|  | /* | 
|  | *  linux/mm/memory.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * demand-loading started 01.12.91 - seems it is high on the list of | 
|  | * things wanted, and it should be easy to implement. - Linus | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | 
|  | * pages started 02.12.91, seems to work. - Linus. | 
|  | * | 
|  | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | 
|  | * would have taken more than the 6M I have free, but it worked well as | 
|  | * far as I could see. | 
|  | * | 
|  | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Real VM (paging to/from disk) started 18.12.91. Much more work and | 
|  | * thought has to go into this. Oh, well.. | 
|  | * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why. | 
|  | *		Found it. Everything seems to work now. | 
|  | * 20.12.91  -  Ok, making the swap-device changeable like the root. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * 05.04.94  -  Multi-page memory management added for v1.1. | 
|  | * 		Idea by Alex Bligh (alex@cconcepts.co.uk) | 
|  | * | 
|  | * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG | 
|  | *		(Gerhard.Wichert@pdb.siemens.de) | 
|  | * | 
|  | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/ksm.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pfn_t.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/dma-debug.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/userfaultfd_k.h> | 
|  | #include <linux/dax.h> | 
|  |  | 
|  | #include <asm/io.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/pgtable.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) | 
|  | #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. | 
|  | #endif | 
|  |  | 
|  | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
|  | /* use the per-pgdat data instead for discontigmem - mbligh */ | 
|  | unsigned long max_mapnr; | 
|  | struct page *mem_map; | 
|  |  | 
|  | EXPORT_SYMBOL(max_mapnr); | 
|  | EXPORT_SYMBOL(mem_map); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * A number of key systems in x86 including ioremap() rely on the assumption | 
|  | * that high_memory defines the upper bound on direct map memory, then end | 
|  | * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and | 
|  | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | 
|  | * and ZONE_HIGHMEM. | 
|  | */ | 
|  | void * high_memory; | 
|  |  | 
|  | EXPORT_SYMBOL(high_memory); | 
|  |  | 
|  | /* | 
|  | * Randomize the address space (stacks, mmaps, brk, etc.). | 
|  | * | 
|  | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | 
|  | *   as ancient (libc5 based) binaries can segfault. ) | 
|  | */ | 
|  | int randomize_va_space __read_mostly = | 
|  | #ifdef CONFIG_COMPAT_BRK | 
|  | 1; | 
|  | #else | 
|  | 2; | 
|  | #endif | 
|  |  | 
|  | static int __init disable_randmaps(char *s) | 
|  | { | 
|  | randomize_va_space = 0; | 
|  | return 1; | 
|  | } | 
|  | __setup("norandmaps", disable_randmaps); | 
|  |  | 
|  | unsigned long zero_pfn __read_mostly; | 
|  | unsigned long highest_memmap_pfn __read_mostly; | 
|  |  | 
|  | EXPORT_SYMBOL(zero_pfn); | 
|  |  | 
|  | /* | 
|  | * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() | 
|  | */ | 
|  | static int __init init_zero_pfn(void) | 
|  | { | 
|  | zero_pfn = page_to_pfn(ZERO_PAGE(0)); | 
|  | return 0; | 
|  | } | 
|  | early_initcall(init_zero_pfn); | 
|  |  | 
|  |  | 
|  | #if defined(SPLIT_RSS_COUNTING) | 
|  |  | 
|  | void sync_mm_rss(struct mm_struct *mm) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NR_MM_COUNTERS; i++) { | 
|  | if (current->rss_stat.count[i]) { | 
|  | add_mm_counter(mm, i, current->rss_stat.count[i]); | 
|  | current->rss_stat.count[i] = 0; | 
|  | } | 
|  | } | 
|  | current->rss_stat.events = 0; | 
|  | } | 
|  |  | 
|  | static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) | 
|  | { | 
|  | struct task_struct *task = current; | 
|  |  | 
|  | if (likely(task->mm == mm)) | 
|  | task->rss_stat.count[member] += val; | 
|  | else | 
|  | add_mm_counter(mm, member, val); | 
|  | } | 
|  | #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) | 
|  | #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) | 
|  |  | 
|  | /* sync counter once per 64 page faults */ | 
|  | #define TASK_RSS_EVENTS_THRESH	(64) | 
|  | static void check_sync_rss_stat(struct task_struct *task) | 
|  | { | 
|  | if (unlikely(task != current)) | 
|  | return; | 
|  | if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) | 
|  | sync_mm_rss(task->mm); | 
|  | } | 
|  | #else /* SPLIT_RSS_COUNTING */ | 
|  |  | 
|  | #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) | 
|  | #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) | 
|  |  | 
|  | static void check_sync_rss_stat(struct task_struct *task) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* SPLIT_RSS_COUNTING */ | 
|  |  | 
|  | #ifdef HAVE_GENERIC_MMU_GATHER | 
|  |  | 
|  | static bool tlb_next_batch(struct mmu_gather *tlb) | 
|  | { | 
|  | struct mmu_gather_batch *batch; | 
|  |  | 
|  | batch = tlb->active; | 
|  | if (batch->next) { | 
|  | tlb->active = batch->next; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) | 
|  | return false; | 
|  |  | 
|  | batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); | 
|  | if (!batch) | 
|  | return false; | 
|  |  | 
|  | tlb->batch_count++; | 
|  | batch->next = NULL; | 
|  | batch->nr   = 0; | 
|  | batch->max  = MAX_GATHER_BATCH; | 
|  |  | 
|  | tlb->active->next = batch; | 
|  | tlb->active = batch; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* tlb_gather_mmu | 
|  | *	Called to initialize an (on-stack) mmu_gather structure for page-table | 
|  | *	tear-down from @mm. The @fullmm argument is used when @mm is without | 
|  | *	users and we're going to destroy the full address space (exit/execve). | 
|  | */ | 
|  | void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) | 
|  | { | 
|  | tlb->mm = mm; | 
|  |  | 
|  | /* Is it from 0 to ~0? */ | 
|  | tlb->fullmm     = !(start | (end+1)); | 
|  | tlb->need_flush_all = 0; | 
|  | tlb->local.next = NULL; | 
|  | tlb->local.nr   = 0; | 
|  | tlb->local.max  = ARRAY_SIZE(tlb->__pages); | 
|  | tlb->active     = &tlb->local; | 
|  | tlb->batch_count = 0; | 
|  |  | 
|  | #ifdef CONFIG_HAVE_RCU_TABLE_FREE | 
|  | tlb->batch = NULL; | 
|  | #endif | 
|  | tlb->page_size = 0; | 
|  |  | 
|  | __tlb_reset_range(tlb); | 
|  | } | 
|  |  | 
|  | static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) | 
|  | { | 
|  | if (!tlb->end) | 
|  | return; | 
|  |  | 
|  | tlb_flush(tlb); | 
|  | mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); | 
|  | #ifdef CONFIG_HAVE_RCU_TABLE_FREE | 
|  | tlb_table_flush(tlb); | 
|  | #endif | 
|  | __tlb_reset_range(tlb); | 
|  | } | 
|  |  | 
|  | static void tlb_flush_mmu_free(struct mmu_gather *tlb) | 
|  | { | 
|  | struct mmu_gather_batch *batch; | 
|  |  | 
|  | for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { | 
|  | free_pages_and_swap_cache(batch->pages, batch->nr); | 
|  | batch->nr = 0; | 
|  | } | 
|  | tlb->active = &tlb->local; | 
|  | } | 
|  |  | 
|  | void tlb_flush_mmu(struct mmu_gather *tlb) | 
|  | { | 
|  | tlb_flush_mmu_tlbonly(tlb); | 
|  | tlb_flush_mmu_free(tlb); | 
|  | } | 
|  |  | 
|  | /* tlb_finish_mmu | 
|  | *	Called at the end of the shootdown operation to free up any resources | 
|  | *	that were required. | 
|  | */ | 
|  | void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) | 
|  | { | 
|  | struct mmu_gather_batch *batch, *next; | 
|  |  | 
|  | tlb_flush_mmu(tlb); | 
|  |  | 
|  | /* keep the page table cache within bounds */ | 
|  | check_pgt_cache(); | 
|  |  | 
|  | for (batch = tlb->local.next; batch; batch = next) { | 
|  | next = batch->next; | 
|  | free_pages((unsigned long)batch, 0); | 
|  | } | 
|  | tlb->local.next = NULL; | 
|  | } | 
|  |  | 
|  | /* __tlb_remove_page | 
|  | *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while | 
|  | *	handling the additional races in SMP caused by other CPUs caching valid | 
|  | *	mappings in their TLBs. Returns the number of free page slots left. | 
|  | *	When out of page slots we must call tlb_flush_mmu(). | 
|  | *returns true if the caller should flush. | 
|  | */ | 
|  | bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) | 
|  | { | 
|  | struct mmu_gather_batch *batch; | 
|  |  | 
|  | VM_BUG_ON(!tlb->end); | 
|  |  | 
|  | if (!tlb->page_size) | 
|  | tlb->page_size = page_size; | 
|  | else { | 
|  | if (page_size != tlb->page_size) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | batch = tlb->active; | 
|  | if (batch->nr == batch->max) { | 
|  | if (!tlb_next_batch(tlb)) | 
|  | return true; | 
|  | batch = tlb->active; | 
|  | } | 
|  | VM_BUG_ON_PAGE(batch->nr > batch->max, page); | 
|  |  | 
|  | batch->pages[batch->nr++] = page; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void tlb_flush_pmd_range(struct mmu_gather *tlb, unsigned long address, | 
|  | unsigned long size) | 
|  | { | 
|  | if (tlb->page_size != 0 && tlb->page_size != PMD_SIZE) | 
|  | tlb_flush_mmu(tlb); | 
|  |  | 
|  | tlb->page_size = PMD_SIZE; | 
|  | tlb->start = min(tlb->start, address); | 
|  | tlb->end = max(tlb->end, address + size); | 
|  | /* | 
|  | * Track the last address with which we adjusted the range. This | 
|  | * will be used later to adjust again after a mmu_flush due to | 
|  | * failed __tlb_remove_page | 
|  | */ | 
|  | tlb->addr = address + size - PMD_SIZE; | 
|  | } | 
|  | #endif /* HAVE_GENERIC_MMU_GATHER */ | 
|  |  | 
|  | #ifdef CONFIG_HAVE_RCU_TABLE_FREE | 
|  |  | 
|  | /* | 
|  | * See the comment near struct mmu_table_batch. | 
|  | */ | 
|  |  | 
|  | static void tlb_remove_table_smp_sync(void *arg) | 
|  | { | 
|  | /* Simply deliver the interrupt */ | 
|  | } | 
|  |  | 
|  | static void tlb_remove_table_one(void *table) | 
|  | { | 
|  | /* | 
|  | * This isn't an RCU grace period and hence the page-tables cannot be | 
|  | * assumed to be actually RCU-freed. | 
|  | * | 
|  | * It is however sufficient for software page-table walkers that rely on | 
|  | * IRQ disabling. See the comment near struct mmu_table_batch. | 
|  | */ | 
|  | smp_call_function(tlb_remove_table_smp_sync, NULL, 1); | 
|  | __tlb_remove_table(table); | 
|  | } | 
|  |  | 
|  | static void tlb_remove_table_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct mmu_table_batch *batch; | 
|  | int i; | 
|  |  | 
|  | batch = container_of(head, struct mmu_table_batch, rcu); | 
|  |  | 
|  | for (i = 0; i < batch->nr; i++) | 
|  | __tlb_remove_table(batch->tables[i]); | 
|  |  | 
|  | free_page((unsigned long)batch); | 
|  | } | 
|  |  | 
|  | void tlb_table_flush(struct mmu_gather *tlb) | 
|  | { | 
|  | struct mmu_table_batch **batch = &tlb->batch; | 
|  |  | 
|  | if (*batch) { | 
|  | call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); | 
|  | *batch = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | void tlb_remove_table(struct mmu_gather *tlb, void *table) | 
|  | { | 
|  | struct mmu_table_batch **batch = &tlb->batch; | 
|  |  | 
|  | if (*batch == NULL) { | 
|  | *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); | 
|  | if (*batch == NULL) { | 
|  | tlb_remove_table_one(table); | 
|  | return; | 
|  | } | 
|  | (*batch)->nr = 0; | 
|  | } | 
|  | (*batch)->tables[(*batch)->nr++] = table; | 
|  | if ((*batch)->nr == MAX_TABLE_BATCH) | 
|  | tlb_table_flush(tlb); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ | 
|  |  | 
|  | /* | 
|  | * Note: this doesn't free the actual pages themselves. That | 
|  | * has been handled earlier when unmapping all the memory regions. | 
|  | */ | 
|  | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, | 
|  | unsigned long addr) | 
|  | { | 
|  | pgtable_t token = pmd_pgtable(*pmd); | 
|  | pmd_clear(pmd); | 
|  | pte_free_tlb(tlb, token, addr); | 
|  | atomic_long_dec(&tlb->mm->nr_ptes); | 
|  | } | 
|  |  | 
|  | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  |  | 
|  | start = addr; | 
|  | pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_none_or_clear_bad(pmd)) | 
|  | continue; | 
|  | free_pte_range(tlb, pmd, addr); | 
|  | } while (pmd++, addr = next, addr != end); | 
|  |  | 
|  | start &= PUD_MASK; | 
|  | if (start < floor) | 
|  | return; | 
|  | if (ceiling) { | 
|  | ceiling &= PUD_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | return; | 
|  |  | 
|  | pmd = pmd_offset(pud, start); | 
|  | pud_clear(pud); | 
|  | pmd_free_tlb(tlb, pmd, start); | 
|  | mm_dec_nr_pmds(tlb->mm); | 
|  | } | 
|  |  | 
|  | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  |  | 
|  | start = addr; | 
|  | pud = pud_offset(pgd, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_none_or_clear_bad(pud)) | 
|  | continue; | 
|  | free_pmd_range(tlb, pud, addr, next, floor, ceiling); | 
|  | } while (pud++, addr = next, addr != end); | 
|  |  | 
|  | start &= PGDIR_MASK; | 
|  | if (start < floor) | 
|  | return; | 
|  | if (ceiling) { | 
|  | ceiling &= PGDIR_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | return; | 
|  |  | 
|  | pud = pud_offset(pgd, start); | 
|  | pgd_clear(pgd); | 
|  | pud_free_tlb(tlb, pud, start); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function frees user-level page tables of a process. | 
|  | */ | 
|  | void free_pgd_range(struct mmu_gather *tlb, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  |  | 
|  | /* | 
|  | * The next few lines have given us lots of grief... | 
|  | * | 
|  | * Why are we testing PMD* at this top level?  Because often | 
|  | * there will be no work to do at all, and we'd prefer not to | 
|  | * go all the way down to the bottom just to discover that. | 
|  | * | 
|  | * Why all these "- 1"s?  Because 0 represents both the bottom | 
|  | * of the address space and the top of it (using -1 for the | 
|  | * top wouldn't help much: the masks would do the wrong thing). | 
|  | * The rule is that addr 0 and floor 0 refer to the bottom of | 
|  | * the address space, but end 0 and ceiling 0 refer to the top | 
|  | * Comparisons need to use "end - 1" and "ceiling - 1" (though | 
|  | * that end 0 case should be mythical). | 
|  | * | 
|  | * Wherever addr is brought up or ceiling brought down, we must | 
|  | * be careful to reject "the opposite 0" before it confuses the | 
|  | * subsequent tests.  But what about where end is brought down | 
|  | * by PMD_SIZE below? no, end can't go down to 0 there. | 
|  | * | 
|  | * Whereas we round start (addr) and ceiling down, by different | 
|  | * masks at different levels, in order to test whether a table | 
|  | * now has no other vmas using it, so can be freed, we don't | 
|  | * bother to round floor or end up - the tests don't need that. | 
|  | */ | 
|  |  | 
|  | addr &= PMD_MASK; | 
|  | if (addr < floor) { | 
|  | addr += PMD_SIZE; | 
|  | if (!addr) | 
|  | return; | 
|  | } | 
|  | if (ceiling) { | 
|  | ceiling &= PMD_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | end -= PMD_SIZE; | 
|  | if (addr > end - 1) | 
|  | return; | 
|  |  | 
|  | pgd = pgd_offset(tlb->mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(pgd)) | 
|  | continue; | 
|  | free_pud_range(tlb, pgd, addr, next, floor, ceiling); | 
|  | } while (pgd++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | while (vma) { | 
|  | struct vm_area_struct *next = vma->vm_next; | 
|  | unsigned long addr = vma->vm_start; | 
|  |  | 
|  | /* | 
|  | * Hide vma from rmap and truncate_pagecache before freeing | 
|  | * pgtables | 
|  | */ | 
|  | unlink_anon_vmas(vma); | 
|  | unlink_file_vma(vma); | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma)) { | 
|  | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, | 
|  | floor, next? next->vm_start: ceiling); | 
|  | } else { | 
|  | /* | 
|  | * Optimization: gather nearby vmas into one call down | 
|  | */ | 
|  | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | 
|  | && !is_vm_hugetlb_page(next)) { | 
|  | vma = next; | 
|  | next = vma->vm_next; | 
|  | unlink_anon_vmas(vma); | 
|  | unlink_file_vma(vma); | 
|  | } | 
|  | free_pgd_range(tlb, addr, vma->vm_end, | 
|  | floor, next? next->vm_start: ceiling); | 
|  | } | 
|  | vma = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) | 
|  | { | 
|  | spinlock_t *ptl; | 
|  | pgtable_t new = pte_alloc_one(mm, address); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Ensure all pte setup (eg. pte page lock and page clearing) are | 
|  | * visible before the pte is made visible to other CPUs by being | 
|  | * put into page tables. | 
|  | * | 
|  | * The other side of the story is the pointer chasing in the page | 
|  | * table walking code (when walking the page table without locking; | 
|  | * ie. most of the time). Fortunately, these data accesses consist | 
|  | * of a chain of data-dependent loads, meaning most CPUs (alpha | 
|  | * being the notable exception) will already guarantee loads are | 
|  | * seen in-order. See the alpha page table accessors for the | 
|  | * smp_read_barrier_depends() barriers in page table walking code. | 
|  | */ | 
|  | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | 
|  |  | 
|  | ptl = pmd_lock(mm, pmd); | 
|  | if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */ | 
|  | atomic_long_inc(&mm->nr_ptes); | 
|  | pmd_populate(mm, pmd, new); | 
|  | new = NULL; | 
|  | } | 
|  | spin_unlock(ptl); | 
|  | if (new) | 
|  | pte_free(mm, new); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) | 
|  | { | 
|  | pte_t *new = pte_alloc_one_kernel(&init_mm, address); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | smp_wmb(); /* See comment in __pte_alloc */ | 
|  |  | 
|  | spin_lock(&init_mm.page_table_lock); | 
|  | if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */ | 
|  | pmd_populate_kernel(&init_mm, pmd, new); | 
|  | new = NULL; | 
|  | } | 
|  | spin_unlock(&init_mm.page_table_lock); | 
|  | if (new) | 
|  | pte_free_kernel(&init_mm, new); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void init_rss_vec(int *rss) | 
|  | { | 
|  | memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); | 
|  | } | 
|  |  | 
|  | static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (current->mm == mm) | 
|  | sync_mm_rss(mm); | 
|  | for (i = 0; i < NR_MM_COUNTERS; i++) | 
|  | if (rss[i]) | 
|  | add_mm_counter(mm, i, rss[i]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is called to print an error when a bad pte | 
|  | * is found. For example, we might have a PFN-mapped pte in | 
|  | * a region that doesn't allow it. | 
|  | * | 
|  | * The calling function must still handle the error. | 
|  | */ | 
|  | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, | 
|  | pte_t pte, struct page *page) | 
|  | { | 
|  | pgd_t *pgd = pgd_offset(vma->vm_mm, addr); | 
|  | pud_t *pud = pud_offset(pgd, addr); | 
|  | pmd_t *pmd = pmd_offset(pud, addr); | 
|  | struct address_space *mapping; | 
|  | pgoff_t index; | 
|  | static unsigned long resume; | 
|  | static unsigned long nr_shown; | 
|  | static unsigned long nr_unshown; | 
|  |  | 
|  | /* | 
|  | * Allow a burst of 60 reports, then keep quiet for that minute; | 
|  | * or allow a steady drip of one report per second. | 
|  | */ | 
|  | if (nr_shown == 60) { | 
|  | if (time_before(jiffies, resume)) { | 
|  | nr_unshown++; | 
|  | return; | 
|  | } | 
|  | if (nr_unshown) { | 
|  | pr_alert("BUG: Bad page map: %lu messages suppressed\n", | 
|  | nr_unshown); | 
|  | nr_unshown = 0; | 
|  | } | 
|  | nr_shown = 0; | 
|  | } | 
|  | if (nr_shown++ == 0) | 
|  | resume = jiffies + 60 * HZ; | 
|  |  | 
|  | mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; | 
|  | index = linear_page_index(vma, addr); | 
|  |  | 
|  | pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n", | 
|  | current->comm, | 
|  | (long long)pte_val(pte), (long long)pmd_val(*pmd)); | 
|  | if (page) | 
|  | dump_page(page, "bad pte"); | 
|  | pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", | 
|  | (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); | 
|  | /* | 
|  | * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y | 
|  | */ | 
|  | pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", | 
|  | vma->vm_file, | 
|  | vma->vm_ops ? vma->vm_ops->fault : NULL, | 
|  | vma->vm_file ? vma->vm_file->f_op->mmap : NULL, | 
|  | mapping ? mapping->a_ops->readpage : NULL); | 
|  | dump_stack(); | 
|  | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vm_normal_page -- This function gets the "struct page" associated with a pte. | 
|  | * | 
|  | * "Special" mappings do not wish to be associated with a "struct page" (either | 
|  | * it doesn't exist, or it exists but they don't want to touch it). In this | 
|  | * case, NULL is returned here. "Normal" mappings do have a struct page. | 
|  | * | 
|  | * There are 2 broad cases. Firstly, an architecture may define a pte_special() | 
|  | * pte bit, in which case this function is trivial. Secondly, an architecture | 
|  | * may not have a spare pte bit, which requires a more complicated scheme, | 
|  | * described below. | 
|  | * | 
|  | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | 
|  | * special mapping (even if there are underlying and valid "struct pages"). | 
|  | * COWed pages of a VM_PFNMAP are always normal. | 
|  | * | 
|  | * The way we recognize COWed pages within VM_PFNMAP mappings is through the | 
|  | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | 
|  | * set, and the vm_pgoff will point to the first PFN mapped: thus every special | 
|  | * mapping will always honor the rule | 
|  | * | 
|  | *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | 
|  | * | 
|  | * And for normal mappings this is false. | 
|  | * | 
|  | * This restricts such mappings to be a linear translation from virtual address | 
|  | * to pfn. To get around this restriction, we allow arbitrary mappings so long | 
|  | * as the vma is not a COW mapping; in that case, we know that all ptes are | 
|  | * special (because none can have been COWed). | 
|  | * | 
|  | * | 
|  | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. | 
|  | * | 
|  | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | 
|  | * page" backing, however the difference is that _all_ pages with a struct | 
|  | * page (that is, those where pfn_valid is true) are refcounted and considered | 
|  | * normal pages by the VM. The disadvantage is that pages are refcounted | 
|  | * (which can be slower and simply not an option for some PFNMAP users). The | 
|  | * advantage is that we don't have to follow the strict linearity rule of | 
|  | * PFNMAP mappings in order to support COWable mappings. | 
|  | * | 
|  | */ | 
|  | #ifdef __HAVE_ARCH_PTE_SPECIAL | 
|  | # define HAVE_PTE_SPECIAL 1 | 
|  | #else | 
|  | # define HAVE_PTE_SPECIAL 0 | 
|  | #endif | 
|  | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, | 
|  | pte_t pte) | 
|  | { | 
|  | unsigned long pfn = pte_pfn(pte); | 
|  |  | 
|  | if (HAVE_PTE_SPECIAL) { | 
|  | if (likely(!pte_special(pte))) | 
|  | goto check_pfn; | 
|  | if (vma->vm_ops && vma->vm_ops->find_special_page) | 
|  | return vma->vm_ops->find_special_page(vma, addr); | 
|  | if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) | 
|  | return NULL; | 
|  | if (!is_zero_pfn(pfn)) | 
|  | print_bad_pte(vma, addr, pte, NULL); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* !HAVE_PTE_SPECIAL case follows: */ | 
|  |  | 
|  | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { | 
|  | if (vma->vm_flags & VM_MIXEDMAP) { | 
|  | if (!pfn_valid(pfn)) | 
|  | return NULL; | 
|  | goto out; | 
|  | } else { | 
|  | unsigned long off; | 
|  | off = (addr - vma->vm_start) >> PAGE_SHIFT; | 
|  | if (pfn == vma->vm_pgoff + off) | 
|  | return NULL; | 
|  | if (!is_cow_mapping(vma->vm_flags)) | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (is_zero_pfn(pfn)) | 
|  | return NULL; | 
|  | check_pfn: | 
|  | if (unlikely(pfn > highest_memmap_pfn)) { | 
|  | print_bad_pte(vma, addr, pte, NULL); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE! We still have PageReserved() pages in the page tables. | 
|  | * eg. VDSO mappings can cause them to exist. | 
|  | */ | 
|  | out: | 
|  | return pfn_to_page(pfn); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, | 
|  | pmd_t pmd) | 
|  | { | 
|  | unsigned long pfn = pmd_pfn(pmd); | 
|  |  | 
|  | /* | 
|  | * There is no pmd_special() but there may be special pmds, e.g. | 
|  | * in a direct-access (dax) mapping, so let's just replicate the | 
|  | * !HAVE_PTE_SPECIAL case from vm_normal_page() here. | 
|  | */ | 
|  | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { | 
|  | if (vma->vm_flags & VM_MIXEDMAP) { | 
|  | if (!pfn_valid(pfn)) | 
|  | return NULL; | 
|  | goto out; | 
|  | } else { | 
|  | unsigned long off; | 
|  | off = (addr - vma->vm_start) >> PAGE_SHIFT; | 
|  | if (pfn == vma->vm_pgoff + off) | 
|  | return NULL; | 
|  | if (!is_cow_mapping(vma->vm_flags)) | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (is_zero_pfn(pfn)) | 
|  | return NULL; | 
|  | if (unlikely(pfn > highest_memmap_pfn)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * NOTE! We still have PageReserved() pages in the page tables. | 
|  | * eg. VDSO mappings can cause them to exist. | 
|  | */ | 
|  | out: | 
|  | return pfn_to_page(pfn); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * copy one vm_area from one task to the other. Assumes the page tables | 
|  | * already present in the new task to be cleared in the whole range | 
|  | * covered by this vma. | 
|  | */ | 
|  |  | 
|  | static inline unsigned long | 
|  | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, | 
|  | unsigned long addr, int *rss) | 
|  | { | 
|  | unsigned long vm_flags = vma->vm_flags; | 
|  | pte_t pte = *src_pte; | 
|  | struct page *page; | 
|  |  | 
|  | /* pte contains position in swap or file, so copy. */ | 
|  | if (unlikely(!pte_present(pte))) { | 
|  | swp_entry_t entry = pte_to_swp_entry(pte); | 
|  |  | 
|  | if (likely(!non_swap_entry(entry))) { | 
|  | if (swap_duplicate(entry) < 0) | 
|  | return entry.val; | 
|  |  | 
|  | /* make sure dst_mm is on swapoff's mmlist. */ | 
|  | if (unlikely(list_empty(&dst_mm->mmlist))) { | 
|  | spin_lock(&mmlist_lock); | 
|  | if (list_empty(&dst_mm->mmlist)) | 
|  | list_add(&dst_mm->mmlist, | 
|  | &src_mm->mmlist); | 
|  | spin_unlock(&mmlist_lock); | 
|  | } | 
|  | rss[MM_SWAPENTS]++; | 
|  | } else if (is_migration_entry(entry)) { | 
|  | page = migration_entry_to_page(entry); | 
|  |  | 
|  | rss[mm_counter(page)]++; | 
|  |  | 
|  | if (is_write_migration_entry(entry) && | 
|  | is_cow_mapping(vm_flags)) { | 
|  | /* | 
|  | * COW mappings require pages in both | 
|  | * parent and child to be set to read. | 
|  | */ | 
|  | make_migration_entry_read(&entry); | 
|  | pte = swp_entry_to_pte(entry); | 
|  | if (pte_swp_soft_dirty(*src_pte)) | 
|  | pte = pte_swp_mksoft_dirty(pte); | 
|  | set_pte_at(src_mm, addr, src_pte, pte); | 
|  | } | 
|  | } | 
|  | goto out_set_pte; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If it's a COW mapping, write protect it both | 
|  | * in the parent and the child | 
|  | */ | 
|  | if (is_cow_mapping(vm_flags)) { | 
|  | ptep_set_wrprotect(src_mm, addr, src_pte); | 
|  | pte = pte_wrprotect(pte); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If it's a shared mapping, mark it clean in | 
|  | * the child | 
|  | */ | 
|  | if (vm_flags & VM_SHARED) | 
|  | pte = pte_mkclean(pte); | 
|  | pte = pte_mkold(pte); | 
|  |  | 
|  | page = vm_normal_page(vma, addr, pte); | 
|  | if (page) { | 
|  | get_page(page); | 
|  | page_dup_rmap(page, false); | 
|  | rss[mm_counter(page)]++; | 
|  | } | 
|  |  | 
|  | out_set_pte: | 
|  | set_pte_at(dst_mm, addr, dst_pte, pte); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long end) | 
|  | { | 
|  | pte_t *orig_src_pte, *orig_dst_pte; | 
|  | pte_t *src_pte, *dst_pte; | 
|  | spinlock_t *src_ptl, *dst_ptl; | 
|  | int progress = 0; | 
|  | int rss[NR_MM_COUNTERS]; | 
|  | swp_entry_t entry = (swp_entry_t){0}; | 
|  |  | 
|  | again: | 
|  | init_rss_vec(rss); | 
|  |  | 
|  | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); | 
|  | if (!dst_pte) | 
|  | return -ENOMEM; | 
|  | src_pte = pte_offset_map(src_pmd, addr); | 
|  | src_ptl = pte_lockptr(src_mm, src_pmd); | 
|  | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 
|  | orig_src_pte = src_pte; | 
|  | orig_dst_pte = dst_pte; | 
|  | arch_enter_lazy_mmu_mode(); | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * We are holding two locks at this point - either of them | 
|  | * could generate latencies in another task on another CPU. | 
|  | */ | 
|  | if (progress >= 32) { | 
|  | progress = 0; | 
|  | if (need_resched() || | 
|  | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) | 
|  | break; | 
|  | } | 
|  | if (pte_none(*src_pte)) { | 
|  | progress++; | 
|  | continue; | 
|  | } | 
|  | entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, | 
|  | vma, addr, rss); | 
|  | if (entry.val) | 
|  | break; | 
|  | progress += 8; | 
|  | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | 
|  |  | 
|  | arch_leave_lazy_mmu_mode(); | 
|  | spin_unlock(src_ptl); | 
|  | pte_unmap(orig_src_pte); | 
|  | add_mm_rss_vec(dst_mm, rss); | 
|  | pte_unmap_unlock(orig_dst_pte, dst_ptl); | 
|  | cond_resched(); | 
|  |  | 
|  | if (entry.val) { | 
|  | if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) | 
|  | return -ENOMEM; | 
|  | progress = 0; | 
|  | } | 
|  | if (addr != end) | 
|  | goto again; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long end) | 
|  | { | 
|  | pmd_t *src_pmd, *dst_pmd; | 
|  | unsigned long next; | 
|  |  | 
|  | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | 
|  | if (!dst_pmd) | 
|  | return -ENOMEM; | 
|  | src_pmd = pmd_offset(src_pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { | 
|  | int err; | 
|  | VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); | 
|  | err = copy_huge_pmd(dst_mm, src_mm, | 
|  | dst_pmd, src_pmd, addr, vma); | 
|  | if (err == -ENOMEM) | 
|  | return -ENOMEM; | 
|  | if (!err) | 
|  | continue; | 
|  | /* fall through */ | 
|  | } | 
|  | if (pmd_none_or_clear_bad(src_pmd)) | 
|  | continue; | 
|  | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | 
|  | vma, addr, next)) | 
|  | return -ENOMEM; | 
|  | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long end) | 
|  | { | 
|  | pud_t *src_pud, *dst_pud; | 
|  | unsigned long next; | 
|  |  | 
|  | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | 
|  | if (!dst_pud) | 
|  | return -ENOMEM; | 
|  | src_pud = pud_offset(src_pgd, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_none_or_clear_bad(src_pud)) | 
|  | continue; | 
|  | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | 
|  | vma, addr, next)) | 
|  | return -ENOMEM; | 
|  | } while (dst_pud++, src_pud++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | pgd_t *src_pgd, *dst_pgd; | 
|  | unsigned long next; | 
|  | unsigned long addr = vma->vm_start; | 
|  | unsigned long end = vma->vm_end; | 
|  | unsigned long mmun_start;	/* For mmu_notifiers */ | 
|  | unsigned long mmun_end;		/* For mmu_notifiers */ | 
|  | bool is_cow; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Don't copy ptes where a page fault will fill them correctly. | 
|  | * Fork becomes much lighter when there are big shared or private | 
|  | * readonly mappings. The tradeoff is that copy_page_range is more | 
|  | * efficient than faulting. | 
|  | */ | 
|  | if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && | 
|  | !vma->anon_vma) | 
|  | return 0; | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma)) | 
|  | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | 
|  |  | 
|  | if (unlikely(vma->vm_flags & VM_PFNMAP)) { | 
|  | /* | 
|  | * We do not free on error cases below as remove_vma | 
|  | * gets called on error from higher level routine | 
|  | */ | 
|  | ret = track_pfn_copy(vma); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to invalidate the secondary MMU mappings only when | 
|  | * there could be a permission downgrade on the ptes of the | 
|  | * parent mm. And a permission downgrade will only happen if | 
|  | * is_cow_mapping() returns true. | 
|  | */ | 
|  | is_cow = is_cow_mapping(vma->vm_flags); | 
|  | mmun_start = addr; | 
|  | mmun_end   = end; | 
|  | if (is_cow) | 
|  | mmu_notifier_invalidate_range_start(src_mm, mmun_start, | 
|  | mmun_end); | 
|  |  | 
|  | ret = 0; | 
|  | dst_pgd = pgd_offset(dst_mm, addr); | 
|  | src_pgd = pgd_offset(src_mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(src_pgd)) | 
|  | continue; | 
|  | if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, | 
|  | vma, addr, next))) { | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | } while (dst_pgd++, src_pgd++, addr = next, addr != end); | 
|  |  | 
|  | if (is_cow) | 
|  | mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Whether we should zap all COWed (private) pages too */ | 
|  | static inline bool should_zap_cows(struct zap_details *details) | 
|  | { | 
|  | /* By default, zap all pages */ | 
|  | if (!details) | 
|  | return true; | 
|  |  | 
|  | /* Or, we zap COWed pages only if the caller wants to */ | 
|  | return !details->check_mapping; | 
|  | } | 
|  |  | 
|  | static unsigned long zap_pte_range(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct zap_details *details) | 
|  | { | 
|  | struct mm_struct *mm = tlb->mm; | 
|  | int force_flush = 0; | 
|  | int rss[NR_MM_COUNTERS]; | 
|  | spinlock_t *ptl; | 
|  | pte_t *start_pte; | 
|  | pte_t *pte; | 
|  | swp_entry_t entry; | 
|  | struct page *pending_page = NULL; | 
|  |  | 
|  | again: | 
|  | init_rss_vec(rss); | 
|  | start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); | 
|  | pte = start_pte; | 
|  | flush_tlb_batched_pending(mm); | 
|  | arch_enter_lazy_mmu_mode(); | 
|  | do { | 
|  | pte_t ptent = *pte; | 
|  | if (pte_none(ptent)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (pte_present(ptent)) { | 
|  | struct page *page; | 
|  |  | 
|  | page = vm_normal_page(vma, addr, ptent); | 
|  | if (unlikely(details) && page) { | 
|  | /* | 
|  | * unmap_shared_mapping_pages() wants to | 
|  | * invalidate cache without truncating: | 
|  | * unmap shared but keep private pages. | 
|  | */ | 
|  | if (details->check_mapping && | 
|  | details->check_mapping != page_rmapping(page)) | 
|  | continue; | 
|  | } | 
|  | ptent = ptep_get_and_clear_full(mm, addr, pte, | 
|  | tlb->fullmm); | 
|  | tlb_remove_tlb_entry(tlb, pte, addr); | 
|  | if (unlikely(!page)) | 
|  | continue; | 
|  |  | 
|  | if (!PageAnon(page)) { | 
|  | if (pte_dirty(ptent)) { | 
|  | /* | 
|  | * oom_reaper cannot tear down dirty | 
|  | * pages | 
|  | */ | 
|  | if (unlikely(details && details->ignore_dirty)) | 
|  | continue; | 
|  | force_flush = 1; | 
|  | set_page_dirty(page); | 
|  | } | 
|  | if (pte_young(ptent) && | 
|  | likely(!(vma->vm_flags & VM_SEQ_READ))) | 
|  | mark_page_accessed(page); | 
|  | } | 
|  | rss[mm_counter(page)]--; | 
|  | page_remove_rmap(page, false); | 
|  | if (unlikely(page_mapcount(page) < 0)) | 
|  | print_bad_pte(vma, addr, ptent, page); | 
|  | if (unlikely(__tlb_remove_page(tlb, page))) { | 
|  | force_flush = 1; | 
|  | pending_page = page; | 
|  | addr += PAGE_SIZE; | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | entry = pte_to_swp_entry(ptent); | 
|  | if (!non_swap_entry(entry)) { | 
|  | /* Genuine swap entry, hence a private anon page */ | 
|  | if (!should_zap_cows(details)) | 
|  | continue; | 
|  | rss[MM_SWAPENTS]--; | 
|  | } else if (is_migration_entry(entry)) { | 
|  | struct page *page; | 
|  |  | 
|  | page = migration_entry_to_page(entry); | 
|  | if (details && details->check_mapping && | 
|  | details->check_mapping != page_rmapping(page)) | 
|  | continue; | 
|  | rss[mm_counter(page)]--; | 
|  | } | 
|  | if (unlikely(!free_swap_and_cache(entry))) | 
|  | print_bad_pte(vma, addr, ptent, NULL); | 
|  | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  |  | 
|  | add_mm_rss_vec(mm, rss); | 
|  | arch_leave_lazy_mmu_mode(); | 
|  |  | 
|  | /* Do the actual TLB flush before dropping ptl */ | 
|  | if (force_flush) | 
|  | tlb_flush_mmu_tlbonly(tlb); | 
|  | pte_unmap_unlock(start_pte, ptl); | 
|  |  | 
|  | /* | 
|  | * If we forced a TLB flush (either due to running out of | 
|  | * batch buffers or because we needed to flush dirty TLB | 
|  | * entries before releasing the ptl), free the batched | 
|  | * memory too. Restart if we didn't do everything. | 
|  | */ | 
|  | if (force_flush) { | 
|  | force_flush = 0; | 
|  | tlb_flush_mmu_free(tlb); | 
|  | if (pending_page) { | 
|  | /* remove the page with new size */ | 
|  | __tlb_remove_pte_page(tlb, pending_page); | 
|  | pending_page = NULL; | 
|  | } | 
|  | if (addr != end) | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct zap_details *details) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { | 
|  | if (next - addr != HPAGE_PMD_SIZE) { | 
|  | VM_BUG_ON_VMA(vma_is_anonymous(vma) && | 
|  | !rwsem_is_locked(&tlb->mm->mmap_sem), vma); | 
|  | split_huge_pmd(vma, pmd, addr); | 
|  | } else if (zap_huge_pmd(tlb, vma, pmd, addr)) | 
|  | goto next; | 
|  | /* fall through */ | 
|  | } | 
|  | /* | 
|  | * Here there can be other concurrent MADV_DONTNEED or | 
|  | * trans huge page faults running, and if the pmd is | 
|  | * none or trans huge it can change under us. This is | 
|  | * because MADV_DONTNEED holds the mmap_sem in read | 
|  | * mode. | 
|  | */ | 
|  | if (pmd_none_or_trans_huge_or_clear_bad(pmd)) | 
|  | goto next; | 
|  | next = zap_pte_range(tlb, vma, pmd, addr, next, details); | 
|  | next: | 
|  | cond_resched(); | 
|  | } while (pmd++, addr = next, addr != end); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct zap_details *details) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  |  | 
|  | pud = pud_offset(pgd, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (pud_none_or_clear_bad(pud)) | 
|  | continue; | 
|  | next = zap_pmd_range(tlb, vma, pud, addr, next, details); | 
|  | } while (pud++, addr = next, addr != end); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | void unmap_page_range(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long addr, unsigned long end, | 
|  | struct zap_details *details) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  |  | 
|  | BUG_ON(addr >= end); | 
|  | tlb_start_vma(tlb, vma); | 
|  | pgd = pgd_offset(vma->vm_mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (pgd_none_or_clear_bad(pgd)) | 
|  | continue; | 
|  | next = zap_pud_range(tlb, vma, pgd, addr, next, details); | 
|  | } while (pgd++, addr = next, addr != end); | 
|  | tlb_end_vma(tlb, vma); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void unmap_single_vma(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, unsigned long start_addr, | 
|  | unsigned long end_addr, | 
|  | struct zap_details *details) | 
|  | { | 
|  | unsigned long start = max(vma->vm_start, start_addr); | 
|  | unsigned long end; | 
|  |  | 
|  | if (start >= vma->vm_end) | 
|  | return; | 
|  | end = min(vma->vm_end, end_addr); | 
|  | if (end <= vma->vm_start) | 
|  | return; | 
|  |  | 
|  | if (vma->vm_file) | 
|  | uprobe_munmap(vma, start, end); | 
|  |  | 
|  | if (unlikely(vma->vm_flags & VM_PFNMAP)) | 
|  | untrack_pfn(vma, 0, 0); | 
|  |  | 
|  | if (start != end) { | 
|  | if (unlikely(is_vm_hugetlb_page(vma))) { | 
|  | /* | 
|  | * It is undesirable to test vma->vm_file as it | 
|  | * should be non-null for valid hugetlb area. | 
|  | * However, vm_file will be NULL in the error | 
|  | * cleanup path of mmap_region. When | 
|  | * hugetlbfs ->mmap method fails, | 
|  | * mmap_region() nullifies vma->vm_file | 
|  | * before calling this function to clean up. | 
|  | * Since no pte has actually been setup, it is | 
|  | * safe to do nothing in this case. | 
|  | */ | 
|  | if (vma->vm_file) { | 
|  | i_mmap_lock_write(vma->vm_file->f_mapping); | 
|  | __unmap_hugepage_range_final(tlb, vma, start, end, NULL); | 
|  | i_mmap_unlock_write(vma->vm_file->f_mapping); | 
|  | } | 
|  | } else | 
|  | unmap_page_range(tlb, vma, start, end, details); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unmap_vmas - unmap a range of memory covered by a list of vma's | 
|  | * @tlb: address of the caller's struct mmu_gather | 
|  | * @vma: the starting vma | 
|  | * @start_addr: virtual address at which to start unmapping | 
|  | * @end_addr: virtual address at which to end unmapping | 
|  | * | 
|  | * Unmap all pages in the vma list. | 
|  | * | 
|  | * Only addresses between `start' and `end' will be unmapped. | 
|  | * | 
|  | * The VMA list must be sorted in ascending virtual address order. | 
|  | * | 
|  | * unmap_vmas() assumes that the caller will flush the whole unmapped address | 
|  | * range after unmap_vmas() returns.  So the only responsibility here is to | 
|  | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | 
|  | * drops the lock and schedules. | 
|  | */ | 
|  | void unmap_vmas(struct mmu_gather *tlb, | 
|  | struct vm_area_struct *vma, unsigned long start_addr, | 
|  | unsigned long end_addr) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  |  | 
|  | mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); | 
|  | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) | 
|  | unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); | 
|  | mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * zap_page_range - remove user pages in a given range | 
|  | * @vma: vm_area_struct holding the applicable pages | 
|  | * @start: starting address of pages to zap | 
|  | * @size: number of bytes to zap | 
|  | * @details: details of shared cache invalidation | 
|  | * | 
|  | * Caller must protect the VMA list | 
|  | */ | 
|  | void zap_page_range(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long size, struct zap_details *details) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct mmu_gather tlb; | 
|  | unsigned long end = start + size; | 
|  |  | 
|  | lru_add_drain(); | 
|  | tlb_gather_mmu(&tlb, mm, start, end); | 
|  | update_hiwater_rss(mm); | 
|  | mmu_notifier_invalidate_range_start(mm, start, end); | 
|  | for ( ; vma && vma->vm_start < end; vma = vma->vm_next) | 
|  | unmap_single_vma(&tlb, vma, start, end, details); | 
|  | mmu_notifier_invalidate_range_end(mm, start, end); | 
|  | tlb_finish_mmu(&tlb, start, end); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * zap_page_range_single - remove user pages in a given range | 
|  | * @vma: vm_area_struct holding the applicable pages | 
|  | * @address: starting address of pages to zap | 
|  | * @size: number of bytes to zap | 
|  | * @details: details of shared cache invalidation | 
|  | * | 
|  | * The range must fit into one VMA. | 
|  | */ | 
|  | static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned long size, struct zap_details *details) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct mmu_gather tlb; | 
|  | unsigned long end = address + size; | 
|  |  | 
|  | lru_add_drain(); | 
|  | tlb_gather_mmu(&tlb, mm, address, end); | 
|  | update_hiwater_rss(mm); | 
|  | mmu_notifier_invalidate_range_start(mm, address, end); | 
|  | unmap_single_vma(&tlb, vma, address, end, details); | 
|  | mmu_notifier_invalidate_range_end(mm, address, end); | 
|  | tlb_finish_mmu(&tlb, address, end); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * zap_vma_ptes - remove ptes mapping the vma | 
|  | * @vma: vm_area_struct holding ptes to be zapped | 
|  | * @address: starting address of pages to zap | 
|  | * @size: number of bytes to zap | 
|  | * | 
|  | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | 
|  | * | 
|  | * The entire address range must be fully contained within the vma. | 
|  | * | 
|  | * Returns 0 if successful. | 
|  | */ | 
|  | int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned long size) | 
|  | { | 
|  | if (address < vma->vm_start || address + size > vma->vm_end || | 
|  | !(vma->vm_flags & VM_PFNMAP)) | 
|  | return -1; | 
|  | zap_page_range_single(vma, address, size, NULL); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(zap_vma_ptes); | 
|  |  | 
|  | pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, | 
|  | spinlock_t **ptl) | 
|  | { | 
|  | pgd_t * pgd = pgd_offset(mm, addr); | 
|  | pud_t * pud = pud_alloc(mm, pgd, addr); | 
|  | if (pud) { | 
|  | pmd_t * pmd = pmd_alloc(mm, pud, addr); | 
|  | if (pmd) { | 
|  | VM_BUG_ON(pmd_trans_huge(*pmd)); | 
|  | return pte_alloc_map_lock(mm, pmd, addr, ptl); | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the old fallback for page remapping. | 
|  | * | 
|  | * For historical reasons, it only allows reserved pages. Only | 
|  | * old drivers should use this, and they needed to mark their | 
|  | * pages reserved for the old functions anyway. | 
|  | */ | 
|  | static int insert_page(struct vm_area_struct *vma, unsigned long addr, | 
|  | struct page *page, pgprot_t prot) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | int retval; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | retval = -EINVAL; | 
|  | if (PageAnon(page)) | 
|  | goto out; | 
|  | retval = -ENOMEM; | 
|  | flush_dcache_page(page); | 
|  | pte = get_locked_pte(mm, addr, &ptl); | 
|  | if (!pte) | 
|  | goto out; | 
|  | retval = -EBUSY; | 
|  | if (!pte_none(*pte)) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Ok, finally just insert the thing.. */ | 
|  | get_page(page); | 
|  | inc_mm_counter_fast(mm, mm_counter_file(page)); | 
|  | page_add_file_rmap(page, false); | 
|  | set_pte_at(mm, addr, pte, mk_pte(page, prot)); | 
|  |  | 
|  | retval = 0; | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | return retval; | 
|  | out_unlock: | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vm_insert_page - insert single page into user vma | 
|  | * @vma: user vma to map to | 
|  | * @addr: target user address of this page | 
|  | * @page: source kernel page | 
|  | * | 
|  | * This allows drivers to insert individual pages they've allocated | 
|  | * into a user vma. | 
|  | * | 
|  | * The page has to be a nice clean _individual_ kernel allocation. | 
|  | * If you allocate a compound page, you need to have marked it as | 
|  | * such (__GFP_COMP), or manually just split the page up yourself | 
|  | * (see split_page()). | 
|  | * | 
|  | * NOTE! Traditionally this was done with "remap_pfn_range()" which | 
|  | * took an arbitrary page protection parameter. This doesn't allow | 
|  | * that. Your vma protection will have to be set up correctly, which | 
|  | * means that if you want a shared writable mapping, you'd better | 
|  | * ask for a shared writable mapping! | 
|  | * | 
|  | * The page does not need to be reserved. | 
|  | * | 
|  | * Usually this function is called from f_op->mmap() handler | 
|  | * under mm->mmap_sem write-lock, so it can change vma->vm_flags. | 
|  | * Caller must set VM_MIXEDMAP on vma if it wants to call this | 
|  | * function from other places, for example from page-fault handler. | 
|  | */ | 
|  | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, | 
|  | struct page *page) | 
|  | { | 
|  | if (addr < vma->vm_start || addr >= vma->vm_end) | 
|  | return -EFAULT; | 
|  | if (!page_count(page)) | 
|  | return -EINVAL; | 
|  | if (!(vma->vm_flags & VM_MIXEDMAP)) { | 
|  | BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); | 
|  | BUG_ON(vma->vm_flags & VM_PFNMAP); | 
|  | vma->vm_flags |= VM_MIXEDMAP; | 
|  | } | 
|  | return insert_page(vma, addr, page, vma->vm_page_prot); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_insert_page); | 
|  |  | 
|  | static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 
|  | pfn_t pfn, pgprot_t prot) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | int retval; | 
|  | pte_t *pte, entry; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | pte = get_locked_pte(mm, addr, &ptl); | 
|  | if (!pte) | 
|  | goto out; | 
|  | retval = -EBUSY; | 
|  | if (!pte_none(*pte)) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Ok, finally just insert the thing.. */ | 
|  | if (pfn_t_devmap(pfn)) | 
|  | entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); | 
|  | else | 
|  | entry = pte_mkspecial(pfn_t_pte(pfn, prot)); | 
|  | set_pte_at(mm, addr, pte, entry); | 
|  | update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ | 
|  |  | 
|  | retval = 0; | 
|  | out_unlock: | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vm_insert_pfn - insert single pfn into user vma | 
|  | * @vma: user vma to map to | 
|  | * @addr: target user address of this page | 
|  | * @pfn: source kernel pfn | 
|  | * | 
|  | * Similar to vm_insert_page, this allows drivers to insert individual pages | 
|  | * they've allocated into a user vma. Same comments apply. | 
|  | * | 
|  | * This function should only be called from a vm_ops->fault handler, and | 
|  | * in that case the handler should return NULL. | 
|  | * | 
|  | * vma cannot be a COW mapping. | 
|  | * | 
|  | * As this is called only for pages that do not currently exist, we | 
|  | * do not need to flush old virtual caches or the TLB. | 
|  | */ | 
|  | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 
|  | unsigned long pfn) | 
|  | { | 
|  | return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_insert_pfn); | 
|  |  | 
|  | /** | 
|  | * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot | 
|  | * @vma: user vma to map to | 
|  | * @addr: target user address of this page | 
|  | * @pfn: source kernel pfn | 
|  | * @pgprot: pgprot flags for the inserted page | 
|  | * | 
|  | * This is exactly like vm_insert_pfn, except that it allows drivers to | 
|  | * to override pgprot on a per-page basis. | 
|  | * | 
|  | * This only makes sense for IO mappings, and it makes no sense for | 
|  | * cow mappings.  In general, using multiple vmas is preferable; | 
|  | * vm_insert_pfn_prot should only be used if using multiple VMAs is | 
|  | * impractical. | 
|  | */ | 
|  | int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, | 
|  | unsigned long pfn, pgprot_t pgprot) | 
|  | { | 
|  | int ret; | 
|  | /* | 
|  | * Technically, architectures with pte_special can avoid all these | 
|  | * restrictions (same for remap_pfn_range).  However we would like | 
|  | * consistency in testing and feature parity among all, so we should | 
|  | * try to keep these invariants in place for everybody. | 
|  | */ | 
|  | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); | 
|  | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | 
|  | (VM_PFNMAP|VM_MIXEDMAP)); | 
|  | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | 
|  | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | 
|  |  | 
|  | if (addr < vma->vm_start || addr >= vma->vm_end) | 
|  | return -EFAULT; | 
|  | if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!pfn_modify_allowed(pfn, pgprot)) | 
|  | return -EACCES; | 
|  |  | 
|  | ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(vm_insert_pfn_prot); | 
|  |  | 
|  | int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, | 
|  | pfn_t pfn) | 
|  | { | 
|  | pgprot_t pgprot = vma->vm_page_prot; | 
|  |  | 
|  | BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); | 
|  |  | 
|  | if (addr < vma->vm_start || addr >= vma->vm_end) | 
|  | return -EFAULT; | 
|  | if (track_pfn_insert(vma, &pgprot, pfn)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) | 
|  | return -EACCES; | 
|  |  | 
|  | /* | 
|  | * If we don't have pte special, then we have to use the pfn_valid() | 
|  | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | 
|  | * refcount the page if pfn_valid is true (hence insert_page rather | 
|  | * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP | 
|  | * without pte special, it would there be refcounted as a normal page. | 
|  | */ | 
|  | if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * At this point we are committed to insert_page() | 
|  | * regardless of whether the caller specified flags that | 
|  | * result in pfn_t_has_page() == false. | 
|  | */ | 
|  | page = pfn_to_page(pfn_t_to_pfn(pfn)); | 
|  | return insert_page(vma, addr, page, pgprot); | 
|  | } | 
|  | return insert_pfn(vma, addr, pfn, pgprot); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_insert_mixed); | 
|  |  | 
|  | /* | 
|  | * maps a range of physical memory into the requested pages. the old | 
|  | * mappings are removed. any references to nonexistent pages results | 
|  | * in null mappings (currently treated as "copy-on-access") | 
|  | */ | 
|  | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long pfn, pgprot_t prot) | 
|  | { | 
|  | pte_t *pte, *mapped_pte; | 
|  | spinlock_t *ptl; | 
|  | int err = 0; | 
|  |  | 
|  | mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  | arch_enter_lazy_mmu_mode(); | 
|  | do { | 
|  | BUG_ON(!pte_none(*pte)); | 
|  | if (!pfn_modify_allowed(pfn, prot)) { | 
|  | err = -EACCES; | 
|  | break; | 
|  | } | 
|  | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); | 
|  | pfn++; | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  | arch_leave_lazy_mmu_mode(); | 
|  | pte_unmap_unlock(mapped_pte, ptl); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long pfn, pgprot_t prot) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  | int err; | 
|  |  | 
|  | pfn -= addr >> PAGE_SHIFT; | 
|  | pmd = pmd_alloc(mm, pud, addr); | 
|  | if (!pmd) | 
|  | return -ENOMEM; | 
|  | VM_BUG_ON(pmd_trans_huge(*pmd)); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | err = remap_pte_range(mm, pmd, addr, next, | 
|  | pfn + (addr >> PAGE_SHIFT), prot); | 
|  | if (err) | 
|  | return err; | 
|  | } while (pmd++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long pfn, pgprot_t prot) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  | int err; | 
|  |  | 
|  | pfn -= addr >> PAGE_SHIFT; | 
|  | pud = pud_alloc(mm, pgd, addr); | 
|  | if (!pud) | 
|  | return -ENOMEM; | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | err = remap_pmd_range(mm, pud, addr, next, | 
|  | pfn + (addr >> PAGE_SHIFT), prot); | 
|  | if (err) | 
|  | return err; | 
|  | } while (pud++, addr = next, addr != end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * remap_pfn_range - remap kernel memory to userspace | 
|  | * @vma: user vma to map to | 
|  | * @addr: target user address to start at | 
|  | * @pfn: physical address of kernel memory | 
|  | * @size: size of map area | 
|  | * @prot: page protection flags for this mapping | 
|  | * | 
|  | *  Note: this is only safe if the mm semaphore is held when called. | 
|  | */ | 
|  | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | 
|  | unsigned long pfn, unsigned long size, pgprot_t prot) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  | unsigned long end = addr + PAGE_ALIGN(size); | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long remap_pfn = pfn; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * Physically remapped pages are special. Tell the | 
|  | * rest of the world about it: | 
|  | *   VM_IO tells people not to look at these pages | 
|  | *	(accesses can have side effects). | 
|  | *   VM_PFNMAP tells the core MM that the base pages are just | 
|  | *	raw PFN mappings, and do not have a "struct page" associated | 
|  | *	with them. | 
|  | *   VM_DONTEXPAND | 
|  | *      Disable vma merging and expanding with mremap(). | 
|  | *   VM_DONTDUMP | 
|  | *      Omit vma from core dump, even when VM_IO turned off. | 
|  | * | 
|  | * There's a horrible special case to handle copy-on-write | 
|  | * behaviour that some programs depend on. We mark the "original" | 
|  | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | 
|  | * See vm_normal_page() for details. | 
|  | */ | 
|  | if (is_cow_mapping(vma->vm_flags)) { | 
|  | if (addr != vma->vm_start || end != vma->vm_end) | 
|  | return -EINVAL; | 
|  | vma->vm_pgoff = pfn; | 
|  | } | 
|  |  | 
|  | err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); | 
|  | if (err) | 
|  | return -EINVAL; | 
|  |  | 
|  | vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; | 
|  |  | 
|  | BUG_ON(addr >= end); | 
|  | pfn -= addr >> PAGE_SHIFT; | 
|  | pgd = pgd_offset(mm, addr); | 
|  | flush_cache_range(vma, addr, end); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | err = remap_pud_range(mm, pgd, addr, next, | 
|  | pfn + (addr >> PAGE_SHIFT), prot); | 
|  | if (err) | 
|  | break; | 
|  | } while (pgd++, addr = next, addr != end); | 
|  |  | 
|  | if (err) | 
|  | untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(remap_pfn_range); | 
|  |  | 
|  | /** | 
|  | * vm_iomap_memory - remap memory to userspace | 
|  | * @vma: user vma to map to | 
|  | * @start: start of area | 
|  | * @len: size of area | 
|  | * | 
|  | * This is a simplified io_remap_pfn_range() for common driver use. The | 
|  | * driver just needs to give us the physical memory range to be mapped, | 
|  | * we'll figure out the rest from the vma information. | 
|  | * | 
|  | * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get | 
|  | * whatever write-combining details or similar. | 
|  | */ | 
|  | int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) | 
|  | { | 
|  | unsigned long vm_len, pfn, pages; | 
|  |  | 
|  | /* Check that the physical memory area passed in looks valid */ | 
|  | if (start + len < start) | 
|  | return -EINVAL; | 
|  | /* | 
|  | * You *really* shouldn't map things that aren't page-aligned, | 
|  | * but we've historically allowed it because IO memory might | 
|  | * just have smaller alignment. | 
|  | */ | 
|  | len += start & ~PAGE_MASK; | 
|  | pfn = start >> PAGE_SHIFT; | 
|  | pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; | 
|  | if (pfn + pages < pfn) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* We start the mapping 'vm_pgoff' pages into the area */ | 
|  | if (vma->vm_pgoff > pages) | 
|  | return -EINVAL; | 
|  | pfn += vma->vm_pgoff; | 
|  | pages -= vma->vm_pgoff; | 
|  |  | 
|  | /* Can we fit all of the mapping? */ | 
|  | vm_len = vma->vm_end - vma->vm_start; | 
|  | if (vm_len >> PAGE_SHIFT > pages) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Ok, let it rip */ | 
|  | return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_iomap_memory); | 
|  |  | 
|  | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | pte_fn_t fn, void *data) | 
|  | { | 
|  | pte_t *pte; | 
|  | int err; | 
|  | pgtable_t token; | 
|  | spinlock_t *uninitialized_var(ptl); | 
|  |  | 
|  | pte = (mm == &init_mm) ? | 
|  | pte_alloc_kernel(pmd, addr) : | 
|  | pte_alloc_map_lock(mm, pmd, addr, &ptl); | 
|  | if (!pte) | 
|  | return -ENOMEM; | 
|  |  | 
|  | BUG_ON(pmd_huge(*pmd)); | 
|  |  | 
|  | arch_enter_lazy_mmu_mode(); | 
|  |  | 
|  | token = pmd_pgtable(*pmd); | 
|  |  | 
|  | do { | 
|  | err = fn(pte++, token, addr, data); | 
|  | if (err) | 
|  | break; | 
|  | } while (addr += PAGE_SIZE, addr != end); | 
|  |  | 
|  | arch_leave_lazy_mmu_mode(); | 
|  |  | 
|  | if (mm != &init_mm) | 
|  | pte_unmap_unlock(pte-1, ptl); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | pte_fn_t fn, void *data) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  | int err; | 
|  |  | 
|  | BUG_ON(pud_huge(*pud)); | 
|  |  | 
|  | pmd = pmd_alloc(mm, pud, addr); | 
|  | if (!pmd) | 
|  | return -ENOMEM; | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | err = apply_to_pte_range(mm, pmd, addr, next, fn, data); | 
|  | if (err) | 
|  | break; | 
|  | } while (pmd++, addr = next, addr != end); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | pte_fn_t fn, void *data) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  | int err; | 
|  |  | 
|  | pud = pud_alloc(mm, pgd, addr); | 
|  | if (!pud) | 
|  | return -ENOMEM; | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | err = apply_to_pmd_range(mm, pud, addr, next, fn, data); | 
|  | if (err) | 
|  | break; | 
|  | } while (pud++, addr = next, addr != end); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan a region of virtual memory, filling in page tables as necessary | 
|  | * and calling a provided function on each leaf page table. | 
|  | */ | 
|  | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | 
|  | unsigned long size, pte_fn_t fn, void *data) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  | unsigned long end = addr + size; | 
|  | int err; | 
|  |  | 
|  | if (WARN_ON(addr >= end)) | 
|  | return -EINVAL; | 
|  |  | 
|  | pgd = pgd_offset(mm, addr); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | err = apply_to_pud_range(mm, pgd, addr, next, fn, data); | 
|  | if (err) | 
|  | break; | 
|  | } while (pgd++, addr = next, addr != end); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(apply_to_page_range); | 
|  |  | 
|  | /* | 
|  | * handle_pte_fault chooses page fault handler according to an entry which was | 
|  | * read non-atomically.  Before making any commitment, on those architectures | 
|  | * or configurations (e.g. i386 with PAE) which might give a mix of unmatched | 
|  | * parts, do_swap_page must check under lock before unmapping the pte and | 
|  | * proceeding (but do_wp_page is only called after already making such a check; | 
|  | * and do_anonymous_page can safely check later on). | 
|  | */ | 
|  | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, | 
|  | pte_t *page_table, pte_t orig_pte) | 
|  | { | 
|  | int same = 1; | 
|  | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | 
|  | if (sizeof(pte_t) > sizeof(unsigned long)) { | 
|  | spinlock_t *ptl = pte_lockptr(mm, pmd); | 
|  | spin_lock(ptl); | 
|  | same = pte_same(*page_table, orig_pte); | 
|  | spin_unlock(ptl); | 
|  | } | 
|  | #endif | 
|  | pte_unmap(page_table); | 
|  | return same; | 
|  | } | 
|  |  | 
|  | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) | 
|  | { | 
|  | debug_dma_assert_idle(src); | 
|  |  | 
|  | /* | 
|  | * If the source page was a PFN mapping, we don't have | 
|  | * a "struct page" for it. We do a best-effort copy by | 
|  | * just copying from the original user address. If that | 
|  | * fails, we just zero-fill it. Live with it. | 
|  | */ | 
|  | if (unlikely(!src)) { | 
|  | void *kaddr = kmap_atomic(dst); | 
|  | void __user *uaddr = (void __user *)(va & PAGE_MASK); | 
|  |  | 
|  | /* | 
|  | * This really shouldn't fail, because the page is there | 
|  | * in the page tables. But it might just be unreadable, | 
|  | * in which case we just give up and fill the result with | 
|  | * zeroes. | 
|  | */ | 
|  | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | 
|  | clear_page(kaddr); | 
|  | kunmap_atomic(kaddr); | 
|  | flush_dcache_page(dst); | 
|  | } else | 
|  | copy_user_highpage(dst, src, va, vma); | 
|  | } | 
|  |  | 
|  | static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) | 
|  | { | 
|  | struct file *vm_file = vma->vm_file; | 
|  |  | 
|  | if (vm_file) | 
|  | return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; | 
|  |  | 
|  | /* | 
|  | * Special mappings (e.g. VDSO) do not have any file so fake | 
|  | * a default GFP_KERNEL for them. | 
|  | */ | 
|  | return GFP_KERNEL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Notify the address space that the page is about to become writable so that | 
|  | * it can prohibit this or wait for the page to get into an appropriate state. | 
|  | * | 
|  | * We do this without the lock held, so that it can sleep if it needs to. | 
|  | */ | 
|  | static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, | 
|  | unsigned long address) | 
|  | { | 
|  | struct vm_fault vmf; | 
|  | int ret; | 
|  |  | 
|  | vmf.virtual_address = (void __user *)(address & PAGE_MASK); | 
|  | vmf.pgoff = page->index; | 
|  | vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; | 
|  | vmf.gfp_mask = __get_fault_gfp_mask(vma); | 
|  | vmf.page = page; | 
|  | vmf.cow_page = NULL; | 
|  |  | 
|  | ret = vma->vm_ops->page_mkwrite(vma, &vmf); | 
|  | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) | 
|  | return ret; | 
|  | if (unlikely(!(ret & VM_FAULT_LOCKED))) { | 
|  | lock_page(page); | 
|  | if (!page->mapping) { | 
|  | unlock_page(page); | 
|  | return 0; /* retry */ | 
|  | } | 
|  | ret |= VM_FAULT_LOCKED; | 
|  | } else | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle write page faults for pages that can be reused in the current vma | 
|  | * | 
|  | * This can happen either due to the mapping being with the VM_SHARED flag, | 
|  | * or due to us being the last reference standing to the page. In either | 
|  | * case, all we need to do here is to mark the page as writable and update | 
|  | * any related book-keeping. | 
|  | */ | 
|  | static inline int wp_page_reuse(struct fault_env *fe, pte_t orig_pte, | 
|  | struct page *page, int page_mkwrite, int dirty_shared) | 
|  | __releases(fe->ptl) | 
|  | { | 
|  | struct vm_area_struct *vma = fe->vma; | 
|  | pte_t entry; | 
|  | /* | 
|  | * Clear the pages cpupid information as the existing | 
|  | * information potentially belongs to a now completely | 
|  | * unrelated process. | 
|  | */ | 
|  | if (page) | 
|  | page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); | 
|  |  | 
|  | flush_cache_page(vma, fe->address, pte_pfn(orig_pte)); | 
|  | entry = pte_mkyoung(orig_pte); | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  | if (ptep_set_access_flags(vma, fe->address, fe->pte, entry, 1)) | 
|  | update_mmu_cache(vma, fe->address, fe->pte); | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  |  | 
|  | if (dirty_shared) { | 
|  | struct address_space *mapping; | 
|  | int dirtied; | 
|  |  | 
|  | if (!page_mkwrite) | 
|  | lock_page(page); | 
|  |  | 
|  | dirtied = set_page_dirty(page); | 
|  | VM_BUG_ON_PAGE(PageAnon(page), page); | 
|  | mapping = page->mapping; | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  |  | 
|  | if ((dirtied || page_mkwrite) && mapping) { | 
|  | /* | 
|  | * Some device drivers do not set page.mapping | 
|  | * but still dirty their pages | 
|  | */ | 
|  | balance_dirty_pages_ratelimited(mapping); | 
|  | } | 
|  |  | 
|  | if (!page_mkwrite) | 
|  | file_update_time(vma->vm_file); | 
|  | } | 
|  |  | 
|  | return VM_FAULT_WRITE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle the case of a page which we actually need to copy to a new page. | 
|  | * | 
|  | * Called with mmap_sem locked and the old page referenced, but | 
|  | * without the ptl held. | 
|  | * | 
|  | * High level logic flow: | 
|  | * | 
|  | * - Allocate a page, copy the content of the old page to the new one. | 
|  | * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. | 
|  | * - Take the PTL. If the pte changed, bail out and release the allocated page | 
|  | * - If the pte is still the way we remember it, update the page table and all | 
|  | *   relevant references. This includes dropping the reference the page-table | 
|  | *   held to the old page, as well as updating the rmap. | 
|  | * - In any case, unlock the PTL and drop the reference we took to the old page. | 
|  | */ | 
|  | static int wp_page_copy(struct fault_env *fe, pte_t orig_pte, | 
|  | struct page *old_page) | 
|  | { | 
|  | struct vm_area_struct *vma = fe->vma; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct page *new_page = NULL; | 
|  | pte_t entry; | 
|  | int page_copied = 0; | 
|  | const unsigned long mmun_start = fe->address & PAGE_MASK; | 
|  | const unsigned long mmun_end = mmun_start + PAGE_SIZE; | 
|  | struct mem_cgroup *memcg; | 
|  |  | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | goto oom; | 
|  |  | 
|  | if (is_zero_pfn(pte_pfn(orig_pte))) { | 
|  | new_page = alloc_zeroed_user_highpage_movable(vma, fe->address); | 
|  | if (!new_page) | 
|  | goto oom; | 
|  | } else { | 
|  | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, | 
|  | fe->address); | 
|  | if (!new_page) | 
|  | goto oom; | 
|  | cow_user_page(new_page, old_page, fe->address, vma); | 
|  | } | 
|  |  | 
|  | if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) | 
|  | goto oom_free_new; | 
|  |  | 
|  | __SetPageUptodate(new_page); | 
|  |  | 
|  | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | 
|  |  | 
|  | /* | 
|  | * Re-check the pte - we dropped the lock | 
|  | */ | 
|  | fe->pte = pte_offset_map_lock(mm, fe->pmd, fe->address, &fe->ptl); | 
|  | if (likely(pte_same(*fe->pte, orig_pte))) { | 
|  | if (old_page) { | 
|  | if (!PageAnon(old_page)) { | 
|  | dec_mm_counter_fast(mm, | 
|  | mm_counter_file(old_page)); | 
|  | inc_mm_counter_fast(mm, MM_ANONPAGES); | 
|  | } | 
|  | } else { | 
|  | inc_mm_counter_fast(mm, MM_ANONPAGES); | 
|  | } | 
|  | flush_cache_page(vma, fe->address, pte_pfn(orig_pte)); | 
|  | entry = mk_pte(new_page, vma->vm_page_prot); | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  | /* | 
|  | * Clear the pte entry and flush it first, before updating the | 
|  | * pte with the new entry. This will avoid a race condition | 
|  | * seen in the presence of one thread doing SMC and another | 
|  | * thread doing COW. | 
|  | */ | 
|  | ptep_clear_flush_notify(vma, fe->address, fe->pte); | 
|  | page_add_new_anon_rmap(new_page, vma, fe->address, false); | 
|  | mem_cgroup_commit_charge(new_page, memcg, false, false); | 
|  | lru_cache_add_active_or_unevictable(new_page, vma); | 
|  | /* | 
|  | * We call the notify macro here because, when using secondary | 
|  | * mmu page tables (such as kvm shadow page tables), we want the | 
|  | * new page to be mapped directly into the secondary page table. | 
|  | */ | 
|  | set_pte_at_notify(mm, fe->address, fe->pte, entry); | 
|  | update_mmu_cache(vma, fe->address, fe->pte); | 
|  | if (old_page) { | 
|  | /* | 
|  | * Only after switching the pte to the new page may | 
|  | * we remove the mapcount here. Otherwise another | 
|  | * process may come and find the rmap count decremented | 
|  | * before the pte is switched to the new page, and | 
|  | * "reuse" the old page writing into it while our pte | 
|  | * here still points into it and can be read by other | 
|  | * threads. | 
|  | * | 
|  | * The critical issue is to order this | 
|  | * page_remove_rmap with the ptp_clear_flush above. | 
|  | * Those stores are ordered by (if nothing else,) | 
|  | * the barrier present in the atomic_add_negative | 
|  | * in page_remove_rmap. | 
|  | * | 
|  | * Then the TLB flush in ptep_clear_flush ensures that | 
|  | * no process can access the old page before the | 
|  | * decremented mapcount is visible. And the old page | 
|  | * cannot be reused until after the decremented | 
|  | * mapcount is visible. So transitively, TLBs to | 
|  | * old page will be flushed before it can be reused. | 
|  | */ | 
|  | page_remove_rmap(old_page, false); | 
|  | } | 
|  |  | 
|  | /* Free the old page.. */ | 
|  | new_page = old_page; | 
|  | page_copied = 1; | 
|  | } else { | 
|  | mem_cgroup_cancel_charge(new_page, memcg, false); | 
|  | } | 
|  |  | 
|  | if (new_page) | 
|  | put_page(new_page); | 
|  |  | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | 
|  | if (old_page) { | 
|  | /* | 
|  | * Don't let another task, with possibly unlocked vma, | 
|  | * keep the mlocked page. | 
|  | */ | 
|  | if (page_copied && (vma->vm_flags & VM_LOCKED)) { | 
|  | lock_page(old_page);	/* LRU manipulation */ | 
|  | if (PageMlocked(old_page)) | 
|  | munlock_vma_page(old_page); | 
|  | unlock_page(old_page); | 
|  | } | 
|  | put_page(old_page); | 
|  | } | 
|  | return page_copied ? VM_FAULT_WRITE : 0; | 
|  | oom_free_new: | 
|  | put_page(new_page); | 
|  | oom: | 
|  | if (old_page) | 
|  | put_page(old_page); | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED | 
|  | * mapping | 
|  | */ | 
|  | static int wp_pfn_shared(struct fault_env *fe,  pte_t orig_pte) | 
|  | { | 
|  | struct vm_area_struct *vma = fe->vma; | 
|  |  | 
|  | if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { | 
|  | struct vm_fault vmf = { | 
|  | .page = NULL, | 
|  | .pgoff = linear_page_index(vma, fe->address), | 
|  | .virtual_address = | 
|  | (void __user *)(fe->address & PAGE_MASK), | 
|  | .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE, | 
|  | }; | 
|  | int ret; | 
|  |  | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | ret = vma->vm_ops->pfn_mkwrite(vma, &vmf); | 
|  | if (ret & VM_FAULT_ERROR) | 
|  | return ret; | 
|  | fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, | 
|  | &fe->ptl); | 
|  | /* | 
|  | * We might have raced with another page fault while we | 
|  | * released the pte_offset_map_lock. | 
|  | */ | 
|  | if (!pte_same(*fe->pte, orig_pte)) { | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return wp_page_reuse(fe, orig_pte, NULL, 0, 0); | 
|  | } | 
|  |  | 
|  | static int wp_page_shared(struct fault_env *fe, pte_t orig_pte, | 
|  | struct page *old_page) | 
|  | __releases(fe->ptl) | 
|  | { | 
|  | struct vm_area_struct *vma = fe->vma; | 
|  | int page_mkwrite = 0; | 
|  |  | 
|  | get_page(old_page); | 
|  |  | 
|  | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { | 
|  | int tmp; | 
|  |  | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | tmp = do_page_mkwrite(vma, old_page, fe->address); | 
|  | if (unlikely(!tmp || (tmp & | 
|  | (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | 
|  | put_page(old_page); | 
|  | return tmp; | 
|  | } | 
|  | /* | 
|  | * Since we dropped the lock we need to revalidate | 
|  | * the PTE as someone else may have changed it.  If | 
|  | * they did, we just return, as we can count on the | 
|  | * MMU to tell us if they didn't also make it writable. | 
|  | */ | 
|  | fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, | 
|  | &fe->ptl); | 
|  | if (!pte_same(*fe->pte, orig_pte)) { | 
|  | unlock_page(old_page); | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | put_page(old_page); | 
|  | return 0; | 
|  | } | 
|  | page_mkwrite = 1; | 
|  | } | 
|  |  | 
|  | return wp_page_reuse(fe, orig_pte, old_page, page_mkwrite, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine handles present pages, when users try to write | 
|  | * to a shared page. It is done by copying the page to a new address | 
|  | * and decrementing the shared-page counter for the old page. | 
|  | * | 
|  | * Note that this routine assumes that the protection checks have been | 
|  | * done by the caller (the low-level page fault routine in most cases). | 
|  | * Thus we can safely just mark it writable once we've done any necessary | 
|  | * COW. | 
|  | * | 
|  | * We also mark the page dirty at this point even though the page will | 
|  | * change only once the write actually happens. This avoids a few races, | 
|  | * and potentially makes it more efficient. | 
|  | * | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
|  | * but allow concurrent faults), with pte both mapped and locked. | 
|  | * We return with mmap_sem still held, but pte unmapped and unlocked. | 
|  | */ | 
|  | static int do_wp_page(struct fault_env *fe, pte_t orig_pte) | 
|  | __releases(fe->ptl) | 
|  | { | 
|  | struct vm_area_struct *vma = fe->vma; | 
|  | struct page *old_page; | 
|  |  | 
|  | old_page = vm_normal_page(vma, fe->address, orig_pte); | 
|  | if (!old_page) { | 
|  | /* | 
|  | * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a | 
|  | * VM_PFNMAP VMA. | 
|  | * | 
|  | * We should not cow pages in a shared writeable mapping. | 
|  | * Just mark the pages writable and/or call ops->pfn_mkwrite. | 
|  | */ | 
|  | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | 
|  | (VM_WRITE|VM_SHARED)) | 
|  | return wp_pfn_shared(fe, orig_pte); | 
|  |  | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | return wp_page_copy(fe, orig_pte, old_page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take out anonymous pages first, anonymous shared vmas are | 
|  | * not dirty accountable. | 
|  | */ | 
|  | if (PageAnon(old_page) && !PageKsm(old_page)) { | 
|  | int total_mapcount; | 
|  | if (!trylock_page(old_page)) { | 
|  | get_page(old_page); | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | lock_page(old_page); | 
|  | fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, | 
|  | fe->address, &fe->ptl); | 
|  | if (!pte_same(*fe->pte, orig_pte)) { | 
|  | unlock_page(old_page); | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | put_page(old_page); | 
|  | return 0; | 
|  | } | 
|  | put_page(old_page); | 
|  | } | 
|  | if (reuse_swap_page(old_page, &total_mapcount)) { | 
|  | if (total_mapcount == 1) { | 
|  | /* | 
|  | * The page is all ours. Move it to | 
|  | * our anon_vma so the rmap code will | 
|  | * not search our parent or siblings. | 
|  | * Protected against the rmap code by | 
|  | * the page lock. | 
|  | */ | 
|  | page_move_anon_rmap(old_page, vma); | 
|  | } | 
|  | unlock_page(old_page); | 
|  | return wp_page_reuse(fe, orig_pte, old_page, 0, 0); | 
|  | } | 
|  | unlock_page(old_page); | 
|  | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | 
|  | (VM_WRITE|VM_SHARED))) { | 
|  | return wp_page_shared(fe, orig_pte, old_page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ok, we need to copy. Oh, well.. | 
|  | */ | 
|  | get_page(old_page); | 
|  |  | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | return wp_page_copy(fe, orig_pte, old_page); | 
|  | } | 
|  |  | 
|  | static void unmap_mapping_range_vma(struct vm_area_struct *vma, | 
|  | unsigned long start_addr, unsigned long end_addr, | 
|  | struct zap_details *details) | 
|  | { | 
|  | zap_page_range_single(vma, start_addr, end_addr - start_addr, details); | 
|  | } | 
|  |  | 
|  | static inline void unmap_mapping_range_tree(struct rb_root *root, | 
|  | struct zap_details *details) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | pgoff_t vba, vea, zba, zea; | 
|  |  | 
|  | vma_interval_tree_foreach(vma, root, | 
|  | details->first_index, details->last_index) { | 
|  |  | 
|  | vba = vma->vm_pgoff; | 
|  | vea = vba + vma_pages(vma) - 1; | 
|  | zba = details->first_index; | 
|  | if (zba < vba) | 
|  | zba = vba; | 
|  | zea = details->last_index; | 
|  | if (zea > vea) | 
|  | zea = vea; | 
|  |  | 
|  | unmap_mapping_range_vma(vma, | 
|  | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | 
|  | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | 
|  | details); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unmap_mapping_range - unmap the portion of all mmaps in the specified | 
|  | * address_space corresponding to the specified page range in the underlying | 
|  | * file. | 
|  | * | 
|  | * @mapping: the address space containing mmaps to be unmapped. | 
|  | * @holebegin: byte in first page to unmap, relative to the start of | 
|  | * the underlying file.  This will be rounded down to a PAGE_SIZE | 
|  | * boundary.  Note that this is different from truncate_pagecache(), which | 
|  | * must keep the partial page.  In contrast, we must get rid of | 
|  | * partial pages. | 
|  | * @holelen: size of prospective hole in bytes.  This will be rounded | 
|  | * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the | 
|  | * end of the file. | 
|  | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | 
|  | * but 0 when invalidating pagecache, don't throw away private data. | 
|  | */ | 
|  | void unmap_mapping_range(struct address_space *mapping, | 
|  | loff_t const holebegin, loff_t const holelen, int even_cows) | 
|  | { | 
|  | struct zap_details details = { }; | 
|  | pgoff_t hba = holebegin >> PAGE_SHIFT; | 
|  | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  |  | 
|  | /* Check for overflow. */ | 
|  | if (sizeof(holelen) > sizeof(hlen)) { | 
|  | long long holeend = | 
|  | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | if (holeend & ~(long long)ULONG_MAX) | 
|  | hlen = ULONG_MAX - hba + 1; | 
|  | } | 
|  |  | 
|  | details.check_mapping = even_cows? NULL: mapping; | 
|  | details.first_index = hba; | 
|  | details.last_index = hba + hlen - 1; | 
|  | if (details.last_index < details.first_index) | 
|  | details.last_index = ULONG_MAX; | 
|  |  | 
|  | i_mmap_lock_write(mapping); | 
|  | if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) | 
|  | unmap_mapping_range_tree(&mapping->i_mmap, &details); | 
|  | i_mmap_unlock_write(mapping); | 
|  | } | 
|  | EXPORT_SYMBOL(unmap_mapping_range); | 
|  |  | 
|  | /* | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
|  | * but allow concurrent faults), and pte mapped but not yet locked. | 
|  | * We return with pte unmapped and unlocked. | 
|  | * | 
|  | * We return with the mmap_sem locked or unlocked in the same cases | 
|  | * as does filemap_fault(). | 
|  | */ | 
|  | int do_swap_page(struct fault_env *fe, pte_t orig_pte) | 
|  | { | 
|  | struct vm_area_struct *vma = fe->vma; | 
|  | struct page *page, *swapcache; | 
|  | struct mem_cgroup *memcg; | 
|  | swp_entry_t entry; | 
|  | pte_t pte; | 
|  | int locked; | 
|  | int exclusive = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!pte_unmap_same(vma->vm_mm, fe->pmd, fe->pte, orig_pte)) | 
|  | goto out; | 
|  |  | 
|  | entry = pte_to_swp_entry(orig_pte); | 
|  | if (unlikely(non_swap_entry(entry))) { | 
|  | if (is_migration_entry(entry)) { | 
|  | migration_entry_wait(vma->vm_mm, fe->pmd, fe->address); | 
|  | } else if (is_hwpoison_entry(entry)) { | 
|  | ret = VM_FAULT_HWPOISON; | 
|  | } else { | 
|  | print_bad_pte(vma, fe->address, orig_pte, NULL); | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  | delayacct_set_flag(DELAYACCT_PF_SWAPIN); | 
|  | page = lookup_swap_cache(entry); | 
|  | if (!page) { | 
|  | page = swapin_readahead(entry, | 
|  | GFP_HIGHUSER_MOVABLE, vma, fe->address); | 
|  | if (!page) { | 
|  | /* | 
|  | * Back out if somebody else faulted in this pte | 
|  | * while we released the pte lock. | 
|  | */ | 
|  | fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, | 
|  | fe->address, &fe->ptl); | 
|  | if (likely(pte_same(*fe->pte, orig_pte))) | 
|  | ret = VM_FAULT_OOM; | 
|  | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* Had to read the page from swap area: Major fault */ | 
|  | ret = VM_FAULT_MAJOR; | 
|  | count_vm_event(PGMAJFAULT); | 
|  | mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); | 
|  | } else if (PageHWPoison(page)) { | 
|  | /* | 
|  | * hwpoisoned dirty swapcache pages are kept for killing | 
|  | * owner processes (which may be unknown at hwpoison time) | 
|  | */ | 
|  | ret = VM_FAULT_HWPOISON; | 
|  | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 
|  | swapcache = page; | 
|  | goto out_release; | 
|  | } | 
|  |  | 
|  | swapcache = page; | 
|  | locked = lock_page_or_retry(page, vma->vm_mm, fe->flags); | 
|  |  | 
|  | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 
|  | if (!locked) { | 
|  | ret |= VM_FAULT_RETRY; | 
|  | goto out_release; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure try_to_free_swap or reuse_swap_page or swapoff did not | 
|  | * release the swapcache from under us.  The page pin, and pte_same | 
|  | * test below, are not enough to exclude that.  Even if it is still | 
|  | * swapcache, we need to check that the page's swap has not changed. | 
|  | */ | 
|  | if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) | 
|  | goto out_page; | 
|  |  | 
|  | page = ksm_might_need_to_copy(page, vma, fe->address); | 
|  | if (unlikely(!page)) { | 
|  | ret = VM_FAULT_OOM; | 
|  | page = swapcache; | 
|  | goto out_page; | 
|  | } | 
|  |  | 
|  | if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, | 
|  | &memcg, false)) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto out_page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Back out if somebody else already faulted in this pte. | 
|  | */ | 
|  | fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, | 
|  | &fe->ptl); | 
|  | if (unlikely(!pte_same(*fe->pte, orig_pte))) | 
|  | goto out_nomap; | 
|  |  | 
|  | if (unlikely(!PageUptodate(page))) { | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | goto out_nomap; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The page isn't present yet, go ahead with the fault. | 
|  | * | 
|  | * Be careful about the sequence of operations here. | 
|  | * To get its accounting right, reuse_swap_page() must be called | 
|  | * while the page is counted on swap but not yet in mapcount i.e. | 
|  | * before page_add_anon_rmap() and swap_free(); try_to_free_swap() | 
|  | * must be called after the swap_free(), or it will never succeed. | 
|  | */ | 
|  |  | 
|  | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); | 
|  | dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); | 
|  | pte = mk_pte(page, vma->vm_page_prot); | 
|  | if ((fe->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { | 
|  | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | 
|  | fe->flags &= ~FAULT_FLAG_WRITE; | 
|  | ret |= VM_FAULT_WRITE; | 
|  | exclusive = RMAP_EXCLUSIVE; | 
|  | } | 
|  | flush_icache_page(vma, page); | 
|  | if (pte_swp_soft_dirty(orig_pte)) | 
|  | pte = pte_mksoft_dirty(pte); | 
|  | set_pte_at(vma->vm_mm, fe->address, fe->pte, pte); | 
|  | if (page == swapcache) { | 
|  | do_page_add_anon_rmap(page, vma, fe->address, exclusive); | 
|  | mem_cgroup_commit_charge(page, memcg, true, false); | 
|  | activate_page(page); | 
|  | } else { /* ksm created a completely new copy */ | 
|  | page_add_new_anon_rmap(page, vma, fe->address, false); | 
|  | mem_cgroup_commit_charge(page, memcg, false, false); | 
|  | lru_cache_add_active_or_unevictable(page, vma); | 
|  | } | 
|  |  | 
|  | swap_free(entry); | 
|  | if (mem_cgroup_swap_full(page) || | 
|  | (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) | 
|  | try_to_free_swap(page); | 
|  | unlock_page(page); | 
|  | if (page != swapcache) { | 
|  | /* | 
|  | * Hold the lock to avoid the swap entry to be reused | 
|  | * until we take the PT lock for the pte_same() check | 
|  | * (to avoid false positives from pte_same). For | 
|  | * further safety release the lock after the swap_free | 
|  | * so that the swap count won't change under a | 
|  | * parallel locked swapcache. | 
|  | */ | 
|  | unlock_page(swapcache); | 
|  | put_page(swapcache); | 
|  | } | 
|  |  | 
|  | if (fe->flags & FAULT_FLAG_WRITE) { | 
|  | ret |= do_wp_page(fe, pte); | 
|  | if (ret & VM_FAULT_ERROR) | 
|  | ret &= VM_FAULT_ERROR; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* No need to invalidate - it was non-present before */ | 
|  | update_mmu_cache(vma, fe->address, fe->pte); | 
|  | unlock: | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | out: | 
|  | return ret; | 
|  | out_nomap: | 
|  | mem_cgroup_cancel_charge(page, memcg, false); | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | out_page: | 
|  | unlock_page(page); | 
|  | out_release: | 
|  | put_page(page); | 
|  | if (page != swapcache) { | 
|  | unlock_page(swapcache); | 
|  | put_page(swapcache); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
|  | * but allow concurrent faults), and pte mapped but not yet locked. | 
|  | * We return with mmap_sem still held, but pte unmapped and unlocked. | 
|  | */ | 
|  | static int do_anonymous_page(struct fault_env *fe) | 
|  | { | 
|  | struct vm_area_struct *vma = fe->vma; | 
|  | struct mem_cgroup *memcg; | 
|  | struct page *page; | 
|  | pte_t entry; | 
|  |  | 
|  | /* File mapping without ->vm_ops ? */ | 
|  | if (vma->vm_flags & VM_SHARED) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | /* | 
|  | * Use pte_alloc() instead of pte_alloc_map().  We can't run | 
|  | * pte_offset_map() on pmds where a huge pmd might be created | 
|  | * from a different thread. | 
|  | * | 
|  | * pte_alloc_map() is safe to use under down_write(mmap_sem) or when | 
|  | * parallel threads are excluded by other means. | 
|  | * | 
|  | * Here we only have down_read(mmap_sem). | 
|  | */ | 
|  | if (pte_alloc(vma->vm_mm, fe->pmd, fe->address)) | 
|  | return VM_FAULT_OOM; | 
|  |  | 
|  | /* See the comment in pte_alloc_one_map() */ | 
|  | if (unlikely(pmd_trans_unstable(fe->pmd))) | 
|  | return 0; | 
|  |  | 
|  | /* Use the zero-page for reads */ | 
|  | if (!(fe->flags & FAULT_FLAG_WRITE) && | 
|  | !mm_forbids_zeropage(vma->vm_mm)) { | 
|  | entry = pte_mkspecial(pfn_pte(my_zero_pfn(fe->address), | 
|  | vma->vm_page_prot)); | 
|  | fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, | 
|  | &fe->ptl); | 
|  | if (!pte_none(*fe->pte)) | 
|  | goto unlock; | 
|  | /* Deliver the page fault to userland, check inside PT lock */ | 
|  | if (userfaultfd_missing(vma)) { | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | return handle_userfault(fe, VM_UFFD_MISSING); | 
|  | } | 
|  | goto setpte; | 
|  | } | 
|  |  | 
|  | /* Allocate our own private page. */ | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | goto oom; | 
|  | page = alloc_zeroed_user_highpage_movable(vma, fe->address); | 
|  | if (!page) | 
|  | goto oom; | 
|  |  | 
|  | if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) | 
|  | goto oom_free_page; | 
|  |  | 
|  | /* | 
|  | * The memory barrier inside __SetPageUptodate makes sure that | 
|  | * preceeding stores to the page contents become visible before | 
|  | * the set_pte_at() write. | 
|  | */ | 
|  | __SetPageUptodate(page); | 
|  |  | 
|  | entry = mk_pte(page, vma->vm_page_prot); | 
|  | if (vma->vm_flags & VM_WRITE) | 
|  | entry = pte_mkwrite(pte_mkdirty(entry)); | 
|  |  | 
|  | fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, | 
|  | &fe->ptl); | 
|  | if (!pte_none(*fe->pte)) | 
|  | goto release; | 
|  |  | 
|  | /* Deliver the page fault to userland, check inside PT lock */ | 
|  | if (userfaultfd_missing(vma)) { | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | mem_cgroup_cancel_charge(page, memcg, false); | 
|  | put_page(page); | 
|  | return handle_userfault(fe, VM_UFFD_MISSING); | 
|  | } | 
|  |  | 
|  | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); | 
|  | page_add_new_anon_rmap(page, vma, fe->address, false); | 
|  | mem_cgroup_commit_charge(page, memcg, false, false); | 
|  | lru_cache_add_active_or_unevictable(page, vma); | 
|  | setpte: | 
|  | set_pte_at(vma->vm_mm, fe->address, fe->pte, entry); | 
|  |  | 
|  | /* No need to invalidate - it was non-present before */ | 
|  | update_mmu_cache(vma, fe->address, fe->pte); | 
|  | unlock: | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | return 0; | 
|  | release: | 
|  | mem_cgroup_cancel_charge(page, memcg, false); | 
|  | put_page(page); | 
|  | goto unlock; | 
|  | oom_free_page: | 
|  | put_page(page); | 
|  | oom: | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The mmap_sem must have been held on entry, and may have been | 
|  | * released depending on flags and vma->vm_ops->fault() return value. | 
|  | * See filemap_fault() and __lock_page_retry(). | 
|  | */ | 
|  | static int __do_fault(struct fault_env *fe, pgoff_t pgoff, | 
|  | struct page *cow_page, struct page **page, void **entry) | 
|  | { | 
|  | struct vm_area_struct *vma = fe->vma; | 
|  | struct vm_fault vmf; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Preallocate pte before we take page_lock because this might lead to | 
|  | * deadlocks for memcg reclaim which waits for pages under writeback: | 
|  | *				lock_page(A) | 
|  | *				SetPageWriteback(A) | 
|  | *				unlock_page(A) | 
|  | * lock_page(B) | 
|  | *				lock_page(B) | 
|  | * pte_alloc_pne | 
|  | *   shrink_page_list | 
|  | *     wait_on_page_writeback(A) | 
|  | *				SetPageWriteback(B) | 
|  | *				unlock_page(B) | 
|  | *				# flush A, B to clear the writeback | 
|  | */ | 
|  | if (pmd_none(*fe->pmd) && !fe->prealloc_pte) { | 
|  | fe->prealloc_pte = pte_alloc_one(vma->vm_mm, fe->address); | 
|  | if (!fe->prealloc_pte) | 
|  | return VM_FAULT_OOM; | 
|  | smp_wmb(); /* See comment in __pte_alloc() */ | 
|  | } | 
|  |  | 
|  | vmf.virtual_address = (void __user *)(fe->address & PAGE_MASK); | 
|  | vmf.pgoff = pgoff; | 
|  | vmf.flags = fe->flags; | 
|  | vmf.page = NULL; | 
|  | vmf.gfp_mask = __get_fault_gfp_mask(vma); | 
|  | vmf.cow_page = cow_page; | 
|  |  | 
|  | ret = vma->vm_ops->fault(vma, &vmf); | 
|  | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) | 
|  | return ret; | 
|  | if (ret & VM_FAULT_DAX_LOCKED) { | 
|  | *entry = vmf.entry; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (unlikely(PageHWPoison(vmf.page))) { | 
|  | int poisonret = VM_FAULT_HWPOISON; | 
|  | if (ret & VM_FAULT_LOCKED) { | 
|  | /* Retry if a clean page was removed from the cache. */ | 
|  | if (invalidate_inode_page(vmf.page)) | 
|  | poisonret = 0; | 
|  | unlock_page(vmf.page); | 
|  | } | 
|  | put_page(vmf.page); | 
|  | return poisonret; | 
|  | } | 
|  |  | 
|  | if (unlikely(!(ret & VM_FAULT_LOCKED))) | 
|  | lock_page(vmf.page); | 
|  | else | 
|  | VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); | 
|  |  | 
|  | *page = vmf.page; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. | 
|  | * If we check pmd_trans_unstable() first we will trip the bad_pmd() check | 
|  | * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly | 
|  | * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. | 
|  | */ | 
|  | static int pmd_devmap_trans_unstable(pmd_t *pmd) | 
|  | { | 
|  | return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); | 
|  | } | 
|  |  | 
|  | static int pte_alloc_one_map(struct fault_env *fe) | 
|  | { | 
|  | struct vm_area_struct *vma = fe->vma; | 
|  |  | 
|  | if (!pmd_none(*fe->pmd)) | 
|  | goto map_pte; | 
|  | if (fe->prealloc_pte) { | 
|  | fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); | 
|  | if (unlikely(!pmd_none(*fe->pmd))) { | 
|  | spin_unlock(fe->ptl); | 
|  | goto map_pte; | 
|  | } | 
|  |  | 
|  | atomic_long_inc(&vma->vm_mm->nr_ptes); | 
|  | pmd_populate(vma->vm_mm, fe->pmd, fe->prealloc_pte); | 
|  | spin_unlock(fe->ptl); | 
|  | fe->prealloc_pte = 0; | 
|  | } else if (unlikely(pte_alloc(vma->vm_mm, fe->pmd, fe->address))) { | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  | map_pte: | 
|  | /* | 
|  | * If a huge pmd materialized under us just retry later.  Use | 
|  | * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of | 
|  | * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge | 
|  | * under us and then back to pmd_none, as a result of MADV_DONTNEED | 
|  | * running immediately after a huge pmd fault in a different thread of | 
|  | * this mm, in turn leading to a misleading pmd_trans_huge() retval. | 
|  | * All we have to ensure is that it is a regular pmd that we can walk | 
|  | * with pte_offset_map() and we can do that through an atomic read in | 
|  | * C, which is what pmd_trans_unstable() provides. | 
|  | */ | 
|  | if (pmd_devmap_trans_unstable(fe->pmd)) | 
|  | return VM_FAULT_NOPAGE; | 
|  |  | 
|  | /* | 
|  | * At this point we know that our vmf->pmd points to a page of ptes | 
|  | * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() | 
|  | * for the duration of the fault.  If a racing MADV_DONTNEED runs and | 
|  | * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still | 
|  | * be valid and we will re-check to make sure the vmf->pte isn't | 
|  | * pte_none() under vmf->ptl protection when we return to | 
|  | * alloc_set_pte(). | 
|  | */ | 
|  | fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, | 
|  | &fe->ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE | 
|  |  | 
|  | #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) | 
|  | static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, | 
|  | unsigned long haddr) | 
|  | { | 
|  | if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != | 
|  | (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) | 
|  | return false; | 
|  | if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int do_set_pmd(struct fault_env *fe, struct page *page) | 
|  | { | 
|  | struct vm_area_struct *vma = fe->vma; | 
|  | bool write = fe->flags & FAULT_FLAG_WRITE; | 
|  | unsigned long haddr = fe->address & HPAGE_PMD_MASK; | 
|  | pmd_t entry; | 
|  | int i, ret; | 
|  |  | 
|  | if (!transhuge_vma_suitable(vma, haddr)) | 
|  | return VM_FAULT_FALLBACK; | 
|  |  | 
|  | ret = VM_FAULT_FALLBACK; | 
|  | page = compound_head(page); | 
|  |  | 
|  | fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); | 
|  | if (unlikely(!pmd_none(*fe->pmd))) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < HPAGE_PMD_NR; i++) | 
|  | flush_icache_page(vma, page + i); | 
|  |  | 
|  | entry = mk_huge_pmd(page, vma->vm_page_prot); | 
|  | if (write) | 
|  | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | 
|  |  | 
|  | add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR); | 
|  | page_add_file_rmap(page, true); | 
|  |  | 
|  | set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry); | 
|  |  | 
|  | update_mmu_cache_pmd(vma, haddr, fe->pmd); | 
|  |  | 
|  | /* fault is handled */ | 
|  | ret = 0; | 
|  | count_vm_event(THP_FILE_MAPPED); | 
|  | out: | 
|  | spin_unlock(fe->ptl); | 
|  | return ret; | 
|  | } | 
|  | #else | 
|  | static int do_set_pmd(struct fault_env *fe, struct page *page) | 
|  | { | 
|  | BUILD_BUG(); | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * alloc_set_pte - setup new PTE entry for given page and add reverse page | 
|  | * mapping. If needed, the fucntion allocates page table or use pre-allocated. | 
|  | * | 
|  | * @fe: fault environment | 
|  | * @memcg: memcg to charge page (only for private mappings) | 
|  | * @page: page to map | 
|  | * | 
|  | * Caller must take care of unlocking fe->ptl, if fe->pte is non-NULL on return. | 
|  | * | 
|  | * Target users are page handler itself and implementations of | 
|  | * vm_ops->map_pages. | 
|  | */ | 
|  | int alloc_set_pte(struct fault_env *fe, struct mem_cgroup *memcg, | 
|  | struct page *page) | 
|  | { | 
|  | struct vm_area_struct *vma = fe->vma; | 
|  | bool write = fe->flags & FAULT_FLAG_WRITE; | 
|  | pte_t entry; | 
|  | int ret; | 
|  |  | 
|  | if (pmd_none(*fe->pmd) && PageTransCompound(page) && | 
|  | IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { | 
|  | /* THP on COW? */ | 
|  | VM_BUG_ON_PAGE(memcg, page); | 
|  |  | 
|  | ret = do_set_pmd(fe, page); | 
|  | if (ret != VM_FAULT_FALLBACK) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!fe->pte) { | 
|  | ret = pte_alloc_one_map(fe); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Re-check under ptl */ | 
|  | if (unlikely(!pte_none(*fe->pte))) | 
|  | return VM_FAULT_NOPAGE; | 
|  |  | 
|  | flush_icache_page(vma, page); | 
|  | entry = mk_pte(page, vma->vm_page_prot); | 
|  | if (write) | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  | /* copy-on-write page */ | 
|  | if (write && !(vma->vm_flags & VM_SHARED)) { | 
|  | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); | 
|  | page_add_new_anon_rmap(page, vma, fe->address, false); | 
|  | mem_cgroup_commit_charge(page, memcg, false, false); | 
|  | lru_cache_add_active_or_unevictable(page, vma); | 
|  | } else { | 
|  | inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); | 
|  | page_add_file_rmap(page, false); | 
|  | } | 
|  | set_pte_at(vma->vm_mm, fe->address, fe->pte, entry); | 
|  |  | 
|  | /* no need to invalidate: a not-present page won't be cached */ | 
|  | update_mmu_cache(vma, fe->address, fe->pte); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long fault_around_bytes __read_mostly = | 
|  | rounddown_pow_of_two(65536); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | static int fault_around_bytes_get(void *data, u64 *val) | 
|  | { | 
|  | *val = fault_around_bytes; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fault_around_pages() and fault_around_mask() expects fault_around_bytes | 
|  | * rounded down to nearest page order. It's what do_fault_around() expects to | 
|  | * see. | 
|  | */ | 
|  | static int fault_around_bytes_set(void *data, u64 val) | 
|  | { | 
|  | if (val / PAGE_SIZE > PTRS_PER_PTE) | 
|  | return -EINVAL; | 
|  | if (val > PAGE_SIZE) | 
|  | fault_around_bytes = rounddown_pow_of_two(val); | 
|  | else | 
|  | fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ | 
|  | return 0; | 
|  | } | 
|  | DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, | 
|  | fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); | 
|  |  | 
|  | static int __init fault_around_debugfs(void) | 
|  | { | 
|  | void *ret; | 
|  |  | 
|  | ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, | 
|  | &fault_around_bytes_fops); | 
|  | if (!ret) | 
|  | pr_warn("Failed to create fault_around_bytes in debugfs"); | 
|  | return 0; | 
|  | } | 
|  | late_initcall(fault_around_debugfs); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * do_fault_around() tries to map few pages around the fault address. The hope | 
|  | * is that the pages will be needed soon and this will lower the number of | 
|  | * faults to handle. | 
|  | * | 
|  | * It uses vm_ops->map_pages() to map the pages, which skips the page if it's | 
|  | * not ready to be mapped: not up-to-date, locked, etc. | 
|  | * | 
|  | * This function is called with the page table lock taken. In the split ptlock | 
|  | * case the page table lock only protects only those entries which belong to | 
|  | * the page table corresponding to the fault address. | 
|  | * | 
|  | * This function doesn't cross the VMA boundaries, in order to call map_pages() | 
|  | * only once. | 
|  | * | 
|  | * fault_around_pages() defines how many pages we'll try to map. | 
|  | * do_fault_around() expects it to return a power of two less than or equal to | 
|  | * PTRS_PER_PTE. | 
|  | * | 
|  | * The virtual address of the area that we map is naturally aligned to the | 
|  | * fault_around_pages() value (and therefore to page order).  This way it's | 
|  | * easier to guarantee that we don't cross page table boundaries. | 
|  | */ | 
|  | static int do_fault_around(struct fault_env *fe, pgoff_t start_pgoff) | 
|  | { | 
|  | unsigned long address = fe->address, nr_pages, mask; | 
|  | pgoff_t end_pgoff; | 
|  | int off, ret = 0; | 
|  |  | 
|  | nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; | 
|  | mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; | 
|  |  | 
|  | fe->address = max(address & mask, fe->vma->vm_start); | 
|  | off = ((address - fe->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); | 
|  | start_pgoff -= off; | 
|  |  | 
|  | /* | 
|  | *  end_pgoff is either end of page table or end of vma | 
|  | *  or fault_around_pages() from start_pgoff, depending what is nearest. | 
|  | */ | 
|  | end_pgoff = start_pgoff - | 
|  | ((fe->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + | 
|  | PTRS_PER_PTE - 1; | 
|  | end_pgoff = min3(end_pgoff, vma_pages(fe->vma) + fe->vma->vm_pgoff - 1, | 
|  | start_pgoff + nr_pages - 1); | 
|  |  | 
|  | if (pmd_none(*fe->pmd)) { | 
|  | fe->prealloc_pte = pte_alloc_one(fe->vma->vm_mm, fe->address); | 
|  | if (!fe->prealloc_pte) | 
|  | goto out; | 
|  | smp_wmb(); /* See comment in __pte_alloc() */ | 
|  | } | 
|  |  | 
|  | fe->vma->vm_ops->map_pages(fe, start_pgoff, end_pgoff); | 
|  |  | 
|  | /* preallocated pagetable is unused: free it */ | 
|  | if (fe->prealloc_pte) { | 
|  | pte_free(fe->vma->vm_mm, fe->prealloc_pte); | 
|  | fe->prealloc_pte = 0; | 
|  | } | 
|  | /* Huge page is mapped? Page fault is solved */ | 
|  | if (pmd_trans_huge(*fe->pmd)) { | 
|  | ret = VM_FAULT_NOPAGE; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* ->map_pages() haven't done anything useful. Cold page cache? */ | 
|  | if (!fe->pte) | 
|  | goto out; | 
|  |  | 
|  | /* check if the page fault is solved */ | 
|  | fe->pte -= (fe->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); | 
|  | if (!pte_none(*fe->pte)) | 
|  | ret = VM_FAULT_NOPAGE; | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | out: | 
|  | fe->address = address; | 
|  | fe->pte = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int do_read_fault(struct fault_env *fe, pgoff_t pgoff) | 
|  | { | 
|  | struct vm_area_struct *vma = fe->vma; | 
|  | struct page *fault_page; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Let's call ->map_pages() first and use ->fault() as fallback | 
|  | * if page by the offset is not ready to be mapped (cold cache or | 
|  | * something). | 
|  | */ | 
|  | if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { | 
|  | ret = do_fault_around(fe, pgoff); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL); | 
|  | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) | 
|  | return ret; | 
|  |  | 
|  | ret |= alloc_set_pte(fe, NULL, fault_page); | 
|  | if (fe->pte) | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | unlock_page(fault_page); | 
|  | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) | 
|  | put_page(fault_page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int do_cow_fault(struct fault_env *fe, pgoff_t pgoff) | 
|  | { | 
|  | struct vm_area_struct *vma = fe->vma; | 
|  | struct page *fault_page, *new_page; | 
|  | void *fault_entry; | 
|  | struct mem_cgroup *memcg; | 
|  | int ret; | 
|  |  | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | return VM_FAULT_OOM; | 
|  |  | 
|  | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, fe->address); | 
|  | if (!new_page) | 
|  | return VM_FAULT_OOM; | 
|  |  | 
|  | if (mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, | 
|  | &memcg, false)) { | 
|  | put_page(new_page); | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | ret = __do_fault(fe, pgoff, new_page, &fault_page, &fault_entry); | 
|  | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) | 
|  | goto uncharge_out; | 
|  |  | 
|  | if (!(ret & VM_FAULT_DAX_LOCKED)) | 
|  | copy_user_highpage(new_page, fault_page, fe->address, vma); | 
|  | __SetPageUptodate(new_page); | 
|  |  | 
|  | ret |= alloc_set_pte(fe, memcg, new_page); | 
|  | if (fe->pte) | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | if (!(ret & VM_FAULT_DAX_LOCKED)) { | 
|  | unlock_page(fault_page); | 
|  | put_page(fault_page); | 
|  | } else { | 
|  | dax_unlock_mapping_entry(vma->vm_file->f_mapping, pgoff); | 
|  | } | 
|  | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) | 
|  | goto uncharge_out; | 
|  | return ret; | 
|  | uncharge_out: | 
|  | mem_cgroup_cancel_charge(new_page, memcg, false); | 
|  | put_page(new_page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int do_shared_fault(struct fault_env *fe, pgoff_t pgoff) | 
|  | { | 
|  | struct vm_area_struct *vma = fe->vma; | 
|  | struct page *fault_page; | 
|  | struct address_space *mapping; | 
|  | int dirtied = 0; | 
|  | int ret, tmp; | 
|  |  | 
|  | ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL); | 
|  | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Check if the backing address space wants to know that the page is | 
|  | * about to become writable | 
|  | */ | 
|  | if (vma->vm_ops->page_mkwrite) { | 
|  | unlock_page(fault_page); | 
|  | tmp = do_page_mkwrite(vma, fault_page, fe->address); | 
|  | if (unlikely(!tmp || | 
|  | (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | 
|  | put_page(fault_page); | 
|  | return tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret |= alloc_set_pte(fe, NULL, fault_page); | 
|  | if (fe->pte) | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | | 
|  | VM_FAULT_RETRY))) { | 
|  | unlock_page(fault_page); | 
|  | put_page(fault_page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (set_page_dirty(fault_page)) | 
|  | dirtied = 1; | 
|  | /* | 
|  | * Take a local copy of the address_space - page.mapping may be zeroed | 
|  | * by truncate after unlock_page().   The address_space itself remains | 
|  | * pinned by vma->vm_file's reference.  We rely on unlock_page()'s | 
|  | * release semantics to prevent the compiler from undoing this copying. | 
|  | */ | 
|  | mapping = page_rmapping(fault_page); | 
|  | unlock_page(fault_page); | 
|  | if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { | 
|  | /* | 
|  | * Some device drivers do not set page.mapping but still | 
|  | * dirty their pages | 
|  | */ | 
|  | balance_dirty_pages_ratelimited(mapping); | 
|  | } | 
|  |  | 
|  | if (!vma->vm_ops->page_mkwrite) | 
|  | file_update_time(vma->vm_file); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 
|  | * but allow concurrent faults). | 
|  | * The mmap_sem may have been released depending on flags and our | 
|  | * return value.  See filemap_fault() and __lock_page_or_retry(). | 
|  | */ | 
|  | static int do_fault(struct fault_env *fe) | 
|  | { | 
|  | struct vm_area_struct *vma = fe->vma; | 
|  | pgoff_t pgoff = linear_page_index(vma, fe->address); | 
|  | int ret; | 
|  |  | 
|  | /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ | 
|  | if (!vma->vm_ops->fault) | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | else if (!(fe->flags & FAULT_FLAG_WRITE)) | 
|  | ret = do_read_fault(fe, pgoff); | 
|  | else if (!(vma->vm_flags & VM_SHARED)) | 
|  | ret = do_cow_fault(fe, pgoff); | 
|  | else | 
|  | ret = do_shared_fault(fe, pgoff); | 
|  |  | 
|  | /* preallocated pagetable is unused: free it */ | 
|  | if (fe->prealloc_pte) { | 
|  | pte_free(vma->vm_mm, fe->prealloc_pte); | 
|  | fe->prealloc_pte = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, | 
|  | unsigned long addr, int page_nid, | 
|  | int *flags) | 
|  | { | 
|  | get_page(page); | 
|  |  | 
|  | count_vm_numa_event(NUMA_HINT_FAULTS); | 
|  | if (page_nid == numa_node_id()) { | 
|  | count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); | 
|  | *flags |= TNF_FAULT_LOCAL; | 
|  | } | 
|  |  | 
|  | return mpol_misplaced(page, vma, addr); | 
|  | } | 
|  |  | 
|  | static int do_numa_page(struct fault_env *fe, pte_t pte) | 
|  | { | 
|  | struct vm_area_struct *vma = fe->vma; | 
|  | struct page *page = NULL; | 
|  | int page_nid = -1; | 
|  | int last_cpupid; | 
|  | int target_nid; | 
|  | bool migrated = false; | 
|  | bool was_writable = pte_write(pte); | 
|  | int flags = 0; | 
|  |  | 
|  | /* | 
|  | * The "pte" at this point cannot be used safely without | 
|  | * validation through pte_unmap_same(). It's of NUMA type but | 
|  | * the pfn may be screwed if the read is non atomic. | 
|  | * | 
|  | * We can safely just do a "set_pte_at()", because the old | 
|  | * page table entry is not accessible, so there would be no | 
|  | * concurrent hardware modifications to the PTE. | 
|  | */ | 
|  | fe->ptl = pte_lockptr(vma->vm_mm, fe->pmd); | 
|  | spin_lock(fe->ptl); | 
|  | if (unlikely(!pte_same(*fe->pte, pte))) { | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Make it present again */ | 
|  | pte = pte_modify(pte, vma->vm_page_prot); | 
|  | pte = pte_mkyoung(pte); | 
|  | if (was_writable) | 
|  | pte = pte_mkwrite(pte); | 
|  | set_pte_at(vma->vm_mm, fe->address, fe->pte, pte); | 
|  | update_mmu_cache(vma, fe->address, fe->pte); | 
|  |  | 
|  | page = vm_normal_page(vma, fe->address, pte); | 
|  | if (!page) { | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* TODO: handle PTE-mapped THP */ | 
|  | if (PageCompound(page)) { | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Avoid grouping on RO pages in general. RO pages shouldn't hurt as | 
|  | * much anyway since they can be in shared cache state. This misses | 
|  | * the case where a mapping is writable but the process never writes | 
|  | * to it but pte_write gets cleared during protection updates and | 
|  | * pte_dirty has unpredictable behaviour between PTE scan updates, | 
|  | * background writeback, dirty balancing and application behaviour. | 
|  | */ | 
|  | if (!pte_write(pte)) | 
|  | flags |= TNF_NO_GROUP; | 
|  |  | 
|  | /* | 
|  | * Flag if the page is shared between multiple address spaces. This | 
|  | * is later used when determining whether to group tasks together | 
|  | */ | 
|  | if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) | 
|  | flags |= TNF_SHARED; | 
|  |  | 
|  | last_cpupid = page_cpupid_last(page); | 
|  | page_nid = page_to_nid(page); | 
|  | target_nid = numa_migrate_prep(page, vma, fe->address, page_nid, | 
|  | &flags); | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | if (target_nid == -1) { | 
|  | put_page(page); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Migrate to the requested node */ | 
|  | migrated = migrate_misplaced_page(page, vma, target_nid); | 
|  | if (migrated) { | 
|  | page_nid = target_nid; | 
|  | flags |= TNF_MIGRATED; | 
|  | } else | 
|  | flags |= TNF_MIGRATE_FAIL; | 
|  |  | 
|  | out: | 
|  | if (page_nid != -1) | 
|  | task_numa_fault(last_cpupid, page_nid, 1, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int create_huge_pmd(struct fault_env *fe) | 
|  | { | 
|  | struct vm_area_struct *vma = fe->vma; | 
|  | if (vma_is_anonymous(vma)) | 
|  | return do_huge_pmd_anonymous_page(fe); | 
|  | if (vma->vm_ops->pmd_fault) | 
|  | return vma->vm_ops->pmd_fault(vma, fe->address, fe->pmd, | 
|  | fe->flags); | 
|  | return VM_FAULT_FALLBACK; | 
|  | } | 
|  |  | 
|  | static int wp_huge_pmd(struct fault_env *fe, pmd_t orig_pmd) | 
|  | { | 
|  | if (vma_is_anonymous(fe->vma)) | 
|  | return do_huge_pmd_wp_page(fe, orig_pmd); | 
|  | if (fe->vma->vm_ops->pmd_fault) | 
|  | return fe->vma->vm_ops->pmd_fault(fe->vma, fe->address, fe->pmd, | 
|  | fe->flags); | 
|  |  | 
|  | /* COW handled on pte level: split pmd */ | 
|  | VM_BUG_ON_VMA(fe->vma->vm_flags & VM_SHARED, fe->vma); | 
|  | split_huge_pmd(fe->vma, fe->pmd, fe->address); | 
|  |  | 
|  | return VM_FAULT_FALLBACK; | 
|  | } | 
|  |  | 
|  | static inline bool vma_is_accessible(struct vm_area_struct *vma) | 
|  | { | 
|  | return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These routines also need to handle stuff like marking pages dirty | 
|  | * and/or accessed for architectures that don't do it in hardware (most | 
|  | * RISC architectures).  The early dirtying is also good on the i386. | 
|  | * | 
|  | * There is also a hook called "update_mmu_cache()" that architectures | 
|  | * with external mmu caches can use to update those (ie the Sparc or | 
|  | * PowerPC hashed page tables that act as extended TLBs). | 
|  | * | 
|  | * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow | 
|  | * concurrent faults). | 
|  | * | 
|  | * The mmap_sem may have been released depending on flags and our return value. | 
|  | * See filemap_fault() and __lock_page_or_retry(). | 
|  | */ | 
|  | static int handle_pte_fault(struct fault_env *fe) | 
|  | { | 
|  | pte_t entry; | 
|  |  | 
|  | if (unlikely(pmd_none(*fe->pmd))) { | 
|  | /* | 
|  | * Leave __pte_alloc() until later: because vm_ops->fault may | 
|  | * want to allocate huge page, and if we expose page table | 
|  | * for an instant, it will be difficult to retract from | 
|  | * concurrent faults and from rmap lookups. | 
|  | */ | 
|  | fe->pte = NULL; | 
|  | } else { | 
|  | /* See comment in pte_alloc_one_map() */ | 
|  | if (pmd_devmap_trans_unstable(fe->pmd)) | 
|  | return 0; | 
|  | /* | 
|  | * A regular pmd is established and it can't morph into a huge | 
|  | * pmd from under us anymore at this point because we hold the | 
|  | * mmap_sem read mode and khugepaged takes it in write mode. | 
|  | * So now it's safe to run pte_offset_map(). | 
|  | */ | 
|  | fe->pte = pte_offset_map(fe->pmd, fe->address); | 
|  |  | 
|  | entry = *fe->pte; | 
|  |  | 
|  | /* | 
|  | * some architectures can have larger ptes than wordsize, | 
|  | * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and | 
|  | * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee | 
|  | * atomic accesses.  The code below just needs a consistent | 
|  | * view for the ifs and we later double check anyway with the | 
|  | * ptl lock held. So here a barrier will do. | 
|  | */ | 
|  | barrier(); | 
|  | if (pte_none(entry)) { | 
|  | pte_unmap(fe->pte); | 
|  | fe->pte = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!fe->pte) { | 
|  | if (vma_is_anonymous(fe->vma)) | 
|  | return do_anonymous_page(fe); | 
|  | else | 
|  | return do_fault(fe); | 
|  | } | 
|  |  | 
|  | if (!pte_present(entry)) | 
|  | return do_swap_page(fe, entry); | 
|  |  | 
|  | if (pte_protnone(entry) && vma_is_accessible(fe->vma)) | 
|  | return do_numa_page(fe, entry); | 
|  |  | 
|  | fe->ptl = pte_lockptr(fe->vma->vm_mm, fe->pmd); | 
|  | spin_lock(fe->ptl); | 
|  | if (unlikely(!pte_same(*fe->pte, entry))) | 
|  | goto unlock; | 
|  | if (fe->flags & FAULT_FLAG_WRITE) { | 
|  | if (!pte_write(entry)) | 
|  | return do_wp_page(fe, entry); | 
|  | entry = pte_mkdirty(entry); | 
|  | } | 
|  | entry = pte_mkyoung(entry); | 
|  | if (ptep_set_access_flags(fe->vma, fe->address, fe->pte, entry, | 
|  | fe->flags & FAULT_FLAG_WRITE)) { | 
|  | update_mmu_cache(fe->vma, fe->address, fe->pte); | 
|  | } else { | 
|  | /* | 
|  | * This is needed only for protection faults but the arch code | 
|  | * is not yet telling us if this is a protection fault or not. | 
|  | * This still avoids useless tlb flushes for .text page faults | 
|  | * with threads. | 
|  | */ | 
|  | if (fe->flags & FAULT_FLAG_WRITE) | 
|  | flush_tlb_fix_spurious_fault(fe->vma, fe->address); | 
|  | } | 
|  | unlock: | 
|  | pte_unmap_unlock(fe->pte, fe->ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * By the time we get here, we already hold the mm semaphore | 
|  | * | 
|  | * The mmap_sem may have been released depending on flags and our | 
|  | * return value.  See filemap_fault() and __lock_page_or_retry(). | 
|  | */ | 
|  | static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned int flags) | 
|  | { | 
|  | struct fault_env fe = { | 
|  | .vma = vma, | 
|  | .address = address, | 
|  | .flags = flags, | 
|  | }; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  |  | 
|  | pgd = pgd_offset(mm, address); | 
|  | pud = pud_alloc(mm, pgd, address); | 
|  | if (!pud) | 
|  | return VM_FAULT_OOM; | 
|  | fe.pmd = pmd_alloc(mm, pud, address); | 
|  | if (!fe.pmd) | 
|  | return VM_FAULT_OOM; | 
|  | if (pmd_none(*fe.pmd) && transparent_hugepage_enabled(vma)) { | 
|  | int ret = create_huge_pmd(&fe); | 
|  | if (!(ret & VM_FAULT_FALLBACK)) | 
|  | return ret; | 
|  | } else { | 
|  | pmd_t orig_pmd = *fe.pmd; | 
|  | int ret; | 
|  |  | 
|  | barrier(); | 
|  | if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { | 
|  | if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) | 
|  | return do_huge_pmd_numa_page(&fe, orig_pmd); | 
|  |  | 
|  | if ((fe.flags & FAULT_FLAG_WRITE) && | 
|  | !pmd_write(orig_pmd)) { | 
|  | ret = wp_huge_pmd(&fe, orig_pmd); | 
|  | if (!(ret & VM_FAULT_FALLBACK)) | 
|  | return ret; | 
|  | } else { | 
|  | huge_pmd_set_accessed(&fe, orig_pmd); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return handle_pte_fault(&fe); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * By the time we get here, we already hold the mm semaphore | 
|  | * | 
|  | * The mmap_sem may have been released depending on flags and our | 
|  | * return value.  See filemap_fault() and __lock_page_or_retry(). | 
|  | */ | 
|  | int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned int flags) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | __set_current_state(TASK_RUNNING); | 
|  |  | 
|  | count_vm_event(PGFAULT); | 
|  | mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT); | 
|  |  | 
|  | /* do counter updates before entering really critical section. */ | 
|  | check_sync_rss_stat(current); | 
|  |  | 
|  | if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, | 
|  | flags & FAULT_FLAG_INSTRUCTION, | 
|  | flags & FAULT_FLAG_REMOTE)) | 
|  | return VM_FAULT_SIGSEGV; | 
|  |  | 
|  | /* | 
|  | * Enable the memcg OOM handling for faults triggered in user | 
|  | * space.  Kernel faults are handled more gracefully. | 
|  | */ | 
|  | if (flags & FAULT_FLAG_USER) | 
|  | mem_cgroup_oom_enable(); | 
|  |  | 
|  | if (unlikely(is_vm_hugetlb_page(vma))) | 
|  | ret = hugetlb_fault(vma->vm_mm, vma, address, flags); | 
|  | else | 
|  | ret = __handle_mm_fault(vma, address, flags); | 
|  |  | 
|  | if (flags & FAULT_FLAG_USER) { | 
|  | mem_cgroup_oom_disable(); | 
|  | /* | 
|  | * The task may have entered a memcg OOM situation but | 
|  | * if the allocation error was handled gracefully (no | 
|  | * VM_FAULT_OOM), there is no need to kill anything. | 
|  | * Just clean up the OOM state peacefully. | 
|  | */ | 
|  | if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) | 
|  | mem_cgroup_oom_synchronize(false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This mm has been already reaped by the oom reaper and so the | 
|  | * refault cannot be trusted in general. Anonymous refaults would | 
|  | * lose data and give a zero page instead e.g. This is especially | 
|  | * problem for use_mm() because regular tasks will just die and | 
|  | * the corrupted data will not be visible anywhere while kthread | 
|  | * will outlive the oom victim and potentially propagate the date | 
|  | * further. | 
|  | */ | 
|  | if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR) | 
|  | && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags))) { | 
|  |  | 
|  | /* | 
|  | * We are going to enforce SIGBUS but the PF path might have | 
|  | * dropped the mmap_sem already so take it again so that | 
|  | * we do not break expectations of all arch specific PF paths | 
|  | * and g-u-p | 
|  | */ | 
|  | if (ret & VM_FAULT_RETRY) | 
|  | down_read(&vma->vm_mm->mmap_sem); | 
|  | ret = VM_FAULT_SIGBUS; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(handle_mm_fault); | 
|  |  | 
|  | #ifndef __PAGETABLE_PUD_FOLDED | 
|  | /* | 
|  | * Allocate page upper directory. | 
|  | * We've already handled the fast-path in-line. | 
|  | */ | 
|  | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | 
|  | { | 
|  | pud_t *new = pud_alloc_one(mm, address); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | smp_wmb(); /* See comment in __pte_alloc */ | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (pgd_present(*pgd))		/* Another has populated it */ | 
|  | pud_free(mm, new); | 
|  | else | 
|  | pgd_populate(mm, pgd, new); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | return 0; | 
|  | } | 
|  | #endif /* __PAGETABLE_PUD_FOLDED */ | 
|  |  | 
|  | #ifndef __PAGETABLE_PMD_FOLDED | 
|  | /* | 
|  | * Allocate page middle directory. | 
|  | * We've already handled the fast-path in-line. | 
|  | */ | 
|  | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 
|  | { | 
|  | pmd_t *new = pmd_alloc_one(mm, address); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | smp_wmb(); /* See comment in __pte_alloc */ | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | #ifndef __ARCH_HAS_4LEVEL_HACK | 
|  | if (!pud_present(*pud)) { | 
|  | mm_inc_nr_pmds(mm); | 
|  | pud_populate(mm, pud, new); | 
|  | } else	/* Another has populated it */ | 
|  | pmd_free(mm, new); | 
|  | #else | 
|  | if (!pgd_present(*pud)) { | 
|  | mm_inc_nr_pmds(mm); | 
|  | pgd_populate(mm, pud, new); | 
|  | } else /* Another has populated it */ | 
|  | pmd_free(mm, new); | 
|  | #endif /* __ARCH_HAS_4LEVEL_HACK */ | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | return 0; | 
|  | } | 
|  | #endif /* __PAGETABLE_PMD_FOLDED */ | 
|  |  | 
|  | static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, | 
|  | pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *ptep; | 
|  |  | 
|  | pgd = pgd_offset(mm, address); | 
|  | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 
|  | goto out; | 
|  |  | 
|  | pud = pud_offset(pgd, address); | 
|  | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | 
|  | goto out; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | VM_BUG_ON(pmd_trans_huge(*pmd)); | 
|  |  | 
|  | if (pmd_huge(*pmd)) { | 
|  | if (!pmdpp) | 
|  | goto out; | 
|  |  | 
|  | *ptlp = pmd_lock(mm, pmd); | 
|  | if (pmd_huge(*pmd)) { | 
|  | *pmdpp = pmd; | 
|  | return 0; | 
|  | } | 
|  | spin_unlock(*ptlp); | 
|  | } | 
|  |  | 
|  | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | 
|  | goto out; | 
|  |  | 
|  | ptep = pte_offset_map_lock(mm, pmd, address, ptlp); | 
|  | if (!ptep) | 
|  | goto out; | 
|  | if (!pte_present(*ptep)) | 
|  | goto unlock; | 
|  | *ptepp = ptep; | 
|  | return 0; | 
|  | unlock: | 
|  | pte_unmap_unlock(ptep, *ptlp); | 
|  | out: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static inline int follow_pte(struct mm_struct *mm, unsigned long address, | 
|  | pte_t **ptepp, spinlock_t **ptlp) | 
|  | { | 
|  | int res; | 
|  |  | 
|  | /* (void) is needed to make gcc happy */ | 
|  | (void) __cond_lock(*ptlp, | 
|  | !(res = __follow_pte_pmd(mm, address, ptepp, NULL, | 
|  | ptlp))); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | int follow_pte_pmd(struct mm_struct *mm, unsigned long address, | 
|  | pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) | 
|  | { | 
|  | int res; | 
|  |  | 
|  | /* (void) is needed to make gcc happy */ | 
|  | (void) __cond_lock(*ptlp, | 
|  | !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp, | 
|  | ptlp))); | 
|  | return res; | 
|  | } | 
|  | EXPORT_SYMBOL(follow_pte_pmd); | 
|  |  | 
|  | /** | 
|  | * follow_pfn - look up PFN at a user virtual address | 
|  | * @vma: memory mapping | 
|  | * @address: user virtual address | 
|  | * @pfn: location to store found PFN | 
|  | * | 
|  | * Only IO mappings and raw PFN mappings are allowed. | 
|  | * | 
|  | * Returns zero and the pfn at @pfn on success, -ve otherwise. | 
|  | */ | 
|  | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned long *pfn) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  | spinlock_t *ptl; | 
|  | pte_t *ptep; | 
|  |  | 
|  | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | 
|  | return ret; | 
|  |  | 
|  | ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); | 
|  | if (ret) | 
|  | return ret; | 
|  | *pfn = pte_pfn(*ptep); | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(follow_pfn); | 
|  |  | 
|  | #ifdef CONFIG_HAVE_IOREMAP_PROT | 
|  | int follow_phys(struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned int flags, | 
|  | unsigned long *prot, resource_size_t *phys) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  | pte_t *ptep, pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | 
|  | goto out; | 
|  |  | 
|  | if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) | 
|  | goto out; | 
|  | pte = *ptep; | 
|  |  | 
|  | if ((flags & FOLL_WRITE) && !pte_write(pte)) | 
|  | goto unlock; | 
|  |  | 
|  | *prot = pgprot_val(pte_pgprot(pte)); | 
|  | *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; | 
|  |  | 
|  | ret = 0; | 
|  | unlock: | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | 
|  | void *buf, int len, int write) | 
|  | { | 
|  | resource_size_t phys_addr; | 
|  | unsigned long prot = 0; | 
|  | void __iomem *maddr; | 
|  | int offset = addr & (PAGE_SIZE-1); | 
|  |  | 
|  | if (follow_phys(vma, addr, write, &prot, &phys_addr)) | 
|  | return -EINVAL; | 
|  |  | 
|  | maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); | 
|  | if (!maddr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (write) | 
|  | memcpy_toio(maddr + offset, buf, len); | 
|  | else | 
|  | memcpy_fromio(buf, maddr + offset, len); | 
|  | iounmap(maddr); | 
|  |  | 
|  | return len; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(generic_access_phys); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Access another process' address space as given in mm.  If non-NULL, use the | 
|  | * given task for page fault accounting. | 
|  | */ | 
|  | int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, | 
|  | unsigned long addr, void *buf, int len, unsigned int gup_flags) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | void *old_buf = buf; | 
|  | int write = gup_flags & FOLL_WRITE; | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  | /* ignore errors, just check how much was successfully transferred */ | 
|  | while (len) { | 
|  | int bytes, ret, offset; | 
|  | void *maddr; | 
|  | struct page *page = NULL; | 
|  |  | 
|  | ret = get_user_pages_remote(tsk, mm, addr, 1, | 
|  | gup_flags, &page, &vma); | 
|  | if (ret <= 0) { | 
|  | #ifndef CONFIG_HAVE_IOREMAP_PROT | 
|  | break; | 
|  | #else | 
|  | /* | 
|  | * Check if this is a VM_IO | VM_PFNMAP VMA, which | 
|  | * we can access using slightly different code. | 
|  | */ | 
|  | vma = find_vma(mm, addr); | 
|  | if (!vma || vma->vm_start > addr) | 
|  | break; | 
|  | if (vma->vm_ops && vma->vm_ops->access) | 
|  | ret = vma->vm_ops->access(vma, addr, buf, | 
|  | len, write); | 
|  | if (ret <= 0) | 
|  | break; | 
|  | bytes = ret; | 
|  | #endif | 
|  | } else { | 
|  | bytes = len; | 
|  | offset = addr & (PAGE_SIZE-1); | 
|  | if (bytes > PAGE_SIZE-offset) | 
|  | bytes = PAGE_SIZE-offset; | 
|  |  | 
|  | maddr = kmap(page); | 
|  | if (write) { | 
|  | copy_to_user_page(vma, page, addr, | 
|  | maddr + offset, buf, bytes); | 
|  | set_page_dirty_lock(page); | 
|  | } else { | 
|  | copy_from_user_page(vma, page, addr, | 
|  | buf, maddr + offset, bytes); | 
|  | } | 
|  | kunmap(page); | 
|  | put_page(page); | 
|  | } | 
|  | len -= bytes; | 
|  | buf += bytes; | 
|  | addr += bytes; | 
|  | } | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | return buf - old_buf; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * access_remote_vm - access another process' address space | 
|  | * @mm:		the mm_struct of the target address space | 
|  | * @addr:	start address to access | 
|  | * @buf:	source or destination buffer | 
|  | * @len:	number of bytes to transfer | 
|  | * @gup_flags:	flags modifying lookup behaviour | 
|  | * | 
|  | * The caller must hold a reference on @mm. | 
|  | */ | 
|  | int access_remote_vm(struct mm_struct *mm, unsigned long addr, | 
|  | void *buf, int len, unsigned int gup_flags) | 
|  | { | 
|  | return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Access another process' address space. | 
|  | * Source/target buffer must be kernel space, | 
|  | * Do not walk the page table directly, use get_user_pages | 
|  | */ | 
|  | int access_process_vm(struct task_struct *tsk, unsigned long addr, | 
|  | void *buf, int len, unsigned int gup_flags) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  | int ret; | 
|  |  | 
|  | mm = get_task_mm(tsk); | 
|  | if (!mm) | 
|  | return 0; | 
|  |  | 
|  | ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); | 
|  |  | 
|  | mmput(mm); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Print the name of a VMA. | 
|  | */ | 
|  | void print_vma_addr(char *prefix, unsigned long ip) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* | 
|  | * Do not print if we are in atomic | 
|  | * contexts (in exception stacks, etc.): | 
|  | */ | 
|  | if (preempt_count()) | 
|  | return; | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  | vma = find_vma(mm, ip); | 
|  | if (vma && vma->vm_file) { | 
|  | struct file *f = vma->vm_file; | 
|  | char *buf = (char *)__get_free_page(GFP_KERNEL); | 
|  | if (buf) { | 
|  | char *p; | 
|  |  | 
|  | p = file_path(f, buf, PAGE_SIZE); | 
|  | if (IS_ERR(p)) | 
|  | p = "?"; | 
|  | printk("%s%s[%lx+%lx]", prefix, kbasename(p), | 
|  | vma->vm_start, | 
|  | vma->vm_end - vma->vm_start); | 
|  | free_page((unsigned long)buf); | 
|  | } | 
|  | } | 
|  | up_read(&mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) | 
|  | void __might_fault(const char *file, int line) | 
|  | { | 
|  | /* | 
|  | * Some code (nfs/sunrpc) uses socket ops on kernel memory while | 
|  | * holding the mmap_sem, this is safe because kernel memory doesn't | 
|  | * get paged out, therefore we'll never actually fault, and the | 
|  | * below annotations will generate false positives. | 
|  | */ | 
|  | if (segment_eq(get_fs(), KERNEL_DS)) | 
|  | return; | 
|  | if (pagefault_disabled()) | 
|  | return; | 
|  | __might_sleep(file, line, 0); | 
|  | #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) | 
|  | if (current->mm) | 
|  | might_lock_read(¤t->mm->mmap_sem); | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL(__might_fault); | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) | 
|  | static void clear_gigantic_page(struct page *page, | 
|  | unsigned long addr, | 
|  | unsigned int pages_per_huge_page) | 
|  | { | 
|  | int i; | 
|  | struct page *p = page; | 
|  |  | 
|  | might_sleep(); | 
|  | for (i = 0; i < pages_per_huge_page; | 
|  | i++, p = mem_map_next(p, page, i)) { | 
|  | cond_resched(); | 
|  | clear_user_highpage(p, addr + i * PAGE_SIZE); | 
|  | } | 
|  | } | 
|  | void clear_huge_page(struct page *page, | 
|  | unsigned long addr, unsigned int pages_per_huge_page) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | 
|  | clear_gigantic_page(page, addr, pages_per_huge_page); | 
|  | return; | 
|  | } | 
|  |  | 
|  | might_sleep(); | 
|  | for (i = 0; i < pages_per_huge_page; i++) { | 
|  | cond_resched(); | 
|  | clear_user_highpage(page + i, addr + i * PAGE_SIZE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void copy_user_gigantic_page(struct page *dst, struct page *src, | 
|  | unsigned long addr, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned int pages_per_huge_page) | 
|  | { | 
|  | int i; | 
|  | struct page *dst_base = dst; | 
|  | struct page *src_base = src; | 
|  |  | 
|  | for (i = 0; i < pages_per_huge_page; ) { | 
|  | cond_resched(); | 
|  | copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); | 
|  |  | 
|  | i++; | 
|  | dst = mem_map_next(dst, dst_base, i); | 
|  | src = mem_map_next(src, src_base, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | void copy_user_huge_page(struct page *dst, struct page *src, | 
|  | unsigned long addr, struct vm_area_struct *vma, | 
|  | unsigned int pages_per_huge_page) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | 
|  | copy_user_gigantic_page(dst, src, addr, vma, | 
|  | pages_per_huge_page); | 
|  | return; | 
|  | } | 
|  |  | 
|  | might_sleep(); | 
|  | for (i = 0; i < pages_per_huge_page; i++) { | 
|  | cond_resched(); | 
|  | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ | 
|  |  | 
|  | #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS | 
|  |  | 
|  | static struct kmem_cache *page_ptl_cachep; | 
|  |  | 
|  | void __init ptlock_cache_init(void) | 
|  | { | 
|  | page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, | 
|  | SLAB_PANIC, NULL); | 
|  | } | 
|  |  | 
|  | bool ptlock_alloc(struct page *page) | 
|  | { | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); | 
|  | if (!ptl) | 
|  | return false; | 
|  | page->ptl = ptl; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void ptlock_free(struct page *page) | 
|  | { | 
|  | kmem_cache_free(page_ptl_cachep, page->ptl); | 
|  | } | 
|  | #endif |