blob: ad7fd3784e4875d654e3ca1bf2ccd66ea525982b [file] [log] [blame]
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "pp_debug.h"
#include <linux/firmware.h>
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "atomfirmware.h"
#include "amdgpu_atomfirmware.h"
#include "smu_v11_0.h"
#include "smu11_driver_if.h"
#include "soc15_common.h"
#include "atom.h"
#include "vega20_ppt.h"
#include "pp_thermal.h"
#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
#include "asic_reg/mp/mp_9_0_offset.h"
#include "asic_reg/mp/mp_9_0_sh_mask.h"
#include "asic_reg/nbio/nbio_7_4_offset.h"
#include "asic_reg/smuio/smuio_9_0_offset.h"
#include "asic_reg/smuio/smuio_9_0_sh_mask.h"
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
#define SMU11_TOOL_SIZE 0x19000
#define SMU11_THERMAL_MINIMUM_ALERT_TEMP 0
#define SMU11_THERMAL_MAXIMUM_ALERT_TEMP 255
#define SMU11_TEMPERATURE_UNITS_PER_CENTIGRADES 1000
#define SMU11_VOLTAGE_SCALE 4
#define SMC_DPM_FEATURE ((1 << FEATURE_DPM_PREFETCHER_BIT) | \
(1 << FEATURE_DPM_GFXCLK_BIT) | \
(1 << FEATURE_DPM_UCLK_BIT) | \
(1 << FEATURE_DPM_SOCCLK_BIT) | \
(1 << FEATURE_DPM_UVD_BIT) | \
(1 << FEATURE_DPM_VCE_BIT) | \
(1 << FEATURE_DPM_MP0CLK_BIT) | \
(1 << FEATURE_DPM_LINK_BIT) | \
(1 << FEATURE_DPM_DCEFCLK_BIT))
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
uint16_t msg)
{
struct amdgpu_device *adev = smu->adev;
WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
return 0;
}
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
{
struct amdgpu_device *adev = smu->adev;
*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
return 0;
}
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t cur_value, i;
for (i = 0; i < adev->usec_timeout; i++) {
cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
break;
udelay(1);
}
/* timeout means wrong logic */
if (i == adev->usec_timeout)
return -ETIME;
return RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
}
static int smu_v11_0_send_msg(struct smu_context *smu, uint16_t msg)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0, index = 0;
index = smu_msg_get_index(smu, msg);
if (index < 0)
return index;
smu_v11_0_wait_for_response(smu);
WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);
smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
ret = smu_v11_0_wait_for_response(smu);
if (ret)
pr_err("Failed to send message 0x%x, response 0x%x\n", index,
ret);
return ret;
}
static int
smu_v11_0_send_msg_with_param(struct smu_context *smu, uint16_t msg,
uint32_t param)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0, index = 0;
index = smu_msg_get_index(smu, msg);
if (index < 0)
return index;
ret = smu_v11_0_wait_for_response(smu);
if (ret)
pr_err("Failed to send message 0x%x, response 0x%x, param 0x%x\n",
index, ret, param);
WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);
WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);
smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
ret = smu_v11_0_wait_for_response(smu);
if (ret)
pr_err("Failed to send message 0x%x, response 0x%x param 0x%x\n",
index, ret, param);
return ret;
}
static int smu_v11_0_init_microcode(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
const char *chip_name;
char fw_name[30];
int err = 0;
const struct smc_firmware_header_v1_0 *hdr;
const struct common_firmware_header *header;
struct amdgpu_firmware_info *ucode = NULL;
switch (adev->asic_type) {
case CHIP_VEGA20:
chip_name = "vega20";
break;
default:
BUG();
}
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);
err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->pm.fw);
if (err)
goto out;
hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
amdgpu_ucode_print_smc_hdr(&hdr->header);
adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);
if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
ucode->fw = adev->pm.fw;
header = (const struct common_firmware_header *)ucode->fw->data;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
}
out:
if (err) {
DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
fw_name);
release_firmware(adev->pm.fw);
adev->pm.fw = NULL;
}
return err;
}
static int smu_v11_0_load_microcode(struct smu_context *smu)
{
return 0;
}
static int smu_v11_0_check_fw_status(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t mp1_fw_flags;
mp1_fw_flags = RREG32_PCIE(MP1_Public |
(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
return 0;
return -EIO;
}
static int smu_v11_0_check_fw_version(struct smu_context *smu)
{
uint32_t smu_version = 0xff;
int ret = 0;
ret = smu_send_smc_msg(smu, SMU_MSG_GetDriverIfVersion);
if (ret)
goto err;
ret = smu_read_smc_arg(smu, &smu_version);
if (ret)
goto err;
if (smu_version == SMU11_DRIVER_IF_VERSION)
return 0;
err:
return ret;
}
static int smu_v11_0_read_pptable_from_vbios(struct smu_context *smu)
{
int ret, index;
uint16_t size;
uint8_t frev, crev;
void *table;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
powerplayinfo);
ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
(uint8_t **)&table);
if (ret)
return ret;
if (!smu->smu_table.power_play_table)
smu->smu_table.power_play_table = table;
if (!smu->smu_table.power_play_table_size)
smu->smu_table.power_play_table_size = size;
return 0;
}
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
return -EINVAL;
return smu_alloc_dpm_context(smu);
}
static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
return -EINVAL;
kfree(smu_dpm->dpm_context);
kfree(smu_dpm->golden_dpm_context);
kfree(smu_dpm->dpm_current_power_state);
kfree(smu_dpm->dpm_request_power_state);
smu_dpm->dpm_context = NULL;
smu_dpm->golden_dpm_context = NULL;
smu_dpm->dpm_context_size = 0;
smu_dpm->dpm_current_power_state = NULL;
smu_dpm->dpm_request_power_state = NULL;
return 0;
}
static int smu_v11_0_init_smc_tables(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *tables = NULL;
int ret = 0;
if (smu_table->tables || smu_table->table_count != 0)
return -EINVAL;
tables = kcalloc(TABLE_COUNT, sizeof(struct smu_table), GFP_KERNEL);
if (!tables)
return -ENOMEM;
smu_table->tables = tables;
smu_table->table_count = TABLE_COUNT;
SMU_TABLE_INIT(tables, TABLE_PPTABLE, sizeof(PPTable_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, TABLE_WATERMARKS, sizeof(Watermarks_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, TABLE_OVERDRIVE, sizeof(OverDriveTable_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, TABLE_ACTIVITY_MONITOR_COEFF,
sizeof(DpmActivityMonitorCoeffInt_t),
PAGE_SIZE,
AMDGPU_GEM_DOMAIN_VRAM);
ret = smu_v11_0_init_dpm_context(smu);
if (ret)
return ret;
return 0;
}
static int smu_v11_0_fini_smc_tables(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
int ret = 0;
if (!smu_table->tables || smu_table->table_count == 0)
return -EINVAL;
kfree(smu_table->tables);
smu_table->tables = NULL;
smu_table->table_count = 0;
ret = smu_v11_0_fini_dpm_context(smu);
if (ret)
return ret;
return 0;
}
static int smu_v11_0_init_power(struct smu_context *smu)
{
struct smu_power_context *smu_power = &smu->smu_power;
if (smu_power->power_context || smu_power->power_context_size != 0)
return -EINVAL;
smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
GFP_KERNEL);
if (!smu_power->power_context)
return -ENOMEM;
smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);
return 0;
}
static int smu_v11_0_fini_power(struct smu_context *smu)
{
struct smu_power_context *smu_power = &smu->smu_power;
if (!smu_power->power_context || smu_power->power_context_size == 0)
return -EINVAL;
kfree(smu_power->power_context);
smu_power->power_context = NULL;
smu_power->power_context_size = 0;
return 0;
}
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
int ret, index;
uint16_t size;
uint8_t frev, crev;
struct atom_common_table_header *header;
struct atom_firmware_info_v3_3 *v_3_3;
struct atom_firmware_info_v3_1 *v_3_1;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
firmwareinfo);
ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
(uint8_t **)&header);
if (ret)
return ret;
if (header->format_revision != 3) {
pr_err("unknown atom_firmware_info version! for smu11\n");
return -EINVAL;
}
switch (header->content_revision) {
case 0:
case 1:
case 2:
v_3_1 = (struct atom_firmware_info_v3_1 *)header;
smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
smu->smu_table.boot_values.socclk = 0;
smu->smu_table.boot_values.dcefclk = 0;
smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
smu->smu_table.boot_values.pp_table_id = 0;
break;
case 3:
default:
v_3_3 = (struct atom_firmware_info_v3_3 *)header;
smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
smu->smu_table.boot_values.socclk = 0;
smu->smu_table.boot_values.dcefclk = 0;
smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
}
return 0;
}
static int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
{
int ret, index;
struct amdgpu_device *adev = smu->adev;
struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
struct atom_get_smu_clock_info_output_parameters_v3_1 *output;
input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
getsmuclockinfo);
ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
(uint32_t *)&input);
if (ret)
return -EINVAL;
output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
memset(&input, 0, sizeof(input));
input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
getsmuclockinfo);
ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
(uint32_t *)&input);
if (ret)
return -EINVAL;
output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
memset(&input, 0, sizeof(input));
input.clk_id = SMU11_SYSPLL0_ECLK_ID;
input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
getsmuclockinfo);
ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
(uint32_t *)&input);
if (ret)
return -EINVAL;
output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
memset(&input, 0, sizeof(input));
input.clk_id = SMU11_SYSPLL0_VCLK_ID;
input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
getsmuclockinfo);
ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
(uint32_t *)&input);
if (ret)
return -EINVAL;
output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
memset(&input, 0, sizeof(input));
input.clk_id = SMU11_SYSPLL0_DCLK_ID;
input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
getsmuclockinfo);
ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
(uint32_t *)&input);
if (ret)
return -EINVAL;
output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
return 0;
}
static int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *memory_pool = &smu_table->memory_pool;
int ret = 0;
uint64_t address;
uint32_t address_low, address_high;
if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
return ret;
address = (uint64_t)memory_pool->cpu_addr;
address_high = (uint32_t)upper_32_bits(address);
address_low = (uint32_t)lower_32_bits(address);
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetSystemVirtualDramAddrHigh,
address_high);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetSystemVirtualDramAddrLow,
address_low);
if (ret)
return ret;
address = memory_pool->mc_address;
address_high = (uint32_t)upper_32_bits(address);
address_low = (uint32_t)lower_32_bits(address);
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
address_high);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
address_low);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
(uint32_t)memory_pool->size);
if (ret)
return ret;
return ret;
}
static int smu_v11_0_check_pptable(struct smu_context *smu)
{
int ret;
ret = smu_check_powerplay_table(smu);
return ret;
}
static int smu_v11_0_parse_pptable(struct smu_context *smu)
{
int ret;
struct smu_table_context *table_context = &smu->smu_table;
if (table_context->driver_pptable)
return -EINVAL;
table_context->driver_pptable = kzalloc(sizeof(PPTable_t), GFP_KERNEL);
if (!table_context->driver_pptable)
return -ENOMEM;
ret = smu_store_powerplay_table(smu);
if (ret)
return -EINVAL;
ret = smu_append_powerplay_table(smu);
return ret;
}
static int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
{
int ret;
ret = smu_set_default_dpm_table(smu);
return ret;
}
static int smu_v11_0_write_pptable(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
int ret = 0;
ret = smu_update_table(smu, TABLE_PPTABLE, table_context->driver_pptable, true);
return ret;
}
static int smu_v11_0_write_watermarks_table(struct smu_context *smu)
{
return smu_update_table(smu, TABLE_WATERMARKS,
smu->smu_table.tables[TABLE_WATERMARKS].cpu_addr, true);
}
static int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
{
int ret;
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetMinDeepSleepDcefclk, clk);
if (ret)
pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");
return ret;
}
static int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
if (!table_context)
return -EINVAL;
return smu_set_deep_sleep_dcefclk(smu,
table_context->boot_values.dcefclk / 100);
}
static int smu_v11_0_set_tool_table_location(struct smu_context *smu)
{
int ret = 0;
struct smu_table *tool_table = &smu->smu_table.tables[TABLE_PMSTATUSLOG];
if (tool_table->mc_address) {
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetToolsDramAddrHigh,
upper_32_bits(tool_table->mc_address));
if (!ret)
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_SetToolsDramAddrLow,
lower_32_bits(tool_table->mc_address));
}
return ret;
}
static int smu_v11_0_init_display(struct smu_context *smu)
{
int ret = 0;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0);
return ret;
}
static int smu_v11_0_update_feature_enable_state(struct smu_context *smu, uint32_t feature_id, bool enabled)
{
uint32_t feature_low = 0, feature_high = 0;
int ret = 0;
if (feature_id >= 0 && feature_id < 31)
feature_low = (1 << feature_id);
else if (feature_id > 31 && feature_id < 63)
feature_high = (1 << feature_id);
else
return -EINVAL;
if (enabled) {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
feature_low);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
feature_high);
if (ret)
return ret;
} else {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
feature_low);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
feature_high);
if (ret)
return ret;
}
return ret;
}
static int smu_v11_0_set_allowed_mask(struct smu_context *smu)
{
struct smu_feature *feature = &smu->smu_feature;
int ret = 0;
uint32_t feature_mask[2];
mutex_lock(&feature->mutex);
if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
goto failed;
bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
feature_mask[1]);
if (ret)
goto failed;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
feature_mask[0]);
if (ret)
goto failed;
failed:
mutex_unlock(&feature->mutex);
return ret;
}
static int smu_v11_0_get_enabled_mask(struct smu_context *smu,
uint32_t *feature_mask, uint32_t num)
{
uint32_t feature_mask_high = 0, feature_mask_low = 0;
int ret = 0;
if (!feature_mask || num < 2)
return -EINVAL;
ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh);
if (ret)
return ret;
ret = smu_read_smc_arg(smu, &feature_mask_high);
if (ret)
return ret;
ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow);
if (ret)
return ret;
ret = smu_read_smc_arg(smu, &feature_mask_low);
if (ret)
return ret;
feature_mask[0] = feature_mask_low;
feature_mask[1] = feature_mask_high;
return ret;
}
static bool smu_v11_0_is_dpm_running(struct smu_context *smu)
{
int ret = 0;
uint32_t feature_mask[2];
unsigned long feature_enabled;
ret = smu_v11_0_get_enabled_mask(smu, feature_mask, 2);
feature_enabled = (unsigned long)((uint64_t)feature_mask[0] |
((uint64_t)feature_mask[1] << 32));
return !!(feature_enabled & SMC_DPM_FEATURE);
}
static int smu_v11_0_system_features_control(struct smu_context *smu,
bool en)
{
struct smu_feature *feature = &smu->smu_feature;
uint32_t feature_mask[2];
int ret = 0;
ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
SMU_MSG_DisableAllSmuFeatures));
if (ret)
return ret;
ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
if (ret)
return ret;
bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
feature->feature_num);
bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
feature->feature_num);
return ret;
}
static int smu_v11_0_notify_display_change(struct smu_context *smu)
{
int ret = 0;
if (smu_feature_is_enabled(smu, FEATURE_DPM_UCLK_BIT))
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1);
return ret;
}
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
PPCLK_e clock_select)
{
int ret = 0;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
clock_select << 16);
if (ret) {
pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
return ret;
}
ret = smu_read_smc_arg(smu, clock);
if (ret)
return ret;
if (*clock != 0)
return 0;
/* if DC limit is zero, return AC limit */
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
clock_select << 16);
if (ret) {
pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
return ret;
}
ret = smu_read_smc_arg(smu, clock);
return ret;
}
static int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
{
struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
int ret = 0;
max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
GFP_KERNEL);
smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;
max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
max_sustainable_clocks->display_clock = 0xFFFFFFFF;
max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;
if (smu_feature_is_enabled(smu, FEATURE_DPM_UCLK_BIT)) {
ret = smu_v11_0_get_max_sustainable_clock(smu,
&(max_sustainable_clocks->uclock),
PPCLK_UCLK);
if (ret) {
pr_err("[%s] failed to get max UCLK from SMC!",
__func__);
return ret;
}
}
if (smu_feature_is_enabled(smu, FEATURE_DPM_SOCCLK_BIT)) {
ret = smu_v11_0_get_max_sustainable_clock(smu,
&(max_sustainable_clocks->soc_clock),
PPCLK_SOCCLK);
if (ret) {
pr_err("[%s] failed to get max SOCCLK from SMC!",
__func__);
return ret;
}
}
if (smu_feature_is_enabled(smu, FEATURE_DPM_DCEFCLK_BIT)) {
ret = smu_v11_0_get_max_sustainable_clock(smu,
&(max_sustainable_clocks->dcef_clock),
PPCLK_DCEFCLK);
if (ret) {
pr_err("[%s] failed to get max DCEFCLK from SMC!",
__func__);
return ret;
}
ret = smu_v11_0_get_max_sustainable_clock(smu,
&(max_sustainable_clocks->display_clock),
PPCLK_DISPCLK);
if (ret) {
pr_err("[%s] failed to get max DISPCLK from SMC!",
__func__);
return ret;
}
ret = smu_v11_0_get_max_sustainable_clock(smu,
&(max_sustainable_clocks->phy_clock),
PPCLK_PHYCLK);
if (ret) {
pr_err("[%s] failed to get max PHYCLK from SMC!",
__func__);
return ret;
}
ret = smu_v11_0_get_max_sustainable_clock(smu,
&(max_sustainable_clocks->pixel_clock),
PPCLK_PIXCLK);
if (ret) {
pr_err("[%s] failed to get max PIXCLK from SMC!",
__func__);
return ret;
}
}
if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;
return 0;
}
static int smu_v11_0_get_power_limit(struct smu_context *smu,
uint32_t *limit,
bool get_default)
{
int ret = 0;
if (get_default) {
mutex_lock(&smu->mutex);
*limit = smu->default_power_limit;
if (smu->od_enabled) {
*limit *= (100 + smu->smu_table.TDPODLimit);
*limit /= 100;
}
mutex_unlock(&smu->mutex);
} else {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetPptLimit,
POWER_SOURCE_AC << 16);
if (ret) {
pr_err("[%s] get PPT limit failed!", __func__);
return ret;
}
smu_read_smc_arg(smu, limit);
smu->power_limit = *limit;
}
return ret;
}
static int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
{
uint32_t max_power_limit;
int ret = 0;
if (n == 0)
n = smu->default_power_limit;
max_power_limit = smu->default_power_limit;
if (smu->od_enabled) {
max_power_limit *= (100 + smu->smu_table.TDPODLimit);
max_power_limit /= 100;
}
if (smu_feature_is_enabled(smu, FEATURE_PPT_BIT))
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n);
if (ret) {
pr_err("[%s] Set power limit Failed!", __func__);
return ret;
}
return ret;
}
static int smu_v11_0_get_current_clk_freq(struct smu_context *smu, uint32_t clk_id, uint32_t *value)
{
int ret = 0;
uint32_t freq;
if (clk_id >= PPCLK_COUNT || !value)
return -EINVAL;
ret = smu_send_smc_msg_with_param(smu,
SMU_MSG_GetDpmClockFreq, (clk_id << 16));
if (ret)
return ret;
ret = smu_read_smc_arg(smu, &freq);
if (ret)
return ret;
freq *= 100;
*value = freq;
return ret;
}
static int smu_v11_0_get_thermal_range(struct smu_context *smu,
struct PP_TemperatureRange *range)
{
memcpy(range, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));
range->max = smu->smu_table.software_shutdown_temp *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
return 0;
}
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
struct PP_TemperatureRange *range)
{
struct amdgpu_device *adev = smu->adev;
int low = SMU11_THERMAL_MINIMUM_ALERT_TEMP *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
int high = SMU11_THERMAL_MAXIMUM_ALERT_TEMP *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
uint32_t val;
if (low < range->min)
low = range->min;
if (high > range->max)
high = range->max;
if (low > high)
return -EINVAL;
val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES));
val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low / PP_TEMPERATURE_UNITS_PER_CENTIGRADES));
val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);
WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);
return 0;
}
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t val = 0;
val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);
WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);
return 0;
}
static int smu_v11_0_set_thermal_fan_table(struct smu_context *smu)
{
int ret;
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *pptable = table_context->driver_pptable;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetFanTemperatureTarget,
(uint32_t)pptable->FanTargetTemperature);
return ret;
}
static int smu_v11_0_start_thermal_control(struct smu_context *smu)
{
int ret = 0;
struct PP_TemperatureRange range;
struct amdgpu_device *adev = smu->adev;
smu_v11_0_get_thermal_range(smu, &range);
if (smu->smu_table.thermal_controller_type) {
ret = smu_v11_0_set_thermal_range(smu, &range);
if (ret)
return ret;
ret = smu_v11_0_enable_thermal_alert(smu);
if (ret)
return ret;
ret = smu_v11_0_set_thermal_fan_table(smu);
if (ret)
return ret;
}
adev->pm.dpm.thermal.min_temp = range.min;
adev->pm.dpm.thermal.max_temp = range.max;
return ret;
}
static int smu_v11_0_get_current_activity_percent(struct smu_context *smu,
uint32_t *value)
{
int ret = 0;
SmuMetrics_t metrics;
if (!value)
return -EINVAL;
ret = smu_update_table(smu, TABLE_SMU_METRICS, (void *)&metrics, false);
if (ret)
return ret;
*value = metrics.AverageGfxActivity;
return 0;
}
static int smu_v11_0_thermal_get_temperature(struct smu_context *smu, uint32_t *value)
{
struct amdgpu_device *adev = smu->adev;
uint32_t temp = 0;
if (!value)
return -EINVAL;
temp = RREG32_SOC15(THM, 0, mmCG_MULT_THERMAL_STATUS);
temp = (temp & CG_MULT_THERMAL_STATUS__CTF_TEMP_MASK) >>
CG_MULT_THERMAL_STATUS__CTF_TEMP__SHIFT;
temp = temp & 0x1ff;
temp *= SMU11_TEMPERATURE_UNITS_PER_CENTIGRADES;
*value = temp;
return 0;
}
static int smu_v11_0_get_gpu_power(struct smu_context *smu, uint32_t *value)
{
int ret = 0;
SmuMetrics_t metrics;
if (!value)
return -EINVAL;
ret = smu_update_table(smu, TABLE_SMU_METRICS, (void *)&metrics, false);
if (ret)
return ret;
*value = metrics.CurrSocketPower << 8;
return 0;
}
static uint16_t convert_to_vddc(uint8_t vid)
{
return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}
static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
struct amdgpu_device *adev = smu->adev;
uint32_t vdd = 0, val_vid = 0;
if (!value)
return -EINVAL;
val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;
vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);
*value = vdd;
return 0;
}
static int smu_v11_0_read_sensor(struct smu_context *smu,
enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *pptable = table_context->driver_pptable;
int ret = 0;
switch (sensor) {
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = smu_v11_0_get_current_activity_percent(smu,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_MCLK:
ret = smu_get_current_clk_freq(smu, PPCLK_UCLK, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_SCLK:
ret = smu_get_current_clk_freq(smu, PPCLK_GFXCLK, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_TEMP:
ret = smu_v11_0_thermal_get_temperature(smu, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_POWER:
ret = smu_v11_0_get_gpu_power(smu, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_VDDGFX:
ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_UVD_POWER:
*(uint32_t *)data = smu_feature_is_enabled(smu, FEATURE_DPM_UVD_BIT) ? 1 : 0;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VCE_POWER:
*(uint32_t *)data = smu_feature_is_enabled(smu, FEATURE_DPM_VCE_BIT) ? 1 : 0;
*size = 4;
break;
case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
*(uint32_t *)data = 0;
*size = 4;
break;
case AMDGPU_PP_SENSOR_MAX_FAN_RPM:
*(uint32_t *)data = pptable->FanMaximumRpm;
*size = 4;
break;
default:
ret = smu_common_read_sensor(smu, sensor, data, size);
break;
}
if (ret)
*size = 0;
return ret;
}
static int
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
struct pp_display_clock_request
*clock_req)
{
enum amd_pp_clock_type clk_type = clock_req->clock_type;
int ret = 0;
PPCLK_e clk_select = 0;
uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
if (smu_feature_is_enabled(smu, FEATURE_DPM_DCEFCLK_BIT)) {
switch (clk_type) {
case amd_pp_dcef_clock:
clk_select = PPCLK_DCEFCLK;
break;
case amd_pp_disp_clock:
clk_select = PPCLK_DISPCLK;
break;
case amd_pp_pixel_clock:
clk_select = PPCLK_PIXCLK;
break;
case amd_pp_phy_clock:
clk_select = PPCLK_PHYCLK;
break;
default:
pr_info("[%s] Invalid Clock Type!", __func__);
ret = -EINVAL;
break;
}
if (ret)
goto failed;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
(clk_select << 16) | clk_freq);
}
failed:
return ret;
}
static int smu_v11_0_set_watermarks_table(struct smu_context *smu,
Watermarks_t *table, struct
dm_pp_wm_sets_with_clock_ranges_soc15
*clock_ranges)
{
int i;
if (!table || !clock_ranges)
return -EINVAL;
if (clock_ranges->num_wm_dmif_sets > 4 ||
clock_ranges->num_wm_mcif_sets > 4)
return -EINVAL;
for (i = 0; i < clock_ranges->num_wm_dmif_sets; i++) {
table->WatermarkRow[1][i].MinClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz /
1000));
table->WatermarkRow[1][i].MaxClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz /
1000));
table->WatermarkRow[1][i].MinUclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz /
1000));
table->WatermarkRow[1][i].MaxUclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz /
1000));
table->WatermarkRow[1][i].WmSetting = (uint8_t)
clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id;
}
for (i = 0; i < clock_ranges->num_wm_mcif_sets; i++) {
table->WatermarkRow[0][i].MinClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz /
1000));
table->WatermarkRow[0][i].MaxClock =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz /
1000));
table->WatermarkRow[0][i].MinUclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz /
1000));
table->WatermarkRow[0][i].MaxUclk =
cpu_to_le16((uint16_t)
(clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz /
1000));
table->WatermarkRow[0][i].WmSetting = (uint8_t)
clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id;
}
return 0;
}
static int
smu_v11_0_set_watermarks_for_clock_ranges(struct smu_context *smu, struct
dm_pp_wm_sets_with_clock_ranges_soc15
*clock_ranges)
{
int ret = 0;
struct smu_table *watermarks = &smu->smu_table.tables[TABLE_WATERMARKS];
Watermarks_t *table = watermarks->cpu_addr;
if (!smu->disable_watermark &&
smu_feature_is_enabled(smu, FEATURE_DPM_DCEFCLK_BIT) &&
smu_feature_is_enabled(smu, FEATURE_DPM_SOCCLK_BIT)) {
smu_v11_0_set_watermarks_table(smu, table, clock_ranges);
smu->watermarks_bitmap |= WATERMARKS_EXIST;
smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
}
return ret;
}
static int smu_v11_0_get_clock_ranges(struct smu_context *smu,
uint32_t *clock,
PPCLK_e clock_select,
bool max)
{
int ret;
*clock = 0;
if (max) {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
(clock_select << 16));
if (ret) {
pr_err("[GetClockRanges] Failed to get max clock from SMC!\n");
return ret;
}
smu_read_smc_arg(smu, clock);
} else {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq,
(clock_select << 16));
if (ret) {
pr_err("[GetClockRanges] Failed to get min clock from SMC!\n");
return ret;
}
smu_read_smc_arg(smu, clock);
}
return 0;
}
static uint32_t smu_v11_0_dpm_get_sclk(struct smu_context *smu, bool low)
{
uint32_t gfx_clk;
int ret;
if (!smu_feature_is_enabled(smu, FEATURE_DPM_GFXCLK_BIT)) {
pr_err("[GetSclks]: gfxclk dpm not enabled!\n");
return -EPERM;
}
if (low) {
ret = smu_v11_0_get_clock_ranges(smu, &gfx_clk, PPCLK_GFXCLK, false);
if (ret) {
pr_err("[GetSclks]: fail to get min PPCLK_GFXCLK\n");
return ret;
}
} else {
ret = smu_v11_0_get_clock_ranges(smu, &gfx_clk, PPCLK_GFXCLK, true);
if (ret) {
pr_err("[GetSclks]: fail to get max PPCLK_GFXCLK\n");
return ret;
}
}
return (gfx_clk * 100);
}
static uint32_t smu_v11_0_dpm_get_mclk(struct smu_context *smu, bool low)
{
uint32_t mem_clk;
int ret;
if (!smu_feature_is_enabled(smu, FEATURE_DPM_UCLK_BIT)) {
pr_err("[GetMclks]: memclk dpm not enabled!\n");
return -EPERM;
}
if (low) {
ret = smu_v11_0_get_clock_ranges(smu, &mem_clk, PPCLK_UCLK, false);
if (ret) {
pr_err("[GetMclks]: fail to get min PPCLK_UCLK\n");
return ret;
}
} else {
ret = smu_v11_0_get_clock_ranges(smu, &mem_clk, PPCLK_GFXCLK, true);
if (ret) {
pr_err("[GetMclks]: fail to get max PPCLK_UCLK\n");
return ret;
}
}
return (mem_clk * 100);
}
static int smu_v11_0_set_od8_default_settings(struct smu_context *smu,
bool initialize)
{
struct smu_table_context *table_context = &smu->smu_table;
int ret;
if (initialize) {
if (table_context->overdrive_table)
return -EINVAL;
table_context->overdrive_table = kzalloc(sizeof(OverDriveTable_t), GFP_KERNEL);
if (!table_context->overdrive_table)
return -ENOMEM;
ret = smu_update_table(smu, TABLE_OVERDRIVE, table_context->overdrive_table, false);
if (ret) {
pr_err("Failed to export over drive table!\n");
return ret;
}
smu_set_default_od8_settings(smu);
}
ret = smu_update_table(smu, TABLE_OVERDRIVE, table_context->overdrive_table, true);
if (ret) {
pr_err("Failed to import over drive table!\n");
return ret;
}
return 0;
}
static int smu_v11_0_set_activity_monitor_coeff(struct smu_context *smu,
uint8_t *table, uint16_t workload_type)
{
int ret = 0;
memcpy(smu->smu_table.tables[TABLE_ACTIVITY_MONITOR_COEFF].cpu_addr,
table, smu->smu_table.tables[TABLE_ACTIVITY_MONITOR_COEFF].size);
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrHigh,
upper_32_bits(smu->smu_table.tables[TABLE_ACTIVITY_MONITOR_COEFF].mc_address));
if (ret) {
pr_err("[%s] Attempt to Set Dram Addr High Failed!", __func__);
return ret;
}
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrLow,
lower_32_bits(smu->smu_table.tables[TABLE_ACTIVITY_MONITOR_COEFF].mc_address));
if (ret) {
pr_err("[%s] Attempt to Set Dram Addr Low Failed!", __func__);
return ret;
}
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_TransferTableSmu2Dram,
TABLE_ACTIVITY_MONITOR_COEFF | (workload_type << 16));
if (ret) {
pr_err("[%s] Attempt to Transfer Table From SMU Failed!", __func__);
return ret;
}
return ret;
}
static int smu_v11_0_get_activity_monitor_coeff(struct smu_context *smu,
uint8_t *table, uint16_t workload_type)
{
int ret = 0;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrHigh,
upper_32_bits(smu->smu_table.tables[TABLE_ACTIVITY_MONITOR_COEFF].mc_address));
if (ret) {
pr_err("[%s] Attempt to Set Dram Addr High Failed!", __func__);
return ret;
}
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrLow,
lower_32_bits(smu->smu_table.tables[TABLE_ACTIVITY_MONITOR_COEFF].mc_address));
if (ret) {
pr_err("[%s] Attempt to Set Dram Addr Low Failed!", __func__);
return ret;
}
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_TransferTableSmu2Dram,
TABLE_ACTIVITY_MONITOR_COEFF | (workload_type << 16));
if (ret) {
pr_err("[%s] Attempt to Transfer Table From SMU Failed!", __func__);
return ret;
}
return ret;
}
static int smu_v11_0_conv_power_profile_to_pplib_workload(int power_profile)
{
int pplib_workload = 0;
switch (power_profile) {
case PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT:
pplib_workload = WORKLOAD_DEFAULT_BIT;
break;
case PP_SMC_POWER_PROFILE_FULLSCREEN3D:
pplib_workload = WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT;
break;
case PP_SMC_POWER_PROFILE_POWERSAVING:
pplib_workload = WORKLOAD_PPLIB_POWER_SAVING_BIT;
break;
case PP_SMC_POWER_PROFILE_VIDEO:
pplib_workload = WORKLOAD_PPLIB_VIDEO_BIT;
break;
case PP_SMC_POWER_PROFILE_VR:
pplib_workload = WORKLOAD_PPLIB_VR_BIT;
break;
case PP_SMC_POWER_PROFILE_COMPUTE:
pplib_workload = WORKLOAD_PPLIB_COMPUTE_BIT;
break;
case PP_SMC_POWER_PROFILE_CUSTOM:
pplib_workload = WORKLOAD_PPLIB_CUSTOM_BIT;
break;
}
return pplib_workload;
}
static int smu_v11_0_get_power_profile_mode(struct smu_context *smu, char *buf)
{
DpmActivityMonitorCoeffInt_t activity_monitor;
uint32_t i, size = 0;
uint16_t workload_type = 0;
static const char *profile_name[] = {
"BOOTUP_DEFAULT",
"3D_FULL_SCREEN",
"POWER_SAVING",
"VIDEO",
"VR",
"COMPUTE",
"CUSTOM"};
static const char *title[] = {
"PROFILE_INDEX(NAME)",
"CLOCK_TYPE(NAME)",
"FPS",
"UseRlcBusy",
"MinActiveFreqType",
"MinActiveFreq",
"BoosterFreqType",
"BoosterFreq",
"PD_Data_limit_c",
"PD_Data_error_coeff",
"PD_Data_error_rate_coeff"};
int result = 0;
if (!buf)
return -EINVAL;
size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n",
title[0], title[1], title[2], title[3], title[4], title[5],
title[6], title[7], title[8], title[9], title[10]);
for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type = smu_v11_0_conv_power_profile_to_pplib_workload(i);
result = smu_v11_0_get_activity_monitor_coeff(smu,
(uint8_t *)(&activity_monitor),
workload_type);
if (result) {
pr_err("[%s] Failed to get activity monitor!", __func__);
return result;
}
size += sprintf(buf + size, "%2d %14s%s:\n",
i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");
size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
0,
"GFXCLK",
activity_monitor.Gfx_FPS,
activity_monitor.Gfx_UseRlcBusy,
activity_monitor.Gfx_MinActiveFreqType,
activity_monitor.Gfx_MinActiveFreq,
activity_monitor.Gfx_BoosterFreqType,
activity_monitor.Gfx_BoosterFreq,
activity_monitor.Gfx_PD_Data_limit_c,
activity_monitor.Gfx_PD_Data_error_coeff,
activity_monitor.Gfx_PD_Data_error_rate_coeff);
size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
1,
"SOCCLK",
activity_monitor.Soc_FPS,
activity_monitor.Soc_UseRlcBusy,
activity_monitor.Soc_MinActiveFreqType,
activity_monitor.Soc_MinActiveFreq,
activity_monitor.Soc_BoosterFreqType,
activity_monitor.Soc_BoosterFreq,
activity_monitor.Soc_PD_Data_limit_c,
activity_monitor.Soc_PD_Data_error_coeff,
activity_monitor.Soc_PD_Data_error_rate_coeff);
size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
2,
"UCLK",
activity_monitor.Mem_FPS,
activity_monitor.Mem_UseRlcBusy,
activity_monitor.Mem_MinActiveFreqType,
activity_monitor.Mem_MinActiveFreq,
activity_monitor.Mem_BoosterFreqType,
activity_monitor.Mem_BoosterFreq,
activity_monitor.Mem_PD_Data_limit_c,
activity_monitor.Mem_PD_Data_error_coeff,
activity_monitor.Mem_PD_Data_error_rate_coeff);
size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
3,
"FCLK",
activity_monitor.Fclk_FPS,
activity_monitor.Fclk_UseRlcBusy,
activity_monitor.Fclk_MinActiveFreqType,
activity_monitor.Fclk_MinActiveFreq,
activity_monitor.Fclk_BoosterFreqType,
activity_monitor.Fclk_BoosterFreq,
activity_monitor.Fclk_PD_Data_limit_c,
activity_monitor.Fclk_PD_Data_error_coeff,
activity_monitor.Fclk_PD_Data_error_rate_coeff);
}
return size;
}
static int smu_v11_0_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size)
{
DpmActivityMonitorCoeffInt_t activity_monitor;
int workload_type, ret = 0;
smu->power_profile_mode = input[size];
if (smu->power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
pr_err("Invalid power profile mode %d\n", smu->power_profile_mode);
return -EINVAL;
}
if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
if (size < 0)
return -EINVAL;
ret = smu_v11_0_get_activity_monitor_coeff(smu,
(uint8_t *)(&activity_monitor),
WORKLOAD_PPLIB_CUSTOM_BIT);
if (ret) {
pr_err("[%s] Failed to get activity monitor!", __func__);
return ret;
}
switch (input[0]) {
case 0: /* Gfxclk */
activity_monitor.Gfx_FPS = input[1];
activity_monitor.Gfx_UseRlcBusy = input[2];
activity_monitor.Gfx_MinActiveFreqType = input[3];
activity_monitor.Gfx_MinActiveFreq = input[4];
activity_monitor.Gfx_BoosterFreqType = input[5];
activity_monitor.Gfx_BoosterFreq = input[6];
activity_monitor.Gfx_PD_Data_limit_c = input[7];
activity_monitor.Gfx_PD_Data_error_coeff = input[8];
activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9];
break;
case 1: /* Socclk */
activity_monitor.Soc_FPS = input[1];
activity_monitor.Soc_UseRlcBusy = input[2];
activity_monitor.Soc_MinActiveFreqType = input[3];
activity_monitor.Soc_MinActiveFreq = input[4];
activity_monitor.Soc_BoosterFreqType = input[5];
activity_monitor.Soc_BoosterFreq = input[6];
activity_monitor.Soc_PD_Data_limit_c = input[7];
activity_monitor.Soc_PD_Data_error_coeff = input[8];
activity_monitor.Soc_PD_Data_error_rate_coeff = input[9];
break;
case 2: /* Uclk */
activity_monitor.Mem_FPS = input[1];
activity_monitor.Mem_UseRlcBusy = input[2];
activity_monitor.Mem_MinActiveFreqType = input[3];
activity_monitor.Mem_MinActiveFreq = input[4];
activity_monitor.Mem_BoosterFreqType = input[5];
activity_monitor.Mem_BoosterFreq = input[6];
activity_monitor.Mem_PD_Data_limit_c = input[7];
activity_monitor.Mem_PD_Data_error_coeff = input[8];
activity_monitor.Mem_PD_Data_error_rate_coeff = input[9];
break;
case 3: /* Fclk */
activity_monitor.Fclk_FPS = input[1];
activity_monitor.Fclk_UseRlcBusy = input[2];
activity_monitor.Fclk_MinActiveFreqType = input[3];
activity_monitor.Fclk_MinActiveFreq = input[4];
activity_monitor.Fclk_BoosterFreqType = input[5];
activity_monitor.Fclk_BoosterFreq = input[6];
activity_monitor.Fclk_PD_Data_limit_c = input[7];
activity_monitor.Fclk_PD_Data_error_coeff = input[8];
activity_monitor.Fclk_PD_Data_error_rate_coeff = input[9];
break;
}
ret = smu_v11_0_set_activity_monitor_coeff(smu,
(uint8_t *)(&activity_monitor),
WORKLOAD_PPLIB_CUSTOM_BIT);
if (ret) {
pr_err("[%s] Failed to set activity monitor!", __func__);
return ret;
}
}
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type =
smu_v11_0_conv_power_profile_to_pplib_workload(smu->power_profile_mode);
smu_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask,
1 << workload_type);
return ret;
}
static int smu_v11_0_update_od8_settings(struct smu_context *smu,
uint32_t index,
uint32_t value)
{
struct smu_table_context *table_context = &smu->smu_table;
int ret;
ret = smu_update_table(smu, TABLE_OVERDRIVE,
table_context->overdrive_table, false);
if (ret) {
pr_err("Failed to export over drive table!\n");
return ret;
}
smu_update_specified_od8_value(smu, index, value);
ret = smu_update_table(smu, TABLE_OVERDRIVE,
table_context->overdrive_table, true);
if (ret) {
pr_err("Failed to import over drive table!\n");
return ret;
}
return 0;
}
static int smu_v11_0_dpm_set_uvd_enable(struct smu_context *smu, bool enable)
{
if (!smu_feature_is_supported(smu, FEATURE_DPM_VCE_BIT))
return 0;
if (enable == smu_feature_is_enabled(smu, FEATURE_DPM_VCE_BIT))
return 0;
return smu_feature_set_enabled(smu, FEATURE_DPM_VCE_BIT, enable);
}
static int smu_v11_0_dpm_set_vce_enable(struct smu_context *smu, bool enable)
{
if (!smu_feature_is_supported(smu, FEATURE_DPM_UVD_BIT))
return 0;
if (enable == smu_feature_is_enabled(smu, FEATURE_DPM_UVD_BIT))
return 0;
return smu_feature_set_enabled(smu, FEATURE_DPM_UVD_BIT, enable);
}
static int smu_v11_0_get_current_rpm(struct smu_context *smu,
uint32_t *current_rpm)
{
int ret;
ret = smu_send_smc_msg(smu, SMU_MSG_GetCurrentRpm);
if (ret) {
pr_err("Attempt to get current RPM from SMC Failed!\n");
return ret;
}
smu_read_smc_arg(smu, current_rpm);
return 0;
}
static uint32_t
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
if (!smu_feature_is_enabled(smu, FEATURE_FAN_CONTROL_BIT))
return AMD_FAN_CTRL_MANUAL;
else
return AMD_FAN_CTRL_AUTO;
}
static int
smu_v11_0_get_fan_speed_percent(struct smu_context *smu,
uint32_t *speed)
{
int ret = 0;
uint32_t percent = 0;
uint32_t current_rpm;
PPTable_t *pptable = smu->smu_table.driver_pptable;
ret = smu_v11_0_get_current_rpm(smu, &current_rpm);
percent = current_rpm * 100 / pptable->FanMaximumRpm;
*speed = percent > 100 ? 100 : percent;
return ret;
}
static int
smu_v11_0_smc_fan_control(struct smu_context *smu, bool start)
{
int ret = 0;
if (smu_feature_is_supported(smu, FEATURE_FAN_CONTROL_BIT))
return 0;
ret = smu_feature_set_enabled(smu, FEATURE_FAN_CONTROL_BIT, start);
if (ret)
pr_err("[%s]%s smc FAN CONTROL feature failed!",
__func__, (start ? "Start" : "Stop"));
return ret;
}
static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
struct amdgpu_device *adev = smu->adev;
WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
CG_FDO_CTRL2, TMIN, 0));
WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
CG_FDO_CTRL2, FDO_PWM_MODE, mode));
return 0;
}
static int
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
struct amdgpu_device *adev = smu->adev;
uint32_t duty100;
uint32_t duty;
uint64_t tmp64;
bool stop = 0;
if (speed > 100)
speed = 100;
if (smu_v11_0_smc_fan_control(smu, stop))
return -EINVAL;
duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
CG_FDO_CTRL1, FMAX_DUTY100);
if (!duty100)
return -EINVAL;
tmp64 = (uint64_t)speed * duty100;
do_div(tmp64, 100);
duty = (uint32_t)tmp64;
WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));
return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}
static int
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
uint32_t mode)
{
int ret = 0;
bool start = 1;
bool stop = 0;
switch (mode) {
case AMD_FAN_CTRL_NONE:
ret = smu_v11_0_set_fan_speed_percent(smu, 100);
break;
case AMD_FAN_CTRL_MANUAL:
ret = smu_v11_0_smc_fan_control(smu, stop);
break;
case AMD_FAN_CTRL_AUTO:
ret = smu_v11_0_smc_fan_control(smu, start);
break;
default:
break;
}
if (ret) {
pr_err("[%s]Set fan control mode failed!", __func__);
return -EINVAL;
}
return ret;
}
static int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
uint32_t speed)
{
struct amdgpu_device *adev = smu->adev;
int ret;
uint32_t tach_period, crystal_clock_freq;
bool stop = 0;
if (!speed)
return -EINVAL;
mutex_lock(&(smu->mutex));
ret = smu_v11_0_smc_fan_control(smu, stop);
if (ret)
goto set_fan_speed_rpm_failed;
crystal_clock_freq = amdgpu_asic_get_xclk(adev);
tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
CG_TACH_CTRL, TARGET_PERIOD,
tach_period));
ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);
set_fan_speed_rpm_failed:
mutex_unlock(&(smu->mutex));
return ret;
}
static const struct smu_funcs smu_v11_0_funcs = {
.init_microcode = smu_v11_0_init_microcode,
.load_microcode = smu_v11_0_load_microcode,
.check_fw_status = smu_v11_0_check_fw_status,
.check_fw_version = smu_v11_0_check_fw_version,
.send_smc_msg = smu_v11_0_send_msg,
.send_smc_msg_with_param = smu_v11_0_send_msg_with_param,
.read_smc_arg = smu_v11_0_read_arg,
.read_pptable_from_vbios = smu_v11_0_read_pptable_from_vbios,
.init_smc_tables = smu_v11_0_init_smc_tables,
.fini_smc_tables = smu_v11_0_fini_smc_tables,
.init_power = smu_v11_0_init_power,
.fini_power = smu_v11_0_fini_power,
.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
.get_clk_info_from_vbios = smu_v11_0_get_clk_info_from_vbios,
.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
.check_pptable = smu_v11_0_check_pptable,
.parse_pptable = smu_v11_0_parse_pptable,
.populate_smc_pptable = smu_v11_0_populate_smc_pptable,
.write_pptable = smu_v11_0_write_pptable,
.write_watermarks_table = smu_v11_0_write_watermarks_table,
.set_min_dcef_deep_sleep = smu_v11_0_set_min_dcef_deep_sleep,
.set_tool_table_location = smu_v11_0_set_tool_table_location,
.init_display = smu_v11_0_init_display,
.set_allowed_mask = smu_v11_0_set_allowed_mask,
.get_enabled_mask = smu_v11_0_get_enabled_mask,
.is_dpm_running = smu_v11_0_is_dpm_running,
.system_features_control = smu_v11_0_system_features_control,
.update_feature_enable_state = smu_v11_0_update_feature_enable_state,
.notify_display_change = smu_v11_0_notify_display_change,
.get_power_limit = smu_v11_0_get_power_limit,
.set_power_limit = smu_v11_0_set_power_limit,
.get_current_clk_freq = smu_v11_0_get_current_clk_freq,
.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
.start_thermal_control = smu_v11_0_start_thermal_control,
.read_sensor = smu_v11_0_read_sensor,
.set_deep_sleep_dcefclk = smu_v11_0_set_deep_sleep_dcefclk,
.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
.set_watermarks_for_clock_ranges = smu_v11_0_set_watermarks_for_clock_ranges,
.get_sclk = smu_v11_0_dpm_get_sclk,
.get_mclk = smu_v11_0_dpm_get_mclk,
.set_od8_default_settings = smu_v11_0_set_od8_default_settings,
.get_activity_monitor_coeff = smu_v11_0_get_activity_monitor_coeff,
.set_activity_monitor_coeff = smu_v11_0_set_activity_monitor_coeff,
.conv_power_profile_to_pplib_workload = smu_v11_0_conv_power_profile_to_pplib_workload,
.get_power_profile_mode = smu_v11_0_get_power_profile_mode,
.set_power_profile_mode = smu_v11_0_set_power_profile_mode,
.update_od8_settings = smu_v11_0_update_od8_settings,
.dpm_set_uvd_enable = smu_v11_0_dpm_set_uvd_enable,
.dpm_set_vce_enable = smu_v11_0_dpm_set_vce_enable,
.get_current_rpm = smu_v11_0_get_current_rpm,
.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
.get_fan_speed_percent = smu_v11_0_get_fan_speed_percent,
.set_fan_speed_percent = smu_v11_0_set_fan_speed_percent,
.set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm,
};
void smu_v11_0_set_smu_funcs(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
smu->funcs = &smu_v11_0_funcs;
switch (adev->asic_type) {
case CHIP_VEGA20:
vega20_set_ppt_funcs(smu);
break;
default:
pr_warn("Unknow asic for smu11\n");
}
}