|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2017-2019 Borislav Petkov, SUSE Labs. | 
|  | */ | 
|  | #include <linux/mm.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/ras.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/workqueue.h> | 
|  |  | 
|  | #include <asm/mce.h> | 
|  |  | 
|  | #include "debugfs.h" | 
|  |  | 
|  | /* | 
|  | * RAS Correctable Errors Collector | 
|  | * | 
|  | * This is a simple gadget which collects correctable errors and counts their | 
|  | * occurrence per physical page address. | 
|  | * | 
|  | * We've opted for possibly the simplest data structure to collect those - an | 
|  | * array of the size of a memory page. It stores 512 u64's with the following | 
|  | * structure: | 
|  | * | 
|  | * [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0] | 
|  | * | 
|  | * The generation in the two highest order bits is two bits which are set to 11b | 
|  | * on every insertion. During the course of each entry's existence, the | 
|  | * generation field gets decremented during spring cleaning to 10b, then 01b and | 
|  | * then 00b. | 
|  | * | 
|  | * This way we're employing the natural numeric ordering to make sure that newly | 
|  | * inserted/touched elements have higher 12-bit counts (which we've manufactured) | 
|  | * and thus iterating over the array initially won't kick out those elements | 
|  | * which were inserted last. | 
|  | * | 
|  | * Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of | 
|  | * elements entered into the array, during which, we're decaying all elements. | 
|  | * If, after decay, an element gets inserted again, its generation is set to 11b | 
|  | * to make sure it has higher numerical count than other, older elements and | 
|  | * thus emulate an LRU-like behavior when deleting elements to free up space | 
|  | * in the page. | 
|  | * | 
|  | * When an element reaches it's max count of action_threshold, we try to poison | 
|  | * it by assuming that errors triggered action_threshold times in a single page | 
|  | * are excessive and that page shouldn't be used anymore. action_threshold is | 
|  | * initialized to COUNT_MASK which is the maximum. | 
|  | * | 
|  | * That error event entry causes cec_add_elem() to return !0 value and thus | 
|  | * signal to its callers to log the error. | 
|  | * | 
|  | * To the question why we've chosen a page and moving elements around with | 
|  | * memmove(), it is because it is a very simple structure to handle and max data | 
|  | * movement is 4K which on highly optimized modern CPUs is almost unnoticeable. | 
|  | * We wanted to avoid the pointer traversal of more complex structures like a | 
|  | * linked list or some sort of a balancing search tree. | 
|  | * | 
|  | * Deleting an element takes O(n) but since it is only a single page, it should | 
|  | * be fast enough and it shouldn't happen all too often depending on error | 
|  | * patterns. | 
|  | */ | 
|  |  | 
|  | #undef pr_fmt | 
|  | #define pr_fmt(fmt) "RAS: " fmt | 
|  |  | 
|  | /* | 
|  | * We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long | 
|  | * elements have stayed in the array without having been accessed again. | 
|  | */ | 
|  | #define DECAY_BITS		2 | 
|  | #define DECAY_MASK		((1ULL << DECAY_BITS) - 1) | 
|  | #define MAX_ELEMS		(PAGE_SIZE / sizeof(u64)) | 
|  |  | 
|  | /* | 
|  | * Threshold amount of inserted elements after which we start spring | 
|  | * cleaning. | 
|  | */ | 
|  | #define CLEAN_ELEMS		(MAX_ELEMS >> DECAY_BITS) | 
|  |  | 
|  | /* Bits which count the number of errors happened in this 4K page. */ | 
|  | #define COUNT_BITS		(PAGE_SHIFT - DECAY_BITS) | 
|  | #define COUNT_MASK		((1ULL << COUNT_BITS) - 1) | 
|  | #define FULL_COUNT_MASK		(PAGE_SIZE - 1) | 
|  |  | 
|  | /* | 
|  | * u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ] | 
|  | */ | 
|  |  | 
|  | #define PFN(e)			((e) >> PAGE_SHIFT) | 
|  | #define DECAY(e)		(((e) >> COUNT_BITS) & DECAY_MASK) | 
|  | #define COUNT(e)		((unsigned int)(e) & COUNT_MASK) | 
|  | #define FULL_COUNT(e)		((e) & (PAGE_SIZE - 1)) | 
|  |  | 
|  | static struct ce_array { | 
|  | u64 *array;			/* container page */ | 
|  | unsigned int n;			/* number of elements in the array */ | 
|  |  | 
|  | unsigned int decay_count;	/* | 
|  | * number of element insertions/increments | 
|  | * since the last spring cleaning. | 
|  | */ | 
|  |  | 
|  | u64 pfns_poisoned;		/* | 
|  | * number of PFNs which got poisoned. | 
|  | */ | 
|  |  | 
|  | u64 ces_entered;		/* | 
|  | * The number of correctable errors | 
|  | * entered into the collector. | 
|  | */ | 
|  |  | 
|  | u64 decays_done;		/* | 
|  | * Times we did spring cleaning. | 
|  | */ | 
|  |  | 
|  | union { | 
|  | struct { | 
|  | __u32	disabled : 1,	/* cmdline disabled */ | 
|  | __resv   : 31; | 
|  | }; | 
|  | __u32 flags; | 
|  | }; | 
|  | } ce_arr; | 
|  |  | 
|  | static DEFINE_MUTEX(ce_mutex); | 
|  | static u64 dfs_pfn; | 
|  |  | 
|  | /* Amount of errors after which we offline */ | 
|  | static u64 action_threshold = COUNT_MASK; | 
|  |  | 
|  | /* Each element "decays" each decay_interval which is 24hrs by default. */ | 
|  | #define CEC_DECAY_DEFAULT_INTERVAL	24 * 60 * 60	/* 24 hrs */ | 
|  | #define CEC_DECAY_MIN_INTERVAL		 1 * 60 * 60	/* 1h */ | 
|  | #define CEC_DECAY_MAX_INTERVAL	   30 *	24 * 60 * 60	/* one month */ | 
|  | static struct delayed_work cec_work; | 
|  | static u64 decay_interval = CEC_DECAY_DEFAULT_INTERVAL; | 
|  |  | 
|  | /* | 
|  | * Decrement decay value. We're using DECAY_BITS bits to denote decay of an | 
|  | * element in the array. On insertion and any access, it gets reset to max. | 
|  | */ | 
|  | static void do_spring_cleaning(struct ce_array *ca) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ca->n; i++) { | 
|  | u8 decay = DECAY(ca->array[i]); | 
|  |  | 
|  | if (!decay) | 
|  | continue; | 
|  |  | 
|  | decay--; | 
|  |  | 
|  | ca->array[i] &= ~(DECAY_MASK << COUNT_BITS); | 
|  | ca->array[i] |= (decay << COUNT_BITS); | 
|  | } | 
|  | ca->decay_count = 0; | 
|  | ca->decays_done++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @interval in seconds | 
|  | */ | 
|  | static void cec_mod_work(unsigned long interval) | 
|  | { | 
|  | unsigned long iv; | 
|  |  | 
|  | iv = interval * HZ; | 
|  | mod_delayed_work(system_wq, &cec_work, round_jiffies(iv)); | 
|  | } | 
|  |  | 
|  | static void cec_work_fn(struct work_struct *work) | 
|  | { | 
|  | mutex_lock(&ce_mutex); | 
|  | do_spring_cleaning(&ce_arr); | 
|  | mutex_unlock(&ce_mutex); | 
|  |  | 
|  | cec_mod_work(decay_interval); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @to: index of the smallest element which is >= then @pfn. | 
|  | * | 
|  | * Return the index of the pfn if found, otherwise negative value. | 
|  | */ | 
|  | static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to) | 
|  | { | 
|  | int min = 0, max = ca->n - 1; | 
|  | u64 this_pfn; | 
|  |  | 
|  | while (min <= max) { | 
|  | int i = (min + max) >> 1; | 
|  |  | 
|  | this_pfn = PFN(ca->array[i]); | 
|  |  | 
|  | if (this_pfn < pfn) | 
|  | min = i + 1; | 
|  | else if (this_pfn > pfn) | 
|  | max = i - 1; | 
|  | else if (this_pfn == pfn) { | 
|  | if (to) | 
|  | *to = i; | 
|  |  | 
|  | return i; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When the loop terminates without finding @pfn, min has the index of | 
|  | * the element slot where the new @pfn should be inserted. The loop | 
|  | * terminates when min > max, which means the min index points to the | 
|  | * bigger element while the max index to the smaller element, in-between | 
|  | * which the new @pfn belongs to. | 
|  | * | 
|  | * For more details, see exercise 1, Section 6.2.1 in TAOCP, vol. 3. | 
|  | */ | 
|  | if (to) | 
|  | *to = min; | 
|  |  | 
|  | return -ENOKEY; | 
|  | } | 
|  |  | 
|  | static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to) | 
|  | { | 
|  | WARN_ON(!to); | 
|  |  | 
|  | if (!ca->n) { | 
|  | *to = 0; | 
|  | return -ENOKEY; | 
|  | } | 
|  | return __find_elem(ca, pfn, to); | 
|  | } | 
|  |  | 
|  | static void del_elem(struct ce_array *ca, int idx) | 
|  | { | 
|  | /* Save us a function call when deleting the last element. */ | 
|  | if (ca->n - (idx + 1)) | 
|  | memmove((void *)&ca->array[idx], | 
|  | (void *)&ca->array[idx + 1], | 
|  | (ca->n - (idx + 1)) * sizeof(u64)); | 
|  |  | 
|  | ca->n--; | 
|  | } | 
|  |  | 
|  | static u64 del_lru_elem_unlocked(struct ce_array *ca) | 
|  | { | 
|  | unsigned int min = FULL_COUNT_MASK; | 
|  | int i, min_idx = 0; | 
|  |  | 
|  | for (i = 0; i < ca->n; i++) { | 
|  | unsigned int this = FULL_COUNT(ca->array[i]); | 
|  |  | 
|  | if (min > this) { | 
|  | min = this; | 
|  | min_idx = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | del_elem(ca, min_idx); | 
|  |  | 
|  | return PFN(ca->array[min_idx]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We return the 0th pfn in the error case under the assumption that it cannot | 
|  | * be poisoned and excessive CEs in there are a serious deal anyway. | 
|  | */ | 
|  | static u64 __maybe_unused del_lru_elem(void) | 
|  | { | 
|  | struct ce_array *ca = &ce_arr; | 
|  | u64 pfn; | 
|  |  | 
|  | if (!ca->n) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&ce_mutex); | 
|  | pfn = del_lru_elem_unlocked(ca); | 
|  | mutex_unlock(&ce_mutex); | 
|  |  | 
|  | return pfn; | 
|  | } | 
|  |  | 
|  | static bool sanity_check(struct ce_array *ca) | 
|  | { | 
|  | bool ret = false; | 
|  | u64 prev = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ca->n; i++) { | 
|  | u64 this = PFN(ca->array[i]); | 
|  |  | 
|  | if (WARN(prev > this, "prev: 0x%016llx <-> this: 0x%016llx\n", prev, this)) | 
|  | ret = true; | 
|  |  | 
|  | prev = this; | 
|  | } | 
|  |  | 
|  | if (!ret) | 
|  | return ret; | 
|  |  | 
|  | pr_info("Sanity check dump:\n{ n: %d\n", ca->n); | 
|  | for (i = 0; i < ca->n; i++) { | 
|  | u64 this = PFN(ca->array[i]); | 
|  |  | 
|  | pr_info(" %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i])); | 
|  | } | 
|  | pr_info("}\n"); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cec_add_elem - Add an element to the CEC array. | 
|  | * @pfn:	page frame number to insert | 
|  | * | 
|  | * Return values: | 
|  | * - <0:	on error | 
|  | * -  0:	on success | 
|  | * - >0:	when the inserted pfn was offlined | 
|  | */ | 
|  | static int cec_add_elem(u64 pfn) | 
|  | { | 
|  | struct ce_array *ca = &ce_arr; | 
|  | int count, err, ret = 0; | 
|  | unsigned int to = 0; | 
|  |  | 
|  | /* | 
|  | * We can be called very early on the identify_cpu() path where we are | 
|  | * not initialized yet. We ignore the error for simplicity. | 
|  | */ | 
|  | if (!ce_arr.array || ce_arr.disabled) | 
|  | return -ENODEV; | 
|  |  | 
|  | mutex_lock(&ce_mutex); | 
|  |  | 
|  | ca->ces_entered++; | 
|  |  | 
|  | /* Array full, free the LRU slot. */ | 
|  | if (ca->n == MAX_ELEMS) | 
|  | WARN_ON(!del_lru_elem_unlocked(ca)); | 
|  |  | 
|  | err = find_elem(ca, pfn, &to); | 
|  | if (err < 0) { | 
|  | /* | 
|  | * Shift range [to-end] to make room for one more element. | 
|  | */ | 
|  | memmove((void *)&ca->array[to + 1], | 
|  | (void *)&ca->array[to], | 
|  | (ca->n - to) * sizeof(u64)); | 
|  |  | 
|  | ca->array[to] = pfn << PAGE_SHIFT; | 
|  | ca->n++; | 
|  | } | 
|  |  | 
|  | /* Add/refresh element generation and increment count */ | 
|  | ca->array[to] |= DECAY_MASK << COUNT_BITS; | 
|  | ca->array[to]++; | 
|  |  | 
|  | /* Check action threshold and soft-offline, if reached. */ | 
|  | count = COUNT(ca->array[to]); | 
|  | if (count >= action_threshold) { | 
|  | u64 pfn = ca->array[to] >> PAGE_SHIFT; | 
|  |  | 
|  | if (!pfn_valid(pfn)) { | 
|  | pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn); | 
|  | } else { | 
|  | /* We have reached max count for this page, soft-offline it. */ | 
|  | pr_err("Soft-offlining pfn: 0x%llx\n", pfn); | 
|  | memory_failure_queue(pfn, MF_SOFT_OFFLINE); | 
|  | ca->pfns_poisoned++; | 
|  | } | 
|  |  | 
|  | del_elem(ca, to); | 
|  |  | 
|  | /* | 
|  | * Return a >0 value to callers, to denote that we've reached | 
|  | * the offlining threshold. | 
|  | */ | 
|  | ret = 1; | 
|  |  | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | ca->decay_count++; | 
|  |  | 
|  | if (ca->decay_count >= CLEAN_ELEMS) | 
|  | do_spring_cleaning(ca); | 
|  |  | 
|  | WARN_ON_ONCE(sanity_check(ca)); | 
|  |  | 
|  | unlock: | 
|  | mutex_unlock(&ce_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int u64_get(void *data, u64 *val) | 
|  | { | 
|  | *val = *(u64 *)data; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pfn_set(void *data, u64 val) | 
|  | { | 
|  | *(u64 *)data = val; | 
|  |  | 
|  | cec_add_elem(val); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n"); | 
|  |  | 
|  | static int decay_interval_set(void *data, u64 val) | 
|  | { | 
|  | if (val < CEC_DECAY_MIN_INTERVAL) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (val > CEC_DECAY_MAX_INTERVAL) | 
|  | return -EINVAL; | 
|  |  | 
|  | *(u64 *)data   = val; | 
|  | decay_interval = val; | 
|  |  | 
|  | cec_mod_work(decay_interval); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n"); | 
|  |  | 
|  | static int action_threshold_set(void *data, u64 val) | 
|  | { | 
|  | *(u64 *)data = val; | 
|  |  | 
|  | if (val > COUNT_MASK) | 
|  | val = COUNT_MASK; | 
|  |  | 
|  | action_threshold = val; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | DEFINE_DEBUGFS_ATTRIBUTE(action_threshold_ops, u64_get, action_threshold_set, "%lld\n"); | 
|  |  | 
|  | static const char * const bins[] = { "00", "01", "10", "11" }; | 
|  |  | 
|  | static int array_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct ce_array *ca = &ce_arr; | 
|  | int i; | 
|  |  | 
|  | mutex_lock(&ce_mutex); | 
|  |  | 
|  | seq_printf(m, "{ n: %d\n", ca->n); | 
|  | for (i = 0; i < ca->n; i++) { | 
|  | u64 this = PFN(ca->array[i]); | 
|  |  | 
|  | seq_printf(m, " %3d: [%016llx|%s|%03llx]\n", | 
|  | i, this, bins[DECAY(ca->array[i])], COUNT(ca->array[i])); | 
|  | } | 
|  |  | 
|  | seq_printf(m, "}\n"); | 
|  |  | 
|  | seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n", | 
|  | ca->ces_entered, ca->pfns_poisoned); | 
|  |  | 
|  | seq_printf(m, "Flags: 0x%x\n", ca->flags); | 
|  |  | 
|  | seq_printf(m, "Decay interval: %lld seconds\n", decay_interval); | 
|  | seq_printf(m, "Decays: %lld\n", ca->decays_done); | 
|  |  | 
|  | seq_printf(m, "Action threshold: %lld\n", action_threshold); | 
|  |  | 
|  | mutex_unlock(&ce_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DEFINE_SHOW_ATTRIBUTE(array); | 
|  |  | 
|  | static int __init create_debugfs_nodes(void) | 
|  | { | 
|  | struct dentry *d, *pfn, *decay, *count, *array; | 
|  |  | 
|  | d = debugfs_create_dir("cec", ras_debugfs_dir); | 
|  | if (!d) { | 
|  | pr_warn("Error creating cec debugfs node!\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d, | 
|  | &decay_interval, &decay_interval_ops); | 
|  | if (!decay) { | 
|  | pr_warn("Error creating decay_interval debugfs node!\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | count = debugfs_create_file("action_threshold", S_IRUSR | S_IWUSR, d, | 
|  | &action_threshold, &action_threshold_ops); | 
|  | if (!count) { | 
|  | pr_warn("Error creating action_threshold debugfs node!\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_RAS_CEC_DEBUG)) | 
|  | return 0; | 
|  |  | 
|  | pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops); | 
|  | if (!pfn) { | 
|  | pr_warn("Error creating pfn debugfs node!\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_fops); | 
|  | if (!array) { | 
|  | pr_warn("Error creating array debugfs node!\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | debugfs_remove_recursive(d); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int cec_notifier(struct notifier_block *nb, unsigned long val, | 
|  | void *data) | 
|  | { | 
|  | struct mce *m = (struct mce *)data; | 
|  |  | 
|  | if (!m) | 
|  | return NOTIFY_DONE; | 
|  |  | 
|  | /* We eat only correctable DRAM errors with usable addresses. */ | 
|  | if (mce_is_memory_error(m) && | 
|  | mce_is_correctable(m)  && | 
|  | mce_usable_address(m)) { | 
|  | if (!cec_add_elem(m->addr >> PAGE_SHIFT)) { | 
|  | m->kflags |= MCE_HANDLED_CEC; | 
|  | return NOTIFY_OK; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | static struct notifier_block cec_nb = { | 
|  | .notifier_call	= cec_notifier, | 
|  | .priority	= MCE_PRIO_CEC, | 
|  | }; | 
|  |  | 
|  | static int __init cec_init(void) | 
|  | { | 
|  | if (ce_arr.disabled) | 
|  | return -ENODEV; | 
|  |  | 
|  | ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL); | 
|  | if (!ce_arr.array) { | 
|  | pr_err("Error allocating CE array page!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (create_debugfs_nodes()) { | 
|  | free_page((unsigned long)ce_arr.array); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | INIT_DELAYED_WORK(&cec_work, cec_work_fn); | 
|  | schedule_delayed_work(&cec_work, CEC_DECAY_DEFAULT_INTERVAL); | 
|  |  | 
|  | mce_register_decode_chain(&cec_nb); | 
|  |  | 
|  | pr_info("Correctable Errors collector initialized.\n"); | 
|  | return 0; | 
|  | } | 
|  | late_initcall(cec_init); | 
|  |  | 
|  | int __init parse_cec_param(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return 0; | 
|  |  | 
|  | if (*str == '=') | 
|  | str++; | 
|  |  | 
|  | if (!strcmp(str, "cec_disable")) | 
|  | ce_arr.disabled = 1; | 
|  | else | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } |