * slabs and you must pass objects with the same initializations to | 
 |  * kmem_cache_free. | 
 |  * | 
 |  * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | 
 |  * normal). If you need a special memory type, then must create a new | 
 |  * cache for that memory type. | 
 |  * | 
 |  * In order to reduce fragmentation, the slabs are sorted in 3 groups: | 
 |  *   full slabs with 0 free objects | 
 |  *   partial slabs | 
 |  *   empty slabs with no allocated objects | 
 |  * | 
 |  * If partial slabs exist, then new allocations come from these slabs, | 
 |  * otherwise from empty slabs or new slabs are allocated. | 
 |  * | 
 |  * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | 
 |  * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | 
 |  * | 
 |  * Each cache has a short per-cpu head array, most allocs | 
 |  * and frees go into that array, and if that array overflows, then 1/2 | 
 |  * of the entries in the array are given back into the global cache. | 
 |  * The head array is strictly LIFO and should improve the cache hit rates. | 
 |  * On SMP, it additionally reduces the spinlock operations. | 
 |  * | 
 |  * The c_cpuarray may not be read with enabled local interrupts - | 
 |  * it's changed with a smp_call_function(). | 
 |  * | 
 |  * SMP synchronization: | 
 |  *  constructors and destructors are called without any locking. | 
 |  *  Several members in struct kmem_cache and struct slab never change, they | 
 |  *	are accessed without any locking. | 
 |  *  The per-cpu arrays are never accessed from the wrong cpu, no locking, | 
 |  *  	and local interrupts are disabled so slab code is preempt-safe. | 
 |  *  The non-constant members are protected with a per-cache irq spinlock. | 
 |  * | 
 |  * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | 
 |  * in 2000 - many ideas in the current implementation are derived from | 
 |  * his patch. | 
 |  * | 
 |  * Further notes from the original documentation: | 
 |  * | 
 |  * 11 April '97.  Started multi-threading - markhe | 
 |  *	The global cache-chain is protected by the mutex 'slab_mutex'. | 
 |  *	The sem is only needed when accessing/extending the cache-chain, which | 
 |  *	can never happen inside an interrupt (kmem_cache_create(), | 
 |  *	kmem_cache_shrink() and kmem_cache_reap()). | 
 |  * | 
 |  *	At present, each engine can be growing a cache.  This should be blocked. | 
 |  * | 
 |  * 15 March 2005. NUMA slab allocator. | 
 |  *	Shai Fultheim <shai@scalex86.org>. | 
 |  *	Shobhit Dayal <shobhit@calsoftinc.com> | 
 |  *	Alok N Kataria <alokk@calsoftinc.com> | 
 |  *	Christoph Lameter <christoph@lameter.com> | 
 |  * | 
 |  *	Modified the slab allocator to be node aware on NUMA systems. | 
 |  *	Each node has its own list of partial, free and full slabs. | 
 |  *	All object allocations for a node occur from node specific slab lists. | 
 |  */ | 
 |  | 
 | #include	<linux/slab.h> | 
 | #include	<linux/mm.h> | 
 | #include	<linux/poison.h> | 
 | #include	<linux/swap.h> | 
 | #include	<linux/cache.h> | 
 | #include	<linux/interrupt.h> | 
 | #include	<linux/init.h> | 
 | #include	<linux/compiler.h> | 
 | #include	<linux/cpuset.h> | 
 | #include	<linux/proc_fs.h> | 
 | #include	<linux/seq_file.h> | 
 | #include	<linux/notifier.h> | 
 | #include	<linux/kallsyms.h> | 
 | #include	<linux/cpu.h> | 
 | #include	<linux/sysctl.h> | 
 | #include	<linux/module.h> | 
 | #include	<linux/rcupdate.h> | 
 | #include	<linux/string.h> | 
 | #include	<linux/uaccess.h> | 
 | #include	<linux/nodemask.h> | 
 | #include	<linux/kmemleak.h> | 
 | #include	<linux/mempolicy.h> | 
 | #include	<linux/mutex.h> | 
 | #include	<linux/fault-inject.h> | 
 | #include	<linux/rtmutex.h> | 
 | #include	<linux/reciprocal_div.h> | 
 | #include	<linux/debugobjects.h> | 
 | #include	<linux/kmemcheck.h> | 
 | #include	<linux/memory.h> | 
 | #include	<linux/prefetch.h> | 
 |  | 
 | #include	<net/sock.h> | 
 |  | 
 | #include	<asm/cacheflush.h> | 
 | #include	<asm/tlbflush.h> | 
 | #include	<asm/page.h> | 
 |  | 
 | #include <trace/events/kmem.h> | 
 |  | 
 | #include	"internal.h" | 
 |  | 
 | #include	"slab.h" | 
 |  | 
 | /* | 
 |  * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. | 
 |  *		  0 for faster, smaller code (especially in the critical paths). | 
 |  * | 
 |  * STATS	- 1 to collect stats for /proc/slabinfo. | 
 |  *		  0 for faster, smaller code (especially in the critical paths). | 
 |  * | 
 |  * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_DEBUG_SLAB | 
 | #define	DEBUG		1 | 
 | #define	STATS		1 | 
 | #define	FORCED_DEBUG	1 | 
 | #else | 
 | #define	DEBUG		0 | 
 | #define	STATS		0 | 
 | #define	FORCED_DEBUG	0 | 
 | #endif | 
 |  | 
 | /* Shouldn't this be in a header file somewhere? */ | 
 | #define	BYTES_PER_WORD		sizeof(void *) | 
 | #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long)) | 
 |  | 
 | #ifndef ARCH_KMALLOC_FLAGS | 
 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | 
 | #endif | 
 |  | 
 | #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ | 
 | 				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0) | 
 |  | 
 | #if FREELIST_BYTE_INDEX | 
 | typedef unsigned char freelist_idx_t; | 
 | #else | 
 | typedef unsigned short freelist_idx_t; | 
 | #endif | 
 |  | 
 | #define SLAB_OBJ_MAX_NUM (1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) | 
 |  | 
 | /* | 
 |  * true if a page was allocated from pfmemalloc reserves for network-based | 
 |  * swap | 
 |  */ | 
 | static bool pfmemalloc_active __read_mostly; | 
 |  | 
 | /* | 
 |  * struct array_cache | 
 |  * | 
 |  * Purpose: | 
 |  * - LIFO ordering, to hand out cache-warm objects from _alloc | 
 |  * - reduce the number of linked list operations | 
 |  * - reduce spinlock operations | 
 |  * | 
 |  * The limit is stored in the per-cpu structure to reduce the data cache | 
 |  * footprint. | 
 |  * | 
 |  */ | 
 | struct array_cache { | 
 | 	unsigned int avail; | 
 | 	unsigned int limit; | 
 | 	unsigned int batchcount; | 
 | 	unsigned int touched; | 
 | 	spinlock_t lock; | 
 | 	void *entry[];	/* | 
 | 			 * Must have this definition in here for the proper | 
 | 			 * alignment of array_cache. Also simplifies accessing | 
 | 			 * the entries. | 
 | 			 * | 
 | 			 * Entries should not be directly dereferenced as | 
 | 			 * entries belonging to slabs marked pfmemalloc will | 
 | 			 * have the lower bits set SLAB_OBJ_PFMEMALLOC | 
 | 			 */ | 
 | }; | 
 |  | 
 | #define SLAB_OBJ_PFMEMALLOC	1 | 
 | static inline bool is_obj_pfmemalloc(void *objp) | 
 | { | 
 | 	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC; | 
 | } | 
 |  | 
 | static inline void set_obj_pfmemalloc(void **objp) | 
 | { | 
 | 	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC); | 
 | 	return; | 
 | } | 
 |  | 
 | static inline void clear_obj_pfmemalloc(void **objp) | 
 | { | 
 | 	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC); | 
 | } | 
 |  | 
 | /* | 
 |  * bootstrap: The caches do not work without cpuarrays anymore, but the | 
 |  * cpuarrays are allocated from the generic caches... | 
 |  */ | 
 | #define BOOT_CPUCACHE_ENTRIES	1 | 
 | struct arraycache_init { | 
 | 	struct array_cache cache; | 
 | 	void *entries[BOOT_CPUCACHE_ENTRIES]; | 
 | }; | 
 |  | 
 | /* | 
 |  * Need this for bootstrapping a per node allocator. | 
 |  */ | 
 | #define NUM_INIT_LISTS (3 * MAX_NUMNODES) | 
 | static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; | 
 | #define	CACHE_CACHE 0 | 
 | #define	SIZE_AC MAX_NUMNODES | 
 | #define	SIZE_NODE (2 * MAX_NUMNODES) | 
 |  | 
 | static int drain_freelist(struct kmem_cache *cache, | 
 | 			struct kmem_cache_node *n, int tofree); | 
 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, | 
 | 			int node); | 
 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); | 
 | static void cache_reap(struct work_struct *unused); | 
 |  | 
 | static int slab_early_init = 1; | 
 |  | 
 | #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init)) | 
 | #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) | 
 |  | 
 | static void kmem_cache_node_init(struct kmem_cache_node *parent) | 
 | { | 
 | 	INIT_LIST_HEAD(&parent->slabs_full); | 
 | 	INIT_LIST_HEAD(&parent->slabs_partial); | 
 | 	INIT_LIST_HEAD(&parent->slabs_free); | 
 | 	parent->shared = NULL; | 
 | 	parent->alien = NULL; | 
 | 	parent->colour_next = 0; | 
 | 	spin_lock_init(&parent->list_lock); | 
 | 	parent->free_objects = 0; | 
 | 	parent->free_touched = 0; | 
 | } | 
 |  | 
 | #define MAKE_LIST(cachep, listp, slab, nodeid)				\ | 
 | 	do {								\ | 
 | 		INIT_LIST_HEAD(listp);					\ | 
 | 		list_splice(&(cachep->node[nodeid]->slab), listp);	\ | 
 | 	} while (0) | 
 |  | 
 | #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\ | 
 | 	do {								\ | 
 | 	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\ | 
 | 	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | 
 | 	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\ | 
 | 	} while (0) | 
 |  | 
 | #define CFLGS_OFF_SLAB		(0x80000000UL) | 
 | #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB) | 
 |  | 
 | #define BATCHREFILL_LIMIT	16 | 
 | /* | 
 |  * Optimization question: fewer reaps means less probability for unnessary | 
 |  * cpucache drain/refill cycles. | 
 |  * | 
 |  * OTOH the cpuarrays can contain lots of objects, | 
 |  * which could lock up otherwise freeable slabs. | 
 |  */ | 
 | #define REAPTIMEOUT_AC		(2*HZ) | 
 | #define REAPTIMEOUT_NODE	(4*HZ) | 
 |  | 
 | #if STATS | 
 | #define	STATS_INC_ACTIVE(x)	((x)->num_active++) | 
 | #define	STATS_DEC_ACTIVE(x)	((x)->num_active--) | 
 | #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++) | 
 | #define	STATS_INC_GROWN(x)	((x)->grown++) | 
 | #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y)) | 
 | #define	STATS_SET_HIGH(x)						\ | 
 | 	do {								\ | 
 | 		if ((x)->num_active > (x)->high_mark)			\ | 
 | 			(x)->high_mark = (x)->num_active;		\ | 
 | 	} while (0) | 
 | #define	STATS_INC_ERR(x)	((x)->errors++) | 
 | #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++) | 
 | #define	STATS_INC_NODEFREES(x)	((x)->node_frees++) | 
 | #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++) | 
 | #define	STATS_SET_FREEABLE(x, i)					\ | 
 | 	do {								\ | 
 | 		if ((x)->max_freeable < i)				\ | 
 | 			(x)->max_freeable = i;				\ | 
 | 	} while (0) | 
 | #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit) | 
 | #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss) | 
 | #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit) | 
 | #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss) | 
 | #else | 
 | #define	STATS_INC_ACTIVE(x)	do { } while (0) | 
 | #define	STATS_DEC_ACTIVE(x)	do { } while (0) | 
 | #define	STATS_INC_ALLOCED(x)	do { } while (0) | 
 | #define	STATS_INC_GROWN(x)	do { } while (0) | 
 | #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0) | 
 | #define	STATS_SET_HIGH(x)	do { } while (0) | 
 | #define	STATS_INC_ERR(x)	do { } while (0) | 
 | #define	STATS_INC_NODEALLOCS(x)	do { } while (0) | 
 | #define	STATS_INC_NODEFREES(x)	do { } while (0) | 
 | #define STATS_INC_ACOVERFLOW(x)   do { } while (0) | 
 | #define	STATS_SET_FREEABLE(x, i) do { } while (0) | 
 | #define STATS_INC_ALLOCHIT(x)	do { } while (0) | 
 | #define STATS_INC_ALLOCMISS(x)	do { } while (0) | 
 | #define STATS_INC_FREEHIT(x)	do { } while (0) | 
 | #define STATS_INC_FREEMISS(x)	do { } while (0) | 
 | #endif | 
 |  | 
 | #if DEBUG | 
 |  | 
 | /* | 
 |  * memory layout of objects: | 
 |  * 0		: objp | 
 |  * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that | 
 |  * 		the end of an object is aligned with the end of the real | 
 |  * 		allocation. Catches writes behind the end of the allocation. | 
 |  * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: | 
 |  * 		redzone word. | 
 |  * cachep->obj_offset: The real object. | 
 |  * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] | 
 |  * cachep->size - 1* BYTES_PER_WORD: last caller address | 
 |  *					[BYTES_PER_WORD long] | 
 |  */ | 
 | static int obj_offset(struct kmem_cache *cachep) | 
 | { | 
 | 	return cachep->obj_offset; | 
 | } | 
 |  | 
 | static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) | 
 | { | 
 | 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | 
 | 	return (unsigned long long*) (objp + obj_offset(cachep) - | 
 | 				      sizeof(unsigned long long)); | 
 | } | 
 |  | 
 | static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) | 
 | { | 
 | 	BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | 
 | 	if (cachep->flags & SLAB_STORE_USER) | 
 | 		return (unsigned long long *)(objp + cachep->size - | 
 | 					      sizeof(unsigned long long) - | 
 | 					      REDZONE_ALIGN); | 
 | 	return (unsigned long long *) (objp + cachep->size - | 
 | 				       sizeof(unsigned long long)); | 
 | } | 
 |  | 
 | static void **dbg_userword(struct kmem_cache *cachep, void *objp) | 
 | { | 
 | 	BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | 
 | 	return (void **)(objp + cachep->size - BYTES_PER_WORD); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | #define obj_offset(x)			0 | 
 | #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;}) | 
 | #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;}) | 
 | #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;}) | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * Do not go above this order unless 0 objects fit into the slab or | 
 |  * overridden on the command line. | 
 |  */ | 
 | #define	SLAB_MAX_ORDER_HI	1 | 
 | #define	SLAB_MAX_ORDER_LO	0 | 
 | static int slab_max_order = SLAB_MAX_ORDER_LO; | 
 | static bool slab_max_order_set __initdata; | 
 |  | 
 | static inline struct kmem_cache *virt_to_cache(const void *obj) | 
 | { | 
 | 	struct page *page = virt_to_head_page(obj); | 
 | 	return page->slab_cache; | 
 | } | 
 |  | 
 | static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, | 
 | 				 unsigned int idx) | 
 | { | 
 | 	return page->s_mem + cache->size * idx; | 
 | } | 
 |  | 
 | /* | 
 |  * We want to avoid an expensive divide : (offset / cache->size) | 
 |  *   Using the fact that size is a constant for a particular cache, | 
 |  *   we can replace (offset / cache->size) by | 
 |  *   reciprocal_divide(offset, cache->reciprocal_buffer_size) | 
 |  */ | 
 | static inline unsigned int obj_to_index(const struct kmem_cache *cache, | 
 | 					const struct page *page, void *obj) | 
 | { | 
 | 	u32 offset = (obj - page->s_mem); | 
 | 	return reciprocal_divide(offset, cache->reciprocal_buffer_size); | 
 | } | 
 |  | 
 | static struct arraycache_init initarray_generic = | 
 |     { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; | 
 |  | 
 | /* internal cache of cache description objs */ | 
 | static struct kmem_cache kmem_cache_boot = { | 
 | 	.batchcount = 1, | 
 | 	.limit = BOOT_CPUCACHE_ENTRIES, | 
 | 	.shared = 1, | 
 | 	.size = sizeof(struct kmem_cache), | 
 | 	.name = "kmem_cache", | 
 | }; | 
 |  | 
 | #define BAD_ALIEN_MAGIC 0x01020304ul | 
 |  | 
 | #ifdef CONFIG_LOCKDEP | 
 |  | 
 | /* | 
 |  * Slab sometimes uses the kmalloc slabs to store the slab headers | 
 |  * for other slabs "off slab". | 
 |  * The locking for this is tricky in that it nests within the locks | 
 |  * of all other slabs in a few places; to deal with this special | 
 |  * locking we put on-slab caches into a separate lock-class. | 
 |  * | 
 |  * We set lock class for alien array caches which are up during init. | 
 |  * The lock annotation will be lost if all cpus of a node goes down and | 
 |  * then comes back up during hotplug | 
 |  */ | 
 | static struct lock_class_key on_slab_l3_key; | 
 | static struct lock_class_key on_slab_alc_key; | 
 |  | 
 | static struct lock_class_key debugobj_l3_key; | 
 | static struct lock_class_key debugobj_alc_key; | 
 |  | 
 | static void slab_set_lock_classes(struct kmem_cache *cachep, | 
 | 		struct lock_class_key *l3_key, struct lock_class_key *alc_key, | 
 | 		int q) | 
 | { | 
 | 	struct array_cache **alc; | 
 | 	struct kmem_cache_node *n; | 
 | 	int r; | 
 |  | 
 | 	n = cachep->node[q]; | 
 | 	if (!n) | 
 | 		return; | 
 |  | 
 | 	lockdep_set_class(&n->list_lock, l3_key); | 
 | 	alc = n->alien; | 
 | 	/* | 
 | 	 * FIXME: This check for BAD_ALIEN_MAGIC | 
 | 	 * should go away when common slab code is taught to | 
 | 	 * work even without alien caches. | 
 | 	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC | 
 | 	 * for alloc_alien_cache, | 
 | 	 */ | 
 | 	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) | 
 | 		return; | 
 | 	for_each_node(r) { | 
 | 		if (alc[r]) | 
 | 			lockdep_set_class(&alc[r]->lock, alc_key); | 
 | 	} | 
 | } | 
 |  | 
 | static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) | 
 | { | 
 | 	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node); | 
 | } | 
 |  | 
 | static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	for_each_online_node(node) | 
 | 		slab_set_debugobj_lock_classes_node(cachep, node); | 
 | } | 
 |  | 
 | static void init_node_lock_keys(int q) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (slab_state < UP) | 
 | 		return; | 
 |  | 
 | 	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) { | 
 | 		struct kmem_cache_node *n; | 
 | 		struct kmem_cache *cache = kmalloc_caches[i]; | 
 |  | 
 | 		if (!cache) | 
 | 			continue; | 
 |  | 
 | 		n = cache->node[q]; | 
 | 		if (!n || OFF_SLAB(cache)) | 
 | 			continue; | 
 |  | 
 | 		slab_set_lock_classes(cache, &on_slab_l3_key, | 
 | 				&on_slab_alc_key, q); | 
 | 	} | 
 | } | 
 |  | 
 | static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q) | 
 | { | 
 | 	if (!cachep->node[q]) | 
 | 		return; | 
 |  | 
 | 	slab_set_lock_classes(cachep, &on_slab_l3_key, | 
 | 			&on_slab_alc_key, q); | 
 | } | 
 |  | 
 | static inline void on_slab_lock_classes(struct kmem_cache *cachep) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	VM_BUG_ON(OFF_SLAB(cachep)); | 
 | 	for_each_node(node) | 
 | 		on_slab_lock_classes_node(cachep, node); | 
 | } | 
 |  | 
 | static inline void init_lock_keys(void) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	for_each_node(node) | 
 | 		init_node_lock_keys(node); | 
 | } | 
 | #else | 
 | static void init_node_lock_keys(int q) | 
 | { | 
 | } | 
 |  | 
 | static inline void init_lock_keys(void) | 
 | { | 
 | } | 
 |  | 
 | static inline void on_slab_lock_classes(struct kmem_cache *cachep) | 
 | { | 
 | } | 
 |  | 
 | static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node) | 
 | { | 
 | } | 
 |  | 
 | static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) | 
 | { | 
 | } | 
 |  | 
 | static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); | 
 |  | 
 | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) | 
 | { | 
 | 	return cachep->array[smp_processor_id()]; | 
 | } | 
 |  | 
 | static int calculate_nr_objs(size_t slab_size, size_t buffer_size, | 
 | 				size_t idx_size, size_t align) | 
 | { | 
 | 	int nr_objs; | 
 | 	size_t freelist_size; | 
 |  | 
 | 	/* | 
 | 	 * Ignore padding for the initial guess. The padding | 
 | 	 * is at most @align-1 bytes, and @buffer_size is at | 
 | 	 * least @align. In the worst case, this result will | 
 | 	 * be one greater than the number of objects that fit | 
 | 	 * into the memory allocation when taking the padding | 
 | 	 * into account. | 
 | 	 */ | 
 | 	nr_objs = slab_size / (buffer_size + idx_size); | 
 |  | 
 | 	/* | 
 | 	 * This calculated number will be either the right | 
 | 	 * amount, or one greater than what we want. | 
 | 	 */ | 
 | 	freelist_size = slab_size - nr_objs * buffer_size; | 
 | 	if (freelist_size < ALIGN(nr_objs * idx_size, align)) | 
 | 		nr_objs--; | 
 |  | 
 | 	return nr_objs; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the number of objects and left-over bytes for a given buffer size. | 
 |  */ | 
 | static void cache_estimate(unsigned long gfporder, size_t buffer_size, | 
 | 			   size_t align, int flags, size_t *left_over, | 
 | 			   unsigned int *num) | 
 | { | 
 | 	int nr_objs; | 
 | 	size_t mgmt_size; | 
 | 	size_t slab_size = PAGE_SIZE << gfporder; | 
 |  | 
 | 	/* | 
 | 	 * The slab management structure can be either off the slab or | 
 | 	 * on it. For the latter case, the memory allocated for a | 
 | 	 * slab is used for: | 
 | 	 * | 
 | 	 * - One unsigned int for each object | 
 | 	 * - Padding to respect alignment of @align | 
 | 	 * - @buffer_size bytes for each object | 
 | 	 * | 
 | 	 * If the slab management structure is off the slab, then the | 
 | 	 * alignment will already be calculated into the size. Because | 
 | 	 * the slabs are all pages aligned, the objects will be at the | 
 | 	 * correct alignment when allocated. | 
 | 	 */ | 
 | 	if (flags & CFLGS_OFF_SLAB) { | 
 | 		mgmt_size = 0; | 
 | 		nr_objs = slab_size / buffer_size; | 
 |  | 
 | 	} else { | 
 | 		nr_objs = calculate_nr_objs(slab_size, buffer_size, | 
 | 					sizeof(freelist_idx_t), align); | 
 | 		mgmt_size = ALIGN(nr_objs * sizeof(freelist_idx_t), align); | 
 | 	} | 
 | 	*num = nr_objs; | 
 | 	*left_over = slab_size - nr_objs*buffer_size - mgmt_size; | 
 | } | 
 |  | 
 | #if DEBUG | 
 | #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) | 
 |  | 
 | static void __slab_error(const char *function, struct kmem_cache *cachep, | 
 | 			char *msg) | 
 | { | 
 | 	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", | 
 | 	       function, cachep->name, msg); | 
 | 	dump_stack(); | 
 | 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * By default on NUMA we use alien caches to stage the freeing of | 
 |  * objects allocated from other nodes. This causes massive memory | 
 |  * inefficiencies when using fake NUMA setup to split memory into a | 
 |  * large number of small nodes, so it can be disabled on the command | 
 |  * line | 
 |   */ | 
 |  | 
 | static int use_alien_caches __read_mostly = 1; | 
 | static int __init noaliencache_setup(char *s) | 
 | { | 
 | 	use_alien_caches = 0; | 
 | 	return 1; | 
 | } | 
 | __setup("noaliencache", noaliencache_setup); | 
 |  | 
 | static int __init slab_max_order_setup(char *str) | 
 | { | 
 | 	get_option(&str, &slab_max_order); | 
 | 	slab_max_order = slab_max_order < 0 ? 0 : | 
 | 				min(slab_max_order, MAX_ORDER - 1); | 
 | 	slab_max_order_set = true; | 
 |  | 
 | 	return 1; | 
 | } | 
 | __setup("slab_max_order=", slab_max_order_setup); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* | 
 |  * Special reaping functions for NUMA systems called from cache_reap(). | 
 |  * These take care of doing round robin flushing of alien caches (containing | 
 |  * objects freed on different nodes from which they were allocated) and the | 
 |  * flushing of remote pcps by calling drain_node_pages. | 
 |  */ | 
 | static DEFINE_PER_CPU(unsigned long, slab_reap_node); | 
 |  | 
 | static void init_reap_node(int cpu) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	node = next_node(cpu_to_mem(cpu), node_online_map); | 
 | 	if (node == MAX_NUMNODES) | 
 | 		node = first_node(node_online_map); | 
 |  | 
 | 	per_cpu(slab_reap_node, cpu) = node; | 
 | } | 
 |  | 
 | static void next_reap_node(void) | 
 | { | 
 | 	int node = __this_cpu_read(slab_reap_node); | 
 |  | 
 | 	node = next_node(node, node_online_map); | 
 | 	if (unlikely(node >= MAX_NUMNODES)) | 
 | 		node = first_node(node_online_map); | 
 | 	__this_cpu_write(slab_reap_node, node); | 
 | } | 
 |  | 
 | #else | 
 | #define init_reap_node(cpu) do { } while (0) | 
 | #define next_reap_node(void) do { } while (0) | 
 | #endif | 
 |  | 
 | /* | 
 |  * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz | 
 |  * via the workqueue/eventd. | 
 |  * Add the CPU number into the expiration time to minimize the possibility of | 
 |  * the CPUs getting into lockstep and contending for the global cache chain | 
 |  * lock. | 
 |  */ | 
 | static void start_cpu_timer(int cpu) | 
 | { | 
 | 	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); | 
 |  | 
 | 	/* | 
 | 	 * When this gets called from do_initcalls via cpucache_init(), | 
 | 	 * init_workqueues() has already run, so keventd will be setup | 
 | 	 * at that time. | 
 | 	 */ | 
 | 	if (keventd_up() && reap_work->work.func == NULL) { | 
 | 		init_reap_node(cpu); | 
 | 		INIT_DEFERRABLE_WORK(reap_work, cache_reap); | 
 | 		schedule_delayed_work_on(cpu, reap_work, | 
 | 					__round_jiffies_relative(HZ, cpu)); | 
 | 	} | 
 | } | 
 |  | 
 | static struct array_cache *alloc_arraycache(int node, int entries, | 
 | 					    int batchcount, gfp_t gfp) | 
 | { | 
 | 	int memsize = sizeof(void *) * entries + sizeof(struct array_cache); | 
 | 	struct array_cache *nc = NULL; | 
 |  | 
 | 	nc = kmalloc_node(memsize, gfp, node); | 
 | 	/* | 
 | 	 * The array_cache structures contain pointers to free object. | 
 | 	 * However, when such objects are allocated or transferred to another | 
 | 	 * cache the pointers are not cleared and they could be counted as | 
 | 	 * valid references during a kmemleak scan. Therefore, kmemleak must | 
 | 	 * not scan such objects. | 
 | 	 */ | 
 | 	kmemleak_no_scan(nc); | 
 | 	if (nc) { | 
 | 		nc->avail = 0; | 
 | 		nc->limit = entries; | 
 | 		nc->batchcount = batchcount; | 
 | 		nc->touched = 0; | 
 | 		spin_lock_init(&nc->lock); | 
 | 	} | 
 | 	return nc; | 
 | } | 
 |  | 
 | static inline bool is_slab_pfmemalloc(struct page *page) | 
 | { | 
 | 	return PageSlabPfmemalloc(page); | 
 | } | 
 |  | 
 | /* Clears pfmemalloc_active if no slabs have pfmalloc set */ | 
 | static void recheck_pfmemalloc_active(struct kmem_cache *cachep, | 
 | 						struct array_cache *ac) | 
 | { | 
 | 	struct kmem_cache_node *n = cachep->node[numa_mem_id()]; | 
 | 	struct page *page; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!pfmemalloc_active) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&n->list_lock, flags); | 
 | 	list_for_each_entry(page, &n->slabs_full, lru) | 
 | 		if (is_slab_pfmemalloc(page)) | 
 | 			goto out; | 
 |  | 
 | 	list_for_each_entry(page, &n->slabs_partial, lru) | 
 | 		if (is_slab_pfmemalloc(page)) | 
 | 			goto out; | 
 |  | 
 | 	list_for_each_entry(page, &n->slabs_free, lru) | 
 | 		if (is_slab_pfmemalloc(page)) | 
 | 			goto out; | 
 |  | 
 | 	pfmemalloc_active = false; | 
 | out: | 
 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | } | 
 |  | 
 | static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, | 
 | 						gfp_t flags, bool force_refill) | 
 | { | 
 | 	int i; | 
 | 	void *objp = ac->entry[--ac->avail]; | 
 |  | 
 | 	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */ | 
 | 	if (unlikely(is_obj_pfmemalloc(objp))) { | 
 | 		struct kmem_cache_node *n; | 
 |  | 
 | 		if (gfp_pfmemalloc_allowed(flags)) { | 
 | 			clear_obj_pfmemalloc(&objp); | 
 | 			return objp; | 
 | 		} | 
 |  | 
 | 		/* The caller cannot use PFMEMALLOC objects, find another one */ | 
 | 		for (i = 0; i < ac->avail; i++) { | 
 | 			/* If a !PFMEMALLOC object is found, swap them */ | 
 | 			if (!is_obj_pfmemalloc(ac->entry[i])) { | 
 | 				objp = ac->entry[i]; | 
 | 				ac->entry[i] = ac->entry[ac->avail]; | 
 | 				ac->entry[ac->avail] = objp; | 
 | 				return objp; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If there are empty slabs on the slabs_free list and we are | 
 | 		 * being forced to refill the cache, mark this one !pfmemalloc. | 
 | 		 */ | 
 | 		n = cachep->node[numa_mem_id()]; | 
 | 		if (!list_empty(&n->slabs_free) && force_refill) { | 
 | 			struct page *page = virt_to_head_page(objp); | 
 | 			ClearPageSlabPfmemalloc(page); | 
 | 			clear_obj_pfmemalloc(&objp); | 
 | 			recheck_pfmemalloc_active(cachep, ac); | 
 | 			return objp; | 
 | 		} | 
 |  | 
 | 		/* No !PFMEMALLOC objects available */ | 
 | 		ac->avail++; | 
 | 		objp = NULL; | 
 | 	} | 
 |  | 
 | 	return objp; | 
 | } | 
 |  | 
 | static inline void *ac_get_obj(struct kmem_cache *cachep, | 
 | 			struct array_cache *ac, gfp_t flags, bool force_refill) | 
 | { | 
 | 	void *objp; | 
 |  | 
 | 	if (unlikely(sk_memalloc_socks())) | 
 | 		objp = __ac_get_obj(cachep, ac, flags, force_refill); | 
 | 	else | 
 | 		objp = ac->entry[--ac->avail]; | 
 |  | 
 | 	return objp; | 
 | } | 
 |  | 
 | static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, | 
 | 								void *objp) | 
 | { | 
 | 	if (unlikely(pfmemalloc_active)) { | 
 | 		/* Some pfmemalloc slabs exist, check if this is one */ | 
 | 		struct page *page = virt_to_head_page(objp); | 
 | 		if (PageSlabPfmemalloc(page)) | 
 | 			set_obj_pfmemalloc(&objp); | 
 | 	} | 
 |  | 
 | 	return objp; | 
 | } | 
 |  | 
 | static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, | 
 | 								void *objp) | 
 | { | 
 | 	if (unlikely(sk_memalloc_socks())) | 
 | 		objp = __ac_put_obj(cachep, ac, objp); | 
 |  | 
 | 	ac->entry[ac->avail++] = objp; | 
 | } | 
 |  | 
 | /* | 
 |  * Transfer objects in one arraycache to another. | 
 |  * Locking must be handled by the caller. | 
 |  * | 
 |  * Return the number of entries transferred. | 
 |  */ | 
 | static int transfer_objects(struct array_cache *to, | 
 | 		struct array_cache *from, unsigned int max) | 
 | { | 
 | 	/* Figure out how many entries to transfer */ | 
 | 	int nr = min3(from->avail, max, to->limit - to->avail); | 
 |  | 
 | 	if (!nr) | 
 | 		return 0; | 
 |  | 
 | 	memcpy(to->entry + to->avail, from->entry + from->avail -nr, | 
 | 			sizeof(void *) *nr); | 
 |  | 
 | 	from->avail -= nr; | 
 | 	to->avail += nr; | 
 | 	return nr; | 
 | } | 
 |  | 
 | #ifndef CONFIG_NUMA | 
 |  | 
 | #define drain_alien_cache(cachep, alien) do { } while (0) | 
 | #define reap_alien(cachep, n) do { } while (0) | 
 |  | 
 | static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) | 
 | { | 
 | 	return (struct array_cache **)BAD_ALIEN_MAGIC; | 
 | } | 
 |  | 
 | static inline void free_alien_cache(struct array_cache **ac_ptr) | 
 | { | 
 | } | 
 |  | 
 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void *alternate_node_alloc(struct kmem_cache *cachep, | 
 | 		gfp_t flags) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static inline void *____cache_alloc_node(struct kmem_cache *cachep, | 
 | 		 gfp_t flags, int nodeid) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #else	/* CONFIG_NUMA */ | 
 |  | 
 | static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); | 
 | static void *alternate_node_alloc(struct kmem_cache *, gfp_t); | 
 |  | 
 | static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) | 
 | { | 
 | 	struct array_cache **ac_ptr; | 
 | 	int memsize = sizeof(void *) * nr_node_ids; | 
 | 	int i; | 
 |  | 
 | 	if (limit > 1) | 
 | 		limit = 12; | 
 | 	ac_ptr = kzalloc_node(memsize, gfp, node); | 
 | 	if (ac_ptr) { | 
 | 		for_each_node(i) { | 
 | 			if (i == node || !node_online(i)) | 
 | 				continue; | 
 | 			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp); | 
 | 			if (!ac_ptr[i]) { | 
 | 				for (i--; i >= 0; i--) | 
 | 					kfree(ac_ptr[i]); | 
 | 				kfree(ac_ptr); | 
 | 				return NULL; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return ac_ptr; | 
 | } | 
 |  | 
 | static void free_alien_cache(struct array_cache **ac_ptr) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!ac_ptr) | 
 | 		return; | 
 | 	for_each_node(i) | 
 | 	    kfree(ac_ptr[i]); | 
 | 	kfree(ac_ptr); | 
 | } | 
 |  | 
 | static void __drain_alien_cache(struct kmem_cache *cachep, | 
 | 				struct array_cache *ac, int node) | 
 | { | 
 | 	struct kmem_cache_node *n = cachep->node[node]; | 
 |  | 
 | 	if (ac->avail) { | 
 | 		spin_lock(&n->list_lock); | 
 | 		/* | 
 | 		 * Stuff objects into the remote nodes shared array first. | 
 | 		 * That way we could avoid the overhead of putting the objects | 
 | 		 * into the free lists and getting them back later. | 
 | 		 */ | 
 | 		if (n->shared) | 
 | 			transfer_objects(n->shared, ac, ac->limit); | 
 |  | 
 | 		free_block(cachep, ac->entry, ac->avail, node); | 
 | 		ac->avail = 0; | 
 | 		spin_unlock(&n->list_lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Called from cache_reap() to regularly drain alien caches round robin. | 
 |  */ | 
 | static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) | 
 | { | 
 | 	int node = __this_cpu_read(slab_reap_node); | 
 |  | 
 | 	if (n->alien) { | 
 | 		struct array_cache *ac = n->alien[node]; | 
 |  | 
 | 		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { | 
 | 			__drain_alien_cache(cachep, ac, node); | 
 | 			spin_unlock_irq(&ac->lock); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void drain_alien_cache(struct kmem_cache *cachep, | 
 | 				struct array_cache **alien) | 
 | { | 
 | 	int i = 0; | 
 | 	struct array_cache *ac; | 
 | 	unsigned long flags; | 
 |  | 
 | 	for_each_online_node(i) { | 
 | 		ac = alien[i]; | 
 | 		if (ac) { | 
 | 			spin_lock_irqsave(&ac->lock, flags); | 
 | 			__drain_alien_cache(cachep, ac, i); | 
 | 			spin_unlock_irqrestore(&ac->lock, flags); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | 
 | { | 
 | 	int nodeid = page_to_nid(virt_to_page(objp)); | 
 | 	struct kmem_cache_node *n; | 
 | 	struct array_cache *alien = NULL; | 
 | 	int node; | 
 |  | 
 | 	node = numa_mem_id(); | 
 |  | 
 | 	/* | 
 | 	 * Make sure we are not freeing a object from another node to the array | 
 | 	 * cache on this cpu. | 
 | 	 */ | 
 | 	if (likely(nodeid == node)) | 
 | 		return 0; | 
 |  | 
 | 	n = cachep->node[node]; | 
 | 	STATS_INC_NODEFREES(cachep); | 
 | 	if (n->alien && n->alien[nodeid]) { | 
 | 		alien = n->alien[nodeid]; | 
 | 		spin_lock(&alien->lock); | 
 | 		if (unlikely(alien->avail == alien->limit)) { | 
 | 			STATS_INC_ACOVERFLOW(cachep); | 
 | 			__drain_alien_cache(cachep, alien, nodeid); | 
 | 		} | 
 | 		ac_put_obj(cachep, alien, objp); | 
 | 		spin_unlock(&alien->lock); | 
 | 	} else { | 
 | 		spin_lock(&(cachep->node[nodeid])->list_lock); | 
 | 		free_block(cachep, &objp, 1, nodeid); | 
 | 		spin_unlock(&(cachep->node[nodeid])->list_lock); | 
 | 	} | 
 | 	return 1; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Allocates and initializes node for a node on each slab cache, used for | 
 |  * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node | 
 |  * will be allocated off-node since memory is not yet online for the new node. | 
 |  * When hotplugging memory or a cpu, existing node are not replaced if | 
 |  * already in use. | 
 |  * | 
 |  * Must hold slab_mutex. | 
 |  */ | 
 | static int init_cache_node_node(int node) | 
 | { | 
 | 	struct kmem_cache *cachep; | 
 | 	struct kmem_cache_node *n; | 
 | 	const int memsize = sizeof(struct kmem_cache_node); | 
 |  | 
 | 	list_for_each_entry(cachep, &slab_caches, list) { | 
 | 		/* | 
 | 		 * Set up the kmem_cache_node for cpu before we can | 
 | 		 * begin anything. Make sure some other cpu on this | 
 | 		 * node has not already allocated this | 
 | 		 */ | 
 | 		if (!cachep->node[node]) { | 
 | 			n = kmalloc_node(memsize, GFP_KERNEL, node); | 
 | 			if (!n) | 
 | 				return -ENOMEM; | 
 | 			kmem_cache_node_init(n); | 
 | 			n->next_reap = jiffies + REAPTIMEOUT_NODE + | 
 | 			    ((unsigned long)cachep) % REAPTIMEOUT_NODE; | 
 |  | 
 | 			/* | 
 | 			 * The kmem_cache_nodes don't come and go as CPUs | 
 | 			 * come and go.  slab_mutex is sufficient | 
 | 			 * protection here. | 
 | 			 */ | 
 | 			cachep->node[node] = n; | 
 | 		} | 
 |  | 
 | 		spin_lock_irq(&cachep->node[node]->list_lock); | 
 | 		cachep->node[node]->free_limit = | 
 | 			(1 + nr_cpus_node(node)) * | 
 | 			cachep->batchcount + cachep->num; | 
 | 		spin_unlock_irq(&cachep->node[node]->list_lock); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int slabs_tofree(struct kmem_cache *cachep, | 
 | 						struct kmem_cache_node *n) | 
 | { | 
 | 	return (n->free_objects + cachep->num - 1) / cachep->num; | 
 | } | 
 |  | 
 | static void cpuup_canceled(long cpu) | 
 | { | 
 | 	struct kmem_cache *cachep; | 
 | 	struct kmem_cache_node *n = NULL; | 
 | 	int node = cpu_to_mem(cpu); | 
 | 	const struct cpumask *mask = cpumask_of_node(node); | 
 |  | 
 | 	list_for_each_entry(cachep, &slab_caches, list) { | 
 | 		struct array_cache *nc; | 
 | 		struct array_cache *shared; | 
 | 		struct array_cache **alien; | 
 |  | 
 | 		/* cpu is dead; no one can alloc from it. */ | 
 | 		nc = cachep->array[cpu]; | 
 | 		cachep->array[cpu] = NULL; | 
 | 		n = cachep->node[node]; | 
 |  | 
 | 		if (!n) | 
 | 			goto free_array_cache; | 
 |  | 
 | 		spin_lock_irq(&n->list_lock); | 
 |  | 
 | 		/* Free limit for this kmem_cache_node */ | 
 | 		n->free_limit -= cachep->batchcount; | 
 | 		if (nc) | 
 | 			free_block(cachep, nc->entry, nc->avail, node); | 
 |  | 
 | 		if (!cpumask_empty(mask)) { | 
 | 			spin_unlock_irq(&n->list_lock); | 
 | 			goto free_array_cache; | 
 | 		} | 
 |  | 
 | 		shared = n->shared; | 
 | 		if (shared) { | 
 | 			free_block(cachep, shared->entry, | 
 | 				   shared->avail, node); | 
 | 			n->shared = NULL; | 
 | 		} | 
 |  | 
 | 		alien = n->alien; | 
 | 		n->alien = NULL; | 
 |  | 
 | 		spin_unlock_irq(&n->list_lock); | 
 |  | 
 | 		kfree(shared); | 
 | 		if (alien) { | 
 | 			drain_alien_cache(cachep, alien); | 
 | 			free_alien_cache(alien); | 
 | 		} | 
 | free_array_cache: | 
 | 		kfree(nc); | 
 | 	} | 
 | 	/* | 
 | 	 * In the previous loop, all the objects were freed to | 
 | 	 * the respective cache's slabs,  now we can go ahead and | 
 | 	 * shrink each nodelist to its limit. | 
 | 	 */ | 
 | 	list_for_each_entry(cachep, &slab_caches, list) { | 
 | 		n = cachep->node[node]; | 
 | 		if (!n) | 
 | 			continue; | 
 | 		drain_freelist(cachep, n, slabs_tofree(cachep, n)); | 
 | 	} | 
 | } | 
 |  | 
 | static int cpuup_prepare(long cpu) | 
 | { | 
 | 	struct kmem_cache *cachep; | 
 | 	struct kmem_cache_node *n = NULL; | 
 | 	int node = cpu_to_mem(cpu); | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * We need to do this right in the beginning since | 
 | 	 * alloc_arraycache's are going to use this list. | 
 | 	 * kmalloc_node allows us to add the slab to the right | 
 | 	 * kmem_cache_node and not this cpu's kmem_cache_node | 
 | 	 */ | 
 | 	err = init_cache_node_node(node); | 
 | 	if (err < 0) | 
 | 		goto bad; | 
 |  | 
 | 	/* | 
 | 	 * Now we can go ahead with allocating the shared arrays and | 
 | 	 * array caches | 
 | 	 */ | 
 | 	list_for_each_entry(cachep, &slab_caches, list) { | 
 | 		struct array_cache *nc; | 
 | 		struct array_cache *shared = NULL; | 
 | 		struct array_cache **alien = NULL; | 
 |  | 
 | 		nc = alloc_arraycache(node, cachep->limit, | 
 | 					cachep->batchcount, GFP_KERNEL); | 
 | 		if (!nc) | 
 | 			goto bad; | 
 | 		if (cachep->shared) { | 
 | 			shared = alloc_arraycache(node, | 
 | 				cachep->shared * cachep->batchcount, | 
 | 				0xbaadf00d, GFP_KERNEL); | 
 | 			if (!shared) { | 
 | 				kfree(nc); | 
 | 				goto bad; | 
 | 			} | 
 | 		} | 
 | 		if (use_alien_caches) { | 
 | 			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); | 
 | 			if (!alien) { | 
 | 				kfree(shared); | 
 | 				kfree(nc); | 
 | 				goto bad; | 
 | 			} | 
 | 		} | 
 | 		cachep->array[cpu] = nc; | 
 | 		n = cachep->node[node]; | 
 | 		BUG_ON(!n); | 
 |  | 
 | 		spin_lock_irq(&n->list_lock); | 
 | 		if (!n->shared) { | 
 | 			/* | 
 | 			 * We are serialised from CPU_DEAD or | 
 | 			 * CPU_UP_CANCELLED by the cpucontrol lock | 
 | 			 */ | 
 | 			n->shared = shared; | 
 | 			shared = NULL; | 
 | 		} | 
 | #ifdef CONFIG_NUMA | 
 | 		if (!n->alien) { | 
 | 			n->alien = alien; | 
 | 			alien = NULL; | 
 | 		} | 
 | #endif | 
 | 		spin_unlock_irq(&n->list_lock); | 
 | 		kfree(shared); | 
 | 		free_alien_cache(alien); | 
 | 		if (cachep->flags & SLAB_DEBUG_OBJECTS) | 
 | 			slab_set_debugobj_lock_classes_node(cachep, node); | 
 | 		else if (!OFF_SLAB(cachep) && | 
 | 			 !(cachep->flags & SLAB_DESTROY_BY_RCU)) | 
 | 			on_slab_lock_classes_node(cachep, node); | 
 | 	} | 
 | 	init_node_lock_keys(node); | 
 |  | 
 | 	return 0; | 
 | bad: | 
 | 	cpuup_canceled(cpu); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int cpuup_callback(struct notifier_block *nfb, | 
 | 				    unsigned long action, void *hcpu) | 
 | { | 
 | 	long cpu = (long)hcpu; | 
 | 	int err = 0; | 
 |  | 
 | 	switch (action) { | 
 | 	case CPU_UP_PREPARE: | 
 | 	case CPU_UP_PREPARE_FROZEN: | 
 | 		mutex_lock(&slab_mutex); | 
 | 		err = cpuup_prepare(cpu); | 
 | 		mutex_unlock(&slab_mutex); | 
 | 		break; | 
 | 	case CPU_ONLINE: | 
 | 	case CPU_ONLINE_FROZEN: | 
 | 		start_cpu_timer(cpu); | 
 | 		break; | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 |   	case CPU_DOWN_PREPARE: | 
 |   	case CPU_DOWN_PREPARE_FROZEN: | 
 | 		/* | 
 | 		 * Shutdown cache reaper. Note that the slab_mutex is | 
 | 		 * held so that if cache_reap() is invoked it cannot do | 
 | 		 * anything expensive but will only modify reap_work | 
 | 		 * and reschedule the timer. | 
 | 		*/ | 
 | 		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); | 
 | 		/* Now the cache_reaper is guaranteed to be not running. */ | 
 | 		per_cpu(slab_reap_work, cpu).work.func = NULL; | 
 |   		break; | 
 |   	case CPU_DOWN_FAILED: | 
 |   	case CPU_DOWN_FAILED_FROZEN: | 
 | 		start_cpu_timer(cpu); | 
 |   		break; | 
 | 	case CPU_DEAD: | 
 | 	case CPU_DEAD_FROZEN: | 
 | 		/* | 
 | 		 * Even if all the cpus of a node are down, we don't free the | 
 | 		 * kmem_cache_node of any cache. This to avoid a race between | 
 | 		 * cpu_down, and a kmalloc allocation from another cpu for | 
 | 		 * memory from the node of the cpu going down.  The node | 
 | 		 * structure is usually allocated from kmem_cache_create() and | 
 | 		 * gets destroyed at kmem_cache_destroy(). | 
 | 		 */ | 
 | 		/* fall through */ | 
 | #endif | 
 | 	case CPU_UP_CANCELED: | 
 | 	case CPU_UP_CANCELED_FROZEN: | 
 | 		mutex_lock(&slab_mutex); | 
 | 		cpuup_canceled(cpu); | 
 | 		mutex_unlock(&slab_mutex); | 
 | 		break; | 
 | 	} | 
 | 	return notifier_from_errno(err); | 
 | } | 
 |  | 
 | static struct notifier_block cpucache_notifier = { | 
 | 	&cpuup_callback, NULL, 0 | 
 | }; | 
 |  | 
 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) | 
 | /* | 
 |  * Drains freelist for a node on each slab cache, used for memory hot-remove. | 
 |  * Returns -EBUSY if all objects cannot be drained so that the node is not | 
 |  * removed. | 
 |  * | 
 |  * Must hold slab_mutex. | 
 |  */ | 
 | static int __meminit drain_cache_node_node(int node) | 
 | { | 
 | 	struct kmem_cache *cachep; | 
 | 	int ret = 0; | 
 |  | 
 | 	list_for_each_entry(cachep, &slab_caches, list) { | 
 | 		struct kmem_cache_node *n; | 
 |  | 
 | 		n = cachep->node[node]; | 
 | 		if (!n) | 
 | 			continue; | 
 |  | 
 | 		drain_freelist(cachep, n, slabs_tofree(cachep, n)); | 
 |  | 
 | 		if (!list_empty(&n->slabs_full) || | 
 | 		    !list_empty(&n->slabs_partial)) { | 
 | 			ret = -EBUSY; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __meminit slab_memory_callback(struct notifier_block *self, | 
 | 					unsigned long action, void *arg) | 
 | { | 
 | 	struct memory_notify *mnb = arg; | 
 | 	int ret = 0; | 
 | 	int nid; | 
 |  | 
 | 	nid = mnb->status_change_nid; | 
 | 	if (nid < 0) | 
 | 		goto out; | 
 |  | 
 | 	switch (action) { | 
 | 	case MEM_GOING_ONLINE: | 
 | 		mutex_lock(&slab_mutex); | 
 | 		ret = init_cache_node_node(nid); | 
 | 		mutex_unlock(&slab_mutex); | 
 | 		break; | 
 | 	case MEM_GOING_OFFLINE: | 
 | 		mutex_lock(&slab_mutex); | 
 | 		ret = drain_cache_node_node(nid); | 
 | 		mutex_unlock(&slab_mutex); | 
 | 		break; | 
 | 	case MEM_ONLINE: | 
 | 	case MEM_OFFLINE: | 
 | 	case MEM_CANCEL_ONLINE: | 
 | 	case MEM_CANCEL_OFFLINE: | 
 | 		break; | 
 | 	} | 
 | out: | 
 | 	return notifier_from_errno(ret); | 
 | } | 
 | #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ | 
 |  | 
 | /* | 
 |  * swap the static kmem_cache_node with kmalloced memory | 
 |  */ | 
 | static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, | 
 | 				int nodeid) | 
 | { | 
 | 	struct kmem_cache_node *ptr; | 
 |  | 
 | 	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); | 
 | 	BUG_ON(!ptr); | 
 |  | 
 | 	memcpy(ptr, list, sizeof(struct kmem_cache_node)); | 
 | 	/* | 
 | 	 * Do not assume that spinlocks can be initialized via memcpy: | 
 | 	 */ | 
 | 	spin_lock_init(&ptr->list_lock); | 
 |  | 
 | 	MAKE_ALL_LISTS(cachep, ptr, nodeid); | 
 | 	cachep->node[nodeid] = ptr; | 
 | } | 
 |  | 
 | /* | 
 |  * For setting up all the kmem_cache_node for cache whose buffer_size is same as | 
 |  * size of kmem_cache_node. | 
 |  */ | 
 | static void __init set_up_node(struct kmem_cache *cachep, int index) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		cachep->node[node] = &init_kmem_cache_node[index + node]; | 
 | 		cachep->node[node]->next_reap = jiffies + | 
 | 		    REAPTIMEOUT_NODE + | 
 | 		    ((unsigned long)cachep) % REAPTIMEOUT_NODE; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * The memory after the last cpu cache pointer is used for the | 
 |  * the node pointer. | 
 |  */ | 
 | static void setup_node_pointer(struct kmem_cache *cachep) | 
 | { | 
 | 	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids]; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialisation.  Called after the page allocator have been initialised and | 
 |  * before smp_init(). | 
 |  */ | 
 | void __init kmem_cache_init(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < | 
 | 					sizeof(struct rcu_head)); | 
 | 	kmem_cache = &kmem_cache_boot; | 
 | 	setup_node_pointer(kmem_cache); | 
 |  | 
 | 	if (num_possible_nodes() == 1) | 
 | 		use_alien_caches = 0; | 
 |  | 
 | 	for (i = 0; i < NUM_INIT_LISTS; i++) | 
 | 		kmem_cache_node_init(&init_kmem_cache_node[i]); | 
 |  | 
 | 	set_up_node(kmem_cache, CACHE_CACHE); | 
 |  | 
 | 	/* | 
 | 	 * Fragmentation resistance on low memory - only use bigger | 
 | 	 * page orders on machines with more than 32MB of memory if | 
 | 	 * not overridden on the command line. | 
 | 	 */ | 
 | 	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) | 
 | 		slab_max_order = SLAB_MAX_ORDER_HI; | 
 |  | 
 | 	/* Bootstrap is tricky, because several objects are allocated | 
 | 	 * from caches that do not exist yet: | 
 | 	 * 1) initialize the kmem_cache cache: it contains the struct | 
 | 	 *    kmem_cache structures of all caches, except kmem_cache itself: | 
 | 	 *    kmem_cache is statically allocated. | 
 | 	 *    Initially an __init data area is used for the head array and the | 
 | 	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated | 
 | 	 *    array at the end of the bootstrap. | 
 | 	 * 2) Create the first kmalloc cache. | 
 | 	 *    The struct kmem_cache for the new cache is allocated normally. | 
 | 	 *    An __init data area is used for the head array. | 
 | 	 * 3) Create the remaining kmalloc caches, with minimally sized | 
 | 	 *    head arrays. | 
 | 	 * 4) Replace the __init data head arrays for kmem_cache and the first | 
 | 	 *    kmalloc cache with kmalloc allocated arrays. | 
 | 	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and | 
 | 	 *    the other cache's with kmalloc allocated memory. | 
 | 	 * 6) Resize the head arrays of the kmalloc caches to their final sizes. | 
 | 	 */ | 
 |  | 
 | 	/* 1) create the kmem_cache */ | 
 |  | 
 | 	/* | 
 | 	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids | 
 | 	 */ | 
 | 	create_boot_cache(kmem_cache, "kmem_cache", | 
 | 		offsetof(struct kmem_cache, array[nr_cpu_ids]) + | 
 | 				  nr_node_ids * sizeof(struct kmem_cache_node *), | 
 | 				  SLAB_HWCACHE_ALIGN); | 
 | 	list_add(&kmem_cache->list, &slab_caches); | 
 |  | 
 | 	/* 2+3) create the kmalloc caches */ | 
 |  | 
 | 	/* | 
 | 	 * Initialize the caches that provide memory for the array cache and the | 
 | 	 * kmem_cache_node structures first.  Without this, further allocations will | 
 | 	 * bug. | 
 | 	 */ | 
 |  | 
 | 	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac", | 
 | 					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS); | 
 |  | 
 | 	if (INDEX_AC != INDEX_NODE) | 
 | 		kmalloc_caches[INDEX_NODE] = | 
 | 			create_kmalloc_cache("kmalloc-node", | 
 | 				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); | 
 |  | 
 | 	slab_early_init = 0; | 
 |  | 
 | 	/* 4) Replace the bootstrap head arrays */ | 
 | 	{ | 
 | 		struct array_cache *ptr; | 
 |  | 
 | 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); | 
 |  | 
 | 		memcpy(ptr, cpu_cache_get(kmem_cache), | 
 | 		       sizeof(struct arraycache_init)); | 
 | 		/* | 
 | 		 * Do not assume that spinlocks can be initialized via memcpy: | 
 | 		 */ | 
 | 		spin_lock_init(&ptr->lock); | 
 |  | 
 | 		kmem_cache->array[smp_processor_id()] = ptr; | 
 |  | 
 | 		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); | 
 |  | 
 | 		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC]) | 
 | 		       != &initarray_generic.cache); | 
 | 		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]), | 
 | 		       sizeof(struct arraycache_init)); | 
 | 		/* | 
 | 		 * Do not assume that spinlocks can be initialized via memcpy: | 
 | 		 */ | 
 | 		spin_lock_init(&ptr->lock); | 
 |  | 
 | 		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr; | 
 | 	} | 
 | 	/* 5) Replace the bootstrap kmem_cache_node */ | 
 | 	{ | 
 | 		int nid; | 
 |  | 
 | 		for_each_online_node(nid) { | 
 | 			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); | 
 |  | 
 | 			init_list(kmalloc_caches[INDEX_AC], | 
 | 				  &init_kmem_cache_node[SIZE_AC + nid], nid); | 
 |  | 
 | 			if (INDEX_AC != INDEX_NODE) { | 
 | 				init_list(kmalloc_caches[INDEX_NODE], | 
 | 					  &init_kmem_cache_node[SIZE_NODE + nid], nid); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	create_kmalloc_caches(ARCH_KMALLOC_FLAGS); | 
 | } | 
 |  | 
 | void __init kmem_cache_init_late(void) | 
 | { | 
 | 	struct kmem_cache *cachep; | 
 |  | 
 | 	slab_state = UP; | 
 |  | 
 | 	/* 6) resize the head arrays to their final sizes */ | 
 | 	mutex_lock(&slab_mutex); | 
 | 	list_for_each_entry(cachep, &slab_caches, list) | 
 | 		if (enable_cpucache(cachep, GFP_NOWAIT)) | 
 | 			BUG(); | 
 | 	mutex_unlock(&slab_mutex); | 
 |  | 
 | 	/* Annotate slab for lockdep -- annotate the malloc caches */ | 
 | 	init_lock_keys(); | 
 |  | 
 | 	/* Done! */ | 
 | 	slab_state = FULL; | 
 |  | 
 | 	/* | 
 | 	 * Register a cpu startup notifier callback that initializes | 
 | 	 * cpu_cache_get for all new cpus | 
 | 	 */ | 
 | 	register_cpu_notifier(&cpucache_notifier); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	/* | 
 | 	 * Register a memory hotplug callback that initializes and frees | 
 | 	 * node. | 
 | 	 */ | 
 | 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * The reap timers are started later, with a module init call: That part | 
 | 	 * of the kernel is not yet operational. | 
 | 	 */ | 
 | } | 
 |  | 
 | static int __init cpucache_init(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	/* | 
 | 	 * Register the timers that return unneeded pages to the page allocator | 
 | 	 */ | 
 | 	for_each_online_cpu(cpu) | 
 | 		start_cpu_timer(cpu); | 
 |  | 
 | 	/* Done! */ | 
 | 	slab_state = FULL; | 
 | 	return 0; | 
 | } | 
 | __initcall(cpucache_init); | 
 |  | 
 | static noinline void | 
 | slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) | 
 | { | 
 | 	struct kmem_cache_node *n; | 
 | 	struct page *page; | 
 | 	unsigned long flags; | 
 | 	int node; | 
 |  | 
 | 	printk(KERN_WARNING | 
 | 		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n", | 
 | 		nodeid, gfpflags); | 
 | 	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n", | 
 | 		cachep->name, cachep->size, cachep->gfporder); | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		unsigned long active_objs = 0, num_objs = 0, free_objects = 0; | 
 | 		unsigned long active_slabs = 0, num_slabs = 0; | 
 |  | 
 | 		n = cachep->node[node]; | 
 | 		if (!n) | 
 | 			continue; | 
 |  | 
 | 		spin_lock_irqsave(&n->list_lock, flags); | 
 | 		list_for_each_entry(page, &n->slabs_full, lru) { | 
 | 			active_objs += cachep->num; | 
 | 			active_slabs++; | 
 | 		} | 
 | 		list_for_each_entry(page, &n->slabs_partial, lru) { | 
 | 			active_objs += page->active; | 
 | 			active_slabs++; | 
 | 		} | 
 | 		list_for_each_entry(page, &n->slabs_free, lru) | 
 | 			num_slabs++; | 
 |  | 
 | 		free_objects += n->free_objects; | 
 | 		spin_unlock_irqrestore(&n->list_lock, flags); | 
 |  | 
 | 		num_slabs += active_slabs; | 
 | 		num_objs = num_slabs * cachep->num; | 
 | 		printk(KERN_WARNING | 
 | 			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", | 
 | 			node, active_slabs, num_slabs, active_objs, num_objs, | 
 | 			free_objects); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Interface to system's page allocator. No need to hold the cache-lock. | 
 |  * | 
 |  * If we requested dmaable memory, we will get it. Even if we | 
 |  * did not request dmaable memory, we might get it, but that | 
 |  * would be relatively rare and ignorable. | 
 |  */ | 
 | static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, | 
 | 								int nodeid) | 
 | { | 
 | 	struct page *page; | 
 | 	int nr_pages; | 
 |  | 
 | 	flags |= cachep->allocflags; | 
 | 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | 
 | 		flags |= __GFP_RECLAIMABLE; | 
 |  | 
 | 	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); | 
 | 	if (!page) { | 
 | 		if (!(flags & __GFP_NOWARN) && printk_ratelimit()) | 
 | 			slab_out_of_memory(cachep, flags, nodeid); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ | 
 | 	if (unlikely(page->pfmemalloc)) | 
 | 		pfmemalloc_active = true; | 
 |  | 
 | 	nr_pages = (1 << cachep->gfporder); | 
 | 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | 
 | 		add_zone_page_state(page_zone(page), | 
 | 			NR_SLAB_RECLAIMABLE, nr_pages); | 
 | 	else | 
 | 		add_zone_page_state(page_zone(page), | 
 | 			NR_SLAB_UNRECLAIMABLE, nr_pages); | 
 | 	__SetPageSlab(page); | 
 | 	if (page->pfmemalloc) | 
 | 		SetPageSlabPfmemalloc(page); | 
 | 	memcg_bind_pages(cachep, cachep->gfporder); | 
 |  | 
 | 	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { | 
 | 		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); | 
 |  | 
 | 		if (cachep->ctor) | 
 | 			kmemcheck_mark_uninitialized_pages(page, nr_pages); | 
 | 		else | 
 | 			kmemcheck_mark_unallocated_pages(page, nr_pages); | 
 | 	} | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Interface to system's page release. | 
 |  */ | 
 | static void kmem_freepages(struct kmem_cache *cachep, struct page *page) | 
 | { | 
 | 	const unsigned long nr_freed = (1 << cachep->gfporder); | 
 |  | 
 | 	kmemcheck_free_shadow(page, cachep->gfporder); | 
 |  | 
 | 	if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | 
 | 		sub_zone_page_state(page_zone(page), | 
 | 				NR_SLAB_RECLAIMABLE, nr_freed); | 
 | 	else | 
 | 		sub_zone_page_state(page_zone(page), | 
 | 				NR_SLAB_UNRECLAIMABLE, nr_freed); | 
 |  | 
 | 	BUG_ON(!PageSlab(page)); | 
 | 	__ClearPageSlabPfmemalloc(page); | 
 | 	__ClearPageSlab(page); | 
 | 	page_mapcount_reset(page); | 
 | 	page->mapping = NULL; | 
 |  | 
 | 	memcg_release_pages(cachep, cachep->gfporder); | 
 | 	if (current->reclaim_state) | 
 | 		current->reclaim_state->reclaimed_slab += nr_freed; | 
 | 	__free_memcg_kmem_pages(page, cachep->gfporder); | 
 | } | 
 |  | 
 | static void kmem_rcu_free(struct rcu_head *head) | 
 | { | 
 | 	struct kmem_cache *cachep; | 
 | 	struct page *page; | 
 |  | 
 | 	page = container_of(head, struct page, rcu_head); | 
 | 	cachep = page->slab_cache; | 
 |  | 
 | 	kmem_freepages(cachep, page); | 
 | } | 
 |  | 
 | #if DEBUG | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, | 
 | 			    unsigned long caller) | 
 | { | 
 | 	int size = cachep->object_size; | 
 |  | 
 | 	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; | 
 |  | 
 | 	if (size < 5 * sizeof(unsigned long)) | 
 | 		return; | 
 |  | 
 | 	*addr++ = 0x12345678; | 
 | 	*addr++ = caller; | 
 | 	*addr++ = smp_processor_id(); | 
 | 	size -= 3 * sizeof(unsigned long); | 
 | 	{ | 
 | 		unsigned long *sptr = &caller; | 
 | 		unsigned long svalue; | 
 |  | 
 | 		while (!kstack_end(sptr)) { | 
 | 			svalue = *sptr++; | 
 | 			if (kernel_text_address(svalue)) { | 
 | 				*addr++ = svalue; | 
 | 				size -= sizeof(unsigned long); | 
 | 				if (size <= sizeof(unsigned long)) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 	} | 
 | 	*addr++ = 0x87654321; | 
 | } | 
 | #endif | 
 |  | 
 | static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) | 
 | { | 
 | 	int size = cachep->object_size; | 
 | 	addr = &((char *)addr)[obj_offset(cachep)]; | 
 |  | 
 | 	memset(addr, val, size); | 
 | 	*(unsigned char *)(addr + size - 1) = POISON_END; | 
 | } | 
 |  | 
 | static void dump_line(char *data, int offset, int limit) | 
 | { | 
 | 	int i; | 
 | 	unsigned char error = 0; | 
 | 	int bad_count = 0; | 
 |  | 
 | 	printk(KERN_ERR "%03x: ", offset); | 
 | 	for (i = 0; i < limit; i++) { | 
 | 		if (data[offset + i] != POISON_FREE) { | 
 | 			error = data[offset + i]; | 
 | 			bad_count++; | 
 | 		} | 
 | 	} | 
 | 	print_hex_dump(KERN_CONT, "", 0, 16, 1, | 
 | 			&data[offset], limit, 1); | 
 |  | 
 | 	if (bad_count == 1) { | 
 | 		error ^= POISON_FREE; | 
 | 		if (!(error & (error - 1))) { | 
 | 			printk(KERN_ERR "Single bit error detected. Probably " | 
 | 					"bad RAM.\n"); | 
 | #ifdef CONFIG_X86 | 
 | 			printk(KERN_ERR "Run memtest86+ or a similar memory " | 
 | 					"test tool.\n"); | 
 | #else | 
 | 			printk(KERN_ERR "Run a memory test tool.\n"); | 
 | #endif | 
 | 		} | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | #if DEBUG | 
 |  | 
 | static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) | 
 | { | 
 | 	int i, size; | 
 | 	char *realobj; | 
 |  | 
 | 	if (cachep->flags & SLAB_RED_ZONE) { | 
 | 		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", | 
 | 			*dbg_redzone1(cachep, objp), | 
 | 			*dbg_redzone2(cachep, objp)); | 
 | 	} | 
 |  | 
 | 	if (cachep->flags & SLAB_STORE_USER) { | 
 | 		printk(KERN_ERR "Last user: [<%p>](%pSR)\n", | 
 | 		       *dbg_userword(cachep, objp), | 
 | 		       *dbg_userword(cachep, objp)); | 
 | 	} | 
 | 	realobj = (char *)objp + obj_offset(cachep); | 
 | 	size = cachep->object_size; | 
 | 	for (i = 0; i < size && lines; i += 16, lines--) { | 
 | 		int limit; | 
 | 		limit = 16; | 
 | 		if (i + limit > size) | 
 | 			limit = size - i; | 
 | 		dump_line(realobj, i, limit); | 
 | 	} | 
 | } | 
 |  | 
 | static void check_poison_obj(struct kmem_cache *cachep, void *objp) | 
 | { | 
 | 	char *realobj; | 
 | 	int size, i; | 
 | 	int lines = 0; | 
 |  | 
 | 	realobj = (char *)objp + obj_offset(cachep); | 
 | 	size = cachep->object_size; | 
 |  | 
 | 	for (i = 0; i < size; i++) { | 
 | 		char exp = POISON_FREE; | 
 | 		if (i == size - 1) | 
 | 			exp = POISON_END; | 
 | 		if (realobj[i] != exp) { | 
 | 			int limit; | 
 | 			/* Mismatch ! */ | 
 | 			/* Print header */ | 
 | 			if (lines == 0) { | 
 | 				printk(KERN_ERR | 
 | 					"Slab corruption (%s): %s start=%p, len=%d\n", | 
 | 					print_tainted(), cachep->name, realobj, size); | 
 | 				print_objinfo(cachep, objp, 0); | 
 | 			} | 
 | 			/* Hexdump the affected line */ | 
 | 			i = (i / 16) * 16; | 
 | 			limit = 16; | 
 | 			if (i + limit > size) | 
 | 				limit = size - i; | 
 | 			dump_line(realobj, i, limit); | 
 | 			i += 16; | 
 | 			lines++; | 
 | 			/* Limit to 5 lines */ | 
 | 			if (lines > 5) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	if (lines != 0) { | 
 | 		/* Print some data about the neighboring objects, if they | 
 | 		 * exist: | 
 | 		 */ | 
 | 		struct page *page = virt_to_head_page(objp); | 
 | 		unsigned int objnr; | 
 |  | 
 | 		objnr = obj_to_index(cachep, page, objp); | 
 | 		if (objnr) { | 
 | 			objp = index_to_obj(cachep, page, objnr - 1); | 
 | 			realobj = (char *)objp + obj_offset(cachep); | 
 | 			printk(KERN_ERR "Prev obj: start=%p, len=%d\n", | 
 | 			       realobj, size); | 
 | 			print_objinfo(cachep, objp, 2); | 
 | 		} | 
 | 		if (objnr + 1 < cachep->num) { | 
 | 			objp = index_to_obj(cachep, page, objnr + 1); | 
 | 			realobj = (char *)objp + obj_offset(cachep); | 
 | 			printk(KERN_ERR "Next obj: start=%p, len=%d\n", | 
 | 			       realobj, size); | 
 | 			print_objinfo(cachep, objp, 2); | 
 | 		} | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | #if DEBUG | 
 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, | 
 | 						struct page *page) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < cachep->num; i++) { | 
 | 		void *objp = index_to_obj(cachep, page, i); | 
 |  | 
 | 		if (cachep->flags & SLAB_POISON) { | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 			if (cachep->size % PAGE_SIZE == 0 && | 
 | 					OFF_SLAB(cachep)) | 
 | 				kernel_map_pages(virt_to_page(objp), | 
 | 					cachep->size / PAGE_SIZE, 1); | 
 | 			else | 
 | 				check_poison_obj(cachep, objp); | 
 | #else | 
 | 			check_poison_obj(cachep, objp); | 
 | #endif | 
 | 		} | 
 | 		if (cachep->flags & SLAB_RED_ZONE) { | 
 | 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | 
 | 				slab_error(cachep, "start of a freed object " | 
 | 					   "was overwritten"); | 
 | 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | 
 | 				slab_error(cachep, "end of a freed object " | 
 | 					   "was overwritten"); | 
 | 		} | 
 | 	} | 
 | } | 
 | #else | 
 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, | 
 | 						struct page *page) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * slab_destroy - destroy and release all objects in a slab | 
 |  * @cachep: cache pointer being destroyed | 
 |  * @page: page pointer being destroyed | 
 |  * | 
 |  * Destroy all the objs in a slab, and release the mem back to the system. | 
 |  * Before calling the slab must have been unlinked from the cache.  The | 
 |  * cache-lock is not held/needed. | 
 |  */ | 
 | static void slab_destroy(struct kmem_cache *cachep, struct page *page) | 
 | { | 
 | 	void *freelist; | 
 |  | 
 | 	freelist = page->freelist; | 
 | 	slab_destroy_debugcheck(cachep, page); | 
 | 	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { | 
 | 		struct rcu_head *head; | 
 |  | 
 | 		/* | 
 | 		 * RCU free overloads the RCU head over the LRU. | 
 | 		 * slab_page has been overloeaded over the LRU, | 
 | 		 * however it is not used from now on so that | 
 | 		 * we can use it safely. | 
 | 		 */ | 
 | 		head = (void *)&page->rcu_head; | 
 | 		call_rcu(head, kmem_rcu_free); | 
 |  | 
 | 	} else { | 
 | 		kmem_freepages(cachep, page); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * From now on, we don't use freelist | 
 | 	 * although actual page can be freed in rcu context | 
 | 	 */ | 
 | 	if (OFF_SLAB(cachep)) | 
 | 		kmem_cache_free(cachep->freelist_cache, freelist); | 
 | } | 
 |  | 
 | /** | 
 |  * calculate_slab_order - calculate size (page order) of slabs | 
 |  * @cachep: pointer to the cache that is being created | 
 |  * @size: size of objects to be created in this cache. | 
 |  * @align: required alignment for the objects. | 
 |  * @flags: slab allocation flags | 
 |  * | 
 |  * Also calculates the number of objects per slab. | 
 |  * | 
 |  * This could be made much more intelligent.  For now, try to avoid using | 
 |  * high order pages for slabs.  When the gfp() functions are more friendly | 
 |  * towards high-order requests, this should be changed. | 
 |  */ | 
 | static size_t calculate_slab_order(struct kmem_cache *cachep, | 
 | 			size_t size, size_t align, unsigned long flags) | 
 | { | 
 | 	unsigned long offslab_limit; | 
 | 	size_t left_over = 0; | 
 | 	int gfporder; | 
 |  | 
 | 	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { | 
 | 		unsigned int num; | 
 | 		size_t remainder; | 
 |  | 
 | 		cache_estimate(gfporder, size, align, flags, &remainder, &num); | 
 | 		if (!num) | 
 | 			continue; | 
 |  | 
 | 		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ | 
 | 		if (num > SLAB_OBJ_MAX_NUM) | 
 | 			break; | 
 |  | 
 | 		if (flags & CFLGS_OFF_SLAB) { | 
 | 			/* | 
 | 			 * Max number of objs-per-slab for caches which | 
 | 			 * use off-slab slabs. Needed to avoid a possible | 
 | 			 * looping condition in cache_grow(). | 
 | 			 */ | 
 | 			offslab_limit = size; | 
 | 			offslab_limit /= sizeof(freelist_idx_t); | 
 |  | 
 |  			if (num > offslab_limit) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		/* Found something acceptable - save it away */ | 
 | 		cachep->num = num; | 
 | 		cachep->gfporder = gfporder; | 
 | 		left_over = remainder; | 
 |  | 
 | 		/* | 
 | 		 * A VFS-reclaimable slab tends to have most allocations | 
 | 		 * as GFP_NOFS and we really don't want to have to be allocating | 
 | 		 * higher-order pages when we are unable to shrink dcache. | 
 | 		 */ | 
 | 		if (flags & SLAB_RECLAIM_ACCOUNT) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Large number of objects is good, but very large slabs are | 
 | 		 * currently bad for the gfp()s. | 
 | 		 */ | 
 | 		if (gfporder >= slab_max_order) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Acceptable internal fragmentation? | 
 | 		 */ | 
 | 		if (left_over * 8 <= (PAGE_SIZE << gfporder)) | 
 | 			break; | 
 | 	} | 
 | 	return left_over; | 
 | } | 
 |  | 
 | static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) | 
 | { | 
 | 	if (slab_state >= FULL) | 
 | 		return enable_cpucache(cachep, gfp); | 
 |  | 
 | 	if (slab_state == DOWN) { | 
 | 		/* | 
 | 		 * Note: Creation of first cache (kmem_cache). | 
 | 		 * The setup_node is taken care | 
 | 		 * of by the caller of __kmem_cache_create | 
 | 		 */ | 
 | 		cachep->array[smp_processor_id()] = &initarray_generic.cache; | 
 | 		slab_state = PARTIAL; | 
 | 	} else if (slab_state == PARTIAL) { | 
 | 		/* | 
 | 		 * Note: the second kmem_cache_create must create the cache | 
 | 		 * that's used by kmalloc(24), otherwise the creation of | 
 | 		 * further caches will BUG(). | 
 | 		 */ | 
 | 		cachep->array[smp_processor_id()] = &initarray_generic.cache; | 
 |  | 
 | 		/* | 
 | 		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is | 
 | 		 * the second cache, then we need to set up all its node/, | 
 | 		 * otherwise the creation of further caches will BUG(). | 
 | 		 */ | 
 | 		set_up_node(cachep, SIZE_AC); | 
 | 		if (INDEX_AC == INDEX_NODE) | 
 | 			slab_state = PARTIAL_NODE; | 
 | 		else | 
 | 			slab_state = PARTIAL_ARRAYCACHE; | 
 | 	} else { | 
 | 		/* Remaining boot caches */ | 
 | 		cachep->array[smp_processor_id()] = | 
 | 			kmalloc(sizeof(struct arraycache_init), gfp); | 
 |  | 
 | 		if (slab_state == PARTIAL_ARRAYCACHE) { | 
 | 			set_up_node(cachep, SIZE_NODE); | 
 | 			slab_state = PARTIAL_NODE; | 
 | 		} else { | 
 | 			int node; | 
 | 			for_each_online_node(node) { | 
 | 				cachep->node[node] = | 
 | 				    kmalloc_node(sizeof(struct kmem_cache_node), | 
 | 						gfp, node); | 
 | 				BUG_ON(!cachep->node[node]); | 
 | 				kmem_cache_node_init(cachep->node[node]); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	cachep->node[numa_mem_id()]->next_reap = | 
 | 			jiffies + REAPTIMEOUT_NODE + | 
 | 			((unsigned long)cachep) % REAPTIMEOUT_NODE; | 
 |  | 
 | 	cpu_cache_get(cachep)->avail = 0; | 
 | 	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | 
 | 	cpu_cache_get(cachep)->batchcount = 1; | 
 | 	cpu_cache_get(cachep)->touched = 0; | 
 | 	cachep->batchcount = 1; | 
 | 	cachep->limit = BOOT_CPUCACHE_ENTRIES; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * __kmem_cache_create - Create a cache. | 
 |  * @cachep: cache management descriptor | 
 |  * @flags: SLAB flags | 
 |  * | 
 |  * Returns a ptr to the cache on success, NULL on failure. | 
 |  * Cannot be called within a int, but can be interrupted. | 
 |  * The @ctor is run when new pages are allocated by the cache. | 
 |  * | 
 |  * The flags are | 
 |  * | 
 |  * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | 
 |  * to catch references to uninitialised memory. | 
 |  * | 
 |  * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | 
 |  * for buffer overruns. | 
 |  * | 
 |  * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | 
 |  * cacheline.  This can be beneficial if you're counting cycles as closely | 
 |  * as davem. | 
 |  */ | 
 | int | 
 | __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) | 
 | { | 
 | 	size_t left_over, freelist_size, ralign; | 
 | 	gfp_t gfp; | 
 | 	int err; | 
 | 	size_t size = cachep->size; | 
 |  | 
 | #if DEBUG | 
 | #if FORCED_DEBUG | 
 | 	/* | 
 | 	 * Enable redzoning and last user accounting, except for caches with | 
 | 	 * large objects, if the increased size would increase the object size | 
 | 	 * above the next power of two: caches with object sizes just above a | 
 | 	 * power of two have a significant amount of internal fragmentation. | 
 | 	 */ | 
 | 	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + | 
 | 						2 * sizeof(unsigned long long))) | 
 | 		flags |= SLAB_RED_ZONE | SLAB_STORE_USER; | 
 | 	if (!(flags & SLAB_DESTROY_BY_RCU)) | 
 | 		flags |= SLAB_POISON; | 
 | #endif | 
 | 	if (flags & SLAB_DESTROY_BY_RCU) | 
 | 		BUG_ON(flags & SLAB_POISON); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Check that size is in terms of words.  This is needed to avoid | 
 | 	 * unaligned accesses for some archs when redzoning is used, and makes | 
 | 	 * sure any on-slab bufctl's are also correctly aligned. | 
 | 	 */ | 
 | 	if (size & (BYTES_PER_WORD - 1)) { | 
 | 		size += (BYTES_PER_WORD - 1); | 
 | 		size &= ~(BYTES_PER_WORD - 1); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Redzoning and user store require word alignment or possibly larger. | 
 | 	 * Note this will be overridden by architecture or caller mandated | 
 | 	 * alignment if either is greater than BYTES_PER_WORD. | 
 | 	 */ | 
 | 	if (flags & SLAB_STORE_USER) | 
 | 		ralign = BYTES_PER_WORD; | 
 |  | 
 | 	if (flags & SLAB_RED_ZONE) { | 
 | 		ralign = REDZONE_ALIGN; | 
 | 		/* If redzoning, ensure that the second redzone is suitably | 
 | 		 * aligned, by adjusting the object size accordingly. */ | 
 | 		size += REDZONE_ALIGN - 1; | 
 | 		size &= ~(REDZONE_ALIGN - 1); | 
 | 	} | 
 |  | 
 | 	/* 3) caller mandated alignment */ | 
 | 	if (ralign < cachep->align) { | 
 | 		ralign = cachep->align; | 
 | 	} | 
 | 	/* disable debug if necessary */ | 
 | 	if (ralign > __alignof__(unsigned long long)) | 
 | 		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | 
 | 	/* | 
 | 	 * 4) Store it. | 
 | 	 */ | 
 | 	cachep->align = ralign; | 
 |  | 
 | 	if (slab_is_available()) | 
 | 		gfp = GFP_KERNEL; | 
 | 	else | 
 | 		gfp = GFP_NOWAIT; | 
 |  | 
 | 	setup_node_pointer(cachep); | 
 | #if DEBUG | 
 |  | 
 | 	/* | 
 | 	 * Both debugging options require word-alignment which is calculated | 
 | 	 * into align above. | 
 | 	 */ | 
 | 	if (flags & SLAB_RED_ZONE) { | 
 | 		/* add space for red zone words */ | 
 | 		cachep->obj_offset += sizeof(unsigned long long); | 
 | 		size += 2 * sizeof(unsigned long long); | 
 | 	} | 
 | 	if (flags & SLAB_STORE_USER) { | 
 | 		/* user store requires one word storage behind the end of | 
 | 		 * the real object. But if the second red zone needs to be | 
 | 		 * aligned to 64 bits, we must allow that much space. | 
 | 		 */ | 
 | 		if (flags & SLAB_RED_ZONE) | 
 | 			size += REDZONE_ALIGN; | 
 | 		else | 
 | 			size += BYTES_PER_WORD; | 
 | 	} | 
 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | 
 | 	if (size >= kmalloc_size(INDEX_NODE + 1) | 
 | 	    && cachep->object_size > cache_line_size() | 
 | 	    && ALIGN(size, cachep->align) < PAGE_SIZE) { | 
 | 		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align); | 
 | 		size = PAGE_SIZE; | 
 | 	} | 
 | #endif | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Determine if the slab management is 'on' or 'off' slab. | 
 | 	 * (bootstrapping cannot cope with offslab caches so don't do | 
 | 	 * it too early on. Always use on-slab management when | 
 | 	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) | 
 | 	 */ | 
 | 	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init && | 
 | 	    !(flags & SLAB_NOLEAKTRACE)) | 
 | 		/* | 
 | 		 * Size is large, assume best to place the slab management obj | 
 | 		 * off-slab (should allow better packing of objs). | 
 | 		 */ | 
 | 		flags |= CFLGS_OFF_SLAB; | 
 |  | 
 | 	size = ALIGN(size, cachep->align); | 
 | 	/* | 
 | 	 * We should restrict the number of objects in a slab to implement | 
 | 	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. | 
 | 	 */ | 
 | 	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) | 
 | 		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); | 
 |  | 
 | 	left_over = calculate_slab_order(cachep, size, cachep->align, flags); | 
 |  | 
 | 	if (!cachep->num) | 
 | 		return -E2BIG; | 
 |  | 
 | 	freelist_size = | 
 | 		ALIGN(cachep->num * sizeof(freelist_idx_t), cachep->align); | 
 |  | 
 | 	/* | 
 | 	 * If the slab has been placed off-slab, and we have enough space then | 
 | 	 * move it on-slab. This is at the expense of any extra colouring. | 
 | 	 */ | 
 | 	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) { | 
 | 		flags &= ~CFLGS_OFF_SLAB; | 
 | 		left_over -= freelist_size; | 
 | 	} | 
 |  | 
 | 	if (flags & CFLGS_OFF_SLAB) { | 
 | 		/* really off slab. No need for manual alignment */ | 
 | 		freelist_size = cachep->num * sizeof(freelist_idx_t); | 
 |  | 
 | #ifdef CONFIG_PAGE_POISONING | 
 | 		/* If we're going to use the generic kernel_map_pages() | 
 | 		 * poisoning, then it's going to smash the contents of | 
 | 		 * the redzone and userword anyhow, so switch them off. | 
 | 		 */ | 
 | 		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) | 
 | 			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	cachep->colour_off = cache_line_size(); | 
 | 	/* Offset must be a multiple of the alignment. */ | 
 | 	if (cachep->colour_off < cachep->align) | 
 | 		cachep->colour_off = cachep->align; | 
 | 	cachep->colour = left_over / cachep->colour_off; | 
 | 	cachep->freelist_size = freelist_size; | 
 | 	cachep->flags = flags; | 
 | 	cachep->allocflags = __GFP_COMP; | 
 | 	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) | 
 | 		cachep->allocflags |= GFP_DMA; | 
 | 	cachep->size = size; | 
 | 	cachep->reciprocal_buffer_size = reciprocal_value(size); | 
 |  | 
 | 	if (flags & CFLGS_OFF_SLAB) { | 
 | 		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u); | 
 | 		/* | 
 | 		 * This is a possibility for one of the kmalloc_{dma,}_caches. | 
 | 		 * But since we go off slab only for object size greater than | 
 | 		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created | 
 | 		 * in ascending order,this should not happen at all. | 
 | 		 * But leave a BUG_ON for some lucky dude. | 
 | 		 */ | 
 | 		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache)); | 
 | 	} | 
 |  | 
 | 	err = setup_cpu_cache(cachep, gfp); | 
 | 	if (err) { | 
 | 		__kmem_cache_shutdown(cachep); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	if (flags & SLAB_DEBUG_OBJECTS) { | 
 | 		/* | 
 | 		 * Would deadlock through slab_destroy()->call_rcu()-> | 
 | 		 * debug_object_activate()->kmem_cache_alloc(). | 
 | 		 */ | 
 | 		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU); | 
 |  | 
 | 		slab_set_debugobj_lock_classes(cachep); | 
 | 	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU)) | 
 | 		on_slab_lock_classes(cachep); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #if DEBUG | 
 | static void check_irq_off(void) | 
 | { | 
 | 	BUG_ON(!irqs_disabled()); | 
 | } | 
 |  | 
 | static void check_irq_on(void) | 
 | { | 
 | 	BUG_ON(irqs_disabled()); | 
 | } | 
 |  | 
 | static void check_spinlock_acquired(struct kmem_cache *cachep) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	check_irq_off(); | 
 | 	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock); | 
 | #endif | 
 | } | 
 |  | 
 | static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	check_irq_off(); | 
 | 	assert_spin_locked(&cachep->node[node]->list_lock); | 
 | #endif | 
 | } | 
 |  | 
 | #else | 
 | #define check_irq_off()	do { } while(0) | 
 | #define check_irq_on()	do { } while(0) | 
 | #define check_spinlock_acquired(x) do { } while(0) | 
 | #define check_spinlock_acquired_node(x, y) do { } while(0) | 
 | #endif | 
 |  | 
 | static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, | 
 | 			struct array_cache *ac, | 
 | 			int force, int node); | 
 |  | 
 | static void do_drain(void *arg) | 
 | { | 
 | 	struct kmem_cache *cachep = arg; | 
 | 	struct array_cache *ac; | 
 | 	int node = numa_mem_id(); | 
 |  | 
 | 	check_irq_off(); | 
 | 	ac = cpu_cache_get(cachep); | 
 | 	spin_lock(&cachep->node[node]->list_lock); | 
 | 	free_block(cachep, ac->entry, ac->avail, node); | 
 | 	spin_unlock(&cachep->node[node]->list_lock); | 
 | 	ac->avail = 0; | 
 | } | 
 |  | 
 | static void drain_cpu_caches(struct kmem_cache *cachep) | 
 | { | 
 | 	struct kmem_cache_node *n; | 
 | 	int node; | 
 |  | 
 | 	on_each_cpu(do_drain, cachep, 1); | 
 | 	check_irq_on(); | 
 | 	for_each_online_node(node) { | 
 | 		n = cachep->node[node]; | 
 | 		if (n && n->alien) | 
 | 			drain_alien_cache(cachep, n->alien); | 
 | 	} | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		n = cachep->node[node]; | 
 | 		if (n) | 
 | 			drain_array(cachep, n, n->shared, 1, node); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Remove slabs from the list of free slabs. | 
 |  * Specify the number of slabs to drain in tofree. | 
 |  * | 
 |  * Returns the actual number of slabs released. | 
 |  */ | 
 | static int drain_freelist(struct kmem_cache *cache, | 
 | 			struct kmem_cache_node *n, int tofree) | 
 | { | 
 | 	struct list_head *p; | 
 | 	int nr_freed; | 
 | 	struct page *page; | 
 |  | 
 | 	nr_freed = 0; | 
 | 	while (nr_freed < tofree && !list_empty(&n->slabs_free)) { | 
 |  | 
 | 		spin_lock_irq(&n->list_lock); | 
 | 		p = n->slabs_free.prev; | 
 | 		if (p == &n->slabs_free) { | 
 | 			spin_unlock_irq(&n->list_lock); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		page = list_entry(p, struct page, lru); | 
 | #if DEBUG | 
 | 		BUG_ON(page->active); | 
 | #endif | 
 | 		list_del(&page->lru); | 
 | 		/* | 
 | 		 * Safe to drop the lock. The slab is no longer linked | 
 | 		 * to the cache. | 
 | 		 */ | 
 | 		n->free_objects -= cache->num; | 
 | 		spin_unlock_irq(&n->list_lock); | 
 | 		slab_destroy(cache, page); | 
 | 		nr_freed++; | 
 | 	} | 
 | out: | 
 | 	return nr_freed; | 
 | } | 
 |  | 
 | /* Called with slab_mutex held to protect against cpu hotplug */ | 
 | static int __cache_shrink(struct kmem_cache *cachep) | 
 | { | 
 | 	int ret = 0, i = 0; | 
 | 	struct kmem_cache_node *n; | 
 |  | 
 | 	drain_cpu_caches(cachep); | 
 |  | 
 | 	check_irq_on(); | 
 | 	for_each_online_node(i) { | 
 | 		n = cachep->node[i]; | 
 | 		if (!n) | 
 | 			continue; | 
 |  | 
 | 		drain_freelist(cachep, n, slabs_tofree(cachep, n)); | 
 |  | 
 | 		ret += !list_empty(&n->slabs_full) || | 
 | 			!list_empty(&n->slabs_partial); | 
 | 	} | 
 | 	return (ret ? 1 : 0); | 
 | } | 
 |  | 
 | /** | 
 |  * kmem_cache_shrink - Shrink a cache. | 
 |  * @cachep: The cache to shrink. | 
 |  * | 
 |  * Releases as many slabs as possible for a cache. | 
 |  * To help debugging, a zero exit status indicates all slabs were released. | 
 |  */ | 
 | int kmem_cache_shrink(struct kmem_cache *cachep) | 
 | { | 
 | 	int ret; | 
 | 	BUG_ON(!cachep || in_interrupt()); | 
 |  | 
 | 	get_online_cpus(); | 
 | 	mutex_lock(&slab_mutex); | 
 | 	ret = __cache_shrink(cachep); | 
 | 	mutex_unlock(&slab_mutex); | 
 | 	put_online_cpus(); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_shrink); | 
 |  | 
 | int __kmem_cache_shutdown(struct kmem_cache *cachep) | 
 | { | 
 | 	int i; | 
 | 	struct kmem_cache_node *n; | 
 | 	int rc = __cache_shrink(cachep); | 
 |  | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	for_each_online_cpu(i) | 
 | 	    kfree(cachep->array[i]); | 
 |  | 
 | 	/* NUMA: free the node structures */ | 
 | 	for_each_online_node(i) { | 
 | 		n = cachep->node[i]; | 
 | 		if (n) { | 
 | 			kfree(n->shared); | 
 | 			free_alien_cache(n->alien); | 
 | 			kfree(n); | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Get the memory for a slab management obj. | 
 |  * | 
 |  * For a slab cache when the slab descriptor is off-slab, the | 
 |  * slab descriptor can't come from the same cache which is being created, | 
 |  * Because if it is the case, that means we defer the creation of | 
 |  * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. | 
 |  * And we eventually call down to __kmem_cache_create(), which | 
 |  * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. | 
 |  * This is a "chicken-and-egg" problem. | 
 |  * | 
 |  * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, | 
 |  * which are all initialized during kmem_cache_init(). | 
 |  */ | 
 | static void *alloc_slabmgmt(struct kmem_cache *cachep, | 
 | 				   struct page *page, int colour_off, | 
 | 				   gfp_t local_flags, int nodeid) | 
 | { | 
 | 	void *freelist; | 
 | 	void *addr = page_address(page); | 
 |  | 
 | 	if (OFF_SLAB(cachep)) { | 
 | 		/* Slab management obj is off-slab. */ | 
 | 		freelist = kmem_cache_alloc_node(cachep->freelist_cache, | 
 | 					      local_flags, nodeid); | 
 | 		if (!freelist) | 
 | 			return NULL; | 
 | 	} else { | 
 | 		freelist = addr + colour_off; | 
 | 		colour_off += cachep->freelist_size; | 
 | 	} | 
 | 	page->active = 0; | 
 | 	page->s_mem = addr + colour_off; | 
 | 	return freelist; | 
 | } | 
 |  | 
 | static inline freelist_idx_t get_free_obj(struct page *page, unsigned char idx) | 
 | { | 
 | 	return ((freelist_idx_t *)page->freelist)[idx]; | 
 | } | 
 |  | 
 | static inline void set_free_obj(struct page *page, | 
 | 					unsigned char idx, freelist_idx_t val) | 
 | { | 
 | 	((freelist_idx_t *)(page->freelist))[idx] = val; | 
 | } | 
 |  | 
 | static void cache_init_objs(struct kmem_cache *cachep, | 
 | 			    struct page *page) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < cachep->num; i++) { | 
 | 		void *objp = index_to_obj(cachep, page, i); | 
 | #if DEBUG | 
 | 		/* need to poison the objs? */ | 
 | 		if (cachep->flags & SLAB_POISON) | 
 | 			poison_obj(cachep, objp, POISON_FREE); | 
 | 		if (cachep->flags & SLAB_STORE_USER) | 
 | 			*dbg_userword(cachep, objp) = NULL; | 
 |  | 
 | 		if (cachep->flags & SLAB_RED_ZONE) { | 
 | 			*dbg_redzone1(cachep, objp) = RED_INACTIVE; | 
 | 			*dbg_redzone2(cachep, objp) = RED_INACTIVE; | 
 | 		} | 
 | 		/* | 
 | 		 * Constructors are not allowed to allocate memory from the same | 
 | 		 * cache which they are a constructor for.  Otherwise, deadlock. | 
 | 		 * They must also be threaded. | 
 | 		 */ | 
 | 		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | 
 | 			cachep->ctor(objp + obj_offset(cachep)); | 
 |  | 
 | 		if (cachep->flags & SLAB_RED_ZONE) { | 
 | 			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | 
 | 				slab_error(cachep, "constructor overwrote the" | 
 | 					   " end of an object"); | 
 | 			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | 
 | 				slab_error(cachep, "constructor overwrote the" | 
 | 					   " start of an object"); | 
 | 		} | 
 | 		if ((cachep->size % PAGE_SIZE) == 0 && | 
 | 			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) | 
 | 			kernel_map_pages(virt_to_page(objp), | 
 | 					 cachep->size / PAGE_SIZE, 0); | 
 | #else | 
 | 		if (cachep->ctor) | 
 | 			cachep->ctor(objp); | 
 | #endif | 
 | 		set_free_obj(page, i, i); | 
 | 	} | 
 | } | 
 |  | 
 | static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) | 
 | { | 
 | 	if (CONFIG_ZONE_DMA_FLAG) { | 
 | 		if (flags & GFP_DMA) | 
 | 			BUG_ON(!(cachep->allocflags & GFP_DMA)); | 
 | 		else | 
 | 			BUG_ON(cachep->allocflags & GFP_DMA); | 
 | 	} | 
 | } | 
 |  | 
 | static void *slab_get_obj(struct kmem_cache *cachep, struct page *page, | 
 | 				int nodeid) | 
 | { | 
 | 	void *objp; | 
 |  | 
 | 	objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); | 
 | 	page->active++; | 
 | #if DEBUG | 
 | 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid); | 
 | #endif | 
 |  | 
 | 	return objp; | 
 | } | 
 |  | 
 | static void slab_put_obj(struct kmem_cache *cachep, struct page *page, | 
 | 				void *objp, int nodeid) | 
 | { | 
 | 	unsigned int objnr = obj_to_index(cachep, page, objp); | 
 | #if DEBUG | 
 | 	unsigned int i; | 
 |  | 
 | 	/* Verify that the slab belongs to the intended node */ | 
 | 	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid); | 
 |  | 
 | 	/* Verify double free bug */ | 
 | 	for (i = page->active; i < cachep->num; i++) { | 
 | 		if (get_free_obj(page, i) == objnr) { | 
 | 			printk(KERN_ERR "slab: double free detected in cache " | 
 | 					"'%s', objp %p\n", cachep->name, objp); | 
 | 			BUG(); | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	page->active--; | 
 | 	set_free_obj(page, page->active, objnr); | 
 | } | 
 |  | 
 | /* | 
 |  * Map pages beginning at addr to the given cache and slab. This is required | 
 |  * for the slab allocator to be able to lookup the cache and slab of a | 
 |  * virtual address for kfree, ksize, and slab debugging. | 
 |  */ | 
 | static void slab_map_pages(struct kmem_cache *cache, struct page *page, | 
 | 			   void *freelist) | 
 | { | 
 | 	page->slab_cache = cache; | 
 | 	page->freelist = freelist; | 
 | } | 
 |  | 
 | /* | 
 |  * Grow (by 1) the number of slabs within a cache.  This is called by | 
 |  * kmem_cache_alloc() when there are no active objs left in a cache. | 
 |  */ | 
 | static int cache_grow(struct kmem_cache *cachep, | 
 | 		gfp_t flags, int nodeid, struct page *page) | 
 | { | 
 | 	void *freelist; | 
 | 	size_t offset; | 
 | 	gfp_t local_flags; | 
 | 	struct kmem_cache_node *n; | 
 |  | 
 | 	/* | 
 | 	 * Be lazy and only check for valid flags here,  keeping it out of the | 
 | 	 * critical path in kmem_cache_alloc(). | 
 | 	 */ | 
 | 	BUG_ON(flags & GFP_SLAB_BUG_MASK); | 
 | 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); | 
 |  | 
 | 	/* Take the node list lock to change the colour_next on this node */ | 
 | 	check_irq_off(); | 
 | 	n = cachep->node[nodeid]; | 
 | 	spin_lock(&n->list_lock); | 
 |  | 
 | 	/* Get colour for the slab, and cal the next value. */ | 
 | 	offset = n->colour_next; | 
 | 	n->colour_next++; | 
 | 	if (n->colour_next >= cachep->colour) | 
 | 		n->colour_next = 0; | 
 | 	spin_unlock(&n->list_lock); | 
 |  | 
 | 	offset *= cachep->colour_off; | 
 |  | 
 | 	if (local_flags & __GFP_WAIT) | 
 | 		local_irq_enable(); | 
 |  | 
 | 	/* | 
 | 	 * The test for missing atomic flag is performed here, rather than | 
 | 	 * the more obvious place, simply to reduce the critical path length | 
 | 	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they | 
 | 	 * will eventually be caught here (where it matters). | 
 | 	 */ | 
 | 	kmem_flagcheck(cachep, flags); | 
 |  | 
 | 	/* | 
 | 	 * Get mem for the objs.  Attempt to allocate a physical page from | 
 | 	 * 'nodeid'. | 
 | 	 */ | 
 | 	if (!page) | 
 | 		page = kmem_getpages(cachep, local_flags, nodeid); | 
 | 	if (!page) | 
 | 		goto failed; | 
 |  | 
 | 	/* Get slab management. */ | 
 | 	freelist = alloc_slabmgmt(cachep, page, offset, | 
 | 			local_flags & ~GFP_CONSTRAINT_MASK, nodeid); | 
 | 	if (!freelist) | 
 | 		goto opps1; | 
 |  | 
 | 	slab_map_pages(cachep, page, freelist); | 
 |  | 
 | 	cache_init_objs(cachep, page); | 
 |  | 
 | 	if (local_flags & __GFP_WAIT) | 
 | 		local_irq_disable(); | 
 | 	check_irq_off(); | 
 | 	spin_lock(&n->list_lock); | 
 |  | 
 | 	/* Make slab active. */ | 
 | 	list_add_tail(&page->lru, &(n->slabs_free)); | 
 | 	STATS_INC_GROWN(cachep); | 
 | 	n->free_objects += cachep->num; | 
 | 	spin_unlock(&n->list_lock); | 
 | 	return 1; | 
 | opps1: | 
 | 	kmem_freepages(cachep, page); | 
 | failed: | 
 | 	if (local_flags & __GFP_WAIT) | 
 | 		local_irq_disable(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #if DEBUG | 
 |  | 
 | /* | 
 |  * Perform extra freeing checks: | 
 |  * - detect bad pointers. | 
 |  * - POISON/RED_ZONE checking | 
 |  */ | 
 | static void kfree_debugcheck(const void *objp) | 
 | { | 
 | 	if (!virt_addr_valid(objp)) { | 
 | 		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", | 
 | 		       (unsigned long)objp); | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) | 
 | { | 
 | 	unsigned long long redzone1, redzone2; | 
 |  | 
 | 	redzone1 = *dbg_redzone1(cache, obj); | 
 | 	redzone2 = *dbg_redzone2(cache, obj); | 
 |  | 
 | 	/* | 
 | 	 * Redzone is ok. | 
 | 	 */ | 
 | 	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) | 
 | 		return; | 
 |  | 
 | 	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) | 
 | 		slab_error(cache, "double free detected"); | 
 | 	else | 
 | 		slab_error(cache, "memory outside object was overwritten"); | 
 |  | 
 | 	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", | 
 | 			obj, redzone1, redzone2); | 
 | } | 
 |  | 
 | static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, | 
 | 				   unsigned long caller) | 
 | { | 
 | 	unsigned int objnr; | 
 | 	struct page *page; | 
 |  | 
 | 	BUG_ON(virt_to_cache(objp) != cachep); | 
 |  | 
 | 	objp -= obj_offset(cachep); | 
 | 	kfree_debugcheck(objp); | 
 | 	page = virt_to_head_page(objp); | 
 |  | 
 | 	if (cachep->flags & SLAB_RED_ZONE) { | 
 | 		verify_redzone_free(cachep, objp); | 
 | 		*dbg_redzone1(cachep, objp) = RED_INACTIVE; | 
 | 		*dbg_redzone2(cachep, objp) = RED_INACTIVE; | 
 | 	} | 
 | 	if (cachep->flags & SLAB_STORE_USER) | 
 | 		*dbg_userword(cachep, objp) = (void *)caller; | 
 |  | 
 | 	objnr = obj_to_index(cachep, page, objp); | 
 |  | 
 | 	BUG_ON(objnr >= cachep->num); | 
 | 	BUG_ON(objp != index_to_obj(cachep, page, objnr)); | 
 |  | 
 | 	if (cachep->flags & SLAB_POISON) { | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { | 
 | 			store_stackinfo(cachep, objp, caller); | 
 | 			kernel_map_pages(virt_to_page(objp), | 
 | 					 cachep->size / PAGE_SIZE, 0); | 
 | 		} else { | 
 | 			poison_obj(cachep, objp, POISON_FREE); | 
 | 		} | 
 | #else | 
 | 		poison_obj(cachep, objp, POISON_FREE); | 
 | #endif | 
 | 	} | 
 | 	return objp; | 
 | } | 
 |  | 
 | #else | 
 | #define kfree_debugcheck(x) do { } while(0) | 
 | #define cache_free_debugcheck(x,objp,z) (objp) | 
 | #endif | 
 |  | 
 | static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags, | 
 | 							bool force_refill) | 
 | { | 
 | 	int batchcount; | 
 | 	struct kmem_cache_node *n; | 
 | 	struct array_cache *ac; | 
 | 	int node; | 
 |  | 
 | 	check_irq_off(); | 
 | 	node = numa_mem_id(); | 
 | 	if (unlikely(force_refill)) | 
 | 		goto force_grow; | 
 | retry: | 
 | 	ac = cpu_cache_get(cachep); | 
 | 	batchcount = ac->batchcount; | 
 | 	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | 
 | 		/* | 
 | 		 * If there was little recent activity on this cache, then | 
 | 		 * perform only a partial refill.  Otherwise we could generate | 
 | 		 * refill bouncing. | 
 | 		 */ | 
 | 		batchcount = BATCHREFILL_LIMIT; | 
 | 	} | 
 | 	n = cachep->node[node]; | 
 |  | 
 | 	BUG_ON(ac->avail > 0 || !n); | 
 | 	spin_lock(&n->list_lock); | 
 |  | 
 | 	/* See if we can refill from the shared array */ | 
 | 	if (n->shared && transfer_objects(ac, n->shared, batchcount)) { | 
 | 		n->shared->touched = 1; | 
 | 		goto alloc_done; | 
 | 	} | 
 |  | 
 | 	while (batchcount > 0) { | 
 | 		struct list_head *entry; | 
 | 		struct page *page; | 
 | 		/* Get slab alloc is to come from. */ | 
 | 		entry = n->slabs_partial.next; | 
 | 		if (entry == &n->slabs_partial) { | 
 | 			n->free_touched = 1; | 
 | 			entry = n->slabs_free.next; | 
 | 			if (entry == &n->slabs_free) | 
 | 				goto must_grow; | 
 | 		} | 
 |  | 
 | 		page = list_entry(entry, struct page, lru); | 
 | 		check_spinlock_acquired(cachep); | 
 |  | 
 | 		/* | 
 | 		 * The slab was either on partial or free list so | 
 | 		 * there must be at least one object available for | 
 | 		 * allocation. | 
 | 		 */ | 
 | 		BUG_ON(page->active >= cachep->num); | 
 |  | 
 | 		while (page->active < cachep->num && batchcount--) { | 
 | 			STATS_INC_ALLOCED(cachep); | 
 | 			STATS_INC_ACTIVE(cachep); | 
 | 			STATS_SET_HIGH(cachep); | 
 |  | 
 | 			ac_put_obj(cachep, ac, slab_get_obj(cachep, page, | 
 | 									node)); | 
 | 		} | 
 |  | 
 | 		/* move slabp to correct slabp list: */ | 
 | 		list_del(&page->lru); | 
 | 		if (page->active == cachep->num) | 
 | 			list_add(&page->lru, &n->slabs_full); | 
 | 		else | 
 | 			list_add(&page->lru, &n->slabs_partial); | 
 | 	} | 
 |  | 
 | must_grow: | 
 | 	n->free_objects -= ac->avail; | 
 | alloc_done: | 
 | 	spin_unlock(&n->list_lock); | 
 |  | 
 | 	if (unlikely(!ac->avail)) { | 
 | 		int x; | 
 | force_grow: | 
 | 		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); | 
 |  | 
 | 		/* cache_grow can reenable interrupts, then ac could change. */ | 
 | 		ac = cpu_cache_get(cachep); | 
 | 		node = numa_mem_id(); | 
 |  | 
 | 		/* no objects in sight? abort */ | 
 | 		if (!x && (ac->avail == 0 || force_refill)) | 
 | 			return NULL; | 
 |  | 
 | 		if (!ac->avail)		/* objects refilled by interrupt? */ | 
 | 			goto retry; | 
 | 	} | 
 | 	ac->touched = 1; | 
 |  | 
 | 	return ac_get_obj(cachep, ac, flags, force_refill); | 
 | } | 
 |  | 
 | static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, | 
 | 						gfp_t flags) | 
 | { | 
 | 	might_sleep_if(flags & __GFP_WAIT); | 
 | #if DEBUG | 
 | 	kmem_flagcheck(cachep, flags); | 
 | #endif | 
 | } | 
 |  | 
 | #if DEBUG | 
 | static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, | 
 | 				gfp_t flags, void *objp, unsigned long caller) | 
 | { | 
 | 	if (!objp) | 
 | 		return objp; | 
 | 	if (cachep->flags & SLAB_POISON) { | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) | 
 | 			kernel_map_pages(virt_to_page(objp), | 
 | 					 cachep->size / PAGE_SIZE, 1); | 
 | 		else | 
 | 			check_poison_obj(cachep, objp); | 
 | #else | 
 | 		check_poison_obj(cachep, objp); | 
 | #endif | 
 | 		poison_obj(cachep, objp, POISON_INUSE); | 
 | 	} | 
 | 	if (cachep->flags & SLAB_STORE_USER) | 
 | 		*dbg_userword(cachep, objp) = (void *)caller; | 
 |  | 
 | 	if (cachep->flags & SLAB_RED_ZONE) { | 
 | 		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || | 
 | 				*dbg_redzone2(cachep, objp) != RED_INACTIVE) { | 
 | 			slab_error(cachep, "double free, or memory outside" | 
 | 						" object was overwritten"); | 
 | 			printk(KERN_ERR | 
 | 				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n", | 
 | 				objp, *dbg_redzone1(cachep, objp), | 
 | 				*dbg_redzone2(cachep, objp)); | 
 | 		} | 
 | 		*dbg_redzone1(cachep, objp) = RED_ACTIVE; | 
 | 		*dbg_redzone2(cachep, objp) = RED_ACTIVE; | 
 | 	} | 
 | 	objp += obj_offset(cachep); | 
 | 	if (cachep->ctor && cachep->flags & SLAB_POISON) | 
 | 		cachep->ctor(objp); | 
 | 	if (ARCH_SLAB_MINALIGN && | 
 | 	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { | 
 | 		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", | 
 | 		       objp, (int)ARCH_SLAB_MINALIGN); | 
 | 	} | 
 | 	return objp; | 
 | } | 
 | #else | 
 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | 
 | #endif | 
 |  | 
 | static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) | 
 | { | 
 | 	if (cachep == kmem_cache) | 
 | 		return false; | 
 |  | 
 | 	return should_failslab(cachep->object_size, flags, cachep->flags); | 
 | } | 
 |  | 
 | static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) | 
 | { | 
 | 	void *objp; | 
 | 	struct array_cache *ac; | 
 | 	bool force_refill = false; | 
 |  | 
 | 	check_irq_off(); | 
 |  | 
 | 	ac = cpu_cache_get(cachep); | 
 | 	if (likely(ac->avail)) { | 
 | 		ac->touched = 1; | 
 | 		objp = ac_get_obj(cachep, ac, flags, false); | 
 |  | 
 | 		/* | 
 | 		 * Allow for the possibility all avail objects are not allowed | 
 | 		 * by the current flags | 
 | 		 */ | 
 | 		if (objp) { | 
 | 			STATS_INC_ALLOCHIT(cachep); | 
 | 			goto out; | 
 | 		} | 
 | 		force_refill = true; | 
 | 	} | 
 |  | 
 | 	STATS_INC_ALLOCMISS(cachep); | 
 | 	objp = cache_alloc_refill(cachep, flags, force_refill); | 
 | 	/* | 
 | 	 * the 'ac' may be updated by cache_alloc_refill(), | 
 | 	 * and kmemleak_erase() requires its correct value. | 
 | 	 */ | 
 | 	ac = cpu_cache_get(cachep); | 
 |  | 
 | out: | 
 | 	/* | 
 | 	 * To avoid a false negative, if an object that is in one of the | 
 | 	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't | 
 | 	 * treat the array pointers as a reference to the object. | 
 | 	 */ | 
 | 	if (objp) | 
 | 		kmemleak_erase(&ac->entry[ac->avail]); | 
 | 	return objp; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* | 
 |  * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set. | 
 |  * | 
 |  * If we are in_interrupt, then process context, including cpusets and | 
 |  * mempolicy, may not apply and should not be used for allocation policy. | 
 |  */ | 
 | static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | 
 | { | 
 | 	int nid_alloc, nid_here; | 
 |  | 
 | 	if (in_interrupt() || (flags & __GFP_THISNODE)) | 
 | 		return NULL; | 
 | 	nid_alloc = nid_here = numa_mem_id(); | 
 | 	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) | 
 | 		nid_alloc = cpuset_slab_spread_node(); | 
 | 	else if (current->mempolicy) | 
 | 		nid_alloc = mempolicy_slab_node(); | 
 | 	if (nid_alloc != nid_here) | 
 | 		return ____cache_alloc_node(cachep, flags, nid_alloc); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Fallback function if there was no memory available and no objects on a | 
 |  * certain node and fall back is permitted. First we scan all the | 
 |  * available node for available objects. If that fails then we | 
 |  * perform an allocation without specifying a node. This allows the page | 
 |  * allocator to do its reclaim / fallback magic. We then insert the | 
 |  * slab into the proper nodelist and then allocate from it. | 
 |  */ | 
 | static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) | 
 | { | 
 | 	struct zonelist *zonelist; | 
 | 	gfp_t local_flags; | 
 | 	struct zoneref *z; | 
 | 	struct zone *zone; | 
 | 	enum zone_type high_zoneidx = gfp_zone(flags); | 
 | 	void *obj = NULL; | 
 | 	int nid; | 
 | 	unsigned int cpuset_mems_cookie; | 
 |  | 
 | 	if (flags & __GFP_THISNODE) | 
 | 		return NULL; | 
 |  | 
 | 	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); | 
 |  | 
 | retry_cpuset: | 
 | 	cpuset_mems_cookie = read_mems_allowed_begin(); | 
 | 	zonelist = node_zonelist(mempolicy_slab_node(), flags); | 
 |  | 
 | retry: | 
 | 	/* | 
 | 	 * Look through allowed nodes for objects available | 
 | 	 * from existing per node queues. | 
 | 	 */ | 
 | 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { | 
 | 		nid = zone_to_nid(zone); | 
 |  | 
 | 		if (cpuset_zone_allowed_hardwall(zone, flags) && | 
 | 			cache->node[nid] && | 
 | 			cache->node[nid]->free_objects) { | 
 | 				obj = ____cache_alloc_node(cache, | 
 | 					flags | GFP_THISNODE, nid); | 
 | 				if (obj) | 
 | 					break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!obj) { | 
 | 		/* | 
 | 		 * This allocation will be performed within the constraints | 
 | 		 * of the current cpuset / memory policy requirements. | 
 | 		 * We may trigger various forms of reclaim on the allowed | 
 | 		 * set and go into memory reserves if necessary. | 
 | 		 */ | 
 | 		struct page *page; | 
 |  | 
 | 		if (local_flags & __GFP_WAIT) | 
 | 			local_irq_enable(); | 
 | 		kmem_flagcheck(cache, flags); | 
 | 		page = kmem_getpages(cache, local_flags, numa_mem_id()); | 
 | 		if (local_flags & __GFP_WAIT) | 
 | 			local_irq_disable(); | 
 | 		if (page) { | 
 | 			/* | 
 | 			 * Insert into the appropriate per node queues | 
 | 			 */ | 
 | 			nid = page_to_nid(page); | 
 | 			if (cache_grow(cache, flags, nid, page)) { | 
 | 				obj = ____cache_alloc_node(cache, | 
 | 					flags | GFP_THISNODE, nid); | 
 | 				if (!obj) | 
 | 					/* | 
 | 					 * Another processor may allocate the | 
 | 					 * objects in the slab since we are | 
 | 					 * not holding any locks. | 
 | 					 */ | 
 | 					goto retry; | 
 | 			} else { | 
 | 				/* cache_grow already freed obj */ | 
 | 				obj = NULL; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) | 
 | 		goto retry_cpuset; | 
 | 	return obj; | 
 | } | 
 |  | 
 | /* | 
 |  * A interface to enable slab creation on nodeid | 
 |  */ | 
 | static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, | 
 | 				int nodeid) | 
 | { | 
 | 	struct list_head *entry; | 
 | 	struct page *page; | 
 | 	struct kmem_cache_node *n; | 
 | 	void *obj; | 
 | 	int x; | 
 |  | 
 | 	VM_BUG_ON(nodeid > num_online_nodes()); | 
 | 	n = cachep->node[nodeid]; | 
 | 	BUG_ON(!n); | 
 |  | 
 | retry: | 
 | 	check_irq_off(); | 
 | 	spin_lock(&n->list_lock); | 
 | 	entry = n->slabs_partial.next; | 
 | 	if (entry == &n->slabs_partial) { | 
 | 		n->free_touched = 1; | 
 | 		entry = n->slabs_free.next; | 
 | 		if (entry == &n->slabs_free) | 
 | 			goto must_grow; | 
 | 	} | 
 |  | 
 | 	page = list_entry(entry, struct page, lru); | 
 | 	check_spinlock_acquired_node(cachep, nodeid); | 
 |  | 
 | 	STATS_INC_NODEALLOCS(cachep); | 
 | 	STATS_INC_ACTIVE(cachep); | 
 | 	STATS_SET_HIGH(cachep); | 
 |  | 
 | 	BUG_ON(page->active == cachep->num); | 
 |  | 
 | 	obj = slab_get_obj(cachep, page, nodeid); | 
 | 	n->free_objects--; | 
 | 	/* move slabp to correct slabp list: */ | 
 | 	list_del(&page->lru); | 
 |  | 
 | 	if (page->active == cachep->num) | 
 | 		list_add(&page->lru, &n->slabs_full); | 
 | 	else | 
 | 		list_add(&page->lru, &n->slabs_partial); | 
 |  | 
 | 	spin_unlock(&n->list_lock); | 
 | 	goto done; | 
 |  | 
 | must_grow: | 
 | 	spin_unlock(&n->list_lock); | 
 | 	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); | 
 | 	if (x) | 
 | 		goto retry; | 
 |  | 
 | 	return fallback_alloc(cachep, flags); | 
 |  | 
 | done: | 
 | 	return obj; | 
 | } | 
 |  | 
 | static __always_inline void * | 
 | slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, | 
 | 		   unsigned long caller) | 
 | { | 
 | 	unsigned long save_flags; | 
 | 	void *ptr; | 
 | 	int slab_node = numa_mem_id(); | 
 |  | 
 | 	flags &= gfp_allowed_mask; | 
 |  | 
 | 	lockdep_trace_alloc(flags); | 
 |  | 
 | 	if (slab_should_failslab(cachep, flags)) | 
 | 		return NULL; | 
 |  | 
 | 	cachep = memcg_kmem_get_cache(cachep, flags); | 
 |  | 
 | 	cache_alloc_debugcheck_before(cachep, flags); | 
 | 	local_irq_save(save_flags); | 
 |  | 
 | 	if (nodeid == NUMA_NO_NODE) | 
 | 		nodeid = slab_node; | 
 |  | 
 | 	if (unlikely(!cachep->node[nodeid])) { | 
 | 		/* Node not bootstrapped yet */ | 
 | 		ptr = fallback_alloc(cachep, flags); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (nodeid == slab_node) { | 
 | 		/* | 
 | 		 * Use the locally cached objects if possible. | 
 | 		 * However ____cache_alloc does not allow fallback | 
 | 		 * to other nodes. It may fail while we still have | 
 | 		 * objects on other nodes available. | 
 | 		 */ | 
 | 		ptr = ____cache_alloc(cachep, flags); | 
 | 		if (ptr) | 
 | 			goto out; | 
 | 	} | 
 | 	/* ___cache_alloc_node can fall back to other nodes */ | 
 | 	ptr = ____cache_alloc_node(cachep, flags, nodeid); | 
 |   out: | 
 | 	local_irq_restore(save_flags); | 
 | 	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); | 
 | 	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags, | 
 | 				 flags); | 
 |  | 
 | 	if (likely(ptr)) { | 
 | 		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size); | 
 | 		if (unlikely(flags & __GFP_ZERO)) | 
 | 			memset(ptr, 0, cachep->object_size); | 
 | 	} | 
 |  | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static __always_inline void * | 
 | __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) | 
 | { | 
 | 	void *objp; | 
 |  | 
 | 	if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) { | 
 | 		objp = alternate_node_alloc(cache, flags); | 
 | 		if (objp) | 
 | 			goto out; | 
 | 	} | 
 | 	objp = ____cache_alloc(cache, flags); | 
 |  | 
 | 	/* | 
 | 	 * We may just have run out of memory on the local node. | 
 | 	 * ____cache_alloc_node() knows how to locate memory on other nodes | 
 | 	 */ | 
 | 	if (!objp) | 
 | 		objp = ____cache_alloc_node(cache, flags, numa_mem_id()); | 
 |  | 
 |   out: | 
 | 	return objp; | 
 | } | 
 | #else | 
 |  | 
 | static __always_inline void * | 
 | __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | 
 | { | 
 | 	return ____cache_alloc(cachep, flags); | 
 | } | 
 |  | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | static __always_inline void * | 
 | slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) | 
 | { | 
 | 	unsigned long save_flags; | 
 | 	void *objp; | 
 |  | 
 | 	flags &= gfp_allowed_mask; | 
 |  | 
 | 	lockdep_trace_alloc(flags); | 
 |  | 
 | 	if (slab_should_failslab(cachep, flags)) | 
 | 		return NULL; | 
 |  | 
 | 	cachep = memcg_kmem_get_cache(cachep, flags); | 
 |  | 
 | 	cache_alloc_debugcheck_before(cachep, flags); | 
 | 	local_irq_save(save_flags); | 
 | 	objp = __do_cache_alloc(cachep, flags); | 
 | 	local_irq_restore(save_flags); | 
 | 	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); | 
 | 	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags, | 
 | 				 flags); | 
 | 	prefetchw(objp); | 
 |  | 
 | 	if (likely(objp)) { | 
 | 		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size); | 
 | 		if (unlikely(flags & __GFP_ZERO)) | 
 | 			memset(objp, 0, cachep->object_size); | 
 | 	} | 
 |  | 
 | 	return objp; | 
 | } | 
 |  | 
 | /* | 
 |  * Caller needs to acquire correct kmem_cache_node's list_lock | 
 |  */ | 
 | static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, | 
 | 		       int node) | 
 | { | 
 | 	int i; | 
 | 	struct kmem_cache_node *n; | 
 |  | 
 | 	for (i = 0; i < nr_objects; i++) { | 
 | 		void *objp; | 
 | 		struct page *page; | 
 |  | 
 | 		clear_obj_pfmemalloc(&objpp[i]); | 
 | 		objp = objpp[i]; | 
 |  | 
 | 		page = virt_to_head_page(objp); | 
 | 		n = cachep->node[node]; | 
 | 		list_del(&page->lru); | 
 | 		check_spinlock_acquired_node(cachep, node); | 
 | 		slab_put_obj(cachep, page, objp, node); | 
 | 		STATS_DEC_ACTIVE(cachep); | 
 | 		n->free_objects++; | 
 |  | 
 | 		/* fixup slab chains */ | 
 | 		if (page->active == 0) { | 
 | 			if (n->free_objects > n->free_limit) { | 
 | 				n->free_objects -= cachep->num; | 
 | 				/* No need to drop any previously held | 
 | 				 * lock here, even if we have a off-slab slab | 
 | 				 * descriptor it is guaranteed to come from | 
 | 				 * a different cache, refer to comments before | 
 | 				 * alloc_slabmgmt. | 
 | 				 */ | 
 | 				slab_destroy(cachep, page); | 
 | 			} else { | 
 | 				list_add(&page->lru, &n->slabs_free); | 
 | 			} | 
 | 		} else { | 
 | 			/* Unconditionally move a slab to the end of the | 
 | 			 * partial list on free - maximum time for the | 
 | 			 * other objects to be freed, too. | 
 | 			 */ | 
 | 			list_add_tail(&page->lru, &n->slabs_partial); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) | 
 | { | 
 | 	int batchcount; | 
 | 	struct kmem_cache_node *n; | 
 | 	int node = numa_mem_id(); | 
 |  | 
 | 	batchcount = ac->batchcount; | 
 | #if DEBUG | 
 | 	BUG_ON(!batchcount || batchcount > ac->avail); | 
 | #endif | 
 | 	check_irq_off(); | 
 | 	n = cachep->node[node]; | 
 | 	spin_lock(&n->list_lock); | 
 | 	if (n->shared) { | 
 | 		struct array_cache *shared_array = n->shared; | 
 | 		int max = shared_array->limit - shared_array->avail; | 
 | 		if (max) { | 
 | 			if (batchcount > max) | 
 | 				batchcount = max; | 
 | 			memcpy(&(shared_array->entry[shared_array->avail]), | 
 | 			       ac->entry, sizeof(void *) * batchcount); | 
 | 			shared_array->avail += batchcount; | 
 | 			goto free_done; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	free_block(cachep, ac->entry, batchcount, node); | 
 | free_done: | 
 | #if STATS | 
 | 	{ | 
 | 		int i = 0; | 
 | 		struct list_head *p; | 
 |  | 
 | 		p = n->slabs_free.next; | 
 | 		while (p != &(n->slabs_free)) { | 
 | 			struct page *page; | 
 |  | 
 | 			page = list_entry(p, struct page, lru); | 
 | 			BUG_ON(page->active); | 
 |  | 
 | 			i++; | 
 | 			p = p->next; | 
 | 		} | 
 | 		STATS_SET_FREEABLE(cachep, i); | 
 | 	} | 
 | #endif | 
 | 	spin_unlock(&n->list_lock); | 
 | 	ac->avail -= batchcount; | 
 | 	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); | 
 | } | 
 |  | 
 | /* | 
 |  * Release an obj back to its cache. If the obj has a constructed state, it must | 
 |  * be in this state _before_ it is released.  Called with disabled ints. | 
 |  */ | 
 | static inline void __cache_free(struct kmem_cache *cachep, void *objp, | 
 | 				unsigned long caller) | 
 | { | 
 | 	struct array_cache *ac = cpu_cache_get(cachep); | 
 |  | 
 | 	check_irq_off(); | 
 | 	kmemleak_free_recursive(objp, cachep->flags); | 
 | 	objp = cache_free_debugcheck(cachep, objp, caller); | 
 |  | 
 | 	kmemcheck_slab_free(cachep, objp, cachep->object_size); | 
 |  | 
 | 	/* | 
 | 	 * Skip calling cache_free_alien() when the platform is not numa. | 
 | 	 * This will avoid cache misses that happen while accessing slabp (which | 
 | 	 * is per page memory  reference) to get nodeid. Instead use a global | 
 | 	 * variable to skip the call, which is mostly likely to be present in | 
 | 	 * the cache. | 
 | 	 */ | 
 | 	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) | 
 | 		return; | 
 |  | 
 | 	if (likely(ac->avail < ac->limit)) { | 
 | 		STATS_INC_FREEHIT(cachep); | 
 | 	} else { | 
 | 		STATS_INC_FREEMISS(cachep); | 
 | 		cache_flusharray(cachep, ac); | 
 | 	} | 
 |  | 
 | 	ac_put_obj(cachep, ac, objp); | 
 | } | 
 |  | 
 | /** | 
 |  * kmem_cache_alloc - Allocate an object | 
 |  * @cachep: The cache to allocate from. | 
 |  * @flags: See kmalloc(). | 
 |  * | 
 |  * Allocate an object from this cache.  The flags are only relevant | 
 |  * if the cache has no available objects. | 
 |  */ | 
 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | 
 | { | 
 | 	void *ret = slab_alloc(cachep, flags, _RET_IP_); | 
 |  | 
 | 	trace_kmem_cache_alloc(_RET_IP_, ret, | 
 | 			       cachep->object_size, cachep->size, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc); | 
 |  | 
 | #ifdef CONFIG_TRACING | 
 | void * | 
 | kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) | 
 | { | 
 | 	void *ret; | 
 |  | 
 | 	ret = slab_alloc(cachep, flags, _RET_IP_); | 
 |  | 
 | 	trace_kmalloc(_RET_IP_, ret, | 
 | 		      size, cachep->size, flags); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /** | 
 |  * kmem_cache_alloc_node - Allocate an object on the specified node | 
 |  * @cachep: The cache to allocate from. | 
 |  * @flags: See kmalloc(). | 
 |  * @nodeid: node number of the target node. | 
 |  * | 
 |  * Identical to kmem_cache_alloc but it will allocate memory on the given | 
 |  * node, which can improve the performance for cpu bound structures. | 
 |  * | 
 |  * Fallback to other node is possible if __GFP_THISNODE is not set. | 
 |  */ | 
 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) | 
 | { | 
 | 	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); | 
 |  | 
 | 	trace_kmem_cache_alloc_node(_RET_IP_, ret, | 
 | 				    cachep->object_size, cachep->size, | 
 | 				    flags, nodeid); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 
 |  | 
 | #ifdef CONFIG_TRACING | 
 | void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, | 
 | 				  gfp_t flags, | 
 | 				  int nodeid, | 
 | 				  size_t size) | 
 | { | 
 | 	void *ret; | 
 |  | 
 | 	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); | 
 |  | 
 | 	trace_kmalloc_node(_RET_IP_, ret, | 
 | 			   size, cachep->size, | 
 | 			   flags, nodeid); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); | 
 | #endif | 
 |  | 
 | static __always_inline void * | 
 | __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) | 
 | { | 
 | 	struct kmem_cache *cachep; | 
 |  | 
 | 	cachep = kmalloc_slab(size, flags); | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(cachep))) | 
 | 		return cachep; | 
 | 	return kmem_cache_alloc_node_trace(cachep, flags, node, size); | 
 | } | 
 |  | 
 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) | 
 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 
 | { | 
 | 	return __do_kmalloc_node(size, flags, node, _RET_IP_); | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc_node); | 
 |  | 
 | void *__kmalloc_node_track_caller(size_t size, gfp_t flags, | 
 | 		int node, unsigned long caller) | 
 | { | 
 | 	return __do_kmalloc_node(size, flags, node, caller); | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc_node_track_caller); | 
 | #else | 
 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 
 | { | 
 | 	return __do_kmalloc_node(size, flags, node, 0); | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc_node); | 
 | #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */ | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | /** | 
 |  * __do_kmalloc - allocate memory | 
 |  * @size: how many bytes of memory are required. | 
 |  * @flags: the type of memory to allocate (see kmalloc). | 
 |  * @caller: function caller for debug tracking of the caller | 
 |  */ | 
 | static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, | 
 | 					  unsigned long caller) | 
 | { | 
 | 	struct kmem_cache *cachep; | 
 | 	void *ret; | 
 |  | 
 | 	cachep = kmalloc_slab(size, flags); | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(cachep))) | 
 | 		return cachep; | 
 | 	ret = slab_alloc(cachep, flags, caller); | 
 |  | 
 | 	trace_kmalloc(caller, ret, | 
 | 		      size, cachep->size, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) | 
 | void *__kmalloc(size_t size, gfp_t flags) | 
 | { | 
 | 	return __do_kmalloc(size, flags, _RET_IP_); | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc); | 
 |  | 
 | void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) | 
 | { | 
 | 	return __do_kmalloc(size, flags, caller); | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc_track_caller); | 
 |  | 
 | #else | 
 | void *__kmalloc(size_t size, gfp_t flags) | 
 | { | 
 | 	return __do_kmalloc(size, flags, 0); | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc); | 
 | #endif | 
 |  | 
 | /** | 
 |  * kmem_cache_free - Deallocate an object | 
 |  * @cachep: The cache the allocation was from. | 
 |  * @objp: The previously allocated object. | 
 |  * | 
 |  * Free an object which was previously allocated from this | 
 |  * cache. | 
 |  */ | 
 | void kmem_cache_free(struct kmem_cache *cachep, void *objp) | 
 | { | 
 | 	unsigned long flags; | 
 | 	cachep = cache_from_obj(cachep, objp); | 
 | 	if (!cachep) | 
 | 		return; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	debug_check_no_locks_freed(objp, cachep->object_size); | 
 | 	if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) | 
 | 		debug_check_no_obj_freed(objp, cachep->object_size); | 
 | 	__cache_free(cachep, objp, _RET_IP_); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	trace_kmem_cache_free(_RET_IP_, objp); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_free); | 
 |  | 
 | /** | 
 |  * kfree - free previously allocated memory | 
 |  * @objp: pointer returned by kmalloc. | 
 |  * | 
 |  * If @objp is NULL, no operation is performed. | 
 |  * | 
 |  * Don't free memory not originally allocated by kmalloc() | 
 |  * or you will run into trouble. | 
 |  */ | 
 | void kfree(const void *objp) | 
 | { | 
 | 	struct kmem_cache *c; | 
 | 	unsigned long flags; | 
 |  | 
 | 	trace_kfree(_RET_IP_, objp); | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(objp))) | 
 | 		return; | 
 | 	local_irq_save(flags); | 
 | 	kfree_debugcheck(objp); | 
 | 	c = virt_to_cache(objp); | 
 | 	debug_check_no_locks_freed(objp, c->object_size); | 
 |  | 
 | 	debug_check_no_obj_freed(objp, c->object_size); | 
 | 	__cache_free(c, (void *)objp, _RET_IP_); | 
 | 	local_irq_restore(flags); | 
 | } | 
 | EXPORT_SYMBOL(kfree); | 
 |  | 
 | /* | 
 |  * This initializes kmem_cache_node or resizes various caches for all nodes. | 
 |  */ | 
 | static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp) | 
 | { | 
 | 	int node; | 
 | 	struct kmem_cache_node *n; | 
 | 	struct array_cache *new_shared; | 
 | 	struct array_cache **new_alien = NULL; | 
 |  | 
 | 	for_each_online_node(node) { | 
 |  | 
 |                 if (use_alien_caches) { | 
 |                         new_alien = alloc_alien_cache(node, cachep->limit, gfp); | 
 |                         if (!new_alien) | 
 |                                 goto fail; | 
 |                 } | 
 |  | 
 | 		new_shared = NULL; | 
 | 		if (cachep->shared) { | 
 | 			new_shared = alloc_arraycache(node, | 
 | 				cachep->shared*cachep->batchcount, | 
 | 					0xbaadf00d, gfp); | 
 | 			if (!new_shared) { | 
 | 				free_alien_cache(new_alien); | 
 | 				goto fail; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		n = cachep->node[node]; | 
 | 		if (n) { | 
 | 			struct array_cache *shared = n->shared; | 
 |  | 
 | 			spin_lock_irq(&n->list_lock); | 
 |  | 
 | 			if (shared) | 
 | 				free_block(cachep, shared->entry, | 
 | 						shared->avail, node); | 
 |  | 
 | 			n->shared = new_shared; | 
 | 			if (!n->alien) { | 
 | 				n->alien = new_alien; | 
 | 				new_alien = NULL; | 
 | 			} | 
 | 			n->free_limit = (1 + nr_cpus_node(node)) * | 
 | 					cachep->batchcount + cachep->num; | 
 | 			spin_unlock_irq(&n->list_lock); | 
 | 			kfree(shared); | 
 | 			free_alien_cache(new_alien); | 
 | 			continue; | 
 | 		} | 
 | 		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); | 
 | 		if (!n) { | 
 | 			free_alien_cache(new_alien); | 
 | 			kfree(new_shared); | 
 | 			goto fail; | 
 | 		} | 
 |  | 
 | 		kmem_cache_node_init(n); | 
 | 		n->next_reap = jiffies + REAPTIMEOUT_NODE + | 
 | 				((unsigned long)cachep) % REAPTIMEOUT_NODE; | 
 | 		n->shared = new_shared; | 
 | 		n->alien = new_alien; | 
 | 		n->free_limit = (1 + nr_cpus_node(node)) * | 
 | 					cachep->batchcount + cachep->num; | 
 | 		cachep->node[node] = n; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	if (!cachep->list.next) { | 
 | 		/* Cache is not active yet. Roll back what we did */ | 
 | 		node--; | 
 | 		while (node >= 0) { | 
 | 			if (cachep->node[node]) { | 
 | 				n = cachep->node[node]; | 
 |  | 
 | 				kfree(n->shared); | 
 | 				free_alien_cache(n->alien); | 
 | 				kfree(n); | 
 | 				cachep->node[node] = NULL; | 
 | 			} | 
 | 			node--; | 
 | 		} | 
 | 	} | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | struct ccupdate_struct { | 
 | 	struct kmem_cache *cachep; | 
 | 	struct array_cache *new[0]; | 
 | }; | 
 |  | 
 | static void do_ccupdate_local(void *info) | 
 | { | 
 | 	struct ccupdate_struct *new = info; | 
 | 	struct array_cache *old; | 
 |  | 
 | 	check_irq_off(); | 
 | 	old = cpu_cache_get(new->cachep); | 
 |  | 
 | 	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; | 
 | 	new->new[smp_processor_id()] = old; | 
 | } | 
 |  | 
 | /* Always called with the slab_mutex held */ | 
 | static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, | 
 | 				int batchcount, int shared, gfp_t gfp) | 
 | { | 
 | 	struct ccupdate_struct *new; | 
 | 	int i; | 
 |  | 
 | 	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *), | 
 | 		      gfp); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for_each_online_cpu(i) { | 
 | 		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit, | 
 | 						batchcount, gfp); | 
 | 		if (!new->new[i]) { | 
 | 			for (i--; i >= 0; i--) | 
 | 				kfree(new->new[i]); | 
 | 			kfree(new); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} | 
 | 	new->cachep = cachep; | 
 |  | 
 | 	on_each_cpu(do_ccupdate_local, (void *)new, 1); | 
 |  | 
 | 	check_irq_on(); | 
 | 	cachep->batchcount = batchcount; | 
 | 	cachep->limit = limit; | 
 | 	cachep->shared = shared; | 
 |  | 
 | 	for_each_online_cpu(i) { | 
 | 		struct array_cache *ccold = new->new[i]; | 
 | 		if (!ccold) | 
 | 			continue; | 
 | 		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock); | 
 | 		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); | 
 | 		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock); | 
 | 		kfree(ccold); | 
 | 	} | 
 | 	kfree(new); | 
 | 	return alloc_kmem_cache_node(cachep, gfp); | 
 | } | 
 |  | 
 | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, | 
 | 				int batchcount, int shared, gfp_t gfp) | 
 | { | 
 | 	int ret; | 
 | 	struct kmem_cache *c = NULL; | 
 | 	int i = 0; | 
 |  | 
 | 	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); | 
 |  | 
 | 	if (slab_state < FULL) | 
 | 		return ret; | 
 |  | 
 | 	if ((ret < 0) || !is_root_cache(cachep)) | 
 | 		return ret; | 
 |  | 
 | 	VM_BUG_ON(!mutex_is_locked(&slab_mutex)); | 
 | 	for_each_memcg_cache_index(i) { | 
 | 		c = cache_from_memcg_idx(cachep, i); | 
 | 		if (c) | 
 | 			/* return value determined by the parent cache only */ | 
 | 			__do_tune_cpucache(c, limit, batchcount, shared, gfp); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Called with slab_mutex held always */ | 
 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) | 
 | { | 
 | 	int err; | 
 | 	int limit = 0; | 
 | 	int shared = 0; | 
 | 	int batchcount = 0; | 
 |  | 
 | 	if (!is_root_cache(cachep)) { | 
 | 		struct kmem_cache *root = memcg_root_cache(cachep); | 
 | 		limit = root->limit; | 
 | 		shared = root->shared; | 
 | 		batchcount = root->batchcount; | 
 | 	} | 
 |  | 
 | 	if (limit && shared && batchcount) | 
 | 		goto skip_setup; | 
 | 	/* | 
 | 	 * The head array serves three purposes: | 
 | 	 * - create a LIFO ordering, i.e. return objects that are cache-warm | 
 | 	 * - reduce the number of spinlock operations. | 
 | 	 * - reduce the number of linked list operations on the slab and | 
 | 	 *   bufctl chains: array operations are cheaper. | 
 | 	 * The numbers are guessed, we should auto-tune as described by | 
 | 	 * Bonwick. | 
 | 	 */ | 
 | 	if (cachep->size > 131072) | 
 | 		limit = 1; | 
 | 	else if (cachep->size > PAGE_SIZE) | 
 | 		limit = 8; | 
 | 	else if (cachep->size > 1024) | 
 | 		limit = 24; | 
 | 	else if (cachep->size > 256) | 
 | 		limit = 54; | 
 | 	else | 
 | 		limit = 120; | 
 |  | 
 | 	/* | 
 | 	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound | 
 | 	 * allocation behaviour: Most allocs on one cpu, most free operations | 
 | 	 * on another cpu. For these cases, an efficient object passing between | 
 | 	 * cpus is necessary. This is provided by a shared array. The array | 
 | 	 * replaces Bonwick's magazine layer. | 
 | 	 * On uniprocessor, it's functionally equivalent (but less efficient) | 
 | 	 * to a larger limit. Thus disabled by default. | 
 | 	 */ | 
 | 	shared = 0; | 
 | 	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) | 
 | 		shared = 8; | 
 |  | 
 | #if DEBUG | 
 | 	/* | 
 | 	 * With debugging enabled, large batchcount lead to excessively long | 
 | 	 * periods with disabled local interrupts. Limit the batchcount | 
 | 	 */ | 
 | 	if (limit > 32) | 
 | 		limit = 32; | 
 | #endif | 
 | 	batchcount = (limit + 1) / 2; | 
 | skip_setup: | 
 | 	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); | 
 | 	if (err) | 
 | 		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", | 
 | 		       cachep->name, -err); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Drain an array if it contains any elements taking the node lock only if | 
 |  * necessary. Note that the node listlock also protects the array_cache | 
 |  * if drain_array() is used on the shared array. | 
 |  */ | 
 | static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, | 
 | 			 struct array_cache *ac, int force, int node) | 
 | { | 
 | 	int tofree; | 
 |  | 
 | 	if (!ac || !ac->avail) | 
 | 		return; | 
 | 	if (ac->touched && !force) { | 
 | 		ac->touched = 0; | 
 | 	} else { | 
 | 		spin_lock_irq(&n->list_lock); | 
 | 		if (ac->avail) { | 
 | 			tofree = force ? ac->avail : (ac->limit + 4) / 5; | 
 | 			if (tofree > ac->avail) | 
 | 				tofree = (ac->avail + 1) / 2; | 
 | 			free_block(cachep, ac->entry, tofree, node); | 
 | 			ac->avail -= tofree; | 
 | 			memmove(ac->entry, &(ac->entry[tofree]), | 
 | 				sizeof(void *) * ac->avail); | 
 | 		} | 
 | 		spin_unlock_irq(&n->list_lock); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * cache_reap - Reclaim memory from caches. | 
 |  * @w: work descriptor | 
 |  * | 
 |  * Called from workqueue/eventd every few seconds. | 
 |  * Purpose: | 
 |  * - clear the per-cpu caches for this CPU. | 
 |  * - return freeable pages to the main free memory pool. | 
 |  * | 
 |  * If we cannot acquire the cache chain mutex then just give up - we'll try | 
 |  * again on the next iteration. | 
 |  */ | 
 | static void cache_reap(struct work_struct *w) | 
 | { | 
 | 	struct kmem_cache *searchp; | 
 | 	struct kmem_cache_node *n; | 
 | 	int node = numa_mem_id(); | 
 | 	struct delayed_work *work = to_delayed_work(w); | 
 |  | 
 | 	if (!mutex_trylock(&slab_mutex)) | 
 | 		/* Give up. Setup the next iteration. */ | 
 | 		goto out; | 
 |  | 
 | 	list_for_each_entry(searchp, &slab_caches, list) { | 
 | 		check_irq_on(); | 
 |  | 
 | 		/* | 
 | 		 * We only take the node lock if absolutely necessary and we | 
 | 		 * have established with reasonable certainty that | 
 | 		 * we can do some work if the lock was obtained. | 
 | 		 */ | 
 | 		n = searchp->node[node]; | 
 |  | 
 | 		reap_alien(searchp, n); | 
 |  | 
 | 		drain_array(searchp, n, cpu_cache_get(searchp), 0, node); | 
 |  | 
 | 		/* | 
 | 		 * These are racy checks but it does not matter | 
 | 		 * if we skip one check or scan twice. | 
 | 		 */ | 
 | 		if (time_after(n->next_reap, jiffies)) | 
 | 			goto next; | 
 |  | 
 | 		n->next_reap = jiffies + REAPTIMEOUT_NODE; | 
 |  | 
 | 		drain_array(searchp, n, n->shared, 0, node); | 
 |  | 
 | 		if (n->free_touched) | 
 | 			n->free_touched = 0; | 
 | 		else { | 
 | 			int freed; | 
 |  | 
 | 			freed = drain_freelist(searchp, n, (n->free_limit + | 
 | 				5 * searchp->num - 1) / (5 * searchp->num)); | 
 | 			STATS_ADD_REAPED(searchp, freed); | 
 | 		} | 
 | next: | 
 | 		cond_resched(); | 
 | 	} | 
 | 	check_irq_on(); | 
 | 	mutex_unlock(&slab_mutex); | 
 | 	next_reap_node(); | 
 | out: | 
 | 	/* Set up the next iteration */ | 
 | 	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SLABINFO | 
 | void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned long active_objs; | 
 | 	unsigned long num_objs; | 
 | 	unsigned long active_slabs = 0; | 
 | 	unsigned long num_slabs, free_objects = 0, shared_avail = 0; | 
 | 	const char *name; | 
 | 	char *error = NULL; | 
 | 	int node; | 
 | 	struct kmem_cache_node *n; | 
 |  | 
 | 	active_objs = 0; | 
 | 	num_slabs = 0; | 
 | 	for_each_online_node(node) { | 
 | 		n = cachep->node[node]; | 
 | 		if (!n) | 
 | 			continue; | 
 |  | 
 | 		check_irq_on(); | 
 | 		spin_lock_irq(&n->list_lock); | 
 |  | 
 | 		list_for_each_entry(page, &n->slabs_full, lru) { | 
 | 			if (page->active != cachep->num && !error) | 
 | 				error = "slabs_full accounting error"; | 
 | 			active_objs += cachep->num; | 
 | 			active_slabs++; | 
 | 		} | 
 | 		list_for_each_entry(page, &n->slabs_partial, lru) { | 
 | 			if (page->active == cachep->num && !error) | 
 | 				error = "slabs_partial accounting error"; | 
 | 			if (!page->active && !error) | 
 | 				error = "slabs_partial accounting error"; | 
 | 			active_objs += page->active; | 
 | 			active_slabs++; | 
 | 		} | 
 | 		list_for_each_entry(page, &n->slabs_free, lru) { | 
 | 			if (page->active && !error) | 
 | 				error = "slabs_free accounting error"; | 
 | 			num_slabs++; | 
 | 		} | 
 | 		free_objects += n->free_objects; | 
 | 		if (n->shared) | 
 | 			shared_avail += n->shared->avail; | 
 |  | 
 | 		spin_unlock_irq(&n->list_lock); | 
 | 	} | 
 | 	num_slabs += active_slabs; | 
 | 	num_objs = num_slabs * cachep->num; | 
 | 	if (num_objs - active_objs != free_objects && !error) | 
 | 		error = "free_objects accounting error"; | 
 |  | 
 | 	name = cachep->name; | 
 | 	if (error) | 
 | 		printk(KERN_ERR "slab: cache %s error: %s\n", name, error); | 
 |  | 
 | 	sinfo->active_objs = active_objs; | 
 | 	sinfo->num_objs = num_objs; | 
 | 	sinfo->active_slabs = active_slabs; | 
 | 	sinfo->num_slabs = num_slabs; | 
 | 	sinfo->shared_avail = shared_avail; | 
 | 	sinfo->limit = cachep->limit; | 
 | 	sinfo->batchcount = cachep->batchcount; | 
 | 	sinfo->shared = cachep->shared; | 
 | 	sinfo->objects_per_slab = cachep->num; | 
 | 	sinfo->cache_order = cachep->gfporder; | 
 | } | 
 |  | 
 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) | 
 | { | 
 | #if STATS | 
 | 	{			/* node stats */ | 
 | 		unsigned long high = cachep->high_mark; | 
 | 		unsigned long allocs = cachep->num_allocations; | 
 | 		unsigned long grown = cachep->grown; | 
 | 		unsigned long reaped = cachep->reaped; | 
 | 		unsigned long errors = cachep->errors; | 
 | 		unsigned long max_freeable = cachep->max_freeable; | 
 | 		unsigned long node_allocs = cachep->node_allocs; | 
 | 		unsigned long node_frees = cachep->node_frees; | 
 | 		unsigned long overflows = cachep->node_overflow; | 
 |  | 
 | 		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " | 
 | 			   "%4lu %4lu %4lu %4lu %4lu", | 
 | 			   allocs, high, grown, | 
 | 			   reaped, errors, max_freeable, node_allocs, | 
 | 			   node_frees, overflows); | 
 | 	} | 
 | 	/* cpu stats */ | 
 | 	{ | 
 | 		unsigned long allochit = atomic_read(&cachep->allochit); | 
 | 		unsigned long allocmiss = atomic_read(&cachep->allocmiss); | 
 | 		unsigned long freehit = atomic_read(&cachep->freehit); | 
 | 		unsigned long freemiss = atomic_read(&cachep->freemiss); | 
 |  | 
 | 		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | 
 | 			   allochit, allocmiss, freehit, freemiss); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | #define MAX_SLABINFO_WRITE 128 | 
 | /** | 
 |  * slabinfo_write - Tuning for the slab allocator | 
 |  * @file: unused | 
 |  * @buffer: user buffer | 
 |  * @count: data length | 
 |  * @ppos: unused | 
 |  */ | 
 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, | 
 | 		       size_t count, loff_t *ppos) | 
 | { | 
 | 	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; | 
 | 	int limit, batchcount, shared, res; | 
 | 	struct kmem_cache *cachep; | 
 |  | 
 | 	if (count > MAX_SLABINFO_WRITE) | 
 | 		return -EINVAL; | 
 | 	if (copy_from_user(&kbuf, buffer, count)) | 
 | 		return -EFAULT; | 
 | 	kbuf[MAX_SLABINFO_WRITE] = '\0'; | 
 |  | 
 | 	tmp = strchr(kbuf, ' '); | 
 | 	if (!tmp) | 
 | 		return -EINVAL; | 
 | 	*tmp = '\0'; | 
 | 	tmp++; | 
 | 	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Find the cache in the chain of caches. */ | 
 | 	mutex_lock(&slab_mutex); | 
 | 	res = -EINVAL; | 
 | 	list_for_each_entry(cachep, &slab_caches, list) { | 
 | 		if (!strcmp(cachep->name, kbuf)) { | 
 | 			if (limit < 1 || batchcount < 1 || | 
 | 					batchcount > limit || shared < 0) { | 
 | 				res = 0; | 
 | 			} else { | 
 | 				res = do_tune_cpucache(cachep, limit, | 
 | 						       batchcount, shared, | 
 | 						       GFP_KERNEL); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&slab_mutex); | 
 | 	if (res >= 0) | 
 | 		res = count; | 
 | 	return res; | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_SLAB_LEAK | 
 |  | 
 | static void *leaks_start(struct seq_file *m, loff_t *pos) | 
 | { | 
 | 	mutex_lock(&slab_mutex); | 
 | 	return seq_list_start(&slab_caches, *pos); | 
 | } | 
 |  | 
 | static inline int add_caller(unsigned long *n, unsigned long v) | 
 | { | 
 | 	unsigned long *p; | 
 | 	int l; | 
 | 	if (!v) | 
 | 		return 1; | 
 | 	l = n[1]; | 
 | 	p = n + 2; | 
 | 	while (l) { | 
 | 		int i = l/2; | 
 | 		unsigned long *q = p + 2 * i; | 
 | 		if (*q == v) { | 
 | 			q[1]++; | 
 | 			return 1; | 
 | 		} | 
 | 		if (*q > v) { | 
 | 			l = i; | 
 | 		} else { | 
 | 			p = q + 2; | 
 | 			l -= i + 1; | 
 | 		} | 
 | 	} | 
 | 	if (++n[1] == n[0]) | 
 | 		return 0; | 
 | 	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); | 
 | 	p[0] = v; | 
 | 	p[1] = 1; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void handle_slab(unsigned long *n, struct kmem_cache *c, | 
 | 						struct page *page) | 
 | { | 
 | 	void *p; | 
 | 	int i, j; | 
 |  | 
 | 	if (n[0] == n[1]) | 
 | 		return; | 
 | 	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { | 
 | 		bool active = true; | 
 |  | 
 | 		for (j = page->active; j < c->num; j++) { | 
 | 			/* Skip freed item */ | 
 | 			if (get_free_obj(page, j) == i) { | 
 | 				active = false; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		if (!active) | 
 | 			continue; | 
 |  | 
 | 		if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) | 
 | 			return; | 
 | 	} | 
 | } | 
 |  | 
 | static void show_symbol(struct seq_file *m, unsigned long address) | 
 | { | 
 | #ifdef CONFIG_KALLSYMS | 
 | 	unsigned long offset, size; | 
 | 	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; | 
 |  | 
 | 	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { | 
 | 		seq_printf(m, "%s+%#lx/%#lx", name, offset, size); | 
 | 		if (modname[0]) | 
 | 			seq_printf(m, " [%s]", modname); | 
 | 		return; | 
 | 	} | 
 | #endif | 
 | 	seq_printf(m, "%p", (void *)address); | 
 | } | 
 |  | 
 | static int leaks_show(struct seq_file *m, void *p) | 
 | { | 
 | 	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); | 
 | 	struct page *page; | 
 | 	struct kmem_cache_node *n; | 
 | 	const char *name; | 
 | 	unsigned long *x = m->private; | 
 | 	int node; | 
 | 	int i; | 
 |  | 
 | 	if (!(cachep->flags & SLAB_STORE_USER)) | 
 | 		return 0; | 
 | 	if (!(cachep->flags & SLAB_RED_ZONE)) | 
 | 		return 0; | 
 |  | 
 | 	/* OK, we can do it */ | 
 |  | 
 | 	x[1] = 0; | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		n = cachep->node[node]; | 
 | 		if (!n) | 
 | 			continue; | 
 |  | 
 | 		check_irq_on(); | 
 | 		spin_lock_irq(&n->list_lock); | 
 |  | 
 | 		list_for_each_entry(page, &n->slabs_full, lru) | 
 | 			handle_slab(x, cachep, page); | 
 | 		list_for_each_entry(page, &n->slabs_partial, lru) | 
 | 			handle_slab(x, cachep, page); | 
 | 		spin_unlock_irq(&n->list_lock); | 
 | 	} | 
 | 	name = cachep->name; | 
 | 	if (x[0] == x[1]) { | 
 | 		/* Increase the buffer size */ | 
 | 		mutex_unlock(&slab_mutex); | 
 | 		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); | 
 | 		if (!m->private) { | 
 | 			/* Too bad, we are really out */ | 
 | 			m->private = x; | 
 | 			mutex_lock(&slab_mutex); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		*(unsigned long *)m->private = x[0] * 2; | 
 | 		kfree(x); | 
 | 		mutex_lock(&slab_mutex); | 
 | 		/* Now make sure this entry will be retried */ | 
 | 		m->count = m->size; | 
 | 		return 0; | 
 | 	} | 
 | 	for (i = 0; i < x[1]; i++) { | 
 | 		seq_printf(m, "%s: %lu ", name, x[2*i+3]); | 
 | 		show_symbol(m, x[2*i+2]); | 
 | 		seq_putc(m, '\n'); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct seq_operations slabstats_op = { | 
 | 	.start = leaks_start, | 
 | 	.next = slab_next, | 
 | 	.stop = slab_stop, | 
 | 	.show = leaks_show, | 
 | }; | 
 |  | 
 | static int slabstats_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 	int ret = -ENOMEM; | 
 | 	if (n) { | 
 | 		ret = seq_open(file, &slabstats_op); | 
 | 		if (!ret) { | 
 | 			struct seq_file *m = file->private_data; | 
 | 			*n = PAGE_SIZE / (2 * sizeof(unsigned long)); | 
 | 			m->private = n; | 
 | 			n = NULL; | 
 | 		} | 
 | 		kfree(n); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static const struct file_operations proc_slabstats_operations = { | 
 | 	.open		= slabstats_open, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= seq_release_private, | 
 | }; | 
 | #endif | 
 |  | 
 | static int __init slab_proc_init(void) | 
 | { | 
 | #ifdef CONFIG_DEBUG_SLAB_LEAK | 
 | 	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); | 
 | #endif | 
 | 	return 0; | 
 | } | 
 | module_init(slab_proc_init); | 
 | #endif | 
 |  | 
 | /** | 
 |  * ksize - get the actual amount of memory allocated for a given object | 
 |  * @objp: Pointer to the object | 
 |  * | 
 |  * kmalloc may internally round up allocations and return more memory | 
 |  * than requested. ksize() can be used to determine the actual amount of | 
 |  * memory allocated. The caller may use this additional memory, even though | 
 |  * a smaller amount of memory was initially specified with the kmalloc call. | 
 |  * The caller must guarantee that objp points to a valid object previously | 
 |  * allocated with either kmalloc() or kmem_cache_alloc(). The object | 
 |  * must not be freed during the duration of the call. | 
 |  */ | 
 | size_t ksize(const void *objp) | 
 | { | 
 | 	BUG_ON(!objp); | 
 | 	if (unlikely(objp == ZERO_SIZE_PTR)) | 
 | 		return 0; | 
 |  | 
 | 	return virt_to_cache(objp)->object_size; | 
 | } | 
 | EXPORT_SYMBOL(ksize); |