blob: 4a417b69308059c9849d23f0ae1c11cee2b99ee4 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Renesas RPC-IF core driver
*
* Copyright (C) 2018-2019 Renesas Solutions Corp.
* Copyright (C) 2019 Macronix International Co., Ltd.
* Copyright (C) 2019-2020 Cogent Embedded, Inc.
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <memory/renesas-rpc-if.h>
#include "renesas-rpc-if-regs.h"
#include "renesas-xspi-if-regs.h"
static const struct regmap_range rpcif_volatile_ranges[] = {
regmap_reg_range(RPCIF_SMRDR0, RPCIF_SMRDR1),
regmap_reg_range(RPCIF_SMWDR0, RPCIF_SMWDR1),
regmap_reg_range(RPCIF_CMNSR, RPCIF_CMNSR),
};
static const struct regmap_access_table rpcif_volatile_table = {
.yes_ranges = rpcif_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(rpcif_volatile_ranges),
};
static const struct regmap_range xspi_volatile_ranges[] = {
regmap_reg_range(XSPI_CDD0BUF0, XSPI_CDD0BUF0),
};
static const struct regmap_access_table xspi_volatile_table = {
.yes_ranges = xspi_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(xspi_volatile_ranges),
};
struct rpcif_priv;
struct rpcif_impl {
int (*hw_init)(struct rpcif_priv *rpc, bool hyperflash);
void (*prepare)(struct rpcif_priv *rpc, const struct rpcif_op *op,
u64 *offs, size_t *len);
int (*manual_xfer)(struct rpcif_priv *rpc);
size_t (*dirmap_read)(struct rpcif_priv *rpc, u64 offs, size_t len,
void *buf);
u32 status_reg;
u32 status_mask;
};
struct rpcif_info {
const struct regmap_config *regmap_config;
const struct rpcif_impl *impl;
enum rpcif_type type;
u8 strtim;
};
struct rpcif_priv {
struct device *dev;
void __iomem *base;
void __iomem *dirmap;
struct regmap *regmap;
struct reset_control *rstc;
struct platform_device *vdev;
size_t size;
const struct rpcif_info *info;
enum rpcif_data_dir dir;
u8 bus_size;
u8 xfer_size;
u8 addr_nbytes; /* Specified for xSPI */
u32 proto; /* Specified for xSPI */
void *buffer;
u32 xferlen;
u32 smcr;
u32 smadr;
u32 command; /* DRCMR or SMCMR */
u32 option; /* DROPR or SMOPR */
u32 enable; /* DRENR or SMENR */
u32 dummy; /* DRDMCR or SMDMCR */
u32 ddr; /* DRDRENR or SMDRENR */
};
/*
* Custom accessor functions to ensure SM[RW]DR[01] are always accessed with
* proper width. Requires rpcif_priv.xfer_size to be correctly set before!
*/
static int rpcif_reg_read(void *context, unsigned int reg, unsigned int *val)
{
struct rpcif_priv *rpc = context;
switch (reg) {
case RPCIF_SMRDR0:
case RPCIF_SMWDR0:
switch (rpc->xfer_size) {
case 1:
*val = readb(rpc->base + reg);
return 0;
case 2:
*val = readw(rpc->base + reg);
return 0;
case 4:
case 8:
*val = readl(rpc->base + reg);
return 0;
default:
return -EILSEQ;
}
case RPCIF_SMRDR1:
case RPCIF_SMWDR1:
if (rpc->xfer_size != 8)
return -EILSEQ;
break;
}
*val = readl(rpc->base + reg);
return 0;
}
static int rpcif_reg_write(void *context, unsigned int reg, unsigned int val)
{
struct rpcif_priv *rpc = context;
switch (reg) {
case RPCIF_SMWDR0:
switch (rpc->xfer_size) {
case 1:
writeb(val, rpc->base + reg);
return 0;
case 2:
writew(val, rpc->base + reg);
return 0;
case 4:
case 8:
writel(val, rpc->base + reg);
return 0;
default:
return -EILSEQ;
}
case RPCIF_SMWDR1:
if (rpc->xfer_size != 8)
return -EILSEQ;
break;
case RPCIF_SMRDR0:
case RPCIF_SMRDR1:
return -EPERM;
}
writel(val, rpc->base + reg);
return 0;
}
static const struct regmap_config rpcif_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.reg_read = rpcif_reg_read,
.reg_write = rpcif_reg_write,
.fast_io = true,
.max_register = RPCIF_PHYINT,
.volatile_table = &rpcif_volatile_table,
};
static int xspi_reg_read(void *context, unsigned int reg, unsigned int *val)
{
struct rpcif_priv *xspi = context;
*val = readl(xspi->base + reg);
return 0;
}
static int xspi_reg_write(void *context, unsigned int reg, unsigned int val)
{
struct rpcif_priv *xspi = context;
writel(val, xspi->base + reg);
return 0;
}
static const struct regmap_config xspi_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.reg_read = xspi_reg_read,
.reg_write = xspi_reg_write,
.fast_io = true,
.max_register = XSPI_INTE,
.volatile_table = &xspi_volatile_table,
};
int rpcif_sw_init(struct rpcif *rpcif, struct device *dev)
{
struct rpcif_priv *rpc = dev_get_drvdata(dev);
rpcif->dev = dev;
rpcif->dirmap = rpc->dirmap;
rpcif->size = rpc->size;
rpcif->xspi = rpc->info->type == XSPI_RZ_G3E;
return 0;
}
EXPORT_SYMBOL(rpcif_sw_init);
static void rpcif_rzg2l_timing_adjust_sdr(struct rpcif_priv *rpc)
{
regmap_write(rpc->regmap, RPCIF_PHYWR, 0xa5390000);
regmap_write(rpc->regmap, RPCIF_PHYADD, 0x80000000);
regmap_write(rpc->regmap, RPCIF_PHYWR, 0x00008080);
regmap_write(rpc->regmap, RPCIF_PHYADD, 0x80000022);
regmap_write(rpc->regmap, RPCIF_PHYWR, 0x00008080);
regmap_write(rpc->regmap, RPCIF_PHYADD, 0x80000024);
regmap_update_bits(rpc->regmap, RPCIF_PHYCNT, RPCIF_PHYCNT_CKSEL(3),
RPCIF_PHYCNT_CKSEL(3));
regmap_write(rpc->regmap, RPCIF_PHYWR, 0x00000030);
regmap_write(rpc->regmap, RPCIF_PHYADD, 0x80000032);
}
static int rpcif_hw_init_impl(struct rpcif_priv *rpc, bool hyperflash)
{
u32 dummy;
int ret;
if (rpc->info->type == RPCIF_RZ_G2L) {
ret = reset_control_reset(rpc->rstc);
if (ret)
return ret;
usleep_range(200, 300);
rpcif_rzg2l_timing_adjust_sdr(rpc);
}
regmap_update_bits(rpc->regmap, RPCIF_PHYCNT, RPCIF_PHYCNT_PHYMEM_MASK,
RPCIF_PHYCNT_PHYMEM(hyperflash ? 3 : 0));
/* DMA Transfer is not supported */
regmap_update_bits(rpc->regmap, RPCIF_PHYCNT, RPCIF_PHYCNT_HS, 0);
regmap_update_bits(rpc->regmap, RPCIF_PHYCNT,
/* create mask with all affected bits set */
RPCIF_PHYCNT_STRTIM(BIT(fls(rpc->info->strtim)) - 1),
RPCIF_PHYCNT_STRTIM(rpc->info->strtim));
regmap_update_bits(rpc->regmap, RPCIF_PHYOFFSET1, RPCIF_PHYOFFSET1_DDRTMG(3),
RPCIF_PHYOFFSET1_DDRTMG(3));
regmap_update_bits(rpc->regmap, RPCIF_PHYOFFSET2, RPCIF_PHYOFFSET2_OCTTMG(7),
RPCIF_PHYOFFSET2_OCTTMG(4));
if (hyperflash)
regmap_update_bits(rpc->regmap, RPCIF_PHYINT,
RPCIF_PHYINT_WPVAL, 0);
if (rpc->info->type == RPCIF_RZ_G2L)
regmap_update_bits(rpc->regmap, RPCIF_CMNCR,
RPCIF_CMNCR_MOIIO(3) | RPCIF_CMNCR_IOFV(3) |
RPCIF_CMNCR_BSZ(3),
RPCIF_CMNCR_MOIIO(1) | RPCIF_CMNCR_IOFV(3) |
RPCIF_CMNCR_BSZ(hyperflash ? 1 : 0));
else
regmap_update_bits(rpc->regmap, RPCIF_CMNCR,
RPCIF_CMNCR_MOIIO(3) | RPCIF_CMNCR_BSZ(3),
RPCIF_CMNCR_MOIIO(3) |
RPCIF_CMNCR_BSZ(hyperflash ? 1 : 0));
/* Set RCF after BSZ update */
regmap_write(rpc->regmap, RPCIF_DRCR, RPCIF_DRCR_RCF);
/* Dummy read according to spec */
regmap_read(rpc->regmap, RPCIF_DRCR, &dummy);
regmap_write(rpc->regmap, RPCIF_SSLDR, RPCIF_SSLDR_SPNDL(7) |
RPCIF_SSLDR_SLNDL(7) | RPCIF_SSLDR_SCKDL(7));
rpc->bus_size = hyperflash ? 2 : 1;
return 0;
}
static int xspi_hw_init_impl(struct rpcif_priv *xspi, bool hyperflash)
{
int ret;
ret = reset_control_reset(xspi->rstc);
if (ret)
return ret;
regmap_write(xspi->regmap, XSPI_WRAPCFG, 0x0);
regmap_update_bits(xspi->regmap, XSPI_LIOCFGCS0,
XSPI_LIOCFG_PRTMD(0x3ff) | XSPI_LIOCFG_CSMIN(0xf) |
XSPI_LIOCFG_CSASTEX | XSPI_LIOCFG_CSNEGEX,
XSPI_LIOCFG_PRTMD(0) | XSPI_LIOCFG_CSMIN(0) |
XSPI_LIOCFG_CSASTEX | XSPI_LIOCFG_CSNEGEX);
regmap_update_bits(xspi->regmap, XSPI_CCCTL0CS0, XSPI_CCCTL0_CAEN, 0);
regmap_update_bits(xspi->regmap, XSPI_CDCTL0,
XSPI_CDCTL0_TRREQ | XSPI_CDCTL0_CSSEL, 0);
regmap_update_bits(xspi->regmap, XSPI_INTE, XSPI_INTE_CMDCMPE,
XSPI_INTE_CMDCMPE);
return 0;
}
int rpcif_hw_init(struct device *dev, bool hyperflash)
{
struct rpcif_priv *rpc = dev_get_drvdata(dev);
int ret;
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
ret = rpc->info->impl->hw_init(rpc, hyperflash);
pm_runtime_put(dev);
return ret;
}
EXPORT_SYMBOL(rpcif_hw_init);
static int wait_msg_xfer_end(struct rpcif_priv *rpc)
{
u32 sts;
return regmap_read_poll_timeout(rpc->regmap, rpc->info->impl->status_reg,
sts, sts & rpc->info->impl->status_mask,
0, USEC_PER_SEC);
}
static u8 rpcif_bits_set(struct rpcif_priv *rpc, u32 nbytes)
{
if (rpc->bus_size == 2)
nbytes /= 2;
nbytes = clamp(nbytes, 1U, 4U);
return GENMASK(3, 4 - nbytes);
}
static u8 rpcif_bit_size(u8 buswidth)
{
return buswidth > 4 ? 2 : ilog2(buswidth);
}
static void rpcif_prepare_impl(struct rpcif_priv *rpc, const struct rpcif_op *op,
u64 *offs, size_t *len)
{
rpc->smcr = 0;
rpc->smadr = 0;
rpc->enable = 0;
rpc->command = 0;
rpc->option = 0;
rpc->dummy = 0;
rpc->ddr = 0;
rpc->xferlen = 0;
if (op->cmd.buswidth) {
rpc->enable = RPCIF_SMENR_CDE |
RPCIF_SMENR_CDB(rpcif_bit_size(op->cmd.buswidth));
rpc->command = RPCIF_SMCMR_CMD(op->cmd.opcode);
if (op->cmd.ddr)
rpc->ddr = RPCIF_SMDRENR_HYPE(0x5);
}
if (op->ocmd.buswidth) {
rpc->enable |= RPCIF_SMENR_OCDE |
RPCIF_SMENR_OCDB(rpcif_bit_size(op->ocmd.buswidth));
rpc->command |= RPCIF_SMCMR_OCMD(op->ocmd.opcode);
}
if (op->addr.buswidth) {
rpc->enable |=
RPCIF_SMENR_ADB(rpcif_bit_size(op->addr.buswidth));
if (op->addr.nbytes == 4)
rpc->enable |= RPCIF_SMENR_ADE(0xF);
else
rpc->enable |= RPCIF_SMENR_ADE(GENMASK(
2, 3 - op->addr.nbytes));
if (op->addr.ddr)
rpc->ddr |= RPCIF_SMDRENR_ADDRE;
if (offs && len)
rpc->smadr = *offs;
else
rpc->smadr = op->addr.val;
}
if (op->dummy.buswidth) {
rpc->enable |= RPCIF_SMENR_DME;
rpc->dummy = RPCIF_SMDMCR_DMCYC(op->dummy.ncycles);
}
if (op->option.buswidth) {
rpc->enable |= RPCIF_SMENR_OPDE(
rpcif_bits_set(rpc, op->option.nbytes)) |
RPCIF_SMENR_OPDB(rpcif_bit_size(op->option.buswidth));
if (op->option.ddr)
rpc->ddr |= RPCIF_SMDRENR_OPDRE;
rpc->option = op->option.val;
}
rpc->dir = op->data.dir;
if (op->data.buswidth) {
u32 nbytes;
rpc->buffer = op->data.buf.in;
switch (op->data.dir) {
case RPCIF_DATA_IN:
rpc->smcr = RPCIF_SMCR_SPIRE;
break;
case RPCIF_DATA_OUT:
rpc->smcr = RPCIF_SMCR_SPIWE;
break;
default:
break;
}
if (op->data.ddr)
rpc->ddr |= RPCIF_SMDRENR_SPIDRE;
if (offs && len)
nbytes = *len;
else
nbytes = op->data.nbytes;
rpc->xferlen = nbytes;
rpc->enable |= RPCIF_SMENR_SPIDB(rpcif_bit_size(op->data.buswidth));
}
}
static void xspi_prepare_impl(struct rpcif_priv *xspi, const struct rpcif_op *op,
u64 *offs, size_t *len)
{
xspi->smadr = 0;
xspi->addr_nbytes = 0;
xspi->command = 0;
xspi->option = 0;
xspi->dummy = 0;
xspi->xferlen = 0;
xspi->proto = 0;
if (op->cmd.buswidth)
xspi->command = op->cmd.opcode;
if (op->ocmd.buswidth)
xspi->command = (xspi->command << 8) | op->ocmd.opcode;
if (op->addr.buswidth) {
xspi->addr_nbytes = op->addr.nbytes;
if (offs && len)
xspi->smadr = *offs;
else
xspi->smadr = op->addr.val;
}
if (op->dummy.buswidth)
xspi->dummy = op->dummy.ncycles;
xspi->dir = op->data.dir;
if (op->data.buswidth) {
u32 nbytes;
xspi->buffer = op->data.buf.in;
if (offs && len)
nbytes = *len;
else
nbytes = op->data.nbytes;
xspi->xferlen = nbytes;
}
if (op->cmd.buswidth == 1) {
if (op->addr.buswidth == 2 || op->data.buswidth == 2)
xspi->proto = PROTO_1S_2S_2S;
else if (op->addr.buswidth == 4 || op->data.buswidth == 4)
xspi->proto = PROTO_1S_4S_4S;
} else if (op->cmd.buswidth == 2 &&
(op->addr.buswidth == 2 || op->data.buswidth == 2)) {
xspi->proto = PROTO_2S_2S_2S;
} else if (op->cmd.buswidth == 4 &&
(op->addr.buswidth == 4 || op->data.buswidth == 4)) {
xspi->proto = PROTO_4S_4S_4S;
}
}
void rpcif_prepare(struct device *dev, const struct rpcif_op *op, u64 *offs,
size_t *len)
{
struct rpcif_priv *rpc = dev_get_drvdata(dev);
rpc->info->impl->prepare(rpc, op, offs, len);
}
EXPORT_SYMBOL(rpcif_prepare);
static int rpcif_manual_xfer_impl(struct rpcif_priv *rpc)
{
u32 smenr, smcr, pos = 0, max = rpc->bus_size == 2 ? 8 : 4;
int ret = 0;
regmap_update_bits(rpc->regmap, RPCIF_PHYCNT,
RPCIF_PHYCNT_CAL, RPCIF_PHYCNT_CAL);
regmap_update_bits(rpc->regmap, RPCIF_CMNCR,
RPCIF_CMNCR_MD, RPCIF_CMNCR_MD);
regmap_write(rpc->regmap, RPCIF_SMCMR, rpc->command);
regmap_write(rpc->regmap, RPCIF_SMOPR, rpc->option);
regmap_write(rpc->regmap, RPCIF_SMDMCR, rpc->dummy);
regmap_write(rpc->regmap, RPCIF_SMDRENR, rpc->ddr);
regmap_write(rpc->regmap, RPCIF_SMADR, rpc->smadr);
smenr = rpc->enable;
switch (rpc->dir) {
case RPCIF_DATA_OUT:
while (pos < rpc->xferlen) {
u32 bytes_left = rpc->xferlen - pos;
u32 nbytes, data[2], *p = data;
smcr = rpc->smcr | RPCIF_SMCR_SPIE;
/* nbytes may only be 1, 2, 4, or 8 */
nbytes = bytes_left >= max ? max : (1 << ilog2(bytes_left));
if (bytes_left > nbytes)
smcr |= RPCIF_SMCR_SSLKP;
smenr |= RPCIF_SMENR_SPIDE(rpcif_bits_set(rpc, nbytes));
regmap_write(rpc->regmap, RPCIF_SMENR, smenr);
rpc->xfer_size = nbytes;
memcpy(data, rpc->buffer + pos, nbytes);
if (nbytes == 8)
regmap_write(rpc->regmap, RPCIF_SMWDR1, *p++);
regmap_write(rpc->regmap, RPCIF_SMWDR0, *p);
regmap_write(rpc->regmap, RPCIF_SMCR, smcr);
ret = wait_msg_xfer_end(rpc);
if (ret)
goto err_out;
pos += nbytes;
smenr = rpc->enable &
~RPCIF_SMENR_CDE & ~RPCIF_SMENR_ADE(0xF);
}
break;
case RPCIF_DATA_IN:
/*
* RPC-IF spoils the data for the commands without an address
* phase (like RDID) in the manual mode, so we'll have to work
* around this issue by using the external address space read
* mode instead.
*/
if (!(smenr & RPCIF_SMENR_ADE(0xF)) && rpc->dirmap) {
u32 dummy;
regmap_update_bits(rpc->regmap, RPCIF_CMNCR,
RPCIF_CMNCR_MD, 0);
regmap_write(rpc->regmap, RPCIF_DRCR,
RPCIF_DRCR_RBURST(32) | RPCIF_DRCR_RBE);
regmap_write(rpc->regmap, RPCIF_DRCMR, rpc->command);
regmap_write(rpc->regmap, RPCIF_DREAR,
RPCIF_DREAR_EAC(1));
regmap_write(rpc->regmap, RPCIF_DROPR, rpc->option);
regmap_write(rpc->regmap, RPCIF_DRENR,
smenr & ~RPCIF_SMENR_SPIDE(0xF));
regmap_write(rpc->regmap, RPCIF_DRDMCR, rpc->dummy);
regmap_write(rpc->regmap, RPCIF_DRDRENR, rpc->ddr);
memcpy_fromio(rpc->buffer, rpc->dirmap, rpc->xferlen);
regmap_write(rpc->regmap, RPCIF_DRCR, RPCIF_DRCR_RCF);
/* Dummy read according to spec */
regmap_read(rpc->regmap, RPCIF_DRCR, &dummy);
break;
}
while (pos < rpc->xferlen) {
u32 bytes_left = rpc->xferlen - pos;
u32 nbytes, data[2], *p = data;
/* nbytes may only be 1, 2, 4, or 8 */
nbytes = bytes_left >= max ? max : (1 << ilog2(bytes_left));
regmap_write(rpc->regmap, RPCIF_SMADR,
rpc->smadr + pos);
smenr &= ~RPCIF_SMENR_SPIDE(0xF);
smenr |= RPCIF_SMENR_SPIDE(rpcif_bits_set(rpc, nbytes));
regmap_write(rpc->regmap, RPCIF_SMENR, smenr);
regmap_write(rpc->regmap, RPCIF_SMCR,
rpc->smcr | RPCIF_SMCR_SPIE);
rpc->xfer_size = nbytes;
ret = wait_msg_xfer_end(rpc);
if (ret)
goto err_out;
if (nbytes == 8)
regmap_read(rpc->regmap, RPCIF_SMRDR1, p++);
regmap_read(rpc->regmap, RPCIF_SMRDR0, p);
memcpy(rpc->buffer + pos, data, nbytes);
pos += nbytes;
}
break;
default:
regmap_write(rpc->regmap, RPCIF_SMENR, rpc->enable);
regmap_write(rpc->regmap, RPCIF_SMCR,
rpc->smcr | RPCIF_SMCR_SPIE);
ret = wait_msg_xfer_end(rpc);
if (ret)
goto err_out;
}
return ret;
err_out:
if (reset_control_reset(rpc->rstc))
dev_err(rpc->dev, "Failed to reset HW\n");
rpcif_hw_init_impl(rpc, rpc->bus_size == 2);
return ret;
}
static int xspi_manual_xfer_impl(struct rpcif_priv *xspi)
{
u32 pos = 0, max = 8;
int ret = 0;
regmap_update_bits(xspi->regmap, XSPI_CDCTL0, XSPI_CDCTL0_TRNUM(0x3),
XSPI_CDCTL0_TRNUM(0));
regmap_update_bits(xspi->regmap, XSPI_CDCTL0, XSPI_CDCTL0_TRREQ, 0);
regmap_write(xspi->regmap, XSPI_CDTBUF0,
XSPI_CDTBUF_CMDSIZE(0x1) | XSPI_CDTBUF_CMD_FIELD(xspi->command));
regmap_write(xspi->regmap, XSPI_CDABUF0, 0);
regmap_update_bits(xspi->regmap, XSPI_CDTBUF0, XSPI_CDTBUF_ADDSIZE(0x7),
XSPI_CDTBUF_ADDSIZE(xspi->addr_nbytes));
regmap_write(xspi->regmap, XSPI_CDABUF0, xspi->smadr);
regmap_update_bits(xspi->regmap, XSPI_LIOCFGCS0, XSPI_LIOCFG_PRTMD(0x3ff),
XSPI_LIOCFG_PRTMD(xspi->proto));
switch (xspi->dir) {
case RPCIF_DATA_OUT:
while (pos < xspi->xferlen) {
u32 bytes_left = xspi->xferlen - pos;
u32 nbytes, data[2], *p = data;
regmap_update_bits(xspi->regmap, XSPI_CDTBUF0,
XSPI_CDTBUF_TRTYPE, XSPI_CDTBUF_TRTYPE);
nbytes = bytes_left >= max ? max : bytes_left;
regmap_update_bits(xspi->regmap, XSPI_CDTBUF0,
XSPI_CDTBUF_DATASIZE(0xf),
XSPI_CDTBUF_DATASIZE(nbytes));
regmap_update_bits(xspi->regmap, XSPI_CDTBUF0,
XSPI_CDTBUF_ADDSIZE(0x7),
XSPI_CDTBUF_ADDSIZE(xspi->addr_nbytes));
memcpy(data, xspi->buffer + pos, nbytes);
if (nbytes > 4) {
regmap_write(xspi->regmap, XSPI_CDD0BUF0, *p++);
regmap_write(xspi->regmap, XSPI_CDD1BUF0, *p);
} else {
regmap_write(xspi->regmap, XSPI_CDD0BUF0, *p);
}
regmap_write(xspi->regmap, XSPI_CDABUF0, xspi->smadr + pos);
regmap_update_bits(xspi->regmap, XSPI_CDCTL0,
XSPI_CDCTL0_TRREQ, XSPI_CDCTL0_TRREQ);
ret = wait_msg_xfer_end(xspi);
if (ret)
goto err_out;
regmap_update_bits(xspi->regmap, XSPI_INTC,
XSPI_INTC_CMDCMPC, XSPI_INTC_CMDCMPC);
pos += nbytes;
}
regmap_update_bits(xspi->regmap, XSPI_CDCTL0, XSPI_CDCTL0_TRREQ, 0);
break;
case RPCIF_DATA_IN:
while (pos < xspi->xferlen) {
u32 bytes_left = xspi->xferlen - pos;
u32 nbytes, data[2], *p = data;
regmap_update_bits(xspi->regmap, XSPI_CDTBUF0,
XSPI_CDTBUF_TRTYPE,
~(u32)XSPI_CDTBUF_TRTYPE);
/* nbytes can be up to 8 bytes */
nbytes = bytes_left >= max ? max : bytes_left;
regmap_update_bits(xspi->regmap, XSPI_CDTBUF0,
XSPI_CDTBUF_DATASIZE(0xf),
XSPI_CDTBUF_DATASIZE(nbytes));
regmap_update_bits(xspi->regmap, XSPI_CDTBUF0,
XSPI_CDTBUF_ADDSIZE(0x7),
XSPI_CDTBUF_ADDSIZE(xspi->addr_nbytes));
if (xspi->addr_nbytes)
regmap_write(xspi->regmap, XSPI_CDABUF0,
xspi->smadr + pos);
regmap_update_bits(xspi->regmap, XSPI_CDTBUF0,
XSPI_CDTBUF_LATE(0x1f),
XSPI_CDTBUF_LATE(xspi->dummy));
regmap_update_bits(xspi->regmap, XSPI_CDCTL0,
XSPI_CDCTL0_TRREQ, XSPI_CDCTL0_TRREQ);
ret = wait_msg_xfer_end(xspi);
if (ret)
goto err_out;
if (nbytes > 4) {
regmap_read(xspi->regmap, XSPI_CDD0BUF0, p++);
regmap_read(xspi->regmap, XSPI_CDD1BUF0, p);
} else {
regmap_read(xspi->regmap, XSPI_CDD0BUF0, p);
}
memcpy(xspi->buffer + pos, data, nbytes);
regmap_update_bits(xspi->regmap, XSPI_INTC,
XSPI_INTC_CMDCMPC, XSPI_INTC_CMDCMPC);
pos += nbytes;
}
regmap_update_bits(xspi->regmap, XSPI_CDCTL0,
XSPI_CDCTL0_TRREQ, 0);
break;
default:
regmap_update_bits(xspi->regmap, XSPI_CDTBUF0,
XSPI_CDTBUF_TRTYPE, XSPI_CDTBUF_TRTYPE);
regmap_update_bits(xspi->regmap, XSPI_CDCTL0,
XSPI_CDCTL0_TRREQ, XSPI_CDCTL0_TRREQ);
ret = wait_msg_xfer_end(xspi);
if (ret)
goto err_out;
regmap_update_bits(xspi->regmap, XSPI_INTC,
XSPI_INTC_CMDCMPC, XSPI_INTC_CMDCMPC);
}
return ret;
err_out:
xspi_hw_init_impl(xspi, false);
return ret;
}
int rpcif_manual_xfer(struct device *dev)
{
struct rpcif_priv *rpc = dev_get_drvdata(dev);
int ret;
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
ret = rpc->info->impl->manual_xfer(rpc);
pm_runtime_put(dev);
return ret;
}
EXPORT_SYMBOL(rpcif_manual_xfer);
static void memcpy_fromio_readw(void *to,
const void __iomem *from,
size_t count)
{
const int maxw = (IS_ENABLED(CONFIG_64BIT)) ? 8 : 4;
u8 buf[2];
if (count && ((unsigned long)from & 1)) {
*(u16 *)buf = __raw_readw((void __iomem *)((unsigned long)from & ~1));
*(u8 *)to = buf[1];
from++;
to++;
count--;
}
while (count >= 2 && !IS_ALIGNED((unsigned long)from, maxw)) {
*(u16 *)to = __raw_readw(from);
from += 2;
to += 2;
count -= 2;
}
while (count >= maxw) {
#ifdef CONFIG_64BIT
*(u64 *)to = __raw_readq(from);
#else
*(u32 *)to = __raw_readl(from);
#endif
from += maxw;
to += maxw;
count -= maxw;
}
while (count >= 2) {
*(u16 *)to = __raw_readw(from);
from += 2;
to += 2;
count -= 2;
}
if (count) {
*(u16 *)buf = __raw_readw(from);
*(u8 *)to = buf[0];
}
}
static size_t rpcif_dirmap_read_impl(struct rpcif_priv *rpc, u64 offs,
size_t len, void *buf)
{
loff_t from = offs & (rpc->size - 1);
size_t size = rpc->size - from;
if (len > size)
len = size;
regmap_update_bits(rpc->regmap, RPCIF_CMNCR, RPCIF_CMNCR_MD, 0);
regmap_write(rpc->regmap, RPCIF_DRCR, 0);
regmap_write(rpc->regmap, RPCIF_DRCMR, rpc->command);
regmap_write(rpc->regmap, RPCIF_DREAR,
RPCIF_DREAR_EAV(offs >> 25) | RPCIF_DREAR_EAC(1));
regmap_write(rpc->regmap, RPCIF_DROPR, rpc->option);
regmap_write(rpc->regmap, RPCIF_DRENR,
rpc->enable & ~RPCIF_SMENR_SPIDE(0xF));
regmap_write(rpc->regmap, RPCIF_DRDMCR, rpc->dummy);
regmap_write(rpc->regmap, RPCIF_DRDRENR, rpc->ddr);
if (rpc->bus_size == 2)
memcpy_fromio_readw(buf, rpc->dirmap + from, len);
else
memcpy_fromio(buf, rpc->dirmap + from, len);
return len;
}
static size_t xspi_dirmap_read_impl(struct rpcif_priv *xspi, u64 offs,
size_t len, void *buf)
{
loff_t from = offs & (xspi->size - 1);
size_t size = xspi->size - from;
u8 addsize = xspi->addr_nbytes - 1;
if (len > size)
len = size;
regmap_update_bits(xspi->regmap, XSPI_CMCFG0CS0,
XSPI_CMCFG0_FFMT(0x3) | XSPI_CMCFG0_ADDSIZE(0x3),
XSPI_CMCFG0_FFMT(0) | XSPI_CMCFG0_ADDSIZE(addsize));
regmap_update_bits(xspi->regmap, XSPI_CMCFG1CS0,
XSPI_CMCFG1_RDCMD(0xffff) | XSPI_CMCFG1_RDLATE(0x1f),
XSPI_CMCFG1_RDCMD_UPPER_BYTE(xspi->command) |
XSPI_CMCFG1_RDLATE(xspi->dummy));
regmap_update_bits(xspi->regmap, XSPI_BMCTL0, XSPI_BMCTL0_CS0ACC(0xff),
XSPI_BMCTL0_CS0ACC(0x01));
regmap_update_bits(xspi->regmap, XSPI_BMCFG,
XSPI_BMCFG_WRMD | XSPI_BMCFG_MWRCOMB |
XSPI_BMCFG_MWRSIZE(0xff) | XSPI_BMCFG_PREEN,
0 | XSPI_BMCFG_MWRCOMB | XSPI_BMCFG_MWRSIZE(0x0f) |
XSPI_BMCFG_PREEN);
regmap_update_bits(xspi->regmap, XSPI_LIOCFGCS0, XSPI_LIOCFG_PRTMD(0x3ff),
XSPI_LIOCFG_PRTMD(xspi->proto));
memcpy_fromio(buf, xspi->dirmap + from, len);
return len;
}
ssize_t rpcif_dirmap_read(struct device *dev, u64 offs, size_t len, void *buf)
{
struct rpcif_priv *rpc = dev_get_drvdata(dev);
size_t read;
int ret;
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
read = rpc->info->impl->dirmap_read(rpc, offs, len, buf);
pm_runtime_put(dev);
return read;
}
EXPORT_SYMBOL(rpcif_dirmap_read);
/**
* xspi_dirmap_write - Write data to xspi memory.
* @dev: xspi device
* @offs: offset
* @len: Number of bytes to be written.
* @buf: Buffer holding write data.
*
* This function writes data into xspi memory.
*
* Returns number of bytes written on success, else negative errno.
*/
ssize_t xspi_dirmap_write(struct device *dev, u64 offs, size_t len, const void *buf)
{
struct rpcif_priv *xspi = dev_get_drvdata(dev);
loff_t from = offs & (xspi->size - 1);
u8 addsize = xspi->addr_nbytes - 1;
size_t size = xspi->size - from;
ssize_t writebytes;
int ret;
ret = pm_runtime_resume_and_get(dev);
if (ret)
return ret;
if (len > size)
len = size;
if (len > MWRSIZE_MAX)
writebytes = MWRSIZE_MAX;
else
writebytes = len;
regmap_update_bits(xspi->regmap, XSPI_CMCFG0CS0,
XSPI_CMCFG0_FFMT(0x3) | XSPI_CMCFG0_ADDSIZE(0x3),
XSPI_CMCFG0_FFMT(0) | XSPI_CMCFG0_ADDSIZE(addsize));
regmap_update_bits(xspi->regmap, XSPI_CMCFG2CS0,
XSPI_CMCFG2_WRCMD_UPPER(0xff) | XSPI_CMCFG2_WRLATE(0x1f),
XSPI_CMCFG2_WRCMD_UPPER(xspi->command) |
XSPI_CMCFG2_WRLATE(xspi->dummy));
regmap_update_bits(xspi->regmap, XSPI_BMCTL0,
XSPI_BMCTL0_CS0ACC(0xff), XSPI_BMCTL0_CS0ACC(0x03));
regmap_update_bits(xspi->regmap, XSPI_BMCFG,
XSPI_BMCFG_WRMD | XSPI_BMCFG_MWRCOMB |
XSPI_BMCFG_MWRSIZE(0xff) | XSPI_BMCFG_PREEN,
0 | XSPI_BMCFG_MWRCOMB | XSPI_BMCFG_MWRSIZE(0x0f) |
XSPI_BMCFG_PREEN);
regmap_update_bits(xspi->regmap, XSPI_LIOCFGCS0, XSPI_LIOCFG_PRTMD(0x3ff),
XSPI_LIOCFG_PRTMD(xspi->proto));
memcpy_toio(xspi->dirmap + from, buf, writebytes);
/* Request to push the pending data */
if (writebytes < MWRSIZE_MAX)
regmap_update_bits(xspi->regmap, XSPI_BMCTL1,
XSPI_BMCTL1_MWRPUSH, XSPI_BMCTL1_MWRPUSH);
pm_runtime_put(dev);
return writebytes;
}
EXPORT_SYMBOL_GPL(xspi_dirmap_write);
static int rpcif_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct platform_device *vdev;
struct device_node *flash;
struct rpcif_priv *rpc;
struct resource *res;
const char *name;
int ret;
flash = of_get_next_child(dev->of_node, NULL);
if (!flash) {
dev_warn(dev, "no flash node found\n");
return -ENODEV;
}
if (of_device_is_compatible(flash, "jedec,spi-nor")) {
name = "rpc-if-spi";
} else if (of_device_is_compatible(flash, "cfi-flash")) {
name = "rpc-if-hyperflash";
} else {
of_node_put(flash);
dev_warn(dev, "unknown flash type\n");
return -ENODEV;
}
of_node_put(flash);
rpc = devm_kzalloc(dev, sizeof(*rpc), GFP_KERNEL);
if (!rpc)
return -ENOMEM;
rpc->base = devm_platform_ioremap_resource_byname(pdev, "regs");
if (IS_ERR(rpc->base))
return PTR_ERR(rpc->base);
rpc->info = of_device_get_match_data(dev);
rpc->regmap = devm_regmap_init(dev, NULL, rpc, rpc->info->regmap_config);
if (IS_ERR(rpc->regmap)) {
dev_err(dev, "failed to init regmap for rpcif, error %ld\n",
PTR_ERR(rpc->regmap));
return PTR_ERR(rpc->regmap);
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dirmap");
rpc->dirmap = devm_ioremap_resource(dev, res);
if (IS_ERR(rpc->dirmap))
return PTR_ERR(rpc->dirmap);
rpc->size = resource_size(res);
rpc->rstc = devm_reset_control_array_get_exclusive(dev);
if (IS_ERR(rpc->rstc))
return PTR_ERR(rpc->rstc);
/*
* The enabling/disabling of spi/spix2 clocks at runtime leading to
* flash write failure. So, enable these clocks during probe() and
* disable it in remove().
*/
if (rpc->info->type == XSPI_RZ_G3E) {
struct clk *spi_clk;
spi_clk = devm_clk_get_enabled(dev, "spix2");
if (IS_ERR(spi_clk))
return dev_err_probe(dev, PTR_ERR(spi_clk),
"cannot get enabled spix2 clk\n");
spi_clk = devm_clk_get_enabled(dev, "spi");
if (IS_ERR(spi_clk))
return dev_err_probe(dev, PTR_ERR(spi_clk),
"cannot get enabled spi clk\n");
}
vdev = platform_device_alloc(name, pdev->id);
if (!vdev)
return -ENOMEM;
vdev->dev.parent = dev;
rpc->dev = dev;
rpc->vdev = vdev;
platform_set_drvdata(pdev, rpc);
ret = platform_device_add(vdev);
if (ret) {
platform_device_put(vdev);
return ret;
}
return 0;
}
static void rpcif_remove(struct platform_device *pdev)
{
struct rpcif_priv *rpc = platform_get_drvdata(pdev);
platform_device_unregister(rpc->vdev);
}
static const struct rpcif_impl rpcif_impl = {
.hw_init = rpcif_hw_init_impl,
.prepare = rpcif_prepare_impl,
.manual_xfer = rpcif_manual_xfer_impl,
.dirmap_read = rpcif_dirmap_read_impl,
.status_reg = RPCIF_CMNSR,
.status_mask = RPCIF_CMNSR_TEND,
};
static const struct rpcif_impl xspi_impl = {
.hw_init = xspi_hw_init_impl,
.prepare = xspi_prepare_impl,
.manual_xfer = xspi_manual_xfer_impl,
.dirmap_read = xspi_dirmap_read_impl,
.status_reg = XSPI_INTS,
.status_mask = XSPI_INTS_CMDCMP,
};
static const struct rpcif_info rpcif_info_r8a7796 = {
.regmap_config = &rpcif_regmap_config,
.impl = &rpcif_impl,
.type = RPCIF_RCAR_GEN3,
.strtim = 6,
};
static const struct rpcif_info rpcif_info_gen3 = {
.regmap_config = &rpcif_regmap_config,
.impl = &rpcif_impl,
.type = RPCIF_RCAR_GEN3,
.strtim = 7,
};
static const struct rpcif_info rpcif_info_rz_g2l = {
.regmap_config = &rpcif_regmap_config,
.impl = &rpcif_impl,
.type = RPCIF_RZ_G2L,
.strtim = 7,
};
static const struct rpcif_info rpcif_info_gen4 = {
.regmap_config = &rpcif_regmap_config,
.impl = &rpcif_impl,
.type = RPCIF_RCAR_GEN4,
.strtim = 15,
};
static const struct rpcif_info xspi_info_r9a09g047 = {
.regmap_config = &xspi_regmap_config,
.impl = &xspi_impl,
.type = XSPI_RZ_G3E,
};
static const struct of_device_id rpcif_of_match[] = {
{ .compatible = "renesas,r8a7796-rpc-if", .data = &rpcif_info_r8a7796 },
{ .compatible = "renesas,r9a09g047-xspi", .data = &xspi_info_r9a09g047 },
{ .compatible = "renesas,rcar-gen3-rpc-if", .data = &rpcif_info_gen3 },
{ .compatible = "renesas,rcar-gen4-rpc-if", .data = &rpcif_info_gen4 },
{ .compatible = "renesas,rzg2l-rpc-if", .data = &rpcif_info_rz_g2l },
{},
};
MODULE_DEVICE_TABLE(of, rpcif_of_match);
static struct platform_driver rpcif_driver = {
.probe = rpcif_probe,
.remove = rpcif_remove,
.driver = {
.name = "rpc-if",
.of_match_table = rpcif_of_match,
},
};
module_platform_driver(rpcif_driver);
MODULE_DESCRIPTION("Renesas RPC-IF core driver");
MODULE_LICENSE("GPL v2");