blob: e624f848c22b5799d23107518bbfd01b2e93d150 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* pm8xxx RTC driver
*
* Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
* Copyright (c) 2023, Linaro Limited
*/
#include <linux/efi.h>
#include <linux/of.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/init.h>
#include <linux/rtc.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/pm_wakeirq.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/unaligned.h>
#include <asm/byteorder.h>
/* RTC_CTRL register bit fields */
#define PM8xxx_RTC_ENABLE BIT(7)
#define PM8xxx_RTC_ALARM_CLEAR BIT(0)
#define PM8xxx_RTC_ALARM_ENABLE BIT(7)
#define NUM_8_BIT_RTC_REGS 0x4
/**
* struct pm8xxx_rtc_regs - describe RTC registers per PMIC versions
* @ctrl: address of control register
* @write: base address of write registers
* @read: base address of read registers
* @alarm_ctrl: address of alarm control register
* @alarm_ctrl2: address of alarm control2 register
* @alarm_rw: base address of alarm read-write registers
* @alarm_en: alarm enable mask
*/
struct pm8xxx_rtc_regs {
unsigned int ctrl;
unsigned int write;
unsigned int read;
unsigned int alarm_ctrl;
unsigned int alarm_ctrl2;
unsigned int alarm_rw;
unsigned int alarm_en;
};
struct qcom_uefi_rtc_info {
__le32 offset_gps;
u8 reserved[8];
} __packed;
/**
* struct pm8xxx_rtc - RTC driver internal structure
* @rtc: RTC device
* @regmap: regmap used to access registers
* @allow_set_time: whether the time can be set
* @use_uefi: use UEFI variable as fallback for offset
* @alarm_irq: alarm irq number
* @regs: register description
* @dev: device structure
* @rtc_info: qcom uefi rtc-info structure
* @nvmem_cell: nvmem cell for offset
* @offset: offset from epoch in seconds
* @offset_dirty: offset needs to be stored on shutdown
*/
struct pm8xxx_rtc {
struct rtc_device *rtc;
struct regmap *regmap;
bool allow_set_time;
bool use_uefi;
int alarm_irq;
const struct pm8xxx_rtc_regs *regs;
struct device *dev;
struct qcom_uefi_rtc_info rtc_info;
struct nvmem_cell *nvmem_cell;
u32 offset;
bool offset_dirty;
};
#ifdef CONFIG_EFI
MODULE_IMPORT_NS("EFIVAR");
#define QCOM_UEFI_NAME L"RTCInfo"
#define QCOM_UEFI_GUID EFI_GUID(0x882f8c2b, 0x9646, 0x435f, \
0x8d, 0xe5, 0xf2, 0x08, 0xff, 0x80, 0xc1, 0xbd)
#define QCOM_UEFI_ATTRS (EFI_VARIABLE_NON_VOLATILE | \
EFI_VARIABLE_BOOTSERVICE_ACCESS | \
EFI_VARIABLE_RUNTIME_ACCESS)
static int pm8xxx_rtc_read_uefi_offset(struct pm8xxx_rtc *rtc_dd)
{
struct qcom_uefi_rtc_info *rtc_info = &rtc_dd->rtc_info;
unsigned long size = sizeof(*rtc_info);
struct device *dev = rtc_dd->dev;
efi_status_t status;
u32 offset_gps;
int rc;
rc = efivar_lock();
if (rc)
return rc;
status = efivar_get_variable(QCOM_UEFI_NAME, &QCOM_UEFI_GUID, NULL,
&size, rtc_info);
efivar_unlock();
if (status != EFI_SUCCESS) {
dev_dbg(dev, "failed to read UEFI offset: %lu\n", status);
return efi_status_to_err(status);
}
if (size != sizeof(*rtc_info)) {
dev_dbg(dev, "unexpected UEFI structure size %lu\n", size);
return -EINVAL;
}
dev_dbg(dev, "uefi_rtc_info = %*ph\n", (int)size, rtc_info);
/* Convert from GPS to Unix time offset */
offset_gps = le32_to_cpu(rtc_info->offset_gps);
rtc_dd->offset = offset_gps + (u32)RTC_TIMESTAMP_EPOCH_GPS;
return 0;
}
static int pm8xxx_rtc_write_uefi_offset(struct pm8xxx_rtc *rtc_dd, u32 offset)
{
struct qcom_uefi_rtc_info *rtc_info = &rtc_dd->rtc_info;
unsigned long size = sizeof(*rtc_info);
struct device *dev = rtc_dd->dev;
efi_status_t status;
u32 offset_gps;
/* Convert from Unix to GPS time offset */
offset_gps = offset - (u32)RTC_TIMESTAMP_EPOCH_GPS;
rtc_info->offset_gps = cpu_to_le32(offset_gps);
dev_dbg(dev, "efi_rtc_info = %*ph\n", (int)size, rtc_info);
status = efivar_set_variable(QCOM_UEFI_NAME, &QCOM_UEFI_GUID,
QCOM_UEFI_ATTRS, size, rtc_info);
if (status != EFI_SUCCESS) {
dev_dbg(dev, "failed to write UEFI offset: %lx\n", status);
return efi_status_to_err(status);
}
return 0;
}
#else /* CONFIG_EFI */
static int pm8xxx_rtc_read_uefi_offset(struct pm8xxx_rtc *rtc_dd)
{
return -ENODEV;
}
static int pm8xxx_rtc_write_uefi_offset(struct pm8xxx_rtc *rtc_dd, u32 offset)
{
return -ENODEV;
}
#endif /* CONFIG_EFI */
static int pm8xxx_rtc_read_nvmem_offset(struct pm8xxx_rtc *rtc_dd)
{
size_t len;
void *buf;
int rc;
buf = nvmem_cell_read(rtc_dd->nvmem_cell, &len);
if (IS_ERR(buf)) {
rc = PTR_ERR(buf);
dev_dbg(rtc_dd->dev, "failed to read nvmem offset: %d\n", rc);
return rc;
}
if (len != sizeof(u32)) {
dev_dbg(rtc_dd->dev, "unexpected nvmem cell size %zu\n", len);
kfree(buf);
return -EINVAL;
}
rtc_dd->offset = get_unaligned_le32(buf);
kfree(buf);
return 0;
}
static int pm8xxx_rtc_write_nvmem_offset(struct pm8xxx_rtc *rtc_dd, u32 offset)
{
u8 buf[sizeof(u32)];
int rc;
put_unaligned_le32(offset, buf);
rc = nvmem_cell_write(rtc_dd->nvmem_cell, buf, sizeof(buf));
if (rc < 0) {
dev_dbg(rtc_dd->dev, "failed to write nvmem offset: %d\n", rc);
return rc;
}
return 0;
}
static int pm8xxx_rtc_read_raw(struct pm8xxx_rtc *rtc_dd, u32 *secs)
{
const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
u8 value[NUM_8_BIT_RTC_REGS];
unsigned int reg;
int rc;
rc = regmap_bulk_read(rtc_dd->regmap, regs->read, value, sizeof(value));
if (rc)
return rc;
/*
* Read the LSB again and check if there has been a carry over.
* If there has, redo the read operation.
*/
rc = regmap_read(rtc_dd->regmap, regs->read, &reg);
if (rc < 0)
return rc;
if (reg < value[0]) {
rc = regmap_bulk_read(rtc_dd->regmap, regs->read, value,
sizeof(value));
if (rc)
return rc;
}
*secs = get_unaligned_le32(value);
return 0;
}
static int pm8xxx_rtc_update_offset(struct pm8xxx_rtc *rtc_dd, u32 secs)
{
u32 raw_secs;
u32 offset;
int rc;
if (!rtc_dd->nvmem_cell && !rtc_dd->use_uefi)
return -ENODEV;
rc = pm8xxx_rtc_read_raw(rtc_dd, &raw_secs);
if (rc)
return rc;
offset = secs - raw_secs;
if (offset == rtc_dd->offset)
return 0;
/*
* Reduce flash wear by deferring updates due to clock drift until
* shutdown.
*/
if (abs_diff(offset, rtc_dd->offset) < 30) {
rtc_dd->offset_dirty = true;
goto out;
}
if (rtc_dd->nvmem_cell)
rc = pm8xxx_rtc_write_nvmem_offset(rtc_dd, offset);
else
rc = pm8xxx_rtc_write_uefi_offset(rtc_dd, offset);
if (rc)
return rc;
rtc_dd->offset_dirty = false;
out:
rtc_dd->offset = offset;
return 0;
}
/*
* Steps to write the RTC registers.
* 1. Disable alarm if enabled.
* 2. Disable rtc if enabled.
* 3. Write 0x00 to LSB.
* 4. Write Byte[1], Byte[2], Byte[3] then Byte[0].
* 5. Enable rtc if disabled in step 2.
* 6. Enable alarm if disabled in step 1.
*/
static int __pm8xxx_rtc_set_time(struct pm8xxx_rtc *rtc_dd, u32 secs)
{
const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
u8 value[NUM_8_BIT_RTC_REGS];
bool alarm_enabled;
int rc;
put_unaligned_le32(secs, value);
rc = regmap_update_bits_check(rtc_dd->regmap, regs->alarm_ctrl,
regs->alarm_en, 0, &alarm_enabled);
if (rc)
return rc;
/* Disable RTC */
rc = regmap_update_bits(rtc_dd->regmap, regs->ctrl, PM8xxx_RTC_ENABLE, 0);
if (rc)
return rc;
/* Write 0 to Byte[0] */
rc = regmap_write(rtc_dd->regmap, regs->write, 0);
if (rc)
return rc;
/* Write Byte[1], Byte[2], Byte[3] */
rc = regmap_bulk_write(rtc_dd->regmap, regs->write + 1,
&value[1], sizeof(value) - 1);
if (rc)
return rc;
/* Write Byte[0] */
rc = regmap_write(rtc_dd->regmap, regs->write, value[0]);
if (rc)
return rc;
/* Enable RTC */
rc = regmap_update_bits(rtc_dd->regmap, regs->ctrl, PM8xxx_RTC_ENABLE,
PM8xxx_RTC_ENABLE);
if (rc)
return rc;
if (alarm_enabled) {
rc = regmap_update_bits(rtc_dd->regmap, regs->alarm_ctrl,
regs->alarm_en, regs->alarm_en);
if (rc)
return rc;
}
return 0;
}
static int pm8xxx_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
u32 secs;
int rc;
secs = rtc_tm_to_time64(tm);
if (rtc_dd->allow_set_time)
rc = __pm8xxx_rtc_set_time(rtc_dd, secs);
else
rc = pm8xxx_rtc_update_offset(rtc_dd, secs);
if (rc)
return rc;
dev_dbg(dev, "set time: %ptRd %ptRt (%u + %u)\n", tm, tm,
secs - rtc_dd->offset, rtc_dd->offset);
return 0;
}
static int pm8xxx_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
u32 secs;
int rc;
rc = pm8xxx_rtc_read_raw(rtc_dd, &secs);
if (rc)
return rc;
secs += rtc_dd->offset;
rtc_time64_to_tm(secs, tm);
dev_dbg(dev, "read time: %ptRd %ptRt (%u + %u)\n", tm, tm,
secs - rtc_dd->offset, rtc_dd->offset);
return 0;
}
static int pm8xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
u8 value[NUM_8_BIT_RTC_REGS];
u32 secs;
int rc;
secs = rtc_tm_to_time64(&alarm->time);
secs -= rtc_dd->offset;
put_unaligned_le32(secs, value);
rc = regmap_update_bits(rtc_dd->regmap, regs->alarm_ctrl,
regs->alarm_en, 0);
if (rc)
return rc;
rc = regmap_bulk_write(rtc_dd->regmap, regs->alarm_rw, value,
sizeof(value));
if (rc)
return rc;
if (alarm->enabled) {
rc = regmap_update_bits(rtc_dd->regmap, regs->alarm_ctrl,
regs->alarm_en, regs->alarm_en);
if (rc)
return rc;
}
dev_dbg(dev, "set alarm: %ptRd %ptRt\n", &alarm->time, &alarm->time);
return 0;
}
static int pm8xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
u8 value[NUM_8_BIT_RTC_REGS];
unsigned int ctrl_reg;
u32 secs;
int rc;
rc = regmap_bulk_read(rtc_dd->regmap, regs->alarm_rw, value,
sizeof(value));
if (rc)
return rc;
secs = get_unaligned_le32(value);
secs += rtc_dd->offset;
rtc_time64_to_tm(secs, &alarm->time);
rc = regmap_read(rtc_dd->regmap, regs->alarm_ctrl, &ctrl_reg);
if (rc)
return rc;
alarm->enabled = !!(ctrl_reg & PM8xxx_RTC_ALARM_ENABLE);
dev_dbg(dev, "read alarm: %ptRd %ptRt\n", &alarm->time, &alarm->time);
return 0;
}
static int pm8xxx_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
{
struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
u8 value[NUM_8_BIT_RTC_REGS] = {0};
unsigned int val;
int rc;
if (enable)
val = regs->alarm_en;
else
val = 0;
rc = regmap_update_bits(rtc_dd->regmap, regs->alarm_ctrl,
regs->alarm_en, val);
if (rc)
return rc;
/* Clear alarm register */
if (!enable) {
rc = regmap_bulk_write(rtc_dd->regmap, regs->alarm_rw, value,
sizeof(value));
if (rc)
return rc;
}
return 0;
}
static const struct rtc_class_ops pm8xxx_rtc_ops = {
.read_time = pm8xxx_rtc_read_time,
.set_time = pm8xxx_rtc_set_time,
.set_alarm = pm8xxx_rtc_set_alarm,
.read_alarm = pm8xxx_rtc_read_alarm,
.alarm_irq_enable = pm8xxx_rtc_alarm_irq_enable,
};
static irqreturn_t pm8xxx_alarm_trigger(int irq, void *dev_id)
{
struct pm8xxx_rtc *rtc_dd = dev_id;
const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
int rc;
rtc_update_irq(rtc_dd->rtc, 1, RTC_IRQF | RTC_AF);
/* Disable alarm */
rc = regmap_update_bits(rtc_dd->regmap, regs->alarm_ctrl,
regs->alarm_en, 0);
if (rc)
return IRQ_NONE;
/* Clear alarm status */
rc = regmap_update_bits(rtc_dd->regmap, regs->alarm_ctrl2,
PM8xxx_RTC_ALARM_CLEAR, 0);
if (rc)
return IRQ_NONE;
return IRQ_HANDLED;
}
static int pm8xxx_rtc_enable(struct pm8xxx_rtc *rtc_dd)
{
const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
return regmap_update_bits(rtc_dd->regmap, regs->ctrl, PM8xxx_RTC_ENABLE,
PM8xxx_RTC_ENABLE);
}
static const struct pm8xxx_rtc_regs pm8921_regs = {
.ctrl = 0x11d,
.write = 0x11f,
.read = 0x123,
.alarm_rw = 0x127,
.alarm_ctrl = 0x11d,
.alarm_ctrl2 = 0x11e,
.alarm_en = BIT(1),
};
static const struct pm8xxx_rtc_regs pm8058_regs = {
.ctrl = 0x1e8,
.write = 0x1ea,
.read = 0x1ee,
.alarm_rw = 0x1f2,
.alarm_ctrl = 0x1e8,
.alarm_ctrl2 = 0x1e9,
.alarm_en = BIT(1),
};
static const struct pm8xxx_rtc_regs pm8941_regs = {
.ctrl = 0x6046,
.write = 0x6040,
.read = 0x6048,
.alarm_rw = 0x6140,
.alarm_ctrl = 0x6146,
.alarm_ctrl2 = 0x6148,
.alarm_en = BIT(7),
};
static const struct pm8xxx_rtc_regs pmk8350_regs = {
.ctrl = 0x6146,
.write = 0x6140,
.read = 0x6148,
.alarm_rw = 0x6240,
.alarm_ctrl = 0x6246,
.alarm_ctrl2 = 0x6248,
.alarm_en = BIT(7),
};
static const struct of_device_id pm8xxx_id_table[] = {
{ .compatible = "qcom,pm8921-rtc", .data = &pm8921_regs },
{ .compatible = "qcom,pm8058-rtc", .data = &pm8058_regs },
{ .compatible = "qcom,pm8941-rtc", .data = &pm8941_regs },
{ .compatible = "qcom,pmk8350-rtc", .data = &pmk8350_regs },
{ },
};
MODULE_DEVICE_TABLE(of, pm8xxx_id_table);
static int pm8xxx_rtc_probe_offset(struct pm8xxx_rtc *rtc_dd)
{
int rc;
rtc_dd->nvmem_cell = devm_nvmem_cell_get(rtc_dd->dev, "offset");
if (IS_ERR(rtc_dd->nvmem_cell)) {
rc = PTR_ERR(rtc_dd->nvmem_cell);
if (rc != -ENOENT)
return rc;
rtc_dd->nvmem_cell = NULL;
} else {
return pm8xxx_rtc_read_nvmem_offset(rtc_dd);
}
/* Use UEFI storage as fallback if available */
rtc_dd->use_uefi = of_property_read_bool(rtc_dd->dev->of_node,
"qcom,uefi-rtc-info");
if (!rtc_dd->use_uefi)
return 0;
if (!efivar_is_available()) {
if (IS_ENABLED(CONFIG_EFI))
return -EPROBE_DEFER;
dev_warn(rtc_dd->dev, "efivars not available\n");
rtc_dd->use_uefi = false;
}
return pm8xxx_rtc_read_uefi_offset(rtc_dd);
}
static int pm8xxx_rtc_probe(struct platform_device *pdev)
{
const struct of_device_id *match;
struct pm8xxx_rtc *rtc_dd;
int rc;
match = of_match_node(pm8xxx_id_table, pdev->dev.of_node);
if (!match)
return -ENXIO;
rtc_dd = devm_kzalloc(&pdev->dev, sizeof(*rtc_dd), GFP_KERNEL);
if (rtc_dd == NULL)
return -ENOMEM;
rtc_dd->regs = match->data;
rtc_dd->dev = &pdev->dev;
rtc_dd->regmap = dev_get_regmap(pdev->dev.parent, NULL);
if (!rtc_dd->regmap)
return -ENXIO;
if (!of_property_read_bool(pdev->dev.of_node, "qcom,no-alarm")) {
rtc_dd->alarm_irq = platform_get_irq(pdev, 0);
if (rtc_dd->alarm_irq < 0)
return -ENXIO;
}
rtc_dd->allow_set_time = of_property_read_bool(pdev->dev.of_node,
"allow-set-time");
if (!rtc_dd->allow_set_time) {
rc = pm8xxx_rtc_probe_offset(rtc_dd);
if (rc)
return rc;
}
rc = pm8xxx_rtc_enable(rtc_dd);
if (rc)
return rc;
platform_set_drvdata(pdev, rtc_dd);
rtc_dd->rtc = devm_rtc_allocate_device(&pdev->dev);
if (IS_ERR(rtc_dd->rtc))
return PTR_ERR(rtc_dd->rtc);
rtc_dd->rtc->ops = &pm8xxx_rtc_ops;
rtc_dd->rtc->range_max = U32_MAX;
if (rtc_dd->alarm_irq) {
rc = devm_request_any_context_irq(&pdev->dev, rtc_dd->alarm_irq,
pm8xxx_alarm_trigger,
IRQF_TRIGGER_RISING,
"pm8xxx_rtc_alarm", rtc_dd);
if (rc < 0)
return rc;
rc = devm_pm_set_wake_irq(&pdev->dev, rtc_dd->alarm_irq);
if (rc)
return rc;
devm_device_init_wakeup(&pdev->dev);
} else {
clear_bit(RTC_FEATURE_ALARM, rtc_dd->rtc->features);
}
return devm_rtc_register_device(rtc_dd->rtc);
}
static void pm8xxx_shutdown(struct platform_device *pdev)
{
struct pm8xxx_rtc *rtc_dd = platform_get_drvdata(pdev);
if (rtc_dd->offset_dirty) {
if (rtc_dd->nvmem_cell)
pm8xxx_rtc_write_nvmem_offset(rtc_dd, rtc_dd->offset);
else
pm8xxx_rtc_write_uefi_offset(rtc_dd, rtc_dd->offset);
}
}
static struct platform_driver pm8xxx_rtc_driver = {
.probe = pm8xxx_rtc_probe,
.shutdown = pm8xxx_shutdown,
.driver = {
.name = "rtc-pm8xxx",
.of_match_table = pm8xxx_id_table,
},
};
module_platform_driver(pm8xxx_rtc_driver);
MODULE_DESCRIPTION("PMIC8xxx RTC driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Anirudh Ghayal <aghayal@codeaurora.org>");
MODULE_AUTHOR("Johan Hovold <johan@kernel.org>");