|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (c) 2007-2017 Nicira, Inc. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/ip.h> | 
|  | #include <linux/openvswitch.h> | 
|  | #include <linux/sctp.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <linux/udp.h> | 
|  | #include <linux/in6.h> | 
|  | #include <linux/if_arp.h> | 
|  | #include <linux/if_vlan.h> | 
|  |  | 
|  | #include <net/dst.h> | 
|  | #include <net/ip.h> | 
|  | #include <net/ipv6.h> | 
|  | #include <net/ip6_fib.h> | 
|  | #include <net/checksum.h> | 
|  | #include <net/dsfield.h> | 
|  | #include <net/mpls.h> | 
|  | #include <net/sctp/checksum.h> | 
|  |  | 
|  | #include "datapath.h" | 
|  | #include "flow.h" | 
|  | #include "conntrack.h" | 
|  | #include "vport.h" | 
|  | #include "flow_netlink.h" | 
|  | #include "openvswitch_trace.h" | 
|  |  | 
|  | struct deferred_action { | 
|  | struct sk_buff *skb; | 
|  | const struct nlattr *actions; | 
|  | int actions_len; | 
|  |  | 
|  | /* Store pkt_key clone when creating deferred action. */ | 
|  | struct sw_flow_key pkt_key; | 
|  | }; | 
|  |  | 
|  | #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN) | 
|  | struct ovs_frag_data { | 
|  | unsigned long dst; | 
|  | struct vport *vport; | 
|  | struct ovs_skb_cb cb; | 
|  | __be16 inner_protocol; | 
|  | u16 network_offset;	/* valid only for MPLS */ | 
|  | u16 vlan_tci; | 
|  | __be16 vlan_proto; | 
|  | unsigned int l2_len; | 
|  | u8 mac_proto; | 
|  | u8 l2_data[MAX_L2_LEN]; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage); | 
|  |  | 
|  | #define DEFERRED_ACTION_FIFO_SIZE 10 | 
|  | #define OVS_RECURSION_LIMIT 5 | 
|  | #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2) | 
|  | struct action_fifo { | 
|  | int head; | 
|  | int tail; | 
|  | /* Deferred action fifo queue storage. */ | 
|  | struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE]; | 
|  | }; | 
|  |  | 
|  | struct action_flow_keys { | 
|  | struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD]; | 
|  | }; | 
|  |  | 
|  | static struct action_fifo __percpu *action_fifos; | 
|  | static struct action_flow_keys __percpu *flow_keys; | 
|  | static DEFINE_PER_CPU(int, exec_actions_level); | 
|  |  | 
|  | /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys' | 
|  | * space. Return NULL if out of key spaces. | 
|  | */ | 
|  | static struct sw_flow_key *clone_key(const struct sw_flow_key *key_) | 
|  | { | 
|  | struct action_flow_keys *keys = this_cpu_ptr(flow_keys); | 
|  | int level = this_cpu_read(exec_actions_level); | 
|  | struct sw_flow_key *key = NULL; | 
|  |  | 
|  | if (level <= OVS_DEFERRED_ACTION_THRESHOLD) { | 
|  | key = &keys->key[level - 1]; | 
|  | *key = *key_; | 
|  | } | 
|  |  | 
|  | return key; | 
|  | } | 
|  |  | 
|  | static void action_fifo_init(struct action_fifo *fifo) | 
|  | { | 
|  | fifo->head = 0; | 
|  | fifo->tail = 0; | 
|  | } | 
|  |  | 
|  | static bool action_fifo_is_empty(const struct action_fifo *fifo) | 
|  | { | 
|  | return (fifo->head == fifo->tail); | 
|  | } | 
|  |  | 
|  | static struct deferred_action *action_fifo_get(struct action_fifo *fifo) | 
|  | { | 
|  | if (action_fifo_is_empty(fifo)) | 
|  | return NULL; | 
|  |  | 
|  | return &fifo->fifo[fifo->tail++]; | 
|  | } | 
|  |  | 
|  | static struct deferred_action *action_fifo_put(struct action_fifo *fifo) | 
|  | { | 
|  | if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1) | 
|  | return NULL; | 
|  |  | 
|  | return &fifo->fifo[fifo->head++]; | 
|  | } | 
|  |  | 
|  | /* Return true if fifo is not full */ | 
|  | static struct deferred_action *add_deferred_actions(struct sk_buff *skb, | 
|  | const struct sw_flow_key *key, | 
|  | const struct nlattr *actions, | 
|  | const int actions_len) | 
|  | { | 
|  | struct action_fifo *fifo; | 
|  | struct deferred_action *da; | 
|  |  | 
|  | fifo = this_cpu_ptr(action_fifos); | 
|  | da = action_fifo_put(fifo); | 
|  | if (da) { | 
|  | da->skb = skb; | 
|  | da->actions = actions; | 
|  | da->actions_len = actions_len; | 
|  | da->pkt_key = *key; | 
|  | } | 
|  |  | 
|  | return da; | 
|  | } | 
|  |  | 
|  | static void invalidate_flow_key(struct sw_flow_key *key) | 
|  | { | 
|  | key->mac_proto |= SW_FLOW_KEY_INVALID; | 
|  | } | 
|  |  | 
|  | static bool is_flow_key_valid(const struct sw_flow_key *key) | 
|  | { | 
|  | return !(key->mac_proto & SW_FLOW_KEY_INVALID); | 
|  | } | 
|  |  | 
|  | static int clone_execute(struct datapath *dp, struct sk_buff *skb, | 
|  | struct sw_flow_key *key, | 
|  | u32 recirc_id, | 
|  | const struct nlattr *actions, int len, | 
|  | bool last, bool clone_flow_key); | 
|  |  | 
|  | static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, | 
|  | struct sw_flow_key *key, | 
|  | const struct nlattr *attr, int len); | 
|  |  | 
|  | static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, | 
|  | __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (!mac_len) | 
|  | key->mac_proto = MAC_PROTO_NONE; | 
|  |  | 
|  | invalidate_flow_key(key); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key, | 
|  | const __be16 ethertype) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = skb_mpls_pop(skb, ethertype, skb->mac_len, | 
|  | ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (ethertype == htons(ETH_P_TEB)) | 
|  | key->mac_proto = MAC_PROTO_ETHERNET; | 
|  |  | 
|  | invalidate_flow_key(key); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
|  | const __be32 *mpls_lse, const __be32 *mask) | 
|  | { | 
|  | struct mpls_shim_hdr *stack; | 
|  | __be32 lse; | 
|  | int err; | 
|  |  | 
|  | if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | stack = mpls_hdr(skb); | 
|  | lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask); | 
|  | err = skb_mpls_update_lse(skb, lse); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | flow_key->mpls.lse[0] = lse; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = skb_vlan_pop(skb); | 
|  | if (skb_vlan_tag_present(skb)) { | 
|  | invalidate_flow_key(key); | 
|  | } else { | 
|  | key->eth.vlan.tci = 0; | 
|  | key->eth.vlan.tpid = 0; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, | 
|  | const struct ovs_action_push_vlan *vlan) | 
|  | { | 
|  | if (skb_vlan_tag_present(skb)) { | 
|  | invalidate_flow_key(key); | 
|  | } else { | 
|  | key->eth.vlan.tci = vlan->vlan_tci; | 
|  | key->eth.vlan.tpid = vlan->vlan_tpid; | 
|  | } | 
|  | return skb_vlan_push(skb, vlan->vlan_tpid, | 
|  | ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK); | 
|  | } | 
|  |  | 
|  | /* 'src' is already properly masked. */ | 
|  | static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_) | 
|  | { | 
|  | u16 *dst = (u16 *)dst_; | 
|  | const u16 *src = (const u16 *)src_; | 
|  | const u16 *mask = (const u16 *)mask_; | 
|  |  | 
|  | OVS_SET_MASKED(dst[0], src[0], mask[0]); | 
|  | OVS_SET_MASKED(dst[1], src[1], mask[1]); | 
|  | OVS_SET_MASKED(dst[2], src[2], mask[2]); | 
|  | } | 
|  |  | 
|  | static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
|  | const struct ovs_key_ethernet *key, | 
|  | const struct ovs_key_ethernet *mask) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = skb_ensure_writable(skb, ETH_HLEN); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); | 
|  |  | 
|  | ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src, | 
|  | mask->eth_src); | 
|  | ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst, | 
|  | mask->eth_dst); | 
|  |  | 
|  | skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); | 
|  |  | 
|  | ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source); | 
|  | ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* pop_eth does not support VLAN packets as this action is never called | 
|  | * for them. | 
|  | */ | 
|  | static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = skb_eth_pop(skb); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* safe right before invalidate_flow_key */ | 
|  | key->mac_proto = MAC_PROTO_NONE; | 
|  | invalidate_flow_key(key); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int push_eth(struct sk_buff *skb, struct sw_flow_key *key, | 
|  | const struct ovs_action_push_eth *ethh) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = skb_eth_push(skb, ethh->addresses.eth_dst, | 
|  | ethh->addresses.eth_src); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* safe right before invalidate_flow_key */ | 
|  | key->mac_proto = MAC_PROTO_ETHERNET; | 
|  | invalidate_flow_key(key); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key, | 
|  | const struct nshhdr *nh) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = nsh_push(skb, nh); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* safe right before invalidate_flow_key */ | 
|  | key->mac_proto = MAC_PROTO_NONE; | 
|  | invalidate_flow_key(key); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = nsh_pop(skb); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* safe right before invalidate_flow_key */ | 
|  | if (skb->protocol == htons(ETH_P_TEB)) | 
|  | key->mac_proto = MAC_PROTO_ETHERNET; | 
|  | else | 
|  | key->mac_proto = MAC_PROTO_NONE; | 
|  | invalidate_flow_key(key); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh, | 
|  | __be32 addr, __be32 new_addr) | 
|  | { | 
|  | int transport_len = skb->len - skb_transport_offset(skb); | 
|  |  | 
|  | if (nh->frag_off & htons(IP_OFFSET)) | 
|  | return; | 
|  |  | 
|  | if (nh->protocol == IPPROTO_TCP) { | 
|  | if (likely(transport_len >= sizeof(struct tcphdr))) | 
|  | inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, | 
|  | addr, new_addr, true); | 
|  | } else if (nh->protocol == IPPROTO_UDP) { | 
|  | if (likely(transport_len >= sizeof(struct udphdr))) { | 
|  | struct udphdr *uh = udp_hdr(skb); | 
|  |  | 
|  | if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { | 
|  | inet_proto_csum_replace4(&uh->check, skb, | 
|  | addr, new_addr, true); | 
|  | if (!uh->check) | 
|  | uh->check = CSUM_MANGLED_0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, | 
|  | __be32 *addr, __be32 new_addr) | 
|  | { | 
|  | update_ip_l4_checksum(skb, nh, *addr, new_addr); | 
|  | csum_replace4(&nh->check, *addr, new_addr); | 
|  | skb_clear_hash(skb); | 
|  | *addr = new_addr; | 
|  | } | 
|  |  | 
|  | static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, | 
|  | __be32 addr[4], const __be32 new_addr[4]) | 
|  | { | 
|  | int transport_len = skb->len - skb_transport_offset(skb); | 
|  |  | 
|  | if (l4_proto == NEXTHDR_TCP) { | 
|  | if (likely(transport_len >= sizeof(struct tcphdr))) | 
|  | inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, | 
|  | addr, new_addr, true); | 
|  | } else if (l4_proto == NEXTHDR_UDP) { | 
|  | if (likely(transport_len >= sizeof(struct udphdr))) { | 
|  | struct udphdr *uh = udp_hdr(skb); | 
|  |  | 
|  | if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { | 
|  | inet_proto_csum_replace16(&uh->check, skb, | 
|  | addr, new_addr, true); | 
|  | if (!uh->check) | 
|  | uh->check = CSUM_MANGLED_0; | 
|  | } | 
|  | } | 
|  | } else if (l4_proto == NEXTHDR_ICMP) { | 
|  | if (likely(transport_len >= sizeof(struct icmp6hdr))) | 
|  | inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum, | 
|  | skb, addr, new_addr, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4], | 
|  | const __be32 mask[4], __be32 masked[4]) | 
|  | { | 
|  | masked[0] = OVS_MASKED(old[0], addr[0], mask[0]); | 
|  | masked[1] = OVS_MASKED(old[1], addr[1], mask[1]); | 
|  | masked[2] = OVS_MASKED(old[2], addr[2], mask[2]); | 
|  | masked[3] = OVS_MASKED(old[3], addr[3], mask[3]); | 
|  | } | 
|  |  | 
|  | static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, | 
|  | __be32 addr[4], const __be32 new_addr[4], | 
|  | bool recalculate_csum) | 
|  | { | 
|  | if (recalculate_csum) | 
|  | update_ipv6_checksum(skb, l4_proto, addr, new_addr); | 
|  |  | 
|  | skb_clear_hash(skb); | 
|  | memcpy(addr, new_addr, sizeof(__be32[4])); | 
|  | } | 
|  |  | 
|  | static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask) | 
|  | { | 
|  | u8 old_ipv6_tclass = ipv6_get_dsfield(nh); | 
|  |  | 
|  | ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask); | 
|  |  | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) | 
|  | csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12), | 
|  | (__force __wsum)(ipv6_tclass << 12)); | 
|  |  | 
|  | ipv6_change_dsfield(nh, ~mask, ipv6_tclass); | 
|  | } | 
|  |  | 
|  | static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask) | 
|  | { | 
|  | u32 ofl; | 
|  |  | 
|  | ofl = nh->flow_lbl[0] << 16 |  nh->flow_lbl[1] << 8 |  nh->flow_lbl[2]; | 
|  | fl = OVS_MASKED(ofl, fl, mask); | 
|  |  | 
|  | /* Bits 21-24 are always unmasked, so this retains their values. */ | 
|  | nh->flow_lbl[0] = (u8)(fl >> 16); | 
|  | nh->flow_lbl[1] = (u8)(fl >> 8); | 
|  | nh->flow_lbl[2] = (u8)fl; | 
|  |  | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) | 
|  | csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl)); | 
|  | } | 
|  |  | 
|  | static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask) | 
|  | { | 
|  | new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask); | 
|  |  | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE) | 
|  | csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8), | 
|  | (__force __wsum)(new_ttl << 8)); | 
|  | nh->hop_limit = new_ttl; | 
|  | } | 
|  |  | 
|  | static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl, | 
|  | u8 mask) | 
|  | { | 
|  | new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask); | 
|  |  | 
|  | csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); | 
|  | nh->ttl = new_ttl; | 
|  | } | 
|  |  | 
|  | static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
|  | const struct ovs_key_ipv4 *key, | 
|  | const struct ovs_key_ipv4 *mask) | 
|  | { | 
|  | struct iphdr *nh; | 
|  | __be32 new_addr; | 
|  | int err; | 
|  |  | 
|  | err = skb_ensure_writable(skb, skb_network_offset(skb) + | 
|  | sizeof(struct iphdr)); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | nh = ip_hdr(skb); | 
|  |  | 
|  | /* Setting an IP addresses is typically only a side effect of | 
|  | * matching on them in the current userspace implementation, so it | 
|  | * makes sense to check if the value actually changed. | 
|  | */ | 
|  | if (mask->ipv4_src) { | 
|  | new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src); | 
|  |  | 
|  | if (unlikely(new_addr != nh->saddr)) { | 
|  | set_ip_addr(skb, nh, &nh->saddr, new_addr); | 
|  | flow_key->ipv4.addr.src = new_addr; | 
|  | } | 
|  | } | 
|  | if (mask->ipv4_dst) { | 
|  | new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst); | 
|  |  | 
|  | if (unlikely(new_addr != nh->daddr)) { | 
|  | set_ip_addr(skb, nh, &nh->daddr, new_addr); | 
|  | flow_key->ipv4.addr.dst = new_addr; | 
|  | } | 
|  | } | 
|  | if (mask->ipv4_tos) { | 
|  | ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos); | 
|  | flow_key->ip.tos = nh->tos; | 
|  | } | 
|  | if (mask->ipv4_ttl) { | 
|  | set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl); | 
|  | flow_key->ip.ttl = nh->ttl; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool is_ipv6_mask_nonzero(const __be32 addr[4]) | 
|  | { | 
|  | return !!(addr[0] | addr[1] | addr[2] | addr[3]); | 
|  | } | 
|  |  | 
|  | static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
|  | const struct ovs_key_ipv6 *key, | 
|  | const struct ovs_key_ipv6 *mask) | 
|  | { | 
|  | struct ipv6hdr *nh; | 
|  | int err; | 
|  |  | 
|  | err = skb_ensure_writable(skb, skb_network_offset(skb) + | 
|  | sizeof(struct ipv6hdr)); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | nh = ipv6_hdr(skb); | 
|  |  | 
|  | /* Setting an IP addresses is typically only a side effect of | 
|  | * matching on them in the current userspace implementation, so it | 
|  | * makes sense to check if the value actually changed. | 
|  | */ | 
|  | if (is_ipv6_mask_nonzero(mask->ipv6_src)) { | 
|  | __be32 *saddr = (__be32 *)&nh->saddr; | 
|  | __be32 masked[4]; | 
|  |  | 
|  | mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked); | 
|  |  | 
|  | if (unlikely(memcmp(saddr, masked, sizeof(masked)))) { | 
|  | set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked, | 
|  | true); | 
|  | memcpy(&flow_key->ipv6.addr.src, masked, | 
|  | sizeof(flow_key->ipv6.addr.src)); | 
|  | } | 
|  | } | 
|  | if (is_ipv6_mask_nonzero(mask->ipv6_dst)) { | 
|  | unsigned int offset = 0; | 
|  | int flags = IP6_FH_F_SKIP_RH; | 
|  | bool recalc_csum = true; | 
|  | __be32 *daddr = (__be32 *)&nh->daddr; | 
|  | __be32 masked[4]; | 
|  |  | 
|  | mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked); | 
|  |  | 
|  | if (unlikely(memcmp(daddr, masked, sizeof(masked)))) { | 
|  | if (ipv6_ext_hdr(nh->nexthdr)) | 
|  | recalc_csum = (ipv6_find_hdr(skb, &offset, | 
|  | NEXTHDR_ROUTING, | 
|  | NULL, &flags) | 
|  | != NEXTHDR_ROUTING); | 
|  |  | 
|  | set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked, | 
|  | recalc_csum); | 
|  | memcpy(&flow_key->ipv6.addr.dst, masked, | 
|  | sizeof(flow_key->ipv6.addr.dst)); | 
|  | } | 
|  | } | 
|  | if (mask->ipv6_tclass) { | 
|  | set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass); | 
|  | flow_key->ip.tos = ipv6_get_dsfield(nh); | 
|  | } | 
|  | if (mask->ipv6_label) { | 
|  | set_ipv6_fl(skb, nh, ntohl(key->ipv6_label), | 
|  | ntohl(mask->ipv6_label)); | 
|  | flow_key->ipv6.label = | 
|  | *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); | 
|  | } | 
|  | if (mask->ipv6_hlimit) { | 
|  | set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit); | 
|  | flow_key->ip.ttl = nh->hop_limit; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
|  | const struct nlattr *a) | 
|  | { | 
|  | struct nshhdr *nh; | 
|  | size_t length; | 
|  | int err; | 
|  | u8 flags; | 
|  | u8 ttl; | 
|  | int i; | 
|  |  | 
|  | struct ovs_key_nsh key; | 
|  | struct ovs_key_nsh mask; | 
|  |  | 
|  | err = nsh_key_from_nlattr(a, &key, &mask); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* Make sure the NSH base header is there */ | 
|  | if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | nh = nsh_hdr(skb); | 
|  | length = nsh_hdr_len(nh); | 
|  |  | 
|  | /* Make sure the whole NSH header is there */ | 
|  | err = skb_ensure_writable(skb, skb_network_offset(skb) + | 
|  | length); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | nh = nsh_hdr(skb); | 
|  | skb_postpull_rcsum(skb, nh, length); | 
|  | flags = nsh_get_flags(nh); | 
|  | flags = OVS_MASKED(flags, key.base.flags, mask.base.flags); | 
|  | flow_key->nsh.base.flags = flags; | 
|  | ttl = nsh_get_ttl(nh); | 
|  | ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl); | 
|  | flow_key->nsh.base.ttl = ttl; | 
|  | nsh_set_flags_and_ttl(nh, flags, ttl); | 
|  | nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr, | 
|  | mask.base.path_hdr); | 
|  | flow_key->nsh.base.path_hdr = nh->path_hdr; | 
|  | switch (nh->mdtype) { | 
|  | case NSH_M_TYPE1: | 
|  | for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) { | 
|  | nh->md1.context[i] = | 
|  | OVS_MASKED(nh->md1.context[i], key.context[i], | 
|  | mask.context[i]); | 
|  | } | 
|  | memcpy(flow_key->nsh.context, nh->md1.context, | 
|  | sizeof(nh->md1.context)); | 
|  | break; | 
|  | case NSH_M_TYPE2: | 
|  | memset(flow_key->nsh.context, 0, | 
|  | sizeof(flow_key->nsh.context)); | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | skb_postpush_rcsum(skb, nh, length); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Must follow skb_ensure_writable() since that can move the skb data. */ | 
|  | static void set_tp_port(struct sk_buff *skb, __be16 *port, | 
|  | __be16 new_port, __sum16 *check) | 
|  | { | 
|  | inet_proto_csum_replace2(check, skb, *port, new_port, false); | 
|  | *port = new_port; | 
|  | } | 
|  |  | 
|  | static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
|  | const struct ovs_key_udp *key, | 
|  | const struct ovs_key_udp *mask) | 
|  | { | 
|  | struct udphdr *uh; | 
|  | __be16 src, dst; | 
|  | int err; | 
|  |  | 
|  | err = skb_ensure_writable(skb, skb_transport_offset(skb) + | 
|  | sizeof(struct udphdr)); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | uh = udp_hdr(skb); | 
|  | /* Either of the masks is non-zero, so do not bother checking them. */ | 
|  | src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src); | 
|  | dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst); | 
|  |  | 
|  | if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) { | 
|  | if (likely(src != uh->source)) { | 
|  | set_tp_port(skb, &uh->source, src, &uh->check); | 
|  | flow_key->tp.src = src; | 
|  | } | 
|  | if (likely(dst != uh->dest)) { | 
|  | set_tp_port(skb, &uh->dest, dst, &uh->check); | 
|  | flow_key->tp.dst = dst; | 
|  | } | 
|  |  | 
|  | if (unlikely(!uh->check)) | 
|  | uh->check = CSUM_MANGLED_0; | 
|  | } else { | 
|  | uh->source = src; | 
|  | uh->dest = dst; | 
|  | flow_key->tp.src = src; | 
|  | flow_key->tp.dst = dst; | 
|  | } | 
|  |  | 
|  | skb_clear_hash(skb); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
|  | const struct ovs_key_tcp *key, | 
|  | const struct ovs_key_tcp *mask) | 
|  | { | 
|  | struct tcphdr *th; | 
|  | __be16 src, dst; | 
|  | int err; | 
|  |  | 
|  | err = skb_ensure_writable(skb, skb_transport_offset(skb) + | 
|  | sizeof(struct tcphdr)); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | th = tcp_hdr(skb); | 
|  | src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src); | 
|  | if (likely(src != th->source)) { | 
|  | set_tp_port(skb, &th->source, src, &th->check); | 
|  | flow_key->tp.src = src; | 
|  | } | 
|  | dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst); | 
|  | if (likely(dst != th->dest)) { | 
|  | set_tp_port(skb, &th->dest, dst, &th->check); | 
|  | flow_key->tp.dst = dst; | 
|  | } | 
|  | skb_clear_hash(skb); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key, | 
|  | const struct ovs_key_sctp *key, | 
|  | const struct ovs_key_sctp *mask) | 
|  | { | 
|  | unsigned int sctphoff = skb_transport_offset(skb); | 
|  | struct sctphdr *sh; | 
|  | __le32 old_correct_csum, new_csum, old_csum; | 
|  | int err; | 
|  |  | 
|  | err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr)); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | sh = sctp_hdr(skb); | 
|  | old_csum = sh->checksum; | 
|  | old_correct_csum = sctp_compute_cksum(skb, sctphoff); | 
|  |  | 
|  | sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src); | 
|  | sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst); | 
|  |  | 
|  | new_csum = sctp_compute_cksum(skb, sctphoff); | 
|  |  | 
|  | /* Carry any checksum errors through. */ | 
|  | sh->checksum = old_csum ^ old_correct_csum ^ new_csum; | 
|  |  | 
|  | skb_clear_hash(skb); | 
|  | flow_key->tp.src = sh->source; | 
|  | flow_key->tp.dst = sh->dest; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ovs_vport_output(struct net *net, struct sock *sk, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage); | 
|  | struct vport *vport = data->vport; | 
|  |  | 
|  | if (skb_cow_head(skb, data->l2_len) < 0) { | 
|  | kfree_skb(skb); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | __skb_dst_copy(skb, data->dst); | 
|  | *OVS_CB(skb) = data->cb; | 
|  | skb->inner_protocol = data->inner_protocol; | 
|  | if (data->vlan_tci & VLAN_CFI_MASK) | 
|  | __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK); | 
|  | else | 
|  | __vlan_hwaccel_clear_tag(skb); | 
|  |  | 
|  | /* Reconstruct the MAC header.  */ | 
|  | skb_push(skb, data->l2_len); | 
|  | memcpy(skb->data, &data->l2_data, data->l2_len); | 
|  | skb_postpush_rcsum(skb, skb->data, data->l2_len); | 
|  | skb_reset_mac_header(skb); | 
|  |  | 
|  | if (eth_p_mpls(skb->protocol)) { | 
|  | skb->inner_network_header = skb->network_header; | 
|  | skb_set_network_header(skb, data->network_offset); | 
|  | skb_reset_mac_len(skb); | 
|  | } | 
|  |  | 
|  | ovs_vport_send(vport, skb, data->mac_proto); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned int | 
|  | ovs_dst_get_mtu(const struct dst_entry *dst) | 
|  | { | 
|  | return dst->dev->mtu; | 
|  | } | 
|  |  | 
|  | static struct dst_ops ovs_dst_ops = { | 
|  | .family = AF_UNSPEC, | 
|  | .mtu = ovs_dst_get_mtu, | 
|  | }; | 
|  |  | 
|  | /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is | 
|  | * ovs_vport_output(), which is called once per fragmented packet. | 
|  | */ | 
|  | static void prepare_frag(struct vport *vport, struct sk_buff *skb, | 
|  | u16 orig_network_offset, u8 mac_proto) | 
|  | { | 
|  | unsigned int hlen = skb_network_offset(skb); | 
|  | struct ovs_frag_data *data; | 
|  |  | 
|  | data = this_cpu_ptr(&ovs_frag_data_storage); | 
|  | data->dst = skb->_skb_refdst; | 
|  | data->vport = vport; | 
|  | data->cb = *OVS_CB(skb); | 
|  | data->inner_protocol = skb->inner_protocol; | 
|  | data->network_offset = orig_network_offset; | 
|  | if (skb_vlan_tag_present(skb)) | 
|  | data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK; | 
|  | else | 
|  | data->vlan_tci = 0; | 
|  | data->vlan_proto = skb->vlan_proto; | 
|  | data->mac_proto = mac_proto; | 
|  | data->l2_len = hlen; | 
|  | memcpy(&data->l2_data, skb->data, hlen); | 
|  |  | 
|  | memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); | 
|  | skb_pull(skb, hlen); | 
|  | } | 
|  |  | 
|  | static void ovs_fragment(struct net *net, struct vport *vport, | 
|  | struct sk_buff *skb, u16 mru, | 
|  | struct sw_flow_key *key) | 
|  | { | 
|  | u16 orig_network_offset = 0; | 
|  |  | 
|  | if (eth_p_mpls(skb->protocol)) { | 
|  | orig_network_offset = skb_network_offset(skb); | 
|  | skb->network_header = skb->inner_network_header; | 
|  | } | 
|  |  | 
|  | if (skb_network_offset(skb) > MAX_L2_LEN) { | 
|  | OVS_NLERR(1, "L2 header too long to fragment"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (key->eth.type == htons(ETH_P_IP)) { | 
|  | struct rtable ovs_rt = { 0 }; | 
|  | unsigned long orig_dst; | 
|  |  | 
|  | prepare_frag(vport, skb, orig_network_offset, | 
|  | ovs_key_mac_proto(key)); | 
|  | dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, | 
|  | DST_OBSOLETE_NONE, DST_NOCOUNT); | 
|  | ovs_rt.dst.dev = vport->dev; | 
|  |  | 
|  | orig_dst = skb->_skb_refdst; | 
|  | skb_dst_set_noref(skb, &ovs_rt.dst); | 
|  | IPCB(skb)->frag_max_size = mru; | 
|  |  | 
|  | ip_do_fragment(net, skb->sk, skb, ovs_vport_output); | 
|  | refdst_drop(orig_dst); | 
|  | } else if (key->eth.type == htons(ETH_P_IPV6)) { | 
|  | unsigned long orig_dst; | 
|  | struct rt6_info ovs_rt; | 
|  |  | 
|  | prepare_frag(vport, skb, orig_network_offset, | 
|  | ovs_key_mac_proto(key)); | 
|  | memset(&ovs_rt, 0, sizeof(ovs_rt)); | 
|  | dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, | 
|  | DST_OBSOLETE_NONE, DST_NOCOUNT); | 
|  | ovs_rt.dst.dev = vport->dev; | 
|  |  | 
|  | orig_dst = skb->_skb_refdst; | 
|  | skb_dst_set_noref(skb, &ovs_rt.dst); | 
|  | IP6CB(skb)->frag_max_size = mru; | 
|  |  | 
|  | ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output); | 
|  | refdst_drop(orig_dst); | 
|  | } else { | 
|  | WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.", | 
|  | ovs_vport_name(vport), ntohs(key->eth.type), mru, | 
|  | vport->dev->mtu); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | return; | 
|  | err: | 
|  | kfree_skb(skb); | 
|  | } | 
|  |  | 
|  | static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port, | 
|  | struct sw_flow_key *key) | 
|  | { | 
|  | struct vport *vport = ovs_vport_rcu(dp, out_port); | 
|  |  | 
|  | if (likely(vport)) { | 
|  | u16 mru = OVS_CB(skb)->mru; | 
|  | u32 cutlen = OVS_CB(skb)->cutlen; | 
|  |  | 
|  | if (unlikely(cutlen > 0)) { | 
|  | if (skb->len - cutlen > ovs_mac_header_len(key)) | 
|  | pskb_trim(skb, skb->len - cutlen); | 
|  | else | 
|  | pskb_trim(skb, ovs_mac_header_len(key)); | 
|  | } | 
|  |  | 
|  | if (likely(!mru || | 
|  | (skb->len <= mru + vport->dev->hard_header_len))) { | 
|  | ovs_vport_send(vport, skb, ovs_key_mac_proto(key)); | 
|  | } else if (mru <= vport->dev->mtu) { | 
|  | struct net *net = read_pnet(&dp->net); | 
|  |  | 
|  | ovs_fragment(net, vport, skb, mru, key); | 
|  | } else { | 
|  | kfree_skb(skb); | 
|  | } | 
|  | } else { | 
|  | kfree_skb(skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int output_userspace(struct datapath *dp, struct sk_buff *skb, | 
|  | struct sw_flow_key *key, const struct nlattr *attr, | 
|  | const struct nlattr *actions, int actions_len, | 
|  | uint32_t cutlen) | 
|  | { | 
|  | struct dp_upcall_info upcall; | 
|  | const struct nlattr *a; | 
|  | int rem; | 
|  |  | 
|  | memset(&upcall, 0, sizeof(upcall)); | 
|  | upcall.cmd = OVS_PACKET_CMD_ACTION; | 
|  | upcall.mru = OVS_CB(skb)->mru; | 
|  |  | 
|  | for (a = nla_data(attr), rem = nla_len(attr); rem > 0; | 
|  | a = nla_next(a, &rem)) { | 
|  | switch (nla_type(a)) { | 
|  | case OVS_USERSPACE_ATTR_USERDATA: | 
|  | upcall.userdata = a; | 
|  | break; | 
|  |  | 
|  | case OVS_USERSPACE_ATTR_PID: | 
|  | if (dp->user_features & | 
|  | OVS_DP_F_DISPATCH_UPCALL_PER_CPU) | 
|  | upcall.portid = | 
|  | ovs_dp_get_upcall_portid(dp, | 
|  | smp_processor_id()); | 
|  | else | 
|  | upcall.portid = nla_get_u32(a); | 
|  | break; | 
|  |  | 
|  | case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: { | 
|  | /* Get out tunnel info. */ | 
|  | struct vport *vport; | 
|  |  | 
|  | vport = ovs_vport_rcu(dp, nla_get_u32(a)); | 
|  | if (vport) { | 
|  | int err; | 
|  |  | 
|  | err = dev_fill_metadata_dst(vport->dev, skb); | 
|  | if (!err) | 
|  | upcall.egress_tun_info = skb_tunnel_info(skb); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OVS_USERSPACE_ATTR_ACTIONS: { | 
|  | /* Include actions. */ | 
|  | upcall.actions = actions; | 
|  | upcall.actions_len = actions_len; | 
|  | break; | 
|  | } | 
|  |  | 
|  | } /* End of switch. */ | 
|  | } | 
|  |  | 
|  | return ovs_dp_upcall(dp, skb, key, &upcall, cutlen); | 
|  | } | 
|  |  | 
|  | static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb, | 
|  | struct sw_flow_key *key, | 
|  | const struct nlattr *attr) | 
|  | { | 
|  | /* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */ | 
|  | struct nlattr *actions = nla_data(attr); | 
|  |  | 
|  | if (nla_len(actions)) | 
|  | return clone_execute(dp, skb, key, 0, nla_data(actions), | 
|  | nla_len(actions), true, false); | 
|  |  | 
|  | consume_skb(skb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* When 'last' is true, sample() should always consume the 'skb'. | 
|  | * Otherwise, sample() should keep 'skb' intact regardless what | 
|  | * actions are executed within sample(). | 
|  | */ | 
|  | static int sample(struct datapath *dp, struct sk_buff *skb, | 
|  | struct sw_flow_key *key, const struct nlattr *attr, | 
|  | bool last) | 
|  | { | 
|  | struct nlattr *actions; | 
|  | struct nlattr *sample_arg; | 
|  | int rem = nla_len(attr); | 
|  | const struct sample_arg *arg; | 
|  | bool clone_flow_key; | 
|  |  | 
|  | /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */ | 
|  | sample_arg = nla_data(attr); | 
|  | arg = nla_data(sample_arg); | 
|  | actions = nla_next(sample_arg, &rem); | 
|  |  | 
|  | if ((arg->probability != U32_MAX) && | 
|  | (!arg->probability || prandom_u32() > arg->probability)) { | 
|  | if (last) | 
|  | consume_skb(skb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | clone_flow_key = !arg->exec; | 
|  | return clone_execute(dp, skb, key, 0, actions, rem, last, | 
|  | clone_flow_key); | 
|  | } | 
|  |  | 
|  | /* When 'last' is true, clone() should always consume the 'skb'. | 
|  | * Otherwise, clone() should keep 'skb' intact regardless what | 
|  | * actions are executed within clone(). | 
|  | */ | 
|  | static int clone(struct datapath *dp, struct sk_buff *skb, | 
|  | struct sw_flow_key *key, const struct nlattr *attr, | 
|  | bool last) | 
|  | { | 
|  | struct nlattr *actions; | 
|  | struct nlattr *clone_arg; | 
|  | int rem = nla_len(attr); | 
|  | bool dont_clone_flow_key; | 
|  |  | 
|  | /* The first action is always 'OVS_CLONE_ATTR_EXEC'. */ | 
|  | clone_arg = nla_data(attr); | 
|  | dont_clone_flow_key = nla_get_u32(clone_arg); | 
|  | actions = nla_next(clone_arg, &rem); | 
|  |  | 
|  | return clone_execute(dp, skb, key, 0, actions, rem, last, | 
|  | !dont_clone_flow_key); | 
|  | } | 
|  |  | 
|  | static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key, | 
|  | const struct nlattr *attr) | 
|  | { | 
|  | struct ovs_action_hash *hash_act = nla_data(attr); | 
|  | u32 hash = 0; | 
|  |  | 
|  | /* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */ | 
|  | hash = skb_get_hash(skb); | 
|  | hash = jhash_1word(hash, hash_act->hash_basis); | 
|  | if (!hash) | 
|  | hash = 0x1; | 
|  |  | 
|  | key->ovs_flow_hash = hash; | 
|  | } | 
|  |  | 
|  | static int execute_set_action(struct sk_buff *skb, | 
|  | struct sw_flow_key *flow_key, | 
|  | const struct nlattr *a) | 
|  | { | 
|  | /* Only tunnel set execution is supported without a mask. */ | 
|  | if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) { | 
|  | struct ovs_tunnel_info *tun = nla_data(a); | 
|  |  | 
|  | skb_dst_drop(skb); | 
|  | dst_hold((struct dst_entry *)tun->tun_dst); | 
|  | skb_dst_set(skb, (struct dst_entry *)tun->tun_dst); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Mask is at the midpoint of the data. */ | 
|  | #define get_mask(a, type) ((const type)nla_data(a) + 1) | 
|  |  | 
|  | static int execute_masked_set_action(struct sk_buff *skb, | 
|  | struct sw_flow_key *flow_key, | 
|  | const struct nlattr *a) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | switch (nla_type(a)) { | 
|  | case OVS_KEY_ATTR_PRIORITY: | 
|  | OVS_SET_MASKED(skb->priority, nla_get_u32(a), | 
|  | *get_mask(a, u32 *)); | 
|  | flow_key->phy.priority = skb->priority; | 
|  | break; | 
|  |  | 
|  | case OVS_KEY_ATTR_SKB_MARK: | 
|  | OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *)); | 
|  | flow_key->phy.skb_mark = skb->mark; | 
|  | break; | 
|  |  | 
|  | case OVS_KEY_ATTR_TUNNEL_INFO: | 
|  | /* Masked data not supported for tunnel. */ | 
|  | err = -EINVAL; | 
|  | break; | 
|  |  | 
|  | case OVS_KEY_ATTR_ETHERNET: | 
|  | err = set_eth_addr(skb, flow_key, nla_data(a), | 
|  | get_mask(a, struct ovs_key_ethernet *)); | 
|  | break; | 
|  |  | 
|  | case OVS_KEY_ATTR_NSH: | 
|  | err = set_nsh(skb, flow_key, a); | 
|  | break; | 
|  |  | 
|  | case OVS_KEY_ATTR_IPV4: | 
|  | err = set_ipv4(skb, flow_key, nla_data(a), | 
|  | get_mask(a, struct ovs_key_ipv4 *)); | 
|  | break; | 
|  |  | 
|  | case OVS_KEY_ATTR_IPV6: | 
|  | err = set_ipv6(skb, flow_key, nla_data(a), | 
|  | get_mask(a, struct ovs_key_ipv6 *)); | 
|  | break; | 
|  |  | 
|  | case OVS_KEY_ATTR_TCP: | 
|  | err = set_tcp(skb, flow_key, nla_data(a), | 
|  | get_mask(a, struct ovs_key_tcp *)); | 
|  | break; | 
|  |  | 
|  | case OVS_KEY_ATTR_UDP: | 
|  | err = set_udp(skb, flow_key, nla_data(a), | 
|  | get_mask(a, struct ovs_key_udp *)); | 
|  | break; | 
|  |  | 
|  | case OVS_KEY_ATTR_SCTP: | 
|  | err = set_sctp(skb, flow_key, nla_data(a), | 
|  | get_mask(a, struct ovs_key_sctp *)); | 
|  | break; | 
|  |  | 
|  | case OVS_KEY_ATTR_MPLS: | 
|  | err = set_mpls(skb, flow_key, nla_data(a), get_mask(a, | 
|  | __be32 *)); | 
|  | break; | 
|  |  | 
|  | case OVS_KEY_ATTR_CT_STATE: | 
|  | case OVS_KEY_ATTR_CT_ZONE: | 
|  | case OVS_KEY_ATTR_CT_MARK: | 
|  | case OVS_KEY_ATTR_CT_LABELS: | 
|  | case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4: | 
|  | case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6: | 
|  | err = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int execute_recirc(struct datapath *dp, struct sk_buff *skb, | 
|  | struct sw_flow_key *key, | 
|  | const struct nlattr *a, bool last) | 
|  | { | 
|  | u32 recirc_id; | 
|  |  | 
|  | if (!is_flow_key_valid(key)) { | 
|  | int err; | 
|  |  | 
|  | err = ovs_flow_key_update(skb, key); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | BUG_ON(!is_flow_key_valid(key)); | 
|  |  | 
|  | recirc_id = nla_get_u32(a); | 
|  | return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true); | 
|  | } | 
|  |  | 
|  | static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb, | 
|  | struct sw_flow_key *key, | 
|  | const struct nlattr *attr, bool last) | 
|  | { | 
|  | struct ovs_skb_cb *ovs_cb = OVS_CB(skb); | 
|  | const struct nlattr *actions, *cpl_arg; | 
|  | int len, max_len, rem = nla_len(attr); | 
|  | const struct check_pkt_len_arg *arg; | 
|  | bool clone_flow_key; | 
|  |  | 
|  | /* The first netlink attribute in 'attr' is always | 
|  | * 'OVS_CHECK_PKT_LEN_ATTR_ARG'. | 
|  | */ | 
|  | cpl_arg = nla_data(attr); | 
|  | arg = nla_data(cpl_arg); | 
|  |  | 
|  | len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len; | 
|  | max_len = arg->pkt_len; | 
|  |  | 
|  | if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) || | 
|  | len <= max_len) { | 
|  | /* Second netlink attribute in 'attr' is always | 
|  | * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'. | 
|  | */ | 
|  | actions = nla_next(cpl_arg, &rem); | 
|  | clone_flow_key = !arg->exec_for_lesser_equal; | 
|  | } else { | 
|  | /* Third netlink attribute in 'attr' is always | 
|  | * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'. | 
|  | */ | 
|  | actions = nla_next(cpl_arg, &rem); | 
|  | actions = nla_next(actions, &rem); | 
|  | clone_flow_key = !arg->exec_for_greater; | 
|  | } | 
|  |  | 
|  | return clone_execute(dp, skb, key, 0, nla_data(actions), | 
|  | nla_len(actions), last, clone_flow_key); | 
|  | } | 
|  |  | 
|  | static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (skb->protocol == htons(ETH_P_IPV6)) { | 
|  | struct ipv6hdr *nh; | 
|  |  | 
|  | err = skb_ensure_writable(skb, skb_network_offset(skb) + | 
|  | sizeof(*nh)); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | nh = ipv6_hdr(skb); | 
|  |  | 
|  | if (nh->hop_limit <= 1) | 
|  | return -EHOSTUNREACH; | 
|  |  | 
|  | key->ip.ttl = --nh->hop_limit; | 
|  | } else if (skb->protocol == htons(ETH_P_IP)) { | 
|  | struct iphdr *nh; | 
|  | u8 old_ttl; | 
|  |  | 
|  | err = skb_ensure_writable(skb, skb_network_offset(skb) + | 
|  | sizeof(*nh)); | 
|  | if (unlikely(err)) | 
|  | return err; | 
|  |  | 
|  | nh = ip_hdr(skb); | 
|  | if (nh->ttl <= 1) | 
|  | return -EHOSTUNREACH; | 
|  |  | 
|  | old_ttl = nh->ttl--; | 
|  | csum_replace2(&nh->check, htons(old_ttl << 8), | 
|  | htons(nh->ttl << 8)); | 
|  | key->ip.ttl = nh->ttl; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Execute a list of actions against 'skb'. */ | 
|  | static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, | 
|  | struct sw_flow_key *key, | 
|  | const struct nlattr *attr, int len) | 
|  | { | 
|  | const struct nlattr *a; | 
|  | int rem; | 
|  |  | 
|  | for (a = attr, rem = len; rem > 0; | 
|  | a = nla_next(a, &rem)) { | 
|  | int err = 0; | 
|  |  | 
|  | if (trace_ovs_do_execute_action_enabled()) | 
|  | trace_ovs_do_execute_action(dp, skb, key, a, rem); | 
|  |  | 
|  | switch (nla_type(a)) { | 
|  | case OVS_ACTION_ATTR_OUTPUT: { | 
|  | int port = nla_get_u32(a); | 
|  | struct sk_buff *clone; | 
|  |  | 
|  | /* Every output action needs a separate clone | 
|  | * of 'skb', In case the output action is the | 
|  | * last action, cloning can be avoided. | 
|  | */ | 
|  | if (nla_is_last(a, rem)) { | 
|  | do_output(dp, skb, port, key); | 
|  | /* 'skb' has been used for output. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | clone = skb_clone(skb, GFP_ATOMIC); | 
|  | if (clone) | 
|  | do_output(dp, clone, port, key); | 
|  | OVS_CB(skb)->cutlen = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OVS_ACTION_ATTR_TRUNC: { | 
|  | struct ovs_action_trunc *trunc = nla_data(a); | 
|  |  | 
|  | if (skb->len > trunc->max_len) | 
|  | OVS_CB(skb)->cutlen = skb->len - trunc->max_len; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OVS_ACTION_ATTR_USERSPACE: | 
|  | output_userspace(dp, skb, key, a, attr, | 
|  | len, OVS_CB(skb)->cutlen); | 
|  | OVS_CB(skb)->cutlen = 0; | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_HASH: | 
|  | execute_hash(skb, key, a); | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_PUSH_MPLS: { | 
|  | struct ovs_action_push_mpls *mpls = nla_data(a); | 
|  |  | 
|  | err = push_mpls(skb, key, mpls->mpls_lse, | 
|  | mpls->mpls_ethertype, skb->mac_len); | 
|  | break; | 
|  | } | 
|  | case OVS_ACTION_ATTR_ADD_MPLS: { | 
|  | struct ovs_action_add_mpls *mpls = nla_data(a); | 
|  | __u16 mac_len = 0; | 
|  |  | 
|  | if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) | 
|  | mac_len = skb->mac_len; | 
|  |  | 
|  | err = push_mpls(skb, key, mpls->mpls_lse, | 
|  | mpls->mpls_ethertype, mac_len); | 
|  | break; | 
|  | } | 
|  | case OVS_ACTION_ATTR_POP_MPLS: | 
|  | err = pop_mpls(skb, key, nla_get_be16(a)); | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_PUSH_VLAN: | 
|  | err = push_vlan(skb, key, nla_data(a)); | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_POP_VLAN: | 
|  | err = pop_vlan(skb, key); | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_RECIRC: { | 
|  | bool last = nla_is_last(a, rem); | 
|  |  | 
|  | err = execute_recirc(dp, skb, key, a, last); | 
|  | if (last) { | 
|  | /* If this is the last action, the skb has | 
|  | * been consumed or freed. | 
|  | * Return immediately. | 
|  | */ | 
|  | return err; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OVS_ACTION_ATTR_SET: | 
|  | err = execute_set_action(skb, key, nla_data(a)); | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_SET_MASKED: | 
|  | case OVS_ACTION_ATTR_SET_TO_MASKED: | 
|  | err = execute_masked_set_action(skb, key, nla_data(a)); | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_SAMPLE: { | 
|  | bool last = nla_is_last(a, rem); | 
|  |  | 
|  | err = sample(dp, skb, key, a, last); | 
|  | if (last) | 
|  | return err; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OVS_ACTION_ATTR_CT: | 
|  | if (!is_flow_key_valid(key)) { | 
|  | err = ovs_flow_key_update(skb, key); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key, | 
|  | nla_data(a)); | 
|  |  | 
|  | /* Hide stolen IP fragments from user space. */ | 
|  | if (err) | 
|  | return err == -EINPROGRESS ? 0 : err; | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_CT_CLEAR: | 
|  | err = ovs_ct_clear(skb, key); | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_PUSH_ETH: | 
|  | err = push_eth(skb, key, nla_data(a)); | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_POP_ETH: | 
|  | err = pop_eth(skb, key); | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_PUSH_NSH: { | 
|  | u8 buffer[NSH_HDR_MAX_LEN]; | 
|  | struct nshhdr *nh = (struct nshhdr *)buffer; | 
|  |  | 
|  | err = nsh_hdr_from_nlattr(nla_data(a), nh, | 
|  | NSH_HDR_MAX_LEN); | 
|  | if (unlikely(err)) | 
|  | break; | 
|  | err = push_nsh(skb, key, nh); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OVS_ACTION_ATTR_POP_NSH: | 
|  | err = pop_nsh(skb, key); | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_METER: | 
|  | if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) { | 
|  | consume_skb(skb); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case OVS_ACTION_ATTR_CLONE: { | 
|  | bool last = nla_is_last(a, rem); | 
|  |  | 
|  | err = clone(dp, skb, key, a, last); | 
|  | if (last) | 
|  | return err; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OVS_ACTION_ATTR_CHECK_PKT_LEN: { | 
|  | bool last = nla_is_last(a, rem); | 
|  |  | 
|  | err = execute_check_pkt_len(dp, skb, key, a, last); | 
|  | if (last) | 
|  | return err; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OVS_ACTION_ATTR_DEC_TTL: | 
|  | err = execute_dec_ttl(skb, key); | 
|  | if (err == -EHOSTUNREACH) | 
|  | return dec_ttl_exception_handler(dp, skb, | 
|  | key, a); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (unlikely(err)) { | 
|  | kfree_skb(skb); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | consume_skb(skb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Execute the actions on the clone of the packet. The effect of the | 
|  | * execution does not affect the original 'skb' nor the original 'key'. | 
|  | * | 
|  | * The execution may be deferred in case the actions can not be executed | 
|  | * immediately. | 
|  | */ | 
|  | static int clone_execute(struct datapath *dp, struct sk_buff *skb, | 
|  | struct sw_flow_key *key, u32 recirc_id, | 
|  | const struct nlattr *actions, int len, | 
|  | bool last, bool clone_flow_key) | 
|  | { | 
|  | struct deferred_action *da; | 
|  | struct sw_flow_key *clone; | 
|  |  | 
|  | skb = last ? skb : skb_clone(skb, GFP_ATOMIC); | 
|  | if (!skb) { | 
|  | /* Out of memory, skip this action. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* When clone_flow_key is false, the 'key' will not be change | 
|  | * by the actions, then the 'key' can be used directly. | 
|  | * Otherwise, try to clone key from the next recursion level of | 
|  | * 'flow_keys'. If clone is successful, execute the actions | 
|  | * without deferring. | 
|  | */ | 
|  | clone = clone_flow_key ? clone_key(key) : key; | 
|  | if (clone) { | 
|  | int err = 0; | 
|  |  | 
|  | if (actions) { /* Sample action */ | 
|  | if (clone_flow_key) | 
|  | __this_cpu_inc(exec_actions_level); | 
|  |  | 
|  | err = do_execute_actions(dp, skb, clone, | 
|  | actions, len); | 
|  |  | 
|  | if (clone_flow_key) | 
|  | __this_cpu_dec(exec_actions_level); | 
|  | } else { /* Recirc action */ | 
|  | clone->recirc_id = recirc_id; | 
|  | ovs_dp_process_packet(skb, clone); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Out of 'flow_keys' space. Defer actions */ | 
|  | da = add_deferred_actions(skb, key, actions, len); | 
|  | if (da) { | 
|  | if (!actions) { /* Recirc action */ | 
|  | key = &da->pkt_key; | 
|  | key->recirc_id = recirc_id; | 
|  | } | 
|  | } else { | 
|  | /* Out of per CPU action FIFO space. Drop the 'skb' and | 
|  | * log an error. | 
|  | */ | 
|  | kfree_skb(skb); | 
|  |  | 
|  | if (net_ratelimit()) { | 
|  | if (actions) { /* Sample action */ | 
|  | pr_warn("%s: deferred action limit reached, drop sample action\n", | 
|  | ovs_dp_name(dp)); | 
|  | } else {  /* Recirc action */ | 
|  | pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n", | 
|  | ovs_dp_name(dp), recirc_id); | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void process_deferred_actions(struct datapath *dp) | 
|  | { | 
|  | struct action_fifo *fifo = this_cpu_ptr(action_fifos); | 
|  |  | 
|  | /* Do not touch the FIFO in case there is no deferred actions. */ | 
|  | if (action_fifo_is_empty(fifo)) | 
|  | return; | 
|  |  | 
|  | /* Finishing executing all deferred actions. */ | 
|  | do { | 
|  | struct deferred_action *da = action_fifo_get(fifo); | 
|  | struct sk_buff *skb = da->skb; | 
|  | struct sw_flow_key *key = &da->pkt_key; | 
|  | const struct nlattr *actions = da->actions; | 
|  | int actions_len = da->actions_len; | 
|  |  | 
|  | if (actions) | 
|  | do_execute_actions(dp, skb, key, actions, actions_len); | 
|  | else | 
|  | ovs_dp_process_packet(skb, key); | 
|  | } while (!action_fifo_is_empty(fifo)); | 
|  |  | 
|  | /* Reset FIFO for the next packet.  */ | 
|  | action_fifo_init(fifo); | 
|  | } | 
|  |  | 
|  | /* Execute a list of actions against 'skb'. */ | 
|  | int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb, | 
|  | const struct sw_flow_actions *acts, | 
|  | struct sw_flow_key *key) | 
|  | { | 
|  | int err, level; | 
|  |  | 
|  | level = __this_cpu_inc_return(exec_actions_level); | 
|  | if (unlikely(level > OVS_RECURSION_LIMIT)) { | 
|  | net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n", | 
|  | ovs_dp_name(dp)); | 
|  | kfree_skb(skb); | 
|  | err = -ENETDOWN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | OVS_CB(skb)->acts_origlen = acts->orig_len; | 
|  | err = do_execute_actions(dp, skb, key, | 
|  | acts->actions, acts->actions_len); | 
|  |  | 
|  | if (level == 1) | 
|  | process_deferred_actions(dp); | 
|  |  | 
|  | out: | 
|  | __this_cpu_dec(exec_actions_level); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int action_fifos_init(void) | 
|  | { | 
|  | action_fifos = alloc_percpu(struct action_fifo); | 
|  | if (!action_fifos) | 
|  | return -ENOMEM; | 
|  |  | 
|  | flow_keys = alloc_percpu(struct action_flow_keys); | 
|  | if (!flow_keys) { | 
|  | free_percpu(action_fifos); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void action_fifos_exit(void) | 
|  | { | 
|  | free_percpu(action_fifos); | 
|  | free_percpu(flow_keys); | 
|  | } |