|  | #define pr_fmt(fmt) "prime numbers: " fmt "\n" | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/prime_numbers.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long)) | 
|  |  | 
|  | struct primes { | 
|  | struct rcu_head rcu; | 
|  | unsigned long last, sz; | 
|  | unsigned long primes[]; | 
|  | }; | 
|  |  | 
|  | #if BITS_PER_LONG == 64 | 
|  | static const struct primes small_primes = { | 
|  | .last = 61, | 
|  | .sz = 64, | 
|  | .primes = { | 
|  | BIT(2) | | 
|  | BIT(3) | | 
|  | BIT(5) | | 
|  | BIT(7) | | 
|  | BIT(11) | | 
|  | BIT(13) | | 
|  | BIT(17) | | 
|  | BIT(19) | | 
|  | BIT(23) | | 
|  | BIT(29) | | 
|  | BIT(31) | | 
|  | BIT(37) | | 
|  | BIT(41) | | 
|  | BIT(43) | | 
|  | BIT(47) | | 
|  | BIT(53) | | 
|  | BIT(59) | | 
|  | BIT(61) | 
|  | } | 
|  | }; | 
|  | #elif BITS_PER_LONG == 32 | 
|  | static const struct primes small_primes = { | 
|  | .last = 31, | 
|  | .sz = 32, | 
|  | .primes = { | 
|  | BIT(2) | | 
|  | BIT(3) | | 
|  | BIT(5) | | 
|  | BIT(7) | | 
|  | BIT(11) | | 
|  | BIT(13) | | 
|  | BIT(17) | | 
|  | BIT(19) | | 
|  | BIT(23) | | 
|  | BIT(29) | | 
|  | BIT(31) | 
|  | } | 
|  | }; | 
|  | #else | 
|  | #error "unhandled BITS_PER_LONG" | 
|  | #endif | 
|  |  | 
|  | static DEFINE_MUTEX(lock); | 
|  | static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes); | 
|  |  | 
|  | static unsigned long selftest_max; | 
|  |  | 
|  | static bool slow_is_prime_number(unsigned long x) | 
|  | { | 
|  | unsigned long y = int_sqrt(x); | 
|  |  | 
|  | while (y > 1) { | 
|  | if ((x % y) == 0) | 
|  | break; | 
|  | y--; | 
|  | } | 
|  |  | 
|  | return y == 1; | 
|  | } | 
|  |  | 
|  | static unsigned long slow_next_prime_number(unsigned long x) | 
|  | { | 
|  | while (x < ULONG_MAX && !slow_is_prime_number(++x)) | 
|  | ; | 
|  |  | 
|  | return x; | 
|  | } | 
|  |  | 
|  | static unsigned long clear_multiples(unsigned long x, | 
|  | unsigned long *p, | 
|  | unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | unsigned long m; | 
|  |  | 
|  | m = 2 * x; | 
|  | if (m < start) | 
|  | m = roundup(start, x); | 
|  |  | 
|  | while (m < end) { | 
|  | __clear_bit(m, p); | 
|  | m += x; | 
|  | } | 
|  |  | 
|  | return x; | 
|  | } | 
|  |  | 
|  | static bool expand_to_next_prime(unsigned long x) | 
|  | { | 
|  | const struct primes *p; | 
|  | struct primes *new; | 
|  | unsigned long sz, y; | 
|  |  | 
|  | /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3, | 
|  | * there is always at least one prime p between n and 2n - 2. | 
|  | * Equivalently, if n > 1, then there is always at least one prime p | 
|  | * such that n < p < 2n. | 
|  | * | 
|  | * http://mathworld.wolfram.com/BertrandsPostulate.html | 
|  | * https://en.wikipedia.org/wiki/Bertrand's_postulate | 
|  | */ | 
|  | sz = 2 * x; | 
|  | if (sz < x) | 
|  | return false; | 
|  |  | 
|  | sz = round_up(sz, BITS_PER_LONG); | 
|  | new = kmalloc(sizeof(*new) + bitmap_size(sz), | 
|  | GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!new) | 
|  | return false; | 
|  |  | 
|  | mutex_lock(&lock); | 
|  | p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); | 
|  | if (x < p->last) { | 
|  | kfree(new); | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* Where memory permits, track the primes using the | 
|  | * Sieve of Eratosthenes. The sieve is to remove all multiples of known | 
|  | * primes from the set, what remains in the set is therefore prime. | 
|  | */ | 
|  | bitmap_fill(new->primes, sz); | 
|  | bitmap_copy(new->primes, p->primes, p->sz); | 
|  | for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1)) | 
|  | new->last = clear_multiples(y, new->primes, p->sz, sz); | 
|  | new->sz = sz; | 
|  |  | 
|  | BUG_ON(new->last <= x); | 
|  |  | 
|  | rcu_assign_pointer(primes, new); | 
|  | if (p != &small_primes) | 
|  | kfree_rcu((struct primes *)p, rcu); | 
|  |  | 
|  | unlock: | 
|  | mutex_unlock(&lock); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void free_primes(void) | 
|  | { | 
|  | const struct primes *p; | 
|  |  | 
|  | mutex_lock(&lock); | 
|  | p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); | 
|  | if (p != &small_primes) { | 
|  | rcu_assign_pointer(primes, &small_primes); | 
|  | kfree_rcu((struct primes *)p, rcu); | 
|  | } | 
|  | mutex_unlock(&lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * next_prime_number - return the next prime number | 
|  | * @x: the starting point for searching to test | 
|  | * | 
|  | * A prime number is an integer greater than 1 that is only divisible by | 
|  | * itself and 1.  The set of prime numbers is computed using the Sieve of | 
|  | * Eratoshenes (on finding a prime, all multiples of that prime are removed | 
|  | * from the set) enabling a fast lookup of the next prime number larger than | 
|  | * @x. If the sieve fails (memory limitation), the search falls back to using | 
|  | * slow trial-divison, up to the value of ULONG_MAX (which is reported as the | 
|  | * final prime as a sentinel). | 
|  | * | 
|  | * Returns: the next prime number larger than @x | 
|  | */ | 
|  | unsigned long next_prime_number(unsigned long x) | 
|  | { | 
|  | const struct primes *p; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | p = rcu_dereference(primes); | 
|  | while (x >= p->last) { | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (!expand_to_next_prime(x)) | 
|  | return slow_next_prime_number(x); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | p = rcu_dereference(primes); | 
|  | } | 
|  | x = find_next_bit(p->primes, p->last, x + 1); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return x; | 
|  | } | 
|  | EXPORT_SYMBOL(next_prime_number); | 
|  |  | 
|  | /** | 
|  | * is_prime_number - test whether the given number is prime | 
|  | * @x: the number to test | 
|  | * | 
|  | * A prime number is an integer greater than 1 that is only divisible by | 
|  | * itself and 1. Internally a cache of prime numbers is kept (to speed up | 
|  | * searching for sequential primes, see next_prime_number()), but if the number | 
|  | * falls outside of that cache, its primality is tested using trial-divison. | 
|  | * | 
|  | * Returns: true if @x is prime, false for composite numbers. | 
|  | */ | 
|  | bool is_prime_number(unsigned long x) | 
|  | { | 
|  | const struct primes *p; | 
|  | bool result; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | p = rcu_dereference(primes); | 
|  | while (x >= p->sz) { | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (!expand_to_next_prime(x)) | 
|  | return slow_is_prime_number(x); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | p = rcu_dereference(primes); | 
|  | } | 
|  | result = test_bit(x, p->primes); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return result; | 
|  | } | 
|  | EXPORT_SYMBOL(is_prime_number); | 
|  |  | 
|  | static void dump_primes(void) | 
|  | { | 
|  | const struct primes *p; | 
|  | char *buf; | 
|  |  | 
|  | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | p = rcu_dereference(primes); | 
|  |  | 
|  | if (buf) | 
|  | bitmap_print_to_pagebuf(true, buf, p->primes, p->sz); | 
|  | pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s", | 
|  | p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf); | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | kfree(buf); | 
|  | } | 
|  |  | 
|  | static int selftest(unsigned long max) | 
|  | { | 
|  | unsigned long x, last; | 
|  |  | 
|  | if (!max) | 
|  | return 0; | 
|  |  | 
|  | for (last = 0, x = 2; x < max; x++) { | 
|  | bool slow = slow_is_prime_number(x); | 
|  | bool fast = is_prime_number(x); | 
|  |  | 
|  | if (slow != fast) { | 
|  | pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!", | 
|  | x, slow ? "yes" : "no", fast ? "yes" : "no"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!slow) | 
|  | continue; | 
|  |  | 
|  | if (next_prime_number(last) != x) { | 
|  | pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu", | 
|  | last, x, next_prime_number(last)); | 
|  | goto err; | 
|  | } | 
|  | last = x; | 
|  | } | 
|  |  | 
|  | pr_info("selftest(%lu) passed, last prime was %lu", x, last); | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | dump_primes(); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int __init primes_init(void) | 
|  | { | 
|  | return selftest(selftest_max); | 
|  | } | 
|  |  | 
|  | static void __exit primes_exit(void) | 
|  | { | 
|  | free_primes(); | 
|  | } | 
|  |  | 
|  | module_init(primes_init); | 
|  | module_exit(primes_exit); | 
|  |  | 
|  | module_param_named(selftest, selftest_max, ulong, 0400); | 
|  |  | 
|  | MODULE_AUTHOR("Intel Corporation"); | 
|  | MODULE_LICENSE("GPL"); |