| /* | 
 |  * Copyright (C) 2008 Oracle.  All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public | 
 |  * License v2 as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public | 
 |  * License along with this program; if not, write to the | 
 |  * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
 |  * Boston, MA 021110-1307, USA. | 
 |  */ | 
 |  | 
 | #include <linux/sched.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/list_sort.h> | 
 | #include "tree-log.h" | 
 | #include "disk-io.h" | 
 | #include "locking.h" | 
 | #include "print-tree.h" | 
 | #include "backref.h" | 
 | #include "hash.h" | 
 |  | 
 | /* magic values for the inode_only field in btrfs_log_inode: | 
 |  * | 
 |  * LOG_INODE_ALL means to log everything | 
 |  * LOG_INODE_EXISTS means to log just enough to recreate the inode | 
 |  * during log replay | 
 |  */ | 
 | #define LOG_INODE_ALL 0 | 
 | #define LOG_INODE_EXISTS 1 | 
 |  | 
 | /* | 
 |  * directory trouble cases | 
 |  * | 
 |  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync | 
 |  * log, we must force a full commit before doing an fsync of the directory | 
 |  * where the unlink was done. | 
 |  * ---> record transid of last unlink/rename per directory | 
 |  * | 
 |  * mkdir foo/some_dir | 
 |  * normal commit | 
 |  * rename foo/some_dir foo2/some_dir | 
 |  * mkdir foo/some_dir | 
 |  * fsync foo/some_dir/some_file | 
 |  * | 
 |  * The fsync above will unlink the original some_dir without recording | 
 |  * it in its new location (foo2).  After a crash, some_dir will be gone | 
 |  * unless the fsync of some_file forces a full commit | 
 |  * | 
 |  * 2) we must log any new names for any file or dir that is in the fsync | 
 |  * log. ---> check inode while renaming/linking. | 
 |  * | 
 |  * 2a) we must log any new names for any file or dir during rename | 
 |  * when the directory they are being removed from was logged. | 
 |  * ---> check inode and old parent dir during rename | 
 |  * | 
 |  *  2a is actually the more important variant.  With the extra logging | 
 |  *  a crash might unlink the old name without recreating the new one | 
 |  * | 
 |  * 3) after a crash, we must go through any directories with a link count | 
 |  * of zero and redo the rm -rf | 
 |  * | 
 |  * mkdir f1/foo | 
 |  * normal commit | 
 |  * rm -rf f1/foo | 
 |  * fsync(f1) | 
 |  * | 
 |  * The directory f1 was fully removed from the FS, but fsync was never | 
 |  * called on f1, only its parent dir.  After a crash the rm -rf must | 
 |  * be replayed.  This must be able to recurse down the entire | 
 |  * directory tree.  The inode link count fixup code takes care of the | 
 |  * ugly details. | 
 |  */ | 
 |  | 
 | /* | 
 |  * stages for the tree walking.  The first | 
 |  * stage (0) is to only pin down the blocks we find | 
 |  * the second stage (1) is to make sure that all the inodes | 
 |  * we find in the log are created in the subvolume. | 
 |  * | 
 |  * The last stage is to deal with directories and links and extents | 
 |  * and all the other fun semantics | 
 |  */ | 
 | #define LOG_WALK_PIN_ONLY 0 | 
 | #define LOG_WALK_REPLAY_INODES 1 | 
 | #define LOG_WALK_REPLAY_DIR_INDEX 2 | 
 | #define LOG_WALK_REPLAY_ALL 3 | 
 |  | 
 | static int btrfs_log_inode(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_root *root, struct inode *inode, | 
 | 			   int inode_only, | 
 | 			   const loff_t start, | 
 | 			   const loff_t end, | 
 | 			   struct btrfs_log_ctx *ctx); | 
 | static int link_to_fixup_dir(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_root *root, | 
 | 			     struct btrfs_path *path, u64 objectid); | 
 | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, | 
 | 				       struct btrfs_root *root, | 
 | 				       struct btrfs_root *log, | 
 | 				       struct btrfs_path *path, | 
 | 				       u64 dirid, int del_all); | 
 |  | 
 | /* | 
 |  * tree logging is a special write ahead log used to make sure that | 
 |  * fsyncs and O_SYNCs can happen without doing full tree commits. | 
 |  * | 
 |  * Full tree commits are expensive because they require commonly | 
 |  * modified blocks to be recowed, creating many dirty pages in the | 
 |  * extent tree an 4x-6x higher write load than ext3. | 
 |  * | 
 |  * Instead of doing a tree commit on every fsync, we use the | 
 |  * key ranges and transaction ids to find items for a given file or directory | 
 |  * that have changed in this transaction.  Those items are copied into | 
 |  * a special tree (one per subvolume root), that tree is written to disk | 
 |  * and then the fsync is considered complete. | 
 |  * | 
 |  * After a crash, items are copied out of the log-tree back into the | 
 |  * subvolume tree.  Any file data extents found are recorded in the extent | 
 |  * allocation tree, and the log-tree freed. | 
 |  * | 
 |  * The log tree is read three times, once to pin down all the extents it is | 
 |  * using in ram and once, once to create all the inodes logged in the tree | 
 |  * and once to do all the other items. | 
 |  */ | 
 |  | 
 | /* | 
 |  * start a sub transaction and setup the log tree | 
 |  * this increments the log tree writer count to make the people | 
 |  * syncing the tree wait for us to finish | 
 |  */ | 
 | static int start_log_trans(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_root *root, | 
 | 			   struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	mutex_lock(&root->log_mutex); | 
 |  | 
 | 	if (root->log_root) { | 
 | 		if (btrfs_need_log_full_commit(root->fs_info, trans)) { | 
 | 			ret = -EAGAIN; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (!root->log_start_pid) { | 
 | 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); | 
 | 			root->log_start_pid = current->pid; | 
 | 		} else if (root->log_start_pid != current->pid) { | 
 | 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); | 
 | 		} | 
 | 	} else { | 
 | 		mutex_lock(&root->fs_info->tree_log_mutex); | 
 | 		if (!root->fs_info->log_root_tree) | 
 | 			ret = btrfs_init_log_root_tree(trans, root->fs_info); | 
 | 		mutex_unlock(&root->fs_info->tree_log_mutex); | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		ret = btrfs_add_log_tree(trans, root); | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); | 
 | 		root->log_start_pid = current->pid; | 
 | 	} | 
 |  | 
 | 	atomic_inc(&root->log_batch); | 
 | 	atomic_inc(&root->log_writers); | 
 | 	if (ctx) { | 
 | 		int index = root->log_transid % 2; | 
 | 		list_add_tail(&ctx->list, &root->log_ctxs[index]); | 
 | 		ctx->log_transid = root->log_transid; | 
 | 	} | 
 |  | 
 | out: | 
 | 	mutex_unlock(&root->log_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * returns 0 if there was a log transaction running and we were able | 
 |  * to join, or returns -ENOENT if there were not transactions | 
 |  * in progress | 
 |  */ | 
 | static int join_running_log_trans(struct btrfs_root *root) | 
 | { | 
 | 	int ret = -ENOENT; | 
 |  | 
 | 	smp_mb(); | 
 | 	if (!root->log_root) | 
 | 		return -ENOENT; | 
 |  | 
 | 	mutex_lock(&root->log_mutex); | 
 | 	if (root->log_root) { | 
 | 		ret = 0; | 
 | 		atomic_inc(&root->log_writers); | 
 | 	} | 
 | 	mutex_unlock(&root->log_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This either makes the current running log transaction wait | 
 |  * until you call btrfs_end_log_trans() or it makes any future | 
 |  * log transactions wait until you call btrfs_end_log_trans() | 
 |  */ | 
 | int btrfs_pin_log_trans(struct btrfs_root *root) | 
 | { | 
 | 	int ret = -ENOENT; | 
 |  | 
 | 	mutex_lock(&root->log_mutex); | 
 | 	atomic_inc(&root->log_writers); | 
 | 	mutex_unlock(&root->log_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * indicate we're done making changes to the log tree | 
 |  * and wake up anyone waiting to do a sync | 
 |  */ | 
 | void btrfs_end_log_trans(struct btrfs_root *root) | 
 | { | 
 | 	if (atomic_dec_and_test(&root->log_writers)) { | 
 | 		/* | 
 | 		 * Implicit memory barrier after atomic_dec_and_test | 
 | 		 */ | 
 | 		if (waitqueue_active(&root->log_writer_wait)) | 
 | 			wake_up(&root->log_writer_wait); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * the walk control struct is used to pass state down the chain when | 
 |  * processing the log tree.  The stage field tells us which part | 
 |  * of the log tree processing we are currently doing.  The others | 
 |  * are state fields used for that specific part | 
 |  */ | 
 | struct walk_control { | 
 | 	/* should we free the extent on disk when done?  This is used | 
 | 	 * at transaction commit time while freeing a log tree | 
 | 	 */ | 
 | 	int free; | 
 |  | 
 | 	/* should we write out the extent buffer?  This is used | 
 | 	 * while flushing the log tree to disk during a sync | 
 | 	 */ | 
 | 	int write; | 
 |  | 
 | 	/* should we wait for the extent buffer io to finish?  Also used | 
 | 	 * while flushing the log tree to disk for a sync | 
 | 	 */ | 
 | 	int wait; | 
 |  | 
 | 	/* pin only walk, we record which extents on disk belong to the | 
 | 	 * log trees | 
 | 	 */ | 
 | 	int pin; | 
 |  | 
 | 	/* what stage of the replay code we're currently in */ | 
 | 	int stage; | 
 |  | 
 | 	/* the root we are currently replaying */ | 
 | 	struct btrfs_root *replay_dest; | 
 |  | 
 | 	/* the trans handle for the current replay */ | 
 | 	struct btrfs_trans_handle *trans; | 
 |  | 
 | 	/* the function that gets used to process blocks we find in the | 
 | 	 * tree.  Note the extent_buffer might not be up to date when it is | 
 | 	 * passed in, and it must be checked or read if you need the data | 
 | 	 * inside it | 
 | 	 */ | 
 | 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, | 
 | 			    struct walk_control *wc, u64 gen); | 
 | }; | 
 |  | 
 | /* | 
 |  * process_func used to pin down extents, write them or wait on them | 
 |  */ | 
 | static int process_one_buffer(struct btrfs_root *log, | 
 | 			      struct extent_buffer *eb, | 
 | 			      struct walk_control *wc, u64 gen) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * If this fs is mixed then we need to be able to process the leaves to | 
 | 	 * pin down any logged extents, so we have to read the block. | 
 | 	 */ | 
 | 	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) { | 
 | 		ret = btrfs_read_buffer(eb, gen); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	if (wc->pin) | 
 | 		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root, | 
 | 						      eb->start, eb->len); | 
 |  | 
 | 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { | 
 | 		if (wc->pin && btrfs_header_level(eb) == 0) | 
 | 			ret = btrfs_exclude_logged_extents(log, eb); | 
 | 		if (wc->write) | 
 | 			btrfs_write_tree_block(eb); | 
 | 		if (wc->wait) | 
 | 			btrfs_wait_tree_block_writeback(eb); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Item overwrite used by replay and tree logging.  eb, slot and key all refer | 
 |  * to the src data we are copying out. | 
 |  * | 
 |  * root is the tree we are copying into, and path is a scratch | 
 |  * path for use in this function (it should be released on entry and | 
 |  * will be released on exit). | 
 |  * | 
 |  * If the key is already in the destination tree the existing item is | 
 |  * overwritten.  If the existing item isn't big enough, it is extended. | 
 |  * If it is too large, it is truncated. | 
 |  * | 
 |  * If the key isn't in the destination yet, a new item is inserted. | 
 |  */ | 
 | static noinline int overwrite_item(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_root *root, | 
 | 				   struct btrfs_path *path, | 
 | 				   struct extent_buffer *eb, int slot, | 
 | 				   struct btrfs_key *key) | 
 | { | 
 | 	int ret; | 
 | 	u32 item_size; | 
 | 	u64 saved_i_size = 0; | 
 | 	int save_old_i_size = 0; | 
 | 	unsigned long src_ptr; | 
 | 	unsigned long dst_ptr; | 
 | 	int overwrite_root = 0; | 
 | 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; | 
 |  | 
 | 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) | 
 | 		overwrite_root = 1; | 
 |  | 
 | 	item_size = btrfs_item_size_nr(eb, slot); | 
 | 	src_ptr = btrfs_item_ptr_offset(eb, slot); | 
 |  | 
 | 	/* look for the key in the destination tree */ | 
 | 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	if (ret == 0) { | 
 | 		char *src_copy; | 
 | 		char *dst_copy; | 
 | 		u32 dst_size = btrfs_item_size_nr(path->nodes[0], | 
 | 						  path->slots[0]); | 
 | 		if (dst_size != item_size) | 
 | 			goto insert; | 
 |  | 
 | 		if (item_size == 0) { | 
 | 			btrfs_release_path(path); | 
 | 			return 0; | 
 | 		} | 
 | 		dst_copy = kmalloc(item_size, GFP_NOFS); | 
 | 		src_copy = kmalloc(item_size, GFP_NOFS); | 
 | 		if (!dst_copy || !src_copy) { | 
 | 			btrfs_release_path(path); | 
 | 			kfree(dst_copy); | 
 | 			kfree(src_copy); | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		read_extent_buffer(eb, src_copy, src_ptr, item_size); | 
 |  | 
 | 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | 
 | 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, | 
 | 				   item_size); | 
 | 		ret = memcmp(dst_copy, src_copy, item_size); | 
 |  | 
 | 		kfree(dst_copy); | 
 | 		kfree(src_copy); | 
 | 		/* | 
 | 		 * they have the same contents, just return, this saves | 
 | 		 * us from cowing blocks in the destination tree and doing | 
 | 		 * extra writes that may not have been done by a previous | 
 | 		 * sync | 
 | 		 */ | 
 | 		if (ret == 0) { | 
 | 			btrfs_release_path(path); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We need to load the old nbytes into the inode so when we | 
 | 		 * replay the extents we've logged we get the right nbytes. | 
 | 		 */ | 
 | 		if (inode_item) { | 
 | 			struct btrfs_inode_item *item; | 
 | 			u64 nbytes; | 
 | 			u32 mode; | 
 |  | 
 | 			item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 					      struct btrfs_inode_item); | 
 | 			nbytes = btrfs_inode_nbytes(path->nodes[0], item); | 
 | 			item = btrfs_item_ptr(eb, slot, | 
 | 					      struct btrfs_inode_item); | 
 | 			btrfs_set_inode_nbytes(eb, item, nbytes); | 
 |  | 
 | 			/* | 
 | 			 * If this is a directory we need to reset the i_size to | 
 | 			 * 0 so that we can set it up properly when replaying | 
 | 			 * the rest of the items in this log. | 
 | 			 */ | 
 | 			mode = btrfs_inode_mode(eb, item); | 
 | 			if (S_ISDIR(mode)) | 
 | 				btrfs_set_inode_size(eb, item, 0); | 
 | 		} | 
 | 	} else if (inode_item) { | 
 | 		struct btrfs_inode_item *item; | 
 | 		u32 mode; | 
 |  | 
 | 		/* | 
 | 		 * New inode, set nbytes to 0 so that the nbytes comes out | 
 | 		 * properly when we replay the extents. | 
 | 		 */ | 
 | 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); | 
 | 		btrfs_set_inode_nbytes(eb, item, 0); | 
 |  | 
 | 		/* | 
 | 		 * If this is a directory we need to reset the i_size to 0 so | 
 | 		 * that we can set it up properly when replaying the rest of | 
 | 		 * the items in this log. | 
 | 		 */ | 
 | 		mode = btrfs_inode_mode(eb, item); | 
 | 		if (S_ISDIR(mode)) | 
 | 			btrfs_set_inode_size(eb, item, 0); | 
 | 	} | 
 | insert: | 
 | 	btrfs_release_path(path); | 
 | 	/* try to insert the key into the destination tree */ | 
 | 	path->skip_release_on_error = 1; | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, | 
 | 				      key, item_size); | 
 | 	path->skip_release_on_error = 0; | 
 |  | 
 | 	/* make sure any existing item is the correct size */ | 
 | 	if (ret == -EEXIST || ret == -EOVERFLOW) { | 
 | 		u32 found_size; | 
 | 		found_size = btrfs_item_size_nr(path->nodes[0], | 
 | 						path->slots[0]); | 
 | 		if (found_size > item_size) | 
 | 			btrfs_truncate_item(root, path, item_size, 1); | 
 | 		else if (found_size < item_size) | 
 | 			btrfs_extend_item(root, path, | 
 | 					  item_size - found_size); | 
 | 	} else if (ret) { | 
 | 		return ret; | 
 | 	} | 
 | 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0], | 
 | 					path->slots[0]); | 
 |  | 
 | 	/* don't overwrite an existing inode if the generation number | 
 | 	 * was logged as zero.  This is done when the tree logging code | 
 | 	 * is just logging an inode to make sure it exists after recovery. | 
 | 	 * | 
 | 	 * Also, don't overwrite i_size on directories during replay. | 
 | 	 * log replay inserts and removes directory items based on the | 
 | 	 * state of the tree found in the subvolume, and i_size is modified | 
 | 	 * as it goes | 
 | 	 */ | 
 | 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { | 
 | 		struct btrfs_inode_item *src_item; | 
 | 		struct btrfs_inode_item *dst_item; | 
 |  | 
 | 		src_item = (struct btrfs_inode_item *)src_ptr; | 
 | 		dst_item = (struct btrfs_inode_item *)dst_ptr; | 
 |  | 
 | 		if (btrfs_inode_generation(eb, src_item) == 0) { | 
 | 			struct extent_buffer *dst_eb = path->nodes[0]; | 
 | 			const u64 ino_size = btrfs_inode_size(eb, src_item); | 
 |  | 
 | 			/* | 
 | 			 * For regular files an ino_size == 0 is used only when | 
 | 			 * logging that an inode exists, as part of a directory | 
 | 			 * fsync, and the inode wasn't fsynced before. In this | 
 | 			 * case don't set the size of the inode in the fs/subvol | 
 | 			 * tree, otherwise we would be throwing valid data away. | 
 | 			 */ | 
 | 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) && | 
 | 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && | 
 | 			    ino_size != 0) { | 
 | 				struct btrfs_map_token token; | 
 |  | 
 | 				btrfs_init_map_token(&token); | 
 | 				btrfs_set_token_inode_size(dst_eb, dst_item, | 
 | 							   ino_size, &token); | 
 | 			} | 
 | 			goto no_copy; | 
 | 		} | 
 |  | 
 | 		if (overwrite_root && | 
 | 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) && | 
 | 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { | 
 | 			save_old_i_size = 1; | 
 | 			saved_i_size = btrfs_inode_size(path->nodes[0], | 
 | 							dst_item); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	copy_extent_buffer(path->nodes[0], eb, dst_ptr, | 
 | 			   src_ptr, item_size); | 
 |  | 
 | 	if (save_old_i_size) { | 
 | 		struct btrfs_inode_item *dst_item; | 
 | 		dst_item = (struct btrfs_inode_item *)dst_ptr; | 
 | 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); | 
 | 	} | 
 |  | 
 | 	/* make sure the generation is filled in */ | 
 | 	if (key->type == BTRFS_INODE_ITEM_KEY) { | 
 | 		struct btrfs_inode_item *dst_item; | 
 | 		dst_item = (struct btrfs_inode_item *)dst_ptr; | 
 | 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { | 
 | 			btrfs_set_inode_generation(path->nodes[0], dst_item, | 
 | 						   trans->transid); | 
 | 		} | 
 | 	} | 
 | no_copy: | 
 | 	btrfs_mark_buffer_dirty(path->nodes[0]); | 
 | 	btrfs_release_path(path); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * simple helper to read an inode off the disk from a given root | 
 |  * This can only be called for subvolume roots and not for the log | 
 |  */ | 
 | static noinline struct inode *read_one_inode(struct btrfs_root *root, | 
 | 					     u64 objectid) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	struct inode *inode; | 
 |  | 
 | 	key.objectid = objectid; | 
 | 	key.type = BTRFS_INODE_ITEM_KEY; | 
 | 	key.offset = 0; | 
 | 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); | 
 | 	if (IS_ERR(inode)) { | 
 | 		inode = NULL; | 
 | 	} else if (is_bad_inode(inode)) { | 
 | 		iput(inode); | 
 | 		inode = NULL; | 
 | 	} | 
 | 	return inode; | 
 | } | 
 |  | 
 | /* replays a single extent in 'eb' at 'slot' with 'key' into the | 
 |  * subvolume 'root'.  path is released on entry and should be released | 
 |  * on exit. | 
 |  * | 
 |  * extents in the log tree have not been allocated out of the extent | 
 |  * tree yet.  So, this completes the allocation, taking a reference | 
 |  * as required if the extent already exists or creating a new extent | 
 |  * if it isn't in the extent allocation tree yet. | 
 |  * | 
 |  * The extent is inserted into the file, dropping any existing extents | 
 |  * from the file that overlap the new one. | 
 |  */ | 
 | static noinline int replay_one_extent(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_root *root, | 
 | 				      struct btrfs_path *path, | 
 | 				      struct extent_buffer *eb, int slot, | 
 | 				      struct btrfs_key *key) | 
 | { | 
 | 	int found_type; | 
 | 	u64 extent_end; | 
 | 	u64 start = key->offset; | 
 | 	u64 nbytes = 0; | 
 | 	struct btrfs_file_extent_item *item; | 
 | 	struct inode *inode = NULL; | 
 | 	unsigned long size; | 
 | 	int ret = 0; | 
 |  | 
 | 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
 | 	found_type = btrfs_file_extent_type(eb, item); | 
 |  | 
 | 	if (found_type == BTRFS_FILE_EXTENT_REG || | 
 | 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
 | 		nbytes = btrfs_file_extent_num_bytes(eb, item); | 
 | 		extent_end = start + nbytes; | 
 |  | 
 | 		/* | 
 | 		 * We don't add to the inodes nbytes if we are prealloc or a | 
 | 		 * hole. | 
 | 		 */ | 
 | 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0) | 
 | 			nbytes = 0; | 
 | 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | 
 | 		size = btrfs_file_extent_inline_len(eb, slot, item); | 
 | 		nbytes = btrfs_file_extent_ram_bytes(eb, item); | 
 | 		extent_end = ALIGN(start + size, root->sectorsize); | 
 | 	} else { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	inode = read_one_inode(root, key->objectid); | 
 | 	if (!inode) { | 
 | 		ret = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * first check to see if we already have this extent in the | 
 | 	 * file.  This must be done before the btrfs_drop_extents run | 
 | 	 * so we don't try to drop this extent. | 
 | 	 */ | 
 | 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), | 
 | 				       start, 0); | 
 |  | 
 | 	if (ret == 0 && | 
 | 	    (found_type == BTRFS_FILE_EXTENT_REG || | 
 | 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) { | 
 | 		struct btrfs_file_extent_item cmp1; | 
 | 		struct btrfs_file_extent_item cmp2; | 
 | 		struct btrfs_file_extent_item *existing; | 
 | 		struct extent_buffer *leaf; | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 | 		existing = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					  struct btrfs_file_extent_item); | 
 |  | 
 | 		read_extent_buffer(eb, &cmp1, (unsigned long)item, | 
 | 				   sizeof(cmp1)); | 
 | 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing, | 
 | 				   sizeof(cmp2)); | 
 |  | 
 | 		/* | 
 | 		 * we already have a pointer to this exact extent, | 
 | 		 * we don't have to do anything | 
 | 		 */ | 
 | 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { | 
 | 			btrfs_release_path(path); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* drop any overlapping extents */ | 
 | 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (found_type == BTRFS_FILE_EXTENT_REG || | 
 | 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
 | 		u64 offset; | 
 | 		unsigned long dest_offset; | 
 | 		struct btrfs_key ins; | 
 |  | 
 | 		ret = btrfs_insert_empty_item(trans, root, path, key, | 
 | 					      sizeof(*item)); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		dest_offset = btrfs_item_ptr_offset(path->nodes[0], | 
 | 						    path->slots[0]); | 
 | 		copy_extent_buffer(path->nodes[0], eb, dest_offset, | 
 | 				(unsigned long)item,  sizeof(*item)); | 
 |  | 
 | 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); | 
 | 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); | 
 | 		ins.type = BTRFS_EXTENT_ITEM_KEY; | 
 | 		offset = key->offset - btrfs_file_extent_offset(eb, item); | 
 |  | 
 | 		if (ins.objectid > 0) { | 
 | 			u64 csum_start; | 
 | 			u64 csum_end; | 
 | 			LIST_HEAD(ordered_sums); | 
 | 			/* | 
 | 			 * is this extent already allocated in the extent | 
 | 			 * allocation tree?  If so, just add a reference | 
 | 			 */ | 
 | 			ret = btrfs_lookup_data_extent(root, ins.objectid, | 
 | 						ins.offset); | 
 | 			if (ret == 0) { | 
 | 				ret = btrfs_inc_extent_ref(trans, root, | 
 | 						ins.objectid, ins.offset, | 
 | 						0, root->root_key.objectid, | 
 | 						key->objectid, offset); | 
 | 				if (ret) | 
 | 					goto out; | 
 | 			} else { | 
 | 				/* | 
 | 				 * insert the extent pointer in the extent | 
 | 				 * allocation tree | 
 | 				 */ | 
 | 				ret = btrfs_alloc_logged_file_extent(trans, | 
 | 						root, root->root_key.objectid, | 
 | 						key->objectid, offset, &ins); | 
 | 				if (ret) | 
 | 					goto out; | 
 | 			} | 
 | 			btrfs_release_path(path); | 
 |  | 
 | 			if (btrfs_file_extent_compression(eb, item)) { | 
 | 				csum_start = ins.objectid; | 
 | 				csum_end = csum_start + ins.offset; | 
 | 			} else { | 
 | 				csum_start = ins.objectid + | 
 | 					btrfs_file_extent_offset(eb, item); | 
 | 				csum_end = csum_start + | 
 | 					btrfs_file_extent_num_bytes(eb, item); | 
 | 			} | 
 |  | 
 | 			ret = btrfs_lookup_csums_range(root->log_root, | 
 | 						csum_start, csum_end - 1, | 
 | 						&ordered_sums, 0); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			/* | 
 | 			 * Now delete all existing cums in the csum root that | 
 | 			 * cover our range. We do this because we can have an | 
 | 			 * extent that is completely referenced by one file | 
 | 			 * extent item and partially referenced by another | 
 | 			 * file extent item (like after using the clone or | 
 | 			 * extent_same ioctls). In this case if we end up doing | 
 | 			 * the replay of the one that partially references the | 
 | 			 * extent first, and we do not do the csum deletion | 
 | 			 * below, we can get 2 csum items in the csum tree that | 
 | 			 * overlap each other. For example, imagine our log has | 
 | 			 * the two following file extent items: | 
 | 			 * | 
 | 			 * key (257 EXTENT_DATA 409600) | 
 | 			 *     extent data disk byte 12845056 nr 102400 | 
 | 			 *     extent data offset 20480 nr 20480 ram 102400 | 
 | 			 * | 
 | 			 * key (257 EXTENT_DATA 819200) | 
 | 			 *     extent data disk byte 12845056 nr 102400 | 
 | 			 *     extent data offset 0 nr 102400 ram 102400 | 
 | 			 * | 
 | 			 * Where the second one fully references the 100K extent | 
 | 			 * that starts at disk byte 12845056, and the log tree | 
 | 			 * has a single csum item that covers the entire range | 
 | 			 * of the extent: | 
 | 			 * | 
 | 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 | 
 | 			 * | 
 | 			 * After the first file extent item is replayed, the | 
 | 			 * csum tree gets the following csum item: | 
 | 			 * | 
 | 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 | 
 | 			 * | 
 | 			 * Which covers the 20K sub-range starting at offset 20K | 
 | 			 * of our extent. Now when we replay the second file | 
 | 			 * extent item, if we do not delete existing csum items | 
 | 			 * that cover any of its blocks, we end up getting two | 
 | 			 * csum items in our csum tree that overlap each other: | 
 | 			 * | 
 | 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 | 
 | 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 | 
 | 			 * | 
 | 			 * Which is a problem, because after this anyone trying | 
 | 			 * to lookup up for the checksum of any block of our | 
 | 			 * extent starting at an offset of 40K or higher, will | 
 | 			 * end up looking at the second csum item only, which | 
 | 			 * does not contain the checksum for any block starting | 
 | 			 * at offset 40K or higher of our extent. | 
 | 			 */ | 
 | 			while (!list_empty(&ordered_sums)) { | 
 | 				struct btrfs_ordered_sum *sums; | 
 | 				sums = list_entry(ordered_sums.next, | 
 | 						struct btrfs_ordered_sum, | 
 | 						list); | 
 | 				if (!ret) | 
 | 					ret = btrfs_del_csums(trans, | 
 | 						      root->fs_info->csum_root, | 
 | 						      sums->bytenr, | 
 | 						      sums->len); | 
 | 				if (!ret) | 
 | 					ret = btrfs_csum_file_blocks(trans, | 
 | 						root->fs_info->csum_root, | 
 | 						sums); | 
 | 				list_del(&sums->list); | 
 | 				kfree(sums); | 
 | 			} | 
 | 			if (ret) | 
 | 				goto out; | 
 | 		} else { | 
 | 			btrfs_release_path(path); | 
 | 		} | 
 | 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | 
 | 		/* inline extents are easy, we just overwrite them */ | 
 | 		ret = overwrite_item(trans, root, path, eb, slot, key); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	inode_add_bytes(inode, nbytes); | 
 | 	ret = btrfs_update_inode(trans, root, inode); | 
 | out: | 
 | 	if (inode) | 
 | 		iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * when cleaning up conflicts between the directory names in the | 
 |  * subvolume, directory names in the log and directory names in the | 
 |  * inode back references, we may have to unlink inodes from directories. | 
 |  * | 
 |  * This is a helper function to do the unlink of a specific directory | 
 |  * item | 
 |  */ | 
 | static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_root *root, | 
 | 				      struct btrfs_path *path, | 
 | 				      struct inode *dir, | 
 | 				      struct btrfs_dir_item *di) | 
 | { | 
 | 	struct inode *inode; | 
 | 	char *name; | 
 | 	int name_len; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key location; | 
 | 	int ret; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 |  | 
 | 	btrfs_dir_item_key_to_cpu(leaf, di, &location); | 
 | 	name_len = btrfs_dir_name_len(leaf, di); | 
 | 	name = kmalloc(name_len, GFP_NOFS); | 
 | 	if (!name) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	inode = read_one_inode(root, location.objectid); | 
 | 	if (!inode) { | 
 | 		ret = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = link_to_fixup_dir(trans, root, path, location.objectid); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); | 
 | 	if (ret) | 
 | 		goto out; | 
 | 	else | 
 | 		ret = btrfs_run_delayed_items(trans, root); | 
 | out: | 
 | 	kfree(name); | 
 | 	iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to see if a given name and sequence number found | 
 |  * in an inode back reference are already in a directory and correctly | 
 |  * point to this inode | 
 |  */ | 
 | static noinline int inode_in_dir(struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, | 
 | 				 u64 dirid, u64 objectid, u64 index, | 
 | 				 const char *name, int name_len) | 
 | { | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_key location; | 
 | 	int match = 0; | 
 |  | 
 | 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, | 
 | 					 index, name, name_len, 0); | 
 | 	if (di && !IS_ERR(di)) { | 
 | 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | 
 | 		if (location.objectid != objectid) | 
 | 			goto out; | 
 | 	} else | 
 | 		goto out; | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); | 
 | 	if (di && !IS_ERR(di)) { | 
 | 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | 
 | 		if (location.objectid != objectid) | 
 | 			goto out; | 
 | 	} else | 
 | 		goto out; | 
 | 	match = 1; | 
 | out: | 
 | 	btrfs_release_path(path); | 
 | 	return match; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to check a log tree for a named back reference in | 
 |  * an inode.  This is used to decide if a back reference that is | 
 |  * found in the subvolume conflicts with what we find in the log. | 
 |  * | 
 |  * inode backreferences may have multiple refs in a single item, | 
 |  * during replay we process one reference at a time, and we don't | 
 |  * want to delete valid links to a file from the subvolume if that | 
 |  * link is also in the log. | 
 |  */ | 
 | static noinline int backref_in_log(struct btrfs_root *log, | 
 | 				   struct btrfs_key *key, | 
 | 				   u64 ref_objectid, | 
 | 				   const char *name, int namelen) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_inode_ref *ref; | 
 | 	unsigned long ptr; | 
 | 	unsigned long ptr_end; | 
 | 	unsigned long name_ptr; | 
 | 	int found_name_len; | 
 | 	int item_size; | 
 | 	int ret; | 
 | 	int match = 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0); | 
 | 	if (ret != 0) | 
 | 		goto out; | 
 |  | 
 | 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | 
 |  | 
 | 	if (key->type == BTRFS_INODE_EXTREF_KEY) { | 
 | 		if (btrfs_find_name_in_ext_backref(path, ref_objectid, | 
 | 						   name, namelen, NULL)) | 
 | 			match = 1; | 
 |  | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); | 
 | 	ptr_end = ptr + item_size; | 
 | 	while (ptr < ptr_end) { | 
 | 		ref = (struct btrfs_inode_ref *)ptr; | 
 | 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); | 
 | 		if (found_name_len == namelen) { | 
 | 			name_ptr = (unsigned long)(ref + 1); | 
 | 			ret = memcmp_extent_buffer(path->nodes[0], name, | 
 | 						   name_ptr, namelen); | 
 | 			if (ret == 0) { | 
 | 				match = 1; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 		ptr = (unsigned long)(ref + 1) + found_name_len; | 
 | 	} | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return match; | 
 | } | 
 |  | 
 | static inline int __add_inode_ref(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_root *root, | 
 | 				  struct btrfs_path *path, | 
 | 				  struct btrfs_root *log_root, | 
 | 				  struct inode *dir, struct inode *inode, | 
 | 				  struct extent_buffer *eb, | 
 | 				  u64 inode_objectid, u64 parent_objectid, | 
 | 				  u64 ref_index, char *name, int namelen, | 
 | 				  int *search_done) | 
 | { | 
 | 	int ret; | 
 | 	char *victim_name; | 
 | 	int victim_name_len; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_key search_key; | 
 | 	struct btrfs_inode_extref *extref; | 
 |  | 
 | again: | 
 | 	/* Search old style refs */ | 
 | 	search_key.objectid = inode_objectid; | 
 | 	search_key.type = BTRFS_INODE_REF_KEY; | 
 | 	search_key.offset = parent_objectid; | 
 | 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | 
 | 	if (ret == 0) { | 
 | 		struct btrfs_inode_ref *victim_ref; | 
 | 		unsigned long ptr; | 
 | 		unsigned long ptr_end; | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 |  | 
 | 		/* are we trying to overwrite a back ref for the root directory | 
 | 		 * if so, just jump out, we're done | 
 | 		 */ | 
 | 		if (search_key.objectid == search_key.offset) | 
 | 			return 1; | 
 |  | 
 | 		/* check all the names in this back reference to see | 
 | 		 * if they are in the log.  if so, we allow them to stay | 
 | 		 * otherwise they must be unlinked as a conflict | 
 | 		 */ | 
 | 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
 | 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); | 
 | 		while (ptr < ptr_end) { | 
 | 			victim_ref = (struct btrfs_inode_ref *)ptr; | 
 | 			victim_name_len = btrfs_inode_ref_name_len(leaf, | 
 | 								   victim_ref); | 
 | 			victim_name = kmalloc(victim_name_len, GFP_NOFS); | 
 | 			if (!victim_name) | 
 | 				return -ENOMEM; | 
 |  | 
 | 			read_extent_buffer(leaf, victim_name, | 
 | 					   (unsigned long)(victim_ref + 1), | 
 | 					   victim_name_len); | 
 |  | 
 | 			if (!backref_in_log(log_root, &search_key, | 
 | 					    parent_objectid, | 
 | 					    victim_name, | 
 | 					    victim_name_len)) { | 
 | 				inc_nlink(inode); | 
 | 				btrfs_release_path(path); | 
 |  | 
 | 				ret = btrfs_unlink_inode(trans, root, dir, | 
 | 							 inode, victim_name, | 
 | 							 victim_name_len); | 
 | 				kfree(victim_name); | 
 | 				if (ret) | 
 | 					return ret; | 
 | 				ret = btrfs_run_delayed_items(trans, root); | 
 | 				if (ret) | 
 | 					return ret; | 
 | 				*search_done = 1; | 
 | 				goto again; | 
 | 			} | 
 | 			kfree(victim_name); | 
 |  | 
 | 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * NOTE: we have searched root tree and checked the | 
 | 		 * coresponding ref, it does not need to check again. | 
 | 		 */ | 
 | 		*search_done = 1; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* Same search but for extended refs */ | 
 | 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, | 
 | 					   inode_objectid, parent_objectid, 0, | 
 | 					   0); | 
 | 	if (!IS_ERR_OR_NULL(extref)) { | 
 | 		u32 item_size; | 
 | 		u32 cur_offset = 0; | 
 | 		unsigned long base; | 
 | 		struct inode *victim_parent; | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 |  | 
 | 		item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
 | 		base = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
 |  | 
 | 		while (cur_offset < item_size) { | 
 | 			extref = (struct btrfs_inode_extref *)(base + cur_offset); | 
 |  | 
 | 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref); | 
 |  | 
 | 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) | 
 | 				goto next; | 
 |  | 
 | 			victim_name = kmalloc(victim_name_len, GFP_NOFS); | 
 | 			if (!victim_name) | 
 | 				return -ENOMEM; | 
 | 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, | 
 | 					   victim_name_len); | 
 |  | 
 | 			search_key.objectid = inode_objectid; | 
 | 			search_key.type = BTRFS_INODE_EXTREF_KEY; | 
 | 			search_key.offset = btrfs_extref_hash(parent_objectid, | 
 | 							      victim_name, | 
 | 							      victim_name_len); | 
 | 			ret = 0; | 
 | 			if (!backref_in_log(log_root, &search_key, | 
 | 					    parent_objectid, victim_name, | 
 | 					    victim_name_len)) { | 
 | 				ret = -ENOENT; | 
 | 				victim_parent = read_one_inode(root, | 
 | 							       parent_objectid); | 
 | 				if (victim_parent) { | 
 | 					inc_nlink(inode); | 
 | 					btrfs_release_path(path); | 
 |  | 
 | 					ret = btrfs_unlink_inode(trans, root, | 
 | 								 victim_parent, | 
 | 								 inode, | 
 | 								 victim_name, | 
 | 								 victim_name_len); | 
 | 					if (!ret) | 
 | 						ret = btrfs_run_delayed_items( | 
 | 								  trans, root); | 
 | 				} | 
 | 				iput(victim_parent); | 
 | 				kfree(victim_name); | 
 | 				if (ret) | 
 | 					return ret; | 
 | 				*search_done = 1; | 
 | 				goto again; | 
 | 			} | 
 | 			kfree(victim_name); | 
 | 			if (ret) | 
 | 				return ret; | 
 | next: | 
 | 			cur_offset += victim_name_len + sizeof(*extref); | 
 | 		} | 
 | 		*search_done = 1; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* look for a conflicting sequence number */ | 
 | 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), | 
 | 					 ref_index, name, namelen, 0); | 
 | 	if (di && !IS_ERR(di)) { | 
 | 		ret = drop_one_dir_item(trans, root, path, dir, di); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* look for a conflicing name */ | 
 | 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), | 
 | 				   name, namelen, 0); | 
 | 	if (di && !IS_ERR(di)) { | 
 | 		ret = drop_one_dir_item(trans, root, path, dir, di); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, | 
 | 			     u32 *namelen, char **name, u64 *index, | 
 | 			     u64 *parent_objectid) | 
 | { | 
 | 	struct btrfs_inode_extref *extref; | 
 |  | 
 | 	extref = (struct btrfs_inode_extref *)ref_ptr; | 
 |  | 
 | 	*namelen = btrfs_inode_extref_name_len(eb, extref); | 
 | 	*name = kmalloc(*namelen, GFP_NOFS); | 
 | 	if (*name == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	read_extent_buffer(eb, *name, (unsigned long)&extref->name, | 
 | 			   *namelen); | 
 |  | 
 | 	*index = btrfs_inode_extref_index(eb, extref); | 
 | 	if (parent_objectid) | 
 | 		*parent_objectid = btrfs_inode_extref_parent(eb, extref); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, | 
 | 			  u32 *namelen, char **name, u64 *index) | 
 | { | 
 | 	struct btrfs_inode_ref *ref; | 
 |  | 
 | 	ref = (struct btrfs_inode_ref *)ref_ptr; | 
 |  | 
 | 	*namelen = btrfs_inode_ref_name_len(eb, ref); | 
 | 	*name = kmalloc(*namelen, GFP_NOFS); | 
 | 	if (*name == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); | 
 |  | 
 | 	*index = btrfs_inode_ref_index(eb, ref); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * replay one inode back reference item found in the log tree. | 
 |  * eb, slot and key refer to the buffer and key found in the log tree. | 
 |  * root is the destination we are replaying into, and path is for temp | 
 |  * use by this function.  (it should be released on return). | 
 |  */ | 
 | static noinline int add_inode_ref(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_root *root, | 
 | 				  struct btrfs_root *log, | 
 | 				  struct btrfs_path *path, | 
 | 				  struct extent_buffer *eb, int slot, | 
 | 				  struct btrfs_key *key) | 
 | { | 
 | 	struct inode *dir = NULL; | 
 | 	struct inode *inode = NULL; | 
 | 	unsigned long ref_ptr; | 
 | 	unsigned long ref_end; | 
 | 	char *name = NULL; | 
 | 	int namelen; | 
 | 	int ret; | 
 | 	int search_done = 0; | 
 | 	int log_ref_ver = 0; | 
 | 	u64 parent_objectid; | 
 | 	u64 inode_objectid; | 
 | 	u64 ref_index = 0; | 
 | 	int ref_struct_size; | 
 |  | 
 | 	ref_ptr = btrfs_item_ptr_offset(eb, slot); | 
 | 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); | 
 |  | 
 | 	if (key->type == BTRFS_INODE_EXTREF_KEY) { | 
 | 		struct btrfs_inode_extref *r; | 
 |  | 
 | 		ref_struct_size = sizeof(struct btrfs_inode_extref); | 
 | 		log_ref_ver = 1; | 
 | 		r = (struct btrfs_inode_extref *)ref_ptr; | 
 | 		parent_objectid = btrfs_inode_extref_parent(eb, r); | 
 | 	} else { | 
 | 		ref_struct_size = sizeof(struct btrfs_inode_ref); | 
 | 		parent_objectid = key->offset; | 
 | 	} | 
 | 	inode_objectid = key->objectid; | 
 |  | 
 | 	/* | 
 | 	 * it is possible that we didn't log all the parent directories | 
 | 	 * for a given inode.  If we don't find the dir, just don't | 
 | 	 * copy the back ref in.  The link count fixup code will take | 
 | 	 * care of the rest | 
 | 	 */ | 
 | 	dir = read_one_inode(root, parent_objectid); | 
 | 	if (!dir) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	inode = read_one_inode(root, inode_objectid); | 
 | 	if (!inode) { | 
 | 		ret = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	while (ref_ptr < ref_end) { | 
 | 		if (log_ref_ver) { | 
 | 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name, | 
 | 						&ref_index, &parent_objectid); | 
 | 			/* | 
 | 			 * parent object can change from one array | 
 | 			 * item to another. | 
 | 			 */ | 
 | 			if (!dir) | 
 | 				dir = read_one_inode(root, parent_objectid); | 
 | 			if (!dir) { | 
 | 				ret = -ENOENT; | 
 | 				goto out; | 
 | 			} | 
 | 		} else { | 
 | 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name, | 
 | 					     &ref_index); | 
 | 		} | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		/* if we already have a perfect match, we're done */ | 
 | 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode), | 
 | 				  ref_index, name, namelen)) { | 
 | 			/* | 
 | 			 * look for a conflicting back reference in the | 
 | 			 * metadata. if we find one we have to unlink that name | 
 | 			 * of the file before we add our new link.  Later on, we | 
 | 			 * overwrite any existing back reference, and we don't | 
 | 			 * want to create dangling pointers in the directory. | 
 | 			 */ | 
 |  | 
 | 			if (!search_done) { | 
 | 				ret = __add_inode_ref(trans, root, path, log, | 
 | 						      dir, inode, eb, | 
 | 						      inode_objectid, | 
 | 						      parent_objectid, | 
 | 						      ref_index, name, namelen, | 
 | 						      &search_done); | 
 | 				if (ret) { | 
 | 					if (ret == 1) | 
 | 						ret = 0; | 
 | 					goto out; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			/* insert our name */ | 
 | 			ret = btrfs_add_link(trans, dir, inode, name, namelen, | 
 | 					     0, ref_index); | 
 | 			if (ret) | 
 | 				goto out; | 
 |  | 
 | 			btrfs_update_inode(trans, root, inode); | 
 | 		} | 
 |  | 
 | 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; | 
 | 		kfree(name); | 
 | 		name = NULL; | 
 | 		if (log_ref_ver) { | 
 | 			iput(dir); | 
 | 			dir = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* finally write the back reference in the inode */ | 
 | 	ret = overwrite_item(trans, root, path, eb, slot, key); | 
 | out: | 
 | 	btrfs_release_path(path); | 
 | 	kfree(name); | 
 | 	iput(dir); | 
 | 	iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int insert_orphan_item(struct btrfs_trans_handle *trans, | 
 | 			      struct btrfs_root *root, u64 ino) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_insert_orphan_item(trans, root, ino); | 
 | 	if (ret == -EEXIST) | 
 | 		ret = 0; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int count_inode_extrefs(struct btrfs_root *root, | 
 | 			       struct inode *inode, struct btrfs_path *path) | 
 | { | 
 | 	int ret = 0; | 
 | 	int name_len; | 
 | 	unsigned int nlink = 0; | 
 | 	u32 item_size; | 
 | 	u32 cur_offset = 0; | 
 | 	u64 inode_objectid = btrfs_ino(inode); | 
 | 	u64 offset = 0; | 
 | 	unsigned long ptr; | 
 | 	struct btrfs_inode_extref *extref; | 
 | 	struct extent_buffer *leaf; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path, | 
 | 					    &extref, &offset); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 | 		item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
 | 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
 | 		cur_offset = 0; | 
 |  | 
 | 		while (cur_offset < item_size) { | 
 | 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset); | 
 | 			name_len = btrfs_inode_extref_name_len(leaf, extref); | 
 |  | 
 | 			nlink++; | 
 |  | 
 | 			cur_offset += name_len + sizeof(*extref); | 
 | 		} | 
 |  | 
 | 		offset++; | 
 | 		btrfs_release_path(path); | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	if (ret < 0 && ret != -ENOENT) | 
 | 		return ret; | 
 | 	return nlink; | 
 | } | 
 |  | 
 | static int count_inode_refs(struct btrfs_root *root, | 
 | 			       struct inode *inode, struct btrfs_path *path) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	unsigned int nlink = 0; | 
 | 	unsigned long ptr; | 
 | 	unsigned long ptr_end; | 
 | 	int name_len; | 
 | 	u64 ino = btrfs_ino(inode); | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_INODE_REF_KEY; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		if (ret > 0) { | 
 | 			if (path->slots[0] == 0) | 
 | 				break; | 
 | 			path->slots[0]--; | 
 | 		} | 
 | process_slot: | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &key, | 
 | 				      path->slots[0]); | 
 | 		if (key.objectid != ino || | 
 | 		    key.type != BTRFS_INODE_REF_KEY) | 
 | 			break; | 
 | 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); | 
 | 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], | 
 | 						   path->slots[0]); | 
 | 		while (ptr < ptr_end) { | 
 | 			struct btrfs_inode_ref *ref; | 
 |  | 
 | 			ref = (struct btrfs_inode_ref *)ptr; | 
 | 			name_len = btrfs_inode_ref_name_len(path->nodes[0], | 
 | 							    ref); | 
 | 			ptr = (unsigned long)(ref + 1) + name_len; | 
 | 			nlink++; | 
 | 		} | 
 |  | 
 | 		if (key.offset == 0) | 
 | 			break; | 
 | 		if (path->slots[0] > 0) { | 
 | 			path->slots[0]--; | 
 | 			goto process_slot; | 
 | 		} | 
 | 		key.offset--; | 
 | 		btrfs_release_path(path); | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	return nlink; | 
 | } | 
 |  | 
 | /* | 
 |  * There are a few corners where the link count of the file can't | 
 |  * be properly maintained during replay.  So, instead of adding | 
 |  * lots of complexity to the log code, we just scan the backrefs | 
 |  * for any file that has been through replay. | 
 |  * | 
 |  * The scan will update the link count on the inode to reflect the | 
 |  * number of back refs found.  If it goes down to zero, the iput | 
 |  * will free the inode. | 
 |  */ | 
 | static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, | 
 | 					   struct btrfs_root *root, | 
 | 					   struct inode *inode) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	int ret; | 
 | 	u64 nlink = 0; | 
 | 	u64 ino = btrfs_ino(inode); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = count_inode_refs(root, inode, path); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	nlink = ret; | 
 |  | 
 | 	ret = count_inode_extrefs(root, inode, path); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	nlink += ret; | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | 	if (nlink != inode->i_nlink) { | 
 | 		set_nlink(inode, nlink); | 
 | 		btrfs_update_inode(trans, root, inode); | 
 | 	} | 
 | 	BTRFS_I(inode)->index_cnt = (u64)-1; | 
 |  | 
 | 	if (inode->i_nlink == 0) { | 
 | 		if (S_ISDIR(inode->i_mode)) { | 
 | 			ret = replay_dir_deletes(trans, root, NULL, path, | 
 | 						 ino, 1); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 		} | 
 | 		ret = insert_orphan_item(trans, root, ino); | 
 | 	} | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, | 
 | 					    struct btrfs_root *root, | 
 | 					    struct btrfs_path *path) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	struct inode *inode; | 
 |  | 
 | 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | 
 | 	key.type = BTRFS_ORPHAN_ITEM_KEY; | 
 | 	key.offset = (u64)-1; | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 		if (ret < 0) | 
 | 			break; | 
 |  | 
 | 		if (ret == 1) { | 
 | 			if (path->slots[0] == 0) | 
 | 				break; | 
 | 			path->slots[0]--; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
 | 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || | 
 | 		    key.type != BTRFS_ORPHAN_ITEM_KEY) | 
 | 			break; | 
 |  | 
 | 		ret = btrfs_del_item(trans, root, path); | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		btrfs_release_path(path); | 
 | 		inode = read_one_inode(root, key.offset); | 
 | 		if (!inode) | 
 | 			return -EIO; | 
 |  | 
 | 		ret = fixup_inode_link_count(trans, root, inode); | 
 | 		iput(inode); | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		/* | 
 | 		 * fixup on a directory may create new entries, | 
 | 		 * make sure we always look for the highset possible | 
 | 		 * offset | 
 | 		 */ | 
 | 		key.offset = (u64)-1; | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	btrfs_release_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * record a given inode in the fixup dir so we can check its link | 
 |  * count when replay is done.  The link count is incremented here | 
 |  * so the inode won't go away until we check it | 
 |  */ | 
 | static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_root *root, | 
 | 				      struct btrfs_path *path, | 
 | 				      u64 objectid) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	int ret = 0; | 
 | 	struct inode *inode; | 
 |  | 
 | 	inode = read_one_inode(root, objectid); | 
 | 	if (!inode) | 
 | 		return -EIO; | 
 |  | 
 | 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; | 
 | 	key.type = BTRFS_ORPHAN_ITEM_KEY; | 
 | 	key.offset = objectid; | 
 |  | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0); | 
 |  | 
 | 	btrfs_release_path(path); | 
 | 	if (ret == 0) { | 
 | 		if (!inode->i_nlink) | 
 | 			set_nlink(inode, 1); | 
 | 		else | 
 | 			inc_nlink(inode); | 
 | 		ret = btrfs_update_inode(trans, root, inode); | 
 | 	} else if (ret == -EEXIST) { | 
 | 		ret = 0; | 
 | 	} else { | 
 | 		BUG(); /* Logic Error */ | 
 | 	} | 
 | 	iput(inode); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * when replaying the log for a directory, we only insert names | 
 |  * for inodes that actually exist.  This means an fsync on a directory | 
 |  * does not implicitly fsync all the new files in it | 
 |  */ | 
 | static noinline int insert_one_name(struct btrfs_trans_handle *trans, | 
 | 				    struct btrfs_root *root, | 
 | 				    u64 dirid, u64 index, | 
 | 				    char *name, int name_len, | 
 | 				    struct btrfs_key *location) | 
 | { | 
 | 	struct inode *inode; | 
 | 	struct inode *dir; | 
 | 	int ret; | 
 |  | 
 | 	inode = read_one_inode(root, location->objectid); | 
 | 	if (!inode) | 
 | 		return -ENOENT; | 
 |  | 
 | 	dir = read_one_inode(root, dirid); | 
 | 	if (!dir) { | 
 | 		iput(inode); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); | 
 |  | 
 | 	/* FIXME, put inode into FIXUP list */ | 
 |  | 
 | 	iput(inode); | 
 | 	iput(dir); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Return true if an inode reference exists in the log for the given name, | 
 |  * inode and parent inode. | 
 |  */ | 
 | static bool name_in_log_ref(struct btrfs_root *log_root, | 
 | 			    const char *name, const int name_len, | 
 | 			    const u64 dirid, const u64 ino) | 
 | { | 
 | 	struct btrfs_key search_key; | 
 |  | 
 | 	search_key.objectid = ino; | 
 | 	search_key.type = BTRFS_INODE_REF_KEY; | 
 | 	search_key.offset = dirid; | 
 | 	if (backref_in_log(log_root, &search_key, dirid, name, name_len)) | 
 | 		return true; | 
 |  | 
 | 	search_key.type = BTRFS_INODE_EXTREF_KEY; | 
 | 	search_key.offset = btrfs_extref_hash(dirid, name, name_len); | 
 | 	if (backref_in_log(log_root, &search_key, dirid, name, name_len)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * take a single entry in a log directory item and replay it into | 
 |  * the subvolume. | 
 |  * | 
 |  * if a conflicting item exists in the subdirectory already, | 
 |  * the inode it points to is unlinked and put into the link count | 
 |  * fix up tree. | 
 |  * | 
 |  * If a name from the log points to a file or directory that does | 
 |  * not exist in the FS, it is skipped.  fsyncs on directories | 
 |  * do not force down inodes inside that directory, just changes to the | 
 |  * names or unlinks in a directory. | 
 |  * | 
 |  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a | 
 |  * non-existing inode) and 1 if the name was replayed. | 
 |  */ | 
 | static noinline int replay_one_name(struct btrfs_trans_handle *trans, | 
 | 				    struct btrfs_root *root, | 
 | 				    struct btrfs_path *path, | 
 | 				    struct extent_buffer *eb, | 
 | 				    struct btrfs_dir_item *di, | 
 | 				    struct btrfs_key *key) | 
 | { | 
 | 	char *name; | 
 | 	int name_len; | 
 | 	struct btrfs_dir_item *dst_di; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_key log_key; | 
 | 	struct inode *dir; | 
 | 	u8 log_type; | 
 | 	int exists; | 
 | 	int ret = 0; | 
 | 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); | 
 | 	bool name_added = false; | 
 |  | 
 | 	dir = read_one_inode(root, key->objectid); | 
 | 	if (!dir) | 
 | 		return -EIO; | 
 |  | 
 | 	name_len = btrfs_dir_name_len(eb, di); | 
 | 	name = kmalloc(name_len, GFP_NOFS); | 
 | 	if (!name) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	log_type = btrfs_dir_type(eb, di); | 
 | 	read_extent_buffer(eb, name, (unsigned long)(di + 1), | 
 | 		   name_len); | 
 |  | 
 | 	btrfs_dir_item_key_to_cpu(eb, di, &log_key); | 
 | 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); | 
 | 	if (exists == 0) | 
 | 		exists = 1; | 
 | 	else | 
 | 		exists = 0; | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	if (key->type == BTRFS_DIR_ITEM_KEY) { | 
 | 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, | 
 | 				       name, name_len, 1); | 
 | 	} else if (key->type == BTRFS_DIR_INDEX_KEY) { | 
 | 		dst_di = btrfs_lookup_dir_index_item(trans, root, path, | 
 | 						     key->objectid, | 
 | 						     key->offset, name, | 
 | 						     name_len, 1); | 
 | 	} else { | 
 | 		/* Corruption */ | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	if (IS_ERR_OR_NULL(dst_di)) { | 
 | 		/* we need a sequence number to insert, so we only | 
 | 		 * do inserts for the BTRFS_DIR_INDEX_KEY types | 
 | 		 */ | 
 | 		if (key->type != BTRFS_DIR_INDEX_KEY) | 
 | 			goto out; | 
 | 		goto insert; | 
 | 	} | 
 |  | 
 | 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); | 
 | 	/* the existing item matches the logged item */ | 
 | 	if (found_key.objectid == log_key.objectid && | 
 | 	    found_key.type == log_key.type && | 
 | 	    found_key.offset == log_key.offset && | 
 | 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) { | 
 | 		update_size = false; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * don't drop the conflicting directory entry if the inode | 
 | 	 * for the new entry doesn't exist | 
 | 	 */ | 
 | 	if (!exists) | 
 | 		goto out; | 
 |  | 
 | 	ret = drop_one_dir_item(trans, root, path, dir, dst_di); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (key->type == BTRFS_DIR_INDEX_KEY) | 
 | 		goto insert; | 
 | out: | 
 | 	btrfs_release_path(path); | 
 | 	if (!ret && update_size) { | 
 | 		btrfs_i_size_write(dir, dir->i_size + name_len * 2); | 
 | 		ret = btrfs_update_inode(trans, root, dir); | 
 | 	} | 
 | 	kfree(name); | 
 | 	iput(dir); | 
 | 	if (!ret && name_added) | 
 | 		ret = 1; | 
 | 	return ret; | 
 |  | 
 | insert: | 
 | 	if (name_in_log_ref(root->log_root, name, name_len, | 
 | 			    key->objectid, log_key.objectid)) { | 
 | 		/* The dentry will be added later. */ | 
 | 		ret = 0; | 
 | 		update_size = false; | 
 | 		goto out; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 | 	ret = insert_one_name(trans, root, key->objectid, key->offset, | 
 | 			      name, name_len, &log_key); | 
 | 	if (ret && ret != -ENOENT && ret != -EEXIST) | 
 | 		goto out; | 
 | 	if (!ret) | 
 | 		name_added = true; | 
 | 	update_size = false; | 
 | 	ret = 0; | 
 | 	goto out; | 
 | } | 
 |  | 
 | /* | 
 |  * find all the names in a directory item and reconcile them into | 
 |  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than | 
 |  * one name in a directory item, but the same code gets used for | 
 |  * both directory index types | 
 |  */ | 
 | static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, | 
 | 					struct btrfs_root *root, | 
 | 					struct btrfs_path *path, | 
 | 					struct extent_buffer *eb, int slot, | 
 | 					struct btrfs_key *key) | 
 | { | 
 | 	int ret = 0; | 
 | 	u32 item_size = btrfs_item_size_nr(eb, slot); | 
 | 	struct btrfs_dir_item *di; | 
 | 	int name_len; | 
 | 	unsigned long ptr; | 
 | 	unsigned long ptr_end; | 
 | 	struct btrfs_path *fixup_path = NULL; | 
 |  | 
 | 	ptr = btrfs_item_ptr_offset(eb, slot); | 
 | 	ptr_end = ptr + item_size; | 
 | 	while (ptr < ptr_end) { | 
 | 		di = (struct btrfs_dir_item *)ptr; | 
 | 		if (verify_dir_item(root, eb, di)) | 
 | 			return -EIO; | 
 | 		name_len = btrfs_dir_name_len(eb, di); | 
 | 		ret = replay_one_name(trans, root, path, eb, di, key); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		ptr = (unsigned long)(di + 1); | 
 | 		ptr += name_len; | 
 |  | 
 | 		/* | 
 | 		 * If this entry refers to a non-directory (directories can not | 
 | 		 * have a link count > 1) and it was added in the transaction | 
 | 		 * that was not committed, make sure we fixup the link count of | 
 | 		 * the inode it the entry points to. Otherwise something like | 
 | 		 * the following would result in a directory pointing to an | 
 | 		 * inode with a wrong link that does not account for this dir | 
 | 		 * entry: | 
 | 		 * | 
 | 		 * mkdir testdir | 
 | 		 * touch testdir/foo | 
 | 		 * touch testdir/bar | 
 | 		 * sync | 
 | 		 * | 
 | 		 * ln testdir/bar testdir/bar_link | 
 | 		 * ln testdir/foo testdir/foo_link | 
 | 		 * xfs_io -c "fsync" testdir/bar | 
 | 		 * | 
 | 		 * <power failure> | 
 | 		 * | 
 | 		 * mount fs, log replay happens | 
 | 		 * | 
 | 		 * File foo would remain with a link count of 1 when it has two | 
 | 		 * entries pointing to it in the directory testdir. This would | 
 | 		 * make it impossible to ever delete the parent directory has | 
 | 		 * it would result in stale dentries that can never be deleted. | 
 | 		 */ | 
 | 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { | 
 | 			struct btrfs_key di_key; | 
 |  | 
 | 			if (!fixup_path) { | 
 | 				fixup_path = btrfs_alloc_path(); | 
 | 				if (!fixup_path) { | 
 | 					ret = -ENOMEM; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			btrfs_dir_item_key_to_cpu(eb, di, &di_key); | 
 | 			ret = link_to_fixup_dir(trans, root, fixup_path, | 
 | 						di_key.objectid); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 | 		ret = 0; | 
 | 	} | 
 | 	btrfs_free_path(fixup_path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * directory replay has two parts.  There are the standard directory | 
 |  * items in the log copied from the subvolume, and range items | 
 |  * created in the log while the subvolume was logged. | 
 |  * | 
 |  * The range items tell us which parts of the key space the log | 
 |  * is authoritative for.  During replay, if a key in the subvolume | 
 |  * directory is in a logged range item, but not actually in the log | 
 |  * that means it was deleted from the directory before the fsync | 
 |  * and should be removed. | 
 |  */ | 
 | static noinline int find_dir_range(struct btrfs_root *root, | 
 | 				   struct btrfs_path *path, | 
 | 				   u64 dirid, int key_type, | 
 | 				   u64 *start_ret, u64 *end_ret) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	u64 found_end; | 
 | 	struct btrfs_dir_log_item *item; | 
 | 	int ret; | 
 | 	int nritems; | 
 |  | 
 | 	if (*start_ret == (u64)-1) | 
 | 		return 1; | 
 |  | 
 | 	key.objectid = dirid; | 
 | 	key.type = key_type; | 
 | 	key.offset = *start_ret; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret > 0) { | 
 | 		if (path->slots[0] == 0) | 
 | 			goto out; | 
 | 		path->slots[0]--; | 
 | 	} | 
 | 	if (ret != 0) | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
 |  | 
 | 	if (key.type != key_type || key.objectid != dirid) { | 
 | 		ret = 1; | 
 | 		goto next; | 
 | 	} | 
 | 	item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 			      struct btrfs_dir_log_item); | 
 | 	found_end = btrfs_dir_log_end(path->nodes[0], item); | 
 |  | 
 | 	if (*start_ret >= key.offset && *start_ret <= found_end) { | 
 | 		ret = 0; | 
 | 		*start_ret = key.offset; | 
 | 		*end_ret = found_end; | 
 | 		goto out; | 
 | 	} | 
 | 	ret = 1; | 
 | next: | 
 | 	/* check the next slot in the tree to see if it is a valid item */ | 
 | 	nritems = btrfs_header_nritems(path->nodes[0]); | 
 | 	if (path->slots[0] >= nritems) { | 
 | 		ret = btrfs_next_leaf(root, path); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} else { | 
 | 		path->slots[0]++; | 
 | 	} | 
 |  | 
 | 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
 |  | 
 | 	if (key.type != key_type || key.objectid != dirid) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 | 	item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 			      struct btrfs_dir_log_item); | 
 | 	found_end = btrfs_dir_log_end(path->nodes[0], item); | 
 | 	*start_ret = key.offset; | 
 | 	*end_ret = found_end; | 
 | 	ret = 0; | 
 | out: | 
 | 	btrfs_release_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * this looks for a given directory item in the log.  If the directory | 
 |  * item is not in the log, the item is removed and the inode it points | 
 |  * to is unlinked | 
 |  */ | 
 | static noinline int check_item_in_log(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_root *root, | 
 | 				      struct btrfs_root *log, | 
 | 				      struct btrfs_path *path, | 
 | 				      struct btrfs_path *log_path, | 
 | 				      struct inode *dir, | 
 | 				      struct btrfs_key *dir_key) | 
 | { | 
 | 	int ret; | 
 | 	struct extent_buffer *eb; | 
 | 	int slot; | 
 | 	u32 item_size; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_dir_item *log_di; | 
 | 	int name_len; | 
 | 	unsigned long ptr; | 
 | 	unsigned long ptr_end; | 
 | 	char *name; | 
 | 	struct inode *inode; | 
 | 	struct btrfs_key location; | 
 |  | 
 | again: | 
 | 	eb = path->nodes[0]; | 
 | 	slot = path->slots[0]; | 
 | 	item_size = btrfs_item_size_nr(eb, slot); | 
 | 	ptr = btrfs_item_ptr_offset(eb, slot); | 
 | 	ptr_end = ptr + item_size; | 
 | 	while (ptr < ptr_end) { | 
 | 		di = (struct btrfs_dir_item *)ptr; | 
 | 		if (verify_dir_item(root, eb, di)) { | 
 | 			ret = -EIO; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		name_len = btrfs_dir_name_len(eb, di); | 
 | 		name = kmalloc(name_len, GFP_NOFS); | 
 | 		if (!name) { | 
 | 			ret = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		read_extent_buffer(eb, name, (unsigned long)(di + 1), | 
 | 				  name_len); | 
 | 		log_di = NULL; | 
 | 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { | 
 | 			log_di = btrfs_lookup_dir_item(trans, log, log_path, | 
 | 						       dir_key->objectid, | 
 | 						       name, name_len, 0); | 
 | 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { | 
 | 			log_di = btrfs_lookup_dir_index_item(trans, log, | 
 | 						     log_path, | 
 | 						     dir_key->objectid, | 
 | 						     dir_key->offset, | 
 | 						     name, name_len, 0); | 
 | 		} | 
 | 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) { | 
 | 			btrfs_dir_item_key_to_cpu(eb, di, &location); | 
 | 			btrfs_release_path(path); | 
 | 			btrfs_release_path(log_path); | 
 | 			inode = read_one_inode(root, location.objectid); | 
 | 			if (!inode) { | 
 | 				kfree(name); | 
 | 				return -EIO; | 
 | 			} | 
 |  | 
 | 			ret = link_to_fixup_dir(trans, root, | 
 | 						path, location.objectid); | 
 | 			if (ret) { | 
 | 				kfree(name); | 
 | 				iput(inode); | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			inc_nlink(inode); | 
 | 			ret = btrfs_unlink_inode(trans, root, dir, inode, | 
 | 						 name, name_len); | 
 | 			if (!ret) | 
 | 				ret = btrfs_run_delayed_items(trans, root); | 
 | 			kfree(name); | 
 | 			iput(inode); | 
 | 			if (ret) | 
 | 				goto out; | 
 |  | 
 | 			/* there might still be more names under this key | 
 | 			 * check and repeat if required | 
 | 			 */ | 
 | 			ret = btrfs_search_slot(NULL, root, dir_key, path, | 
 | 						0, 0); | 
 | 			if (ret == 0) | 
 | 				goto again; | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} else if (IS_ERR(log_di)) { | 
 | 			kfree(name); | 
 | 			return PTR_ERR(log_di); | 
 | 		} | 
 | 		btrfs_release_path(log_path); | 
 | 		kfree(name); | 
 |  | 
 | 		ptr = (unsigned long)(di + 1); | 
 | 		ptr += name_len; | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	btrfs_release_path(path); | 
 | 	btrfs_release_path(log_path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int replay_xattr_deletes(struct btrfs_trans_handle *trans, | 
 | 			      struct btrfs_root *root, | 
 | 			      struct btrfs_root *log, | 
 | 			      struct btrfs_path *path, | 
 | 			      const u64 ino) | 
 | { | 
 | 	struct btrfs_key search_key; | 
 | 	struct btrfs_path *log_path; | 
 | 	int i; | 
 | 	int nritems; | 
 | 	int ret; | 
 |  | 
 | 	log_path = btrfs_alloc_path(); | 
 | 	if (!log_path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	search_key.objectid = ino; | 
 | 	search_key.type = BTRFS_XATTR_ITEM_KEY; | 
 | 	search_key.offset = 0; | 
 | again: | 
 | 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | process_leaf: | 
 | 	nritems = btrfs_header_nritems(path->nodes[0]); | 
 | 	for (i = path->slots[0]; i < nritems; i++) { | 
 | 		struct btrfs_key key; | 
 | 		struct btrfs_dir_item *di; | 
 | 		struct btrfs_dir_item *log_di; | 
 | 		u32 total_size; | 
 | 		u32 cur; | 
 |  | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &key, i); | 
 | 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); | 
 | 		total_size = btrfs_item_size_nr(path->nodes[0], i); | 
 | 		cur = 0; | 
 | 		while (cur < total_size) { | 
 | 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di); | 
 | 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di); | 
 | 			u32 this_len = sizeof(*di) + name_len + data_len; | 
 | 			char *name; | 
 |  | 
 | 			name = kmalloc(name_len, GFP_NOFS); | 
 | 			if (!name) { | 
 | 				ret = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 			read_extent_buffer(path->nodes[0], name, | 
 | 					   (unsigned long)(di + 1), name_len); | 
 |  | 
 | 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, | 
 | 						    name, name_len, 0); | 
 | 			btrfs_release_path(log_path); | 
 | 			if (!log_di) { | 
 | 				/* Doesn't exist in log tree, so delete it. */ | 
 | 				btrfs_release_path(path); | 
 | 				di = btrfs_lookup_xattr(trans, root, path, ino, | 
 | 							name, name_len, -1); | 
 | 				kfree(name); | 
 | 				if (IS_ERR(di)) { | 
 | 					ret = PTR_ERR(di); | 
 | 					goto out; | 
 | 				} | 
 | 				ASSERT(di); | 
 | 				ret = btrfs_delete_one_dir_name(trans, root, | 
 | 								path, di); | 
 | 				if (ret) | 
 | 					goto out; | 
 | 				btrfs_release_path(path); | 
 | 				search_key = key; | 
 | 				goto again; | 
 | 			} | 
 | 			kfree(name); | 
 | 			if (IS_ERR(log_di)) { | 
 | 				ret = PTR_ERR(log_di); | 
 | 				goto out; | 
 | 			} | 
 | 			cur += this_len; | 
 | 			di = (struct btrfs_dir_item *)((char *)di + this_len); | 
 | 		} | 
 | 	} | 
 | 	ret = btrfs_next_leaf(root, path); | 
 | 	if (ret > 0) | 
 | 		ret = 0; | 
 | 	else if (ret == 0) | 
 | 		goto process_leaf; | 
 | out: | 
 | 	btrfs_free_path(log_path); | 
 | 	btrfs_release_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * deletion replay happens before we copy any new directory items | 
 |  * out of the log or out of backreferences from inodes.  It | 
 |  * scans the log to find ranges of keys that log is authoritative for, | 
 |  * and then scans the directory to find items in those ranges that are | 
 |  * not present in the log. | 
 |  * | 
 |  * Anything we don't find in the log is unlinked and removed from the | 
 |  * directory. | 
 |  */ | 
 | static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, | 
 | 				       struct btrfs_root *root, | 
 | 				       struct btrfs_root *log, | 
 | 				       struct btrfs_path *path, | 
 | 				       u64 dirid, int del_all) | 
 | { | 
 | 	u64 range_start; | 
 | 	u64 range_end; | 
 | 	int key_type = BTRFS_DIR_LOG_ITEM_KEY; | 
 | 	int ret = 0; | 
 | 	struct btrfs_key dir_key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_path *log_path; | 
 | 	struct inode *dir; | 
 |  | 
 | 	dir_key.objectid = dirid; | 
 | 	dir_key.type = BTRFS_DIR_ITEM_KEY; | 
 | 	log_path = btrfs_alloc_path(); | 
 | 	if (!log_path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	dir = read_one_inode(root, dirid); | 
 | 	/* it isn't an error if the inode isn't there, that can happen | 
 | 	 * because we replay the deletes before we copy in the inode item | 
 | 	 * from the log | 
 | 	 */ | 
 | 	if (!dir) { | 
 | 		btrfs_free_path(log_path); | 
 | 		return 0; | 
 | 	} | 
 | again: | 
 | 	range_start = 0; | 
 | 	range_end = 0; | 
 | 	while (1) { | 
 | 		if (del_all) | 
 | 			range_end = (u64)-1; | 
 | 		else { | 
 | 			ret = find_dir_range(log, path, dirid, key_type, | 
 | 					     &range_start, &range_end); | 
 | 			if (ret != 0) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		dir_key.offset = range_start; | 
 | 		while (1) { | 
 | 			int nritems; | 
 | 			ret = btrfs_search_slot(NULL, root, &dir_key, path, | 
 | 						0, 0); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 |  | 
 | 			nritems = btrfs_header_nritems(path->nodes[0]); | 
 | 			if (path->slots[0] >= nritems) { | 
 | 				ret = btrfs_next_leaf(root, path); | 
 | 				if (ret) | 
 | 					break; | 
 | 			} | 
 | 			btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
 | 					      path->slots[0]); | 
 | 			if (found_key.objectid != dirid || | 
 | 			    found_key.type != dir_key.type) | 
 | 				goto next_type; | 
 |  | 
 | 			if (found_key.offset > range_end) | 
 | 				break; | 
 |  | 
 | 			ret = check_item_in_log(trans, root, log, path, | 
 | 						log_path, dir, | 
 | 						&found_key); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			if (found_key.offset == (u64)-1) | 
 | 				break; | 
 | 			dir_key.offset = found_key.offset + 1; | 
 | 		} | 
 | 		btrfs_release_path(path); | 
 | 		if (range_end == (u64)-1) | 
 | 			break; | 
 | 		range_start = range_end + 1; | 
 | 	} | 
 |  | 
 | next_type: | 
 | 	ret = 0; | 
 | 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { | 
 | 		key_type = BTRFS_DIR_LOG_INDEX_KEY; | 
 | 		dir_key.type = BTRFS_DIR_INDEX_KEY; | 
 | 		btrfs_release_path(path); | 
 | 		goto again; | 
 | 	} | 
 | out: | 
 | 	btrfs_release_path(path); | 
 | 	btrfs_free_path(log_path); | 
 | 	iput(dir); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * the process_func used to replay items from the log tree.  This | 
 |  * gets called in two different stages.  The first stage just looks | 
 |  * for inodes and makes sure they are all copied into the subvolume. | 
 |  * | 
 |  * The second stage copies all the other item types from the log into | 
 |  * the subvolume.  The two stage approach is slower, but gets rid of | 
 |  * lots of complexity around inodes referencing other inodes that exist | 
 |  * only in the log (references come from either directory items or inode | 
 |  * back refs). | 
 |  */ | 
 | static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, | 
 | 			     struct walk_control *wc, u64 gen) | 
 | { | 
 | 	int nritems; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root *root = wc->replay_dest; | 
 | 	struct btrfs_key key; | 
 | 	int level; | 
 | 	int i; | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_read_buffer(eb, gen); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	level = btrfs_header_level(eb); | 
 |  | 
 | 	if (level != 0) | 
 | 		return 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	nritems = btrfs_header_nritems(eb); | 
 | 	for (i = 0; i < nritems; i++) { | 
 | 		btrfs_item_key_to_cpu(eb, &key, i); | 
 |  | 
 | 		/* inode keys are done during the first stage */ | 
 | 		if (key.type == BTRFS_INODE_ITEM_KEY && | 
 | 		    wc->stage == LOG_WALK_REPLAY_INODES) { | 
 | 			struct btrfs_inode_item *inode_item; | 
 | 			u32 mode; | 
 |  | 
 | 			inode_item = btrfs_item_ptr(eb, i, | 
 | 					    struct btrfs_inode_item); | 
 | 			ret = replay_xattr_deletes(wc->trans, root, log, | 
 | 						   path, key.objectid); | 
 | 			if (ret) | 
 | 				break; | 
 | 			mode = btrfs_inode_mode(eb, inode_item); | 
 | 			if (S_ISDIR(mode)) { | 
 | 				ret = replay_dir_deletes(wc->trans, | 
 | 					 root, log, path, key.objectid, 0); | 
 | 				if (ret) | 
 | 					break; | 
 | 			} | 
 | 			ret = overwrite_item(wc->trans, root, path, | 
 | 					     eb, i, &key); | 
 | 			if (ret) | 
 | 				break; | 
 |  | 
 | 			/* for regular files, make sure corresponding | 
 | 			 * orhpan item exist. extents past the new EOF | 
 | 			 * will be truncated later by orphan cleanup. | 
 | 			 */ | 
 | 			if (S_ISREG(mode)) { | 
 | 				ret = insert_orphan_item(wc->trans, root, | 
 | 							 key.objectid); | 
 | 				if (ret) | 
 | 					break; | 
 | 			} | 
 |  | 
 | 			ret = link_to_fixup_dir(wc->trans, root, | 
 | 						path, key.objectid); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		if (key.type == BTRFS_DIR_INDEX_KEY && | 
 | 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { | 
 | 			ret = replay_one_dir_item(wc->trans, root, path, | 
 | 						  eb, i, &key); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		if (wc->stage < LOG_WALK_REPLAY_ALL) | 
 | 			continue; | 
 |  | 
 | 		/* these keys are simply copied */ | 
 | 		if (key.type == BTRFS_XATTR_ITEM_KEY) { | 
 | 			ret = overwrite_item(wc->trans, root, path, | 
 | 					     eb, i, &key); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} else if (key.type == BTRFS_INODE_REF_KEY || | 
 | 			   key.type == BTRFS_INODE_EXTREF_KEY) { | 
 | 			ret = add_inode_ref(wc->trans, root, log, path, | 
 | 					    eb, i, &key); | 
 | 			if (ret && ret != -ENOENT) | 
 | 				break; | 
 | 			ret = 0; | 
 | 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) { | 
 | 			ret = replay_one_extent(wc->trans, root, path, | 
 | 						eb, i, &key); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} else if (key.type == BTRFS_DIR_ITEM_KEY) { | 
 | 			ret = replay_one_dir_item(wc->trans, root, path, | 
 | 						  eb, i, &key); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_root *root, | 
 | 				   struct btrfs_path *path, int *level, | 
 | 				   struct walk_control *wc) | 
 | { | 
 | 	u64 root_owner; | 
 | 	u64 bytenr; | 
 | 	u64 ptr_gen; | 
 | 	struct extent_buffer *next; | 
 | 	struct extent_buffer *cur; | 
 | 	struct extent_buffer *parent; | 
 | 	u32 blocksize; | 
 | 	int ret = 0; | 
 |  | 
 | 	WARN_ON(*level < 0); | 
 | 	WARN_ON(*level >= BTRFS_MAX_LEVEL); | 
 |  | 
 | 	while (*level > 0) { | 
 | 		WARN_ON(*level < 0); | 
 | 		WARN_ON(*level >= BTRFS_MAX_LEVEL); | 
 | 		cur = path->nodes[*level]; | 
 |  | 
 | 		WARN_ON(btrfs_header_level(cur) != *level); | 
 |  | 
 | 		if (path->slots[*level] >= | 
 | 		    btrfs_header_nritems(cur)) | 
 | 			break; | 
 |  | 
 | 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]); | 
 | 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); | 
 | 		blocksize = root->nodesize; | 
 |  | 
 | 		parent = path->nodes[*level]; | 
 | 		root_owner = btrfs_header_owner(parent); | 
 |  | 
 | 		next = btrfs_find_create_tree_block(root, bytenr); | 
 | 		if (!next) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		if (*level == 1) { | 
 | 			ret = wc->process_func(root, next, wc, ptr_gen); | 
 | 			if (ret) { | 
 | 				free_extent_buffer(next); | 
 | 				return ret; | 
 | 			} | 
 |  | 
 | 			path->slots[*level]++; | 
 | 			if (wc->free) { | 
 | 				ret = btrfs_read_buffer(next, ptr_gen); | 
 | 				if (ret) { | 
 | 					free_extent_buffer(next); | 
 | 					return ret; | 
 | 				} | 
 |  | 
 | 				if (trans) { | 
 | 					btrfs_tree_lock(next); | 
 | 					btrfs_set_lock_blocking(next); | 
 | 					clean_tree_block(trans, root->fs_info, | 
 | 							next); | 
 | 					btrfs_wait_tree_block_writeback(next); | 
 | 					btrfs_tree_unlock(next); | 
 | 				} | 
 |  | 
 | 				WARN_ON(root_owner != | 
 | 					BTRFS_TREE_LOG_OBJECTID); | 
 | 				ret = btrfs_free_and_pin_reserved_extent(root, | 
 | 							 bytenr, blocksize); | 
 | 				if (ret) { | 
 | 					free_extent_buffer(next); | 
 | 					return ret; | 
 | 				} | 
 | 			} | 
 | 			free_extent_buffer(next); | 
 | 			continue; | 
 | 		} | 
 | 		ret = btrfs_read_buffer(next, ptr_gen); | 
 | 		if (ret) { | 
 | 			free_extent_buffer(next); | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		WARN_ON(*level <= 0); | 
 | 		if (path->nodes[*level-1]) | 
 | 			free_extent_buffer(path->nodes[*level-1]); | 
 | 		path->nodes[*level-1] = next; | 
 | 		*level = btrfs_header_level(next); | 
 | 		path->slots[*level] = 0; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	WARN_ON(*level < 0); | 
 | 	WARN_ON(*level >= BTRFS_MAX_LEVEL); | 
 |  | 
 | 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); | 
 |  | 
 | 	cond_resched(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, int *level, | 
 | 				 struct walk_control *wc) | 
 | { | 
 | 	u64 root_owner; | 
 | 	int i; | 
 | 	int slot; | 
 | 	int ret; | 
 |  | 
 | 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { | 
 | 		slot = path->slots[i]; | 
 | 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { | 
 | 			path->slots[i]++; | 
 | 			*level = i; | 
 | 			WARN_ON(*level == 0); | 
 | 			return 0; | 
 | 		} else { | 
 | 			struct extent_buffer *parent; | 
 | 			if (path->nodes[*level] == root->node) | 
 | 				parent = path->nodes[*level]; | 
 | 			else | 
 | 				parent = path->nodes[*level + 1]; | 
 |  | 
 | 			root_owner = btrfs_header_owner(parent); | 
 | 			ret = wc->process_func(root, path->nodes[*level], wc, | 
 | 				 btrfs_header_generation(path->nodes[*level])); | 
 | 			if (ret) | 
 | 				return ret; | 
 |  | 
 | 			if (wc->free) { | 
 | 				struct extent_buffer *next; | 
 |  | 
 | 				next = path->nodes[*level]; | 
 |  | 
 | 				if (trans) { | 
 | 					btrfs_tree_lock(next); | 
 | 					btrfs_set_lock_blocking(next); | 
 | 					clean_tree_block(trans, root->fs_info, | 
 | 							next); | 
 | 					btrfs_wait_tree_block_writeback(next); | 
 | 					btrfs_tree_unlock(next); | 
 | 				} | 
 |  | 
 | 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); | 
 | 				ret = btrfs_free_and_pin_reserved_extent(root, | 
 | 						path->nodes[*level]->start, | 
 | 						path->nodes[*level]->len); | 
 | 				if (ret) | 
 | 					return ret; | 
 | 			} | 
 | 			free_extent_buffer(path->nodes[*level]); | 
 | 			path->nodes[*level] = NULL; | 
 | 			*level = i + 1; | 
 | 		} | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * drop the reference count on the tree rooted at 'snap'.  This traverses | 
 |  * the tree freeing any blocks that have a ref count of zero after being | 
 |  * decremented. | 
 |  */ | 
 | static int walk_log_tree(struct btrfs_trans_handle *trans, | 
 | 			 struct btrfs_root *log, struct walk_control *wc) | 
 | { | 
 | 	int ret = 0; | 
 | 	int wret; | 
 | 	int level; | 
 | 	struct btrfs_path *path; | 
 | 	int orig_level; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	level = btrfs_header_level(log->node); | 
 | 	orig_level = level; | 
 | 	path->nodes[level] = log->node; | 
 | 	extent_buffer_get(log->node); | 
 | 	path->slots[level] = 0; | 
 |  | 
 | 	while (1) { | 
 | 		wret = walk_down_log_tree(trans, log, path, &level, wc); | 
 | 		if (wret > 0) | 
 | 			break; | 
 | 		if (wret < 0) { | 
 | 			ret = wret; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		wret = walk_up_log_tree(trans, log, path, &level, wc); | 
 | 		if (wret > 0) | 
 | 			break; | 
 | 		if (wret < 0) { | 
 | 			ret = wret; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* was the root node processed? if not, catch it here */ | 
 | 	if (path->nodes[orig_level]) { | 
 | 		ret = wc->process_func(log, path->nodes[orig_level], wc, | 
 | 			 btrfs_header_generation(path->nodes[orig_level])); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		if (wc->free) { | 
 | 			struct extent_buffer *next; | 
 |  | 
 | 			next = path->nodes[orig_level]; | 
 |  | 
 | 			if (trans) { | 
 | 				btrfs_tree_lock(next); | 
 | 				btrfs_set_lock_blocking(next); | 
 | 				clean_tree_block(trans, log->fs_info, next); | 
 | 				btrfs_wait_tree_block_writeback(next); | 
 | 				btrfs_tree_unlock(next); | 
 | 			} | 
 |  | 
 | 			WARN_ON(log->root_key.objectid != | 
 | 				BTRFS_TREE_LOG_OBJECTID); | 
 | 			ret = btrfs_free_and_pin_reserved_extent(log, next->start, | 
 | 							 next->len); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to update the item for a given subvolumes log root | 
 |  * in the tree of log roots | 
 |  */ | 
 | static int update_log_root(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_root *log) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (log->log_transid == 1) { | 
 | 		/* insert root item on the first sync */ | 
 | 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree, | 
 | 				&log->root_key, &log->root_item); | 
 | 	} else { | 
 | 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree, | 
 | 				&log->root_key, &log->root_item); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void wait_log_commit(struct btrfs_root *root, int transid) | 
 | { | 
 | 	DEFINE_WAIT(wait); | 
 | 	int index = transid % 2; | 
 |  | 
 | 	/* | 
 | 	 * we only allow two pending log transactions at a time, | 
 | 	 * so we know that if ours is more than 2 older than the | 
 | 	 * current transaction, we're done | 
 | 	 */ | 
 | 	do { | 
 | 		prepare_to_wait(&root->log_commit_wait[index], | 
 | 				&wait, TASK_UNINTERRUPTIBLE); | 
 | 		mutex_unlock(&root->log_mutex); | 
 |  | 
 | 		if (root->log_transid_committed < transid && | 
 | 		    atomic_read(&root->log_commit[index])) | 
 | 			schedule(); | 
 |  | 
 | 		finish_wait(&root->log_commit_wait[index], &wait); | 
 | 		mutex_lock(&root->log_mutex); | 
 | 	} while (root->log_transid_committed < transid && | 
 | 		 atomic_read(&root->log_commit[index])); | 
 | } | 
 |  | 
 | static void wait_for_writer(struct btrfs_root *root) | 
 | { | 
 | 	DEFINE_WAIT(wait); | 
 |  | 
 | 	while (atomic_read(&root->log_writers)) { | 
 | 		prepare_to_wait(&root->log_writer_wait, | 
 | 				&wait, TASK_UNINTERRUPTIBLE); | 
 | 		mutex_unlock(&root->log_mutex); | 
 | 		if (atomic_read(&root->log_writers)) | 
 | 			schedule(); | 
 | 		finish_wait(&root->log_writer_wait, &wait); | 
 | 		mutex_lock(&root->log_mutex); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void btrfs_remove_log_ctx(struct btrfs_root *root, | 
 | 					struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	if (!ctx) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&root->log_mutex); | 
 | 	list_del_init(&ctx->list); | 
 | 	mutex_unlock(&root->log_mutex); | 
 | } | 
 |  | 
 | /*  | 
 |  * Invoked in log mutex context, or be sure there is no other task which | 
 |  * can access the list. | 
 |  */ | 
 | static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, | 
 | 					     int index, int error) | 
 | { | 
 | 	struct btrfs_log_ctx *ctx; | 
 |  | 
 | 	if (!error) { | 
 | 		INIT_LIST_HEAD(&root->log_ctxs[index]); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(ctx, &root->log_ctxs[index], list) | 
 | 		ctx->log_ret = error; | 
 |  | 
 | 	INIT_LIST_HEAD(&root->log_ctxs[index]); | 
 | } | 
 |  | 
 | /* | 
 |  * btrfs_sync_log does sends a given tree log down to the disk and | 
 |  * updates the super blocks to record it.  When this call is done, | 
 |  * you know that any inodes previously logged are safely on disk only | 
 |  * if it returns 0. | 
 |  * | 
 |  * Any other return value means you need to call btrfs_commit_transaction. | 
 |  * Some of the edge cases for fsyncing directories that have had unlinks | 
 |  * or renames done in the past mean that sometimes the only safe | 
 |  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN, | 
 |  * that has happened. | 
 |  */ | 
 | int btrfs_sync_log(struct btrfs_trans_handle *trans, | 
 | 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	int index1; | 
 | 	int index2; | 
 | 	int mark; | 
 | 	int ret; | 
 | 	struct btrfs_root *log = root->log_root; | 
 | 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree; | 
 | 	int log_transid = 0; | 
 | 	struct btrfs_log_ctx root_log_ctx; | 
 | 	struct blk_plug plug; | 
 |  | 
 | 	mutex_lock(&root->log_mutex); | 
 | 	log_transid = ctx->log_transid; | 
 | 	if (root->log_transid_committed >= log_transid) { | 
 | 		mutex_unlock(&root->log_mutex); | 
 | 		return ctx->log_ret; | 
 | 	} | 
 |  | 
 | 	index1 = log_transid % 2; | 
 | 	if (atomic_read(&root->log_commit[index1])) { | 
 | 		wait_log_commit(root, log_transid); | 
 | 		mutex_unlock(&root->log_mutex); | 
 | 		return ctx->log_ret; | 
 | 	} | 
 | 	ASSERT(log_transid == root->log_transid); | 
 | 	atomic_set(&root->log_commit[index1], 1); | 
 |  | 
 | 	/* wait for previous tree log sync to complete */ | 
 | 	if (atomic_read(&root->log_commit[(index1 + 1) % 2])) | 
 | 		wait_log_commit(root, log_transid - 1); | 
 |  | 
 | 	while (1) { | 
 | 		int batch = atomic_read(&root->log_batch); | 
 | 		/* when we're on an ssd, just kick the log commit out */ | 
 | 		if (!btrfs_test_opt(root, SSD) && | 
 | 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { | 
 | 			mutex_unlock(&root->log_mutex); | 
 | 			schedule_timeout_uninterruptible(1); | 
 | 			mutex_lock(&root->log_mutex); | 
 | 		} | 
 | 		wait_for_writer(root); | 
 | 		if (batch == atomic_read(&root->log_batch)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* bail out if we need to do a full commit */ | 
 | 	if (btrfs_need_log_full_commit(root->fs_info, trans)) { | 
 | 		ret = -EAGAIN; | 
 | 		btrfs_free_logged_extents(log, log_transid); | 
 | 		mutex_unlock(&root->log_mutex); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (log_transid % 2 == 0) | 
 | 		mark = EXTENT_DIRTY; | 
 | 	else | 
 | 		mark = EXTENT_NEW; | 
 |  | 
 | 	/* we start IO on  all the marked extents here, but we don't actually | 
 | 	 * wait for them until later. | 
 | 	 */ | 
 | 	blk_start_plug(&plug); | 
 | 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark); | 
 | 	if (ret) { | 
 | 		blk_finish_plug(&plug); | 
 | 		btrfs_abort_transaction(trans, root, ret); | 
 | 		btrfs_free_logged_extents(log, log_transid); | 
 | 		btrfs_set_log_full_commit(root->fs_info, trans); | 
 | 		mutex_unlock(&root->log_mutex); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	btrfs_set_root_node(&log->root_item, log->node); | 
 |  | 
 | 	root->log_transid++; | 
 | 	log->log_transid = root->log_transid; | 
 | 	root->log_start_pid = 0; | 
 | 	/* | 
 | 	 * IO has been started, blocks of the log tree have WRITTEN flag set | 
 | 	 * in their headers. new modifications of the log will be written to | 
 | 	 * new positions. so it's safe to allow log writers to go in. | 
 | 	 */ | 
 | 	mutex_unlock(&root->log_mutex); | 
 |  | 
 | 	btrfs_init_log_ctx(&root_log_ctx); | 
 |  | 
 | 	mutex_lock(&log_root_tree->log_mutex); | 
 | 	atomic_inc(&log_root_tree->log_batch); | 
 | 	atomic_inc(&log_root_tree->log_writers); | 
 |  | 
 | 	index2 = log_root_tree->log_transid % 2; | 
 | 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); | 
 | 	root_log_ctx.log_transid = log_root_tree->log_transid; | 
 |  | 
 | 	mutex_unlock(&log_root_tree->log_mutex); | 
 |  | 
 | 	ret = update_log_root(trans, log); | 
 |  | 
 | 	mutex_lock(&log_root_tree->log_mutex); | 
 | 	if (atomic_dec_and_test(&log_root_tree->log_writers)) { | 
 | 		/* | 
 | 		 * Implicit memory barrier after atomic_dec_and_test | 
 | 		 */ | 
 | 		if (waitqueue_active(&log_root_tree->log_writer_wait)) | 
 | 			wake_up(&log_root_tree->log_writer_wait); | 
 | 	} | 
 |  | 
 | 	if (ret) { | 
 | 		if (!list_empty(&root_log_ctx.list)) | 
 | 			list_del_init(&root_log_ctx.list); | 
 |  | 
 | 		blk_finish_plug(&plug); | 
 | 		btrfs_set_log_full_commit(root->fs_info, trans); | 
 |  | 
 | 		if (ret != -ENOSPC) { | 
 | 			btrfs_abort_transaction(trans, root, ret); | 
 | 			mutex_unlock(&log_root_tree->log_mutex); | 
 | 			goto out; | 
 | 		} | 
 | 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); | 
 | 		btrfs_free_logged_extents(log, log_transid); | 
 | 		mutex_unlock(&log_root_tree->log_mutex); | 
 | 		ret = -EAGAIN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { | 
 | 		blk_finish_plug(&plug); | 
 | 		mutex_unlock(&log_root_tree->log_mutex); | 
 | 		ret = root_log_ctx.log_ret; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	index2 = root_log_ctx.log_transid % 2; | 
 | 	if (atomic_read(&log_root_tree->log_commit[index2])) { | 
 | 		blk_finish_plug(&plug); | 
 | 		ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, | 
 | 						mark); | 
 | 		btrfs_wait_logged_extents(trans, log, log_transid); | 
 | 		wait_log_commit(log_root_tree, | 
 | 				root_log_ctx.log_transid); | 
 | 		mutex_unlock(&log_root_tree->log_mutex); | 
 | 		if (!ret) | 
 | 			ret = root_log_ctx.log_ret; | 
 | 		goto out; | 
 | 	} | 
 | 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); | 
 | 	atomic_set(&log_root_tree->log_commit[index2], 1); | 
 |  | 
 | 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { | 
 | 		wait_log_commit(log_root_tree, | 
 | 				root_log_ctx.log_transid - 1); | 
 | 	} | 
 |  | 
 | 	wait_for_writer(log_root_tree); | 
 |  | 
 | 	/* | 
 | 	 * now that we've moved on to the tree of log tree roots, | 
 | 	 * check the full commit flag again | 
 | 	 */ | 
 | 	if (btrfs_need_log_full_commit(root->fs_info, trans)) { | 
 | 		blk_finish_plug(&plug); | 
 | 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); | 
 | 		btrfs_free_logged_extents(log, log_transid); | 
 | 		mutex_unlock(&log_root_tree->log_mutex); | 
 | 		ret = -EAGAIN; | 
 | 		goto out_wake_log_root; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_write_marked_extents(log_root_tree, | 
 | 					 &log_root_tree->dirty_log_pages, | 
 | 					 EXTENT_DIRTY | EXTENT_NEW); | 
 | 	blk_finish_plug(&plug); | 
 | 	if (ret) { | 
 | 		btrfs_set_log_full_commit(root->fs_info, trans); | 
 | 		btrfs_abort_transaction(trans, root, ret); | 
 | 		btrfs_free_logged_extents(log, log_transid); | 
 | 		mutex_unlock(&log_root_tree->log_mutex); | 
 | 		goto out_wake_log_root; | 
 | 	} | 
 | 	ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); | 
 | 	if (!ret) | 
 | 		ret = btrfs_wait_marked_extents(log_root_tree, | 
 | 						&log_root_tree->dirty_log_pages, | 
 | 						EXTENT_NEW | EXTENT_DIRTY); | 
 | 	if (ret) { | 
 | 		btrfs_set_log_full_commit(root->fs_info, trans); | 
 | 		btrfs_free_logged_extents(log, log_transid); | 
 | 		mutex_unlock(&log_root_tree->log_mutex); | 
 | 		goto out_wake_log_root; | 
 | 	} | 
 | 	btrfs_wait_logged_extents(trans, log, log_transid); | 
 |  | 
 | 	btrfs_set_super_log_root(root->fs_info->super_for_commit, | 
 | 				log_root_tree->node->start); | 
 | 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit, | 
 | 				btrfs_header_level(log_root_tree->node)); | 
 |  | 
 | 	log_root_tree->log_transid++; | 
 | 	mutex_unlock(&log_root_tree->log_mutex); | 
 |  | 
 | 	/* | 
 | 	 * nobody else is going to jump in and write the the ctree | 
 | 	 * super here because the log_commit atomic below is protecting | 
 | 	 * us.  We must be called with a transaction handle pinning | 
 | 	 * the running transaction open, so a full commit can't hop | 
 | 	 * in and cause problems either. | 
 | 	 */ | 
 | 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1); | 
 | 	if (ret) { | 
 | 		btrfs_set_log_full_commit(root->fs_info, trans); | 
 | 		btrfs_abort_transaction(trans, root, ret); | 
 | 		goto out_wake_log_root; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&root->log_mutex); | 
 | 	if (root->last_log_commit < log_transid) | 
 | 		root->last_log_commit = log_transid; | 
 | 	mutex_unlock(&root->log_mutex); | 
 |  | 
 | out_wake_log_root: | 
 | 	/* | 
 | 	 * We needn't get log_mutex here because we are sure all | 
 | 	 * the other tasks are blocked. | 
 | 	 */ | 
 | 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); | 
 |  | 
 | 	mutex_lock(&log_root_tree->log_mutex); | 
 | 	log_root_tree->log_transid_committed++; | 
 | 	atomic_set(&log_root_tree->log_commit[index2], 0); | 
 | 	mutex_unlock(&log_root_tree->log_mutex); | 
 |  | 
 | 	/* | 
 | 	 * The barrier before waitqueue_active is implied by mutex_unlock | 
 | 	 */ | 
 | 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2])) | 
 | 		wake_up(&log_root_tree->log_commit_wait[index2]); | 
 | out: | 
 | 	/* See above. */ | 
 | 	btrfs_remove_all_log_ctxs(root, index1, ret); | 
 |  | 
 | 	mutex_lock(&root->log_mutex); | 
 | 	root->log_transid_committed++; | 
 | 	atomic_set(&root->log_commit[index1], 0); | 
 | 	mutex_unlock(&root->log_mutex); | 
 |  | 
 | 	/* | 
 | 	 * The barrier before waitqueue_active is implied by mutex_unlock | 
 | 	 */ | 
 | 	if (waitqueue_active(&root->log_commit_wait[index1])) | 
 | 		wake_up(&root->log_commit_wait[index1]); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void free_log_tree(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *log) | 
 | { | 
 | 	int ret; | 
 | 	u64 start; | 
 | 	u64 end; | 
 | 	struct walk_control wc = { | 
 | 		.free = 1, | 
 | 		.process_func = process_one_buffer | 
 | 	}; | 
 |  | 
 | 	ret = walk_log_tree(trans, log, &wc); | 
 | 	/* I don't think this can happen but just in case */ | 
 | 	if (ret) | 
 | 		btrfs_abort_transaction(trans, log, ret); | 
 |  | 
 | 	while (1) { | 
 | 		ret = find_first_extent_bit(&log->dirty_log_pages, | 
 | 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW, | 
 | 				NULL); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		clear_extent_bits(&log->dirty_log_pages, start, end, | 
 | 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We may have short-circuited the log tree with the full commit logic | 
 | 	 * and left ordered extents on our list, so clear these out to keep us | 
 | 	 * from leaking inodes and memory. | 
 | 	 */ | 
 | 	btrfs_free_logged_extents(log, 0); | 
 | 	btrfs_free_logged_extents(log, 1); | 
 |  | 
 | 	free_extent_buffer(log->node); | 
 | 	kfree(log); | 
 | } | 
 |  | 
 | /* | 
 |  * free all the extents used by the tree log.  This should be called | 
 |  * at commit time of the full transaction | 
 |  */ | 
 | int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) | 
 | { | 
 | 	if (root->log_root) { | 
 | 		free_log_tree(trans, root->log_root); | 
 | 		root->log_root = NULL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	if (fs_info->log_root_tree) { | 
 | 		free_log_tree(trans, fs_info->log_root_tree); | 
 | 		fs_info->log_root_tree = NULL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * If both a file and directory are logged, and unlinks or renames are | 
 |  * mixed in, we have a few interesting corners: | 
 |  * | 
 |  * create file X in dir Y | 
 |  * link file X to X.link in dir Y | 
 |  * fsync file X | 
 |  * unlink file X but leave X.link | 
 |  * fsync dir Y | 
 |  * | 
 |  * After a crash we would expect only X.link to exist.  But file X | 
 |  * didn't get fsync'd again so the log has back refs for X and X.link. | 
 |  * | 
 |  * We solve this by removing directory entries and inode backrefs from the | 
 |  * log when a file that was logged in the current transaction is | 
 |  * unlinked.  Any later fsync will include the updated log entries, and | 
 |  * we'll be able to reconstruct the proper directory items from backrefs. | 
 |  * | 
 |  * This optimizations allows us to avoid relogging the entire inode | 
 |  * or the entire directory. | 
 |  */ | 
 | int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 const char *name, int name_len, | 
 | 				 struct inode *dir, u64 index) | 
 | { | 
 | 	struct btrfs_root *log; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_path *path; | 
 | 	int ret; | 
 | 	int err = 0; | 
 | 	int bytes_del = 0; | 
 | 	u64 dir_ino = btrfs_ino(dir); | 
 |  | 
 | 	if (BTRFS_I(dir)->logged_trans < trans->transid) | 
 | 		return 0; | 
 |  | 
 | 	ret = join_running_log_trans(root); | 
 | 	if (ret) | 
 | 		return 0; | 
 |  | 
 | 	mutex_lock(&BTRFS_I(dir)->log_mutex); | 
 |  | 
 | 	log = root->log_root; | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino, | 
 | 				   name, name_len, -1); | 
 | 	if (IS_ERR(di)) { | 
 | 		err = PTR_ERR(di); | 
 | 		goto fail; | 
 | 	} | 
 | 	if (di) { | 
 | 		ret = btrfs_delete_one_dir_name(trans, log, path, di); | 
 | 		bytes_del += name_len; | 
 | 		if (ret) { | 
 | 			err = ret; | 
 | 			goto fail; | 
 | 		} | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 | 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, | 
 | 					 index, name, name_len, -1); | 
 | 	if (IS_ERR(di)) { | 
 | 		err = PTR_ERR(di); | 
 | 		goto fail; | 
 | 	} | 
 | 	if (di) { | 
 | 		ret = btrfs_delete_one_dir_name(trans, log, path, di); | 
 | 		bytes_del += name_len; | 
 | 		if (ret) { | 
 | 			err = ret; | 
 | 			goto fail; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* update the directory size in the log to reflect the names | 
 | 	 * we have removed | 
 | 	 */ | 
 | 	if (bytes_del) { | 
 | 		struct btrfs_key key; | 
 |  | 
 | 		key.objectid = dir_ino; | 
 | 		key.offset = 0; | 
 | 		key.type = BTRFS_INODE_ITEM_KEY; | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1); | 
 | 		if (ret < 0) { | 
 | 			err = ret; | 
 | 			goto fail; | 
 | 		} | 
 | 		if (ret == 0) { | 
 | 			struct btrfs_inode_item *item; | 
 | 			u64 i_size; | 
 |  | 
 | 			item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 					      struct btrfs_inode_item); | 
 | 			i_size = btrfs_inode_size(path->nodes[0], item); | 
 | 			if (i_size > bytes_del) | 
 | 				i_size -= bytes_del; | 
 | 			else | 
 | 				i_size = 0; | 
 | 			btrfs_set_inode_size(path->nodes[0], item, i_size); | 
 | 			btrfs_mark_buffer_dirty(path->nodes[0]); | 
 | 		} else | 
 | 			ret = 0; | 
 | 		btrfs_release_path(path); | 
 | 	} | 
 | fail: | 
 | 	btrfs_free_path(path); | 
 | out_unlock: | 
 | 	mutex_unlock(&BTRFS_I(dir)->log_mutex); | 
 | 	if (ret == -ENOSPC) { | 
 | 		btrfs_set_log_full_commit(root->fs_info, trans); | 
 | 		ret = 0; | 
 | 	} else if (ret < 0) | 
 | 		btrfs_abort_transaction(trans, root, ret); | 
 |  | 
 | 	btrfs_end_log_trans(root); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* see comments for btrfs_del_dir_entries_in_log */ | 
 | int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *root, | 
 | 			       const char *name, int name_len, | 
 | 			       struct inode *inode, u64 dirid) | 
 | { | 
 | 	struct btrfs_root *log; | 
 | 	u64 index; | 
 | 	int ret; | 
 |  | 
 | 	if (BTRFS_I(inode)->logged_trans < trans->transid) | 
 | 		return 0; | 
 |  | 
 | 	ret = join_running_log_trans(root); | 
 | 	if (ret) | 
 | 		return 0; | 
 | 	log = root->log_root; | 
 | 	mutex_lock(&BTRFS_I(inode)->log_mutex); | 
 |  | 
 | 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), | 
 | 				  dirid, &index); | 
 | 	mutex_unlock(&BTRFS_I(inode)->log_mutex); | 
 | 	if (ret == -ENOSPC) { | 
 | 		btrfs_set_log_full_commit(root->fs_info, trans); | 
 | 		ret = 0; | 
 | 	} else if (ret < 0 && ret != -ENOENT) | 
 | 		btrfs_abort_transaction(trans, root, ret); | 
 | 	btrfs_end_log_trans(root); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * creates a range item in the log for 'dirid'.  first_offset and | 
 |  * last_offset tell us which parts of the key space the log should | 
 |  * be considered authoritative for. | 
 |  */ | 
 | static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, | 
 | 				       struct btrfs_root *log, | 
 | 				       struct btrfs_path *path, | 
 | 				       int key_type, u64 dirid, | 
 | 				       u64 first_offset, u64 last_offset) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_dir_log_item *item; | 
 |  | 
 | 	key.objectid = dirid; | 
 | 	key.offset = first_offset; | 
 | 	if (key_type == BTRFS_DIR_ITEM_KEY) | 
 | 		key.type = BTRFS_DIR_LOG_ITEM_KEY; | 
 | 	else | 
 | 		key.type = BTRFS_DIR_LOG_INDEX_KEY; | 
 | 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 			      struct btrfs_dir_log_item); | 
 | 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset); | 
 | 	btrfs_mark_buffer_dirty(path->nodes[0]); | 
 | 	btrfs_release_path(path); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * log all the items included in the current transaction for a given | 
 |  * directory.  This also creates the range items in the log tree required | 
 |  * to replay anything deleted before the fsync | 
 |  */ | 
 | static noinline int log_dir_items(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *root, struct inode *inode, | 
 | 			  struct btrfs_path *path, | 
 | 			  struct btrfs_path *dst_path, int key_type, | 
 | 			  struct btrfs_log_ctx *ctx, | 
 | 			  u64 min_offset, u64 *last_offset_ret) | 
 | { | 
 | 	struct btrfs_key min_key; | 
 | 	struct btrfs_root *log = root->log_root; | 
 | 	struct extent_buffer *src; | 
 | 	int err = 0; | 
 | 	int ret; | 
 | 	int i; | 
 | 	int nritems; | 
 | 	u64 first_offset = min_offset; | 
 | 	u64 last_offset = (u64)-1; | 
 | 	u64 ino = btrfs_ino(inode); | 
 |  | 
 | 	log = root->log_root; | 
 |  | 
 | 	min_key.objectid = ino; | 
 | 	min_key.type = key_type; | 
 | 	min_key.offset = min_offset; | 
 |  | 
 | 	ret = btrfs_search_forward(root, &min_key, path, trans->transid); | 
 |  | 
 | 	/* | 
 | 	 * we didn't find anything from this transaction, see if there | 
 | 	 * is anything at all | 
 | 	 */ | 
 | 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { | 
 | 		min_key.objectid = ino; | 
 | 		min_key.type = key_type; | 
 | 		min_key.offset = (u64)-1; | 
 | 		btrfs_release_path(path); | 
 | 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | 
 | 		if (ret < 0) { | 
 | 			btrfs_release_path(path); | 
 | 			return ret; | 
 | 		} | 
 | 		ret = btrfs_previous_item(root, path, ino, key_type); | 
 |  | 
 | 		/* if ret == 0 there are items for this type, | 
 | 		 * create a range to tell us the last key of this type. | 
 | 		 * otherwise, there are no items in this directory after | 
 | 		 * *min_offset, and we create a range to indicate that. | 
 | 		 */ | 
 | 		if (ret == 0) { | 
 | 			struct btrfs_key tmp; | 
 | 			btrfs_item_key_to_cpu(path->nodes[0], &tmp, | 
 | 					      path->slots[0]); | 
 | 			if (key_type == tmp.type) | 
 | 				first_offset = max(min_offset, tmp.offset) + 1; | 
 | 		} | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* go backward to find any previous key */ | 
 | 	ret = btrfs_previous_item(root, path, ino, key_type); | 
 | 	if (ret == 0) { | 
 | 		struct btrfs_key tmp; | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | 
 | 		if (key_type == tmp.type) { | 
 | 			first_offset = tmp.offset; | 
 | 			ret = overwrite_item(trans, log, dst_path, | 
 | 					     path->nodes[0], path->slots[0], | 
 | 					     &tmp); | 
 | 			if (ret) { | 
 | 				err = ret; | 
 | 				goto done; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* find the first key from this transaction again */ | 
 | 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); | 
 | 	if (WARN_ON(ret != 0)) | 
 | 		goto done; | 
 |  | 
 | 	/* | 
 | 	 * we have a block from this transaction, log every item in it | 
 | 	 * from our directory | 
 | 	 */ | 
 | 	while (1) { | 
 | 		struct btrfs_key tmp; | 
 | 		src = path->nodes[0]; | 
 | 		nritems = btrfs_header_nritems(src); | 
 | 		for (i = path->slots[0]; i < nritems; i++) { | 
 | 			struct btrfs_dir_item *di; | 
 |  | 
 | 			btrfs_item_key_to_cpu(src, &min_key, i); | 
 |  | 
 | 			if (min_key.objectid != ino || min_key.type != key_type) | 
 | 				goto done; | 
 | 			ret = overwrite_item(trans, log, dst_path, src, i, | 
 | 					     &min_key); | 
 | 			if (ret) { | 
 | 				err = ret; | 
 | 				goto done; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * We must make sure that when we log a directory entry, | 
 | 			 * the corresponding inode, after log replay, has a | 
 | 			 * matching link count. For example: | 
 | 			 * | 
 | 			 * touch foo | 
 | 			 * mkdir mydir | 
 | 			 * sync | 
 | 			 * ln foo mydir/bar | 
 | 			 * xfs_io -c "fsync" mydir | 
 | 			 * <crash> | 
 | 			 * <mount fs and log replay> | 
 | 			 * | 
 | 			 * Would result in a fsync log that when replayed, our | 
 | 			 * file inode would have a link count of 1, but we get | 
 | 			 * two directory entries pointing to the same inode. | 
 | 			 * After removing one of the names, it would not be | 
 | 			 * possible to remove the other name, which resulted | 
 | 			 * always in stale file handle errors, and would not | 
 | 			 * be possible to rmdir the parent directory, since | 
 | 			 * its i_size could never decrement to the value | 
 | 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors. | 
 | 			 */ | 
 | 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item); | 
 | 			btrfs_dir_item_key_to_cpu(src, di, &tmp); | 
 | 			if (ctx && | 
 | 			    (btrfs_dir_transid(src, di) == trans->transid || | 
 | 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) && | 
 | 			    tmp.type != BTRFS_ROOT_ITEM_KEY) | 
 | 				ctx->log_new_dentries = true; | 
 | 		} | 
 | 		path->slots[0] = nritems; | 
 |  | 
 | 		/* | 
 | 		 * look ahead to the next item and see if it is also | 
 | 		 * from this directory and from this transaction | 
 | 		 */ | 
 | 		ret = btrfs_next_leaf(root, path); | 
 | 		if (ret == 1) { | 
 | 			last_offset = (u64)-1; | 
 | 			goto done; | 
 | 		} | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); | 
 | 		if (tmp.objectid != ino || tmp.type != key_type) { | 
 | 			last_offset = (u64)-1; | 
 | 			goto done; | 
 | 		} | 
 | 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) { | 
 | 			ret = overwrite_item(trans, log, dst_path, | 
 | 					     path->nodes[0], path->slots[0], | 
 | 					     &tmp); | 
 | 			if (ret) | 
 | 				err = ret; | 
 | 			else | 
 | 				last_offset = tmp.offset; | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 | done: | 
 | 	btrfs_release_path(path); | 
 | 	btrfs_release_path(dst_path); | 
 |  | 
 | 	if (err == 0) { | 
 | 		*last_offset_ret = last_offset; | 
 | 		/* | 
 | 		 * insert the log range keys to indicate where the log | 
 | 		 * is valid | 
 | 		 */ | 
 | 		ret = insert_dir_log_key(trans, log, path, key_type, | 
 | 					 ino, first_offset, last_offset); | 
 | 		if (ret) | 
 | 			err = ret; | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * logging directories is very similar to logging inodes, We find all the items | 
 |  * from the current transaction and write them to the log. | 
 |  * | 
 |  * The recovery code scans the directory in the subvolume, and if it finds a | 
 |  * key in the range logged that is not present in the log tree, then it means | 
 |  * that dir entry was unlinked during the transaction. | 
 |  * | 
 |  * In order for that scan to work, we must include one key smaller than | 
 |  * the smallest logged by this transaction and one key larger than the largest | 
 |  * key logged by this transaction. | 
 |  */ | 
 | static noinline int log_directory_changes(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *root, struct inode *inode, | 
 | 			  struct btrfs_path *path, | 
 | 			  struct btrfs_path *dst_path, | 
 | 			  struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	u64 min_key; | 
 | 	u64 max_key; | 
 | 	int ret; | 
 | 	int key_type = BTRFS_DIR_ITEM_KEY; | 
 |  | 
 | again: | 
 | 	min_key = 0; | 
 | 	max_key = 0; | 
 | 	while (1) { | 
 | 		ret = log_dir_items(trans, root, inode, path, | 
 | 				    dst_path, key_type, ctx, min_key, | 
 | 				    &max_key); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		if (max_key == (u64)-1) | 
 | 			break; | 
 | 		min_key = max_key + 1; | 
 | 	} | 
 |  | 
 | 	if (key_type == BTRFS_DIR_ITEM_KEY) { | 
 | 		key_type = BTRFS_DIR_INDEX_KEY; | 
 | 		goto again; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * a helper function to drop items from the log before we relog an | 
 |  * inode.  max_key_type indicates the highest item type to remove. | 
 |  * This cannot be run for file data extents because it does not | 
 |  * free the extents they point to. | 
 |  */ | 
 | static int drop_objectid_items(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_root *log, | 
 | 				  struct btrfs_path *path, | 
 | 				  u64 objectid, int max_key_type) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	int start_slot; | 
 |  | 
 | 	key.objectid = objectid; | 
 | 	key.type = max_key_type; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1); | 
 | 		BUG_ON(ret == 0); /* Logic error */ | 
 | 		if (ret < 0) | 
 | 			break; | 
 |  | 
 | 		if (path->slots[0] == 0) | 
 | 			break; | 
 |  | 
 | 		path->slots[0]--; | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
 | 				      path->slots[0]); | 
 |  | 
 | 		if (found_key.objectid != objectid) | 
 | 			break; | 
 |  | 
 | 		found_key.offset = 0; | 
 | 		found_key.type = 0; | 
 | 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0, | 
 | 				       &start_slot); | 
 |  | 
 | 		ret = btrfs_del_items(trans, log, path, start_slot, | 
 | 				      path->slots[0] - start_slot + 1); | 
 | 		/* | 
 | 		 * If start slot isn't 0 then we don't need to re-search, we've | 
 | 		 * found the last guy with the objectid in this tree. | 
 | 		 */ | 
 | 		if (ret || start_slot != 0) | 
 | 			break; | 
 | 		btrfs_release_path(path); | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 | 	if (ret > 0) | 
 | 		ret = 0; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void fill_inode_item(struct btrfs_trans_handle *trans, | 
 | 			    struct extent_buffer *leaf, | 
 | 			    struct btrfs_inode_item *item, | 
 | 			    struct inode *inode, int log_inode_only, | 
 | 			    u64 logged_isize) | 
 | { | 
 | 	struct btrfs_map_token token; | 
 |  | 
 | 	btrfs_init_map_token(&token); | 
 |  | 
 | 	if (log_inode_only) { | 
 | 		/* set the generation to zero so the recover code | 
 | 		 * can tell the difference between an logging | 
 | 		 * just to say 'this inode exists' and a logging | 
 | 		 * to say 'update this inode with these values' | 
 | 		 */ | 
 | 		btrfs_set_token_inode_generation(leaf, item, 0, &token); | 
 | 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token); | 
 | 	} else { | 
 | 		btrfs_set_token_inode_generation(leaf, item, | 
 | 						 BTRFS_I(inode)->generation, | 
 | 						 &token); | 
 | 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token); | 
 | 	} | 
 |  | 
 | 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); | 
 | 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); | 
 | 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); | 
 | 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); | 
 |  | 
 | 	btrfs_set_token_timespec_sec(leaf, &item->atime, | 
 | 				     inode->i_atime.tv_sec, &token); | 
 | 	btrfs_set_token_timespec_nsec(leaf, &item->atime, | 
 | 				      inode->i_atime.tv_nsec, &token); | 
 |  | 
 | 	btrfs_set_token_timespec_sec(leaf, &item->mtime, | 
 | 				     inode->i_mtime.tv_sec, &token); | 
 | 	btrfs_set_token_timespec_nsec(leaf, &item->mtime, | 
 | 				      inode->i_mtime.tv_nsec, &token); | 
 |  | 
 | 	btrfs_set_token_timespec_sec(leaf, &item->ctime, | 
 | 				     inode->i_ctime.tv_sec, &token); | 
 | 	btrfs_set_token_timespec_nsec(leaf, &item->ctime, | 
 | 				      inode->i_ctime.tv_nsec, &token); | 
 |  | 
 | 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), | 
 | 				     &token); | 
 |  | 
 | 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); | 
 | 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); | 
 | 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); | 
 | 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); | 
 | 	btrfs_set_token_inode_block_group(leaf, item, 0, &token); | 
 | } | 
 |  | 
 | static int log_inode_item(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *log, struct btrfs_path *path, | 
 | 			  struct inode *inode) | 
 | { | 
 | 	struct btrfs_inode_item *inode_item; | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_insert_empty_item(trans, log, path, | 
 | 				      &BTRFS_I(inode)->location, | 
 | 				      sizeof(*inode_item)); | 
 | 	if (ret && ret != -EEXIST) | 
 | 		return ret; | 
 | 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 				    struct btrfs_inode_item); | 
 | 	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0); | 
 | 	btrfs_release_path(path); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int copy_items(struct btrfs_trans_handle *trans, | 
 | 			       struct inode *inode, | 
 | 			       struct btrfs_path *dst_path, | 
 | 			       struct btrfs_path *src_path, u64 *last_extent, | 
 | 			       int start_slot, int nr, int inode_only, | 
 | 			       u64 logged_isize) | 
 | { | 
 | 	unsigned long src_offset; | 
 | 	unsigned long dst_offset; | 
 | 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root; | 
 | 	struct btrfs_file_extent_item *extent; | 
 | 	struct btrfs_inode_item *inode_item; | 
 | 	struct extent_buffer *src = src_path->nodes[0]; | 
 | 	struct btrfs_key first_key, last_key, key; | 
 | 	int ret; | 
 | 	struct btrfs_key *ins_keys; | 
 | 	u32 *ins_sizes; | 
 | 	char *ins_data; | 
 | 	int i; | 
 | 	struct list_head ordered_sums; | 
 | 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; | 
 | 	bool has_extents = false; | 
 | 	bool need_find_last_extent = true; | 
 | 	bool done = false; | 
 |  | 
 | 	INIT_LIST_HEAD(&ordered_sums); | 
 |  | 
 | 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) + | 
 | 			   nr * sizeof(u32), GFP_NOFS); | 
 | 	if (!ins_data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	first_key.objectid = (u64)-1; | 
 |  | 
 | 	ins_sizes = (u32 *)ins_data; | 
 | 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); | 
 | 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); | 
 | 	} | 
 | 	ret = btrfs_insert_empty_items(trans, log, dst_path, | 
 | 				       ins_keys, ins_sizes, nr); | 
 | 	if (ret) { | 
 | 		kfree(ins_data); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < nr; i++, dst_path->slots[0]++) { | 
 | 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], | 
 | 						   dst_path->slots[0]); | 
 |  | 
 | 		src_offset = btrfs_item_ptr_offset(src, start_slot + i); | 
 |  | 
 | 		if ((i == (nr - 1))) | 
 | 			last_key = ins_keys[i]; | 
 |  | 
 | 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { | 
 | 			inode_item = btrfs_item_ptr(dst_path->nodes[0], | 
 | 						    dst_path->slots[0], | 
 | 						    struct btrfs_inode_item); | 
 | 			fill_inode_item(trans, dst_path->nodes[0], inode_item, | 
 | 					inode, inode_only == LOG_INODE_EXISTS, | 
 | 					logged_isize); | 
 | 		} else { | 
 | 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset, | 
 | 					   src_offset, ins_sizes[i]); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We set need_find_last_extent here in case we know we were | 
 | 		 * processing other items and then walk into the first extent in | 
 | 		 * the inode.  If we don't hit an extent then nothing changes, | 
 | 		 * we'll do the last search the next time around. | 
 | 		 */ | 
 | 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) { | 
 | 			has_extents = true; | 
 | 			if (first_key.objectid == (u64)-1) | 
 | 				first_key = ins_keys[i]; | 
 | 		} else { | 
 | 			need_find_last_extent = false; | 
 | 		} | 
 |  | 
 | 		/* take a reference on file data extents so that truncates | 
 | 		 * or deletes of this inode don't have to relog the inode | 
 | 		 * again | 
 | 		 */ | 
 | 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && | 
 | 		    !skip_csum) { | 
 | 			int found_type; | 
 | 			extent = btrfs_item_ptr(src, start_slot + i, | 
 | 						struct btrfs_file_extent_item); | 
 |  | 
 | 			if (btrfs_file_extent_generation(src, extent) < trans->transid) | 
 | 				continue; | 
 |  | 
 | 			found_type = btrfs_file_extent_type(src, extent); | 
 | 			if (found_type == BTRFS_FILE_EXTENT_REG) { | 
 | 				u64 ds, dl, cs, cl; | 
 | 				ds = btrfs_file_extent_disk_bytenr(src, | 
 | 								extent); | 
 | 				/* ds == 0 is a hole */ | 
 | 				if (ds == 0) | 
 | 					continue; | 
 |  | 
 | 				dl = btrfs_file_extent_disk_num_bytes(src, | 
 | 								extent); | 
 | 				cs = btrfs_file_extent_offset(src, extent); | 
 | 				cl = btrfs_file_extent_num_bytes(src, | 
 | 								extent); | 
 | 				if (btrfs_file_extent_compression(src, | 
 | 								  extent)) { | 
 | 					cs = 0; | 
 | 					cl = dl; | 
 | 				} | 
 |  | 
 | 				ret = btrfs_lookup_csums_range( | 
 | 						log->fs_info->csum_root, | 
 | 						ds + cs, ds + cs + cl - 1, | 
 | 						&ordered_sums, 0); | 
 | 				if (ret) { | 
 | 					btrfs_release_path(dst_path); | 
 | 					kfree(ins_data); | 
 | 					return ret; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	btrfs_mark_buffer_dirty(dst_path->nodes[0]); | 
 | 	btrfs_release_path(dst_path); | 
 | 	kfree(ins_data); | 
 |  | 
 | 	/* | 
 | 	 * we have to do this after the loop above to avoid changing the | 
 | 	 * log tree while trying to change the log tree. | 
 | 	 */ | 
 | 	ret = 0; | 
 | 	while (!list_empty(&ordered_sums)) { | 
 | 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, | 
 | 						   struct btrfs_ordered_sum, | 
 | 						   list); | 
 | 		if (!ret) | 
 | 			ret = btrfs_csum_file_blocks(trans, log, sums); | 
 | 		list_del(&sums->list); | 
 | 		kfree(sums); | 
 | 	} | 
 |  | 
 | 	if (!has_extents) | 
 | 		return ret; | 
 |  | 
 | 	if (need_find_last_extent && *last_extent == first_key.offset) { | 
 | 		/* | 
 | 		 * We don't have any leafs between our current one and the one | 
 | 		 * we processed before that can have file extent items for our | 
 | 		 * inode (and have a generation number smaller than our current | 
 | 		 * transaction id). | 
 | 		 */ | 
 | 		need_find_last_extent = false; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Because we use btrfs_search_forward we could skip leaves that were | 
 | 	 * not modified and then assume *last_extent is valid when it really | 
 | 	 * isn't.  So back up to the previous leaf and read the end of the last | 
 | 	 * extent before we go and fill in holes. | 
 | 	 */ | 
 | 	if (need_find_last_extent) { | 
 | 		u64 len; | 
 |  | 
 | 		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		if (ret) | 
 | 			goto fill_holes; | 
 | 		if (src_path->slots[0]) | 
 | 			src_path->slots[0]--; | 
 | 		src = src_path->nodes[0]; | 
 | 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]); | 
 | 		if (key.objectid != btrfs_ino(inode) || | 
 | 		    key.type != BTRFS_EXTENT_DATA_KEY) | 
 | 			goto fill_holes; | 
 | 		extent = btrfs_item_ptr(src, src_path->slots[0], | 
 | 					struct btrfs_file_extent_item); | 
 | 		if (btrfs_file_extent_type(src, extent) == | 
 | 		    BTRFS_FILE_EXTENT_INLINE) { | 
 | 			len = btrfs_file_extent_inline_len(src, | 
 | 							   src_path->slots[0], | 
 | 							   extent); | 
 | 			*last_extent = ALIGN(key.offset + len, | 
 | 					     log->sectorsize); | 
 | 		} else { | 
 | 			len = btrfs_file_extent_num_bytes(src, extent); | 
 | 			*last_extent = key.offset + len; | 
 | 		} | 
 | 	} | 
 | fill_holes: | 
 | 	/* So we did prev_leaf, now we need to move to the next leaf, but a few | 
 | 	 * things could have happened | 
 | 	 * | 
 | 	 * 1) A merge could have happened, so we could currently be on a leaf | 
 | 	 * that holds what we were copying in the first place. | 
 | 	 * 2) A split could have happened, and now not all of the items we want | 
 | 	 * are on the same leaf. | 
 | 	 * | 
 | 	 * So we need to adjust how we search for holes, we need to drop the | 
 | 	 * path and re-search for the first extent key we found, and then walk | 
 | 	 * forward until we hit the last one we copied. | 
 | 	 */ | 
 | 	if (need_find_last_extent) { | 
 | 		/* btrfs_prev_leaf could return 1 without releasing the path */ | 
 | 		btrfs_release_path(src_path); | 
 | 		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key, | 
 | 					src_path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		ASSERT(ret == 0); | 
 | 		src = src_path->nodes[0]; | 
 | 		i = src_path->slots[0]; | 
 | 	} else { | 
 | 		i = start_slot; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Ok so here we need to go through and fill in any holes we may have | 
 | 	 * to make sure that holes are punched for those areas in case they had | 
 | 	 * extents previously. | 
 | 	 */ | 
 | 	while (!done) { | 
 | 		u64 offset, len; | 
 | 		u64 extent_end; | 
 |  | 
 | 		if (i >= btrfs_header_nritems(src_path->nodes[0])) { | 
 | 			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path); | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 | 			ASSERT(ret == 0); | 
 | 			src = src_path->nodes[0]; | 
 | 			i = 0; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(src, &key, i); | 
 | 		if (!btrfs_comp_cpu_keys(&key, &last_key)) | 
 | 			done = true; | 
 | 		if (key.objectid != btrfs_ino(inode) || | 
 | 		    key.type != BTRFS_EXTENT_DATA_KEY) { | 
 | 			i++; | 
 | 			continue; | 
 | 		} | 
 | 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item); | 
 | 		if (btrfs_file_extent_type(src, extent) == | 
 | 		    BTRFS_FILE_EXTENT_INLINE) { | 
 | 			len = btrfs_file_extent_inline_len(src, i, extent); | 
 | 			extent_end = ALIGN(key.offset + len, log->sectorsize); | 
 | 		} else { | 
 | 			len = btrfs_file_extent_num_bytes(src, extent); | 
 | 			extent_end = key.offset + len; | 
 | 		} | 
 | 		i++; | 
 |  | 
 | 		if (*last_extent == key.offset) { | 
 | 			*last_extent = extent_end; | 
 | 			continue; | 
 | 		} | 
 | 		offset = *last_extent; | 
 | 		len = key.offset - *last_extent; | 
 | 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode), | 
 | 					       offset, 0, 0, len, 0, len, 0, | 
 | 					       0, 0); | 
 | 		if (ret) | 
 | 			break; | 
 | 		*last_extent = extent_end; | 
 | 	} | 
 | 	/* | 
 | 	 * Need to let the callers know we dropped the path so they should | 
 | 	 * re-search. | 
 | 	 */ | 
 | 	if (!ret && need_find_last_extent) | 
 | 		ret = 1; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) | 
 | { | 
 | 	struct extent_map *em1, *em2; | 
 |  | 
 | 	em1 = list_entry(a, struct extent_map, list); | 
 | 	em2 = list_entry(b, struct extent_map, list); | 
 |  | 
 | 	if (em1->start < em2->start) | 
 | 		return -1; | 
 | 	else if (em1->start > em2->start) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int wait_ordered_extents(struct btrfs_trans_handle *trans, | 
 | 				struct inode *inode, | 
 | 				struct btrfs_root *root, | 
 | 				const struct extent_map *em, | 
 | 				const struct list_head *logged_list, | 
 | 				bool *ordered_io_error) | 
 | { | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	struct btrfs_root *log = root->log_root; | 
 | 	u64 mod_start = em->mod_start; | 
 | 	u64 mod_len = em->mod_len; | 
 | 	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; | 
 | 	u64 csum_offset; | 
 | 	u64 csum_len; | 
 | 	LIST_HEAD(ordered_sums); | 
 | 	int ret = 0; | 
 |  | 
 | 	*ordered_io_error = false; | 
 |  | 
 | 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || | 
 | 	    em->block_start == EXTENT_MAP_HOLE) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Wait far any ordered extent that covers our extent map. If it | 
 | 	 * finishes without an error, first check and see if our csums are on | 
 | 	 * our outstanding ordered extents. | 
 | 	 */ | 
 | 	list_for_each_entry(ordered, logged_list, log_list) { | 
 | 		struct btrfs_ordered_sum *sum; | 
 |  | 
 | 		if (!mod_len) | 
 | 			break; | 
 |  | 
 | 		if (ordered->file_offset + ordered->len <= mod_start || | 
 | 		    mod_start + mod_len <= ordered->file_offset) | 
 | 			continue; | 
 |  | 
 | 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) && | 
 | 		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && | 
 | 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { | 
 | 			const u64 start = ordered->file_offset; | 
 | 			const u64 end = ordered->file_offset + ordered->len - 1; | 
 |  | 
 | 			WARN_ON(ordered->inode != inode); | 
 | 			filemap_fdatawrite_range(inode->i_mapping, start, end); | 
 | 		} | 
 |  | 
 | 		wait_event(ordered->wait, | 
 | 			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) || | 
 | 			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))); | 
 |  | 
 | 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) { | 
 | 			/* | 
 | 			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's | 
 | 			 * i_mapping flags, so that the next fsync won't get | 
 | 			 * an outdated io error too. | 
 | 			 */ | 
 | 			btrfs_inode_check_errors(inode); | 
 | 			*ordered_io_error = true; | 
 | 			break; | 
 | 		} | 
 | 		/* | 
 | 		 * We are going to copy all the csums on this ordered extent, so | 
 | 		 * go ahead and adjust mod_start and mod_len in case this | 
 | 		 * ordered extent has already been logged. | 
 | 		 */ | 
 | 		if (ordered->file_offset > mod_start) { | 
 | 			if (ordered->file_offset + ordered->len >= | 
 | 			    mod_start + mod_len) | 
 | 				mod_len = ordered->file_offset - mod_start; | 
 | 			/* | 
 | 			 * If we have this case | 
 | 			 * | 
 | 			 * |--------- logged extent ---------| | 
 | 			 *       |----- ordered extent ----| | 
 | 			 * | 
 | 			 * Just don't mess with mod_start and mod_len, we'll | 
 | 			 * just end up logging more csums than we need and it | 
 | 			 * will be ok. | 
 | 			 */ | 
 | 		} else { | 
 | 			if (ordered->file_offset + ordered->len < | 
 | 			    mod_start + mod_len) { | 
 | 				mod_len = (mod_start + mod_len) - | 
 | 					(ordered->file_offset + ordered->len); | 
 | 				mod_start = ordered->file_offset + | 
 | 					ordered->len; | 
 | 			} else { | 
 | 				mod_len = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (skip_csum) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * To keep us from looping for the above case of an ordered | 
 | 		 * extent that falls inside of the logged extent. | 
 | 		 */ | 
 | 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, | 
 | 				     &ordered->flags)) | 
 | 			continue; | 
 |  | 
 | 		list_for_each_entry(sum, &ordered->list, list) { | 
 | 			ret = btrfs_csum_file_blocks(trans, log, sum); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (*ordered_io_error || !mod_len || ret || skip_csum) | 
 | 		return ret; | 
 |  | 
 | 	if (em->compress_type) { | 
 | 		csum_offset = 0; | 
 | 		csum_len = max(em->block_len, em->orig_block_len); | 
 | 	} else { | 
 | 		csum_offset = mod_start - em->start; | 
 | 		csum_len = mod_len; | 
 | 	} | 
 |  | 
 | 	/* block start is already adjusted for the file extent offset. */ | 
 | 	ret = btrfs_lookup_csums_range(log->fs_info->csum_root, | 
 | 				       em->block_start + csum_offset, | 
 | 				       em->block_start + csum_offset + | 
 | 				       csum_len - 1, &ordered_sums, 0); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	while (!list_empty(&ordered_sums)) { | 
 | 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, | 
 | 						   struct btrfs_ordered_sum, | 
 | 						   list); | 
 | 		if (!ret) | 
 | 			ret = btrfs_csum_file_blocks(trans, log, sums); | 
 | 		list_del(&sums->list); | 
 | 		kfree(sums); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int log_one_extent(struct btrfs_trans_handle *trans, | 
 | 			  struct inode *inode, struct btrfs_root *root, | 
 | 			  const struct extent_map *em, | 
 | 			  struct btrfs_path *path, | 
 | 			  const struct list_head *logged_list, | 
 | 			  struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_root *log = root->log_root; | 
 | 	struct btrfs_file_extent_item *fi; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_map_token token; | 
 | 	struct btrfs_key key; | 
 | 	u64 extent_offset = em->start - em->orig_start; | 
 | 	u64 block_len; | 
 | 	int ret; | 
 | 	int extent_inserted = 0; | 
 | 	bool ordered_io_err = false; | 
 |  | 
 | 	ret = wait_ordered_extents(trans, inode, root, em, logged_list, | 
 | 				   &ordered_io_err); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (ordered_io_err) { | 
 | 		ctx->io_err = -EIO; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	btrfs_init_map_token(&token); | 
 |  | 
 | 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start, | 
 | 				   em->start + em->len, NULL, 0, 1, | 
 | 				   sizeof(*fi), &extent_inserted); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (!extent_inserted) { | 
 | 		key.objectid = btrfs_ino(inode); | 
 | 		key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 		key.offset = em->start; | 
 |  | 
 | 		ret = btrfs_insert_empty_item(trans, log, path, &key, | 
 | 					      sizeof(*fi)); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 | 	leaf = path->nodes[0]; | 
 | 	fi = btrfs_item_ptr(leaf, path->slots[0], | 
 | 			    struct btrfs_file_extent_item); | 
 |  | 
 | 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid, | 
 | 					       &token); | 
 | 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
 | 		btrfs_set_token_file_extent_type(leaf, fi, | 
 | 						 BTRFS_FILE_EXTENT_PREALLOC, | 
 | 						 &token); | 
 | 	else | 
 | 		btrfs_set_token_file_extent_type(leaf, fi, | 
 | 						 BTRFS_FILE_EXTENT_REG, | 
 | 						 &token); | 
 |  | 
 | 	block_len = max(em->block_len, em->orig_block_len); | 
 | 	if (em->compress_type != BTRFS_COMPRESS_NONE) { | 
 | 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, | 
 | 							em->block_start, | 
 | 							&token); | 
 | 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, | 
 | 							   &token); | 
 | 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) { | 
 | 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, | 
 | 							em->block_start - | 
 | 							extent_offset, &token); | 
 | 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, | 
 | 							   &token); | 
 | 	} else { | 
 | 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token); | 
 | 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0, | 
 | 							   &token); | 
 | 	} | 
 |  | 
 | 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token); | 
 | 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token); | 
 | 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token); | 
 | 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type, | 
 | 						&token); | 
 | 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token); | 
 | 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 |  | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, | 
 | 				     struct btrfs_root *root, | 
 | 				     struct inode *inode, | 
 | 				     struct btrfs_path *path, | 
 | 				     struct list_head *logged_list, | 
 | 				     struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct extent_map *em, *n; | 
 | 	struct list_head extents; | 
 | 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree; | 
 | 	u64 test_gen; | 
 | 	int ret = 0; | 
 | 	int num = 0; | 
 |  | 
 | 	INIT_LIST_HEAD(&extents); | 
 |  | 
 | 	write_lock(&tree->lock); | 
 | 	test_gen = root->fs_info->last_trans_committed; | 
 |  | 
 | 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) { | 
 | 		list_del_init(&em->list); | 
 |  | 
 | 		/* | 
 | 		 * Just an arbitrary number, this can be really CPU intensive | 
 | 		 * once we start getting a lot of extents, and really once we | 
 | 		 * have a bunch of extents we just want to commit since it will | 
 | 		 * be faster. | 
 | 		 */ | 
 | 		if (++num > 32768) { | 
 | 			list_del_init(&tree->modified_extents); | 
 | 			ret = -EFBIG; | 
 | 			goto process; | 
 | 		} | 
 |  | 
 | 		if (em->generation <= test_gen) | 
 | 			continue; | 
 | 		/* Need a ref to keep it from getting evicted from cache */ | 
 | 		atomic_inc(&em->refs); | 
 | 		set_bit(EXTENT_FLAG_LOGGING, &em->flags); | 
 | 		list_add_tail(&em->list, &extents); | 
 | 		num++; | 
 | 	} | 
 |  | 
 | 	list_sort(NULL, &extents, extent_cmp); | 
 |  | 
 | process: | 
 | 	while (!list_empty(&extents)) { | 
 | 		em = list_entry(extents.next, struct extent_map, list); | 
 |  | 
 | 		list_del_init(&em->list); | 
 |  | 
 | 		/* | 
 | 		 * If we had an error we just need to delete everybody from our | 
 | 		 * private list. | 
 | 		 */ | 
 | 		if (ret) { | 
 | 			clear_em_logging(tree, em); | 
 | 			free_extent_map(em); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		write_unlock(&tree->lock); | 
 |  | 
 | 		ret = log_one_extent(trans, inode, root, em, path, logged_list, | 
 | 				     ctx); | 
 | 		write_lock(&tree->lock); | 
 | 		clear_em_logging(tree, em); | 
 | 		free_extent_map(em); | 
 | 	} | 
 | 	WARN_ON(!list_empty(&extents)); | 
 | 	write_unlock(&tree->lock); | 
 |  | 
 | 	btrfs_release_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int logged_inode_size(struct btrfs_root *log, struct inode *inode, | 
 | 			     struct btrfs_path *path, u64 *size_ret) | 
 | { | 
 | 	struct btrfs_key key; | 
 | 	int ret; | 
 |  | 
 | 	key.objectid = btrfs_ino(inode); | 
 | 	key.type = BTRFS_INODE_ITEM_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); | 
 | 	if (ret < 0) { | 
 | 		return ret; | 
 | 	} else if (ret > 0) { | 
 | 		*size_ret = 0; | 
 | 	} else { | 
 | 		struct btrfs_inode_item *item; | 
 |  | 
 | 		item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 				      struct btrfs_inode_item); | 
 | 		*size_ret = btrfs_inode_size(path->nodes[0], item); | 
 | 	} | 
 |  | 
 | 	btrfs_release_path(path); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * At the moment we always log all xattrs. This is to figure out at log replay | 
 |  * time which xattrs must have their deletion replayed. If a xattr is missing | 
 |  * in the log tree and exists in the fs/subvol tree, we delete it. This is | 
 |  * because if a xattr is deleted, the inode is fsynced and a power failure | 
 |  * happens, causing the log to be replayed the next time the fs is mounted, | 
 |  * we want the xattr to not exist anymore (same behaviour as other filesystems | 
 |  * with a journal, ext3/4, xfs, f2fs, etc). | 
 |  */ | 
 | static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root, | 
 | 				struct inode *inode, | 
 | 				struct btrfs_path *path, | 
 | 				struct btrfs_path *dst_path) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	const u64 ino = btrfs_ino(inode); | 
 | 	int ins_nr = 0; | 
 | 	int start_slot = 0; | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_XATTR_ITEM_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	while (true) { | 
 | 		int slot = path->slots[0]; | 
 | 		struct extent_buffer *leaf = path->nodes[0]; | 
 | 		int nritems = btrfs_header_nritems(leaf); | 
 |  | 
 | 		if (slot >= nritems) { | 
 | 			if (ins_nr > 0) { | 
 | 				u64 last_extent = 0; | 
 |  | 
 | 				ret = copy_items(trans, inode, dst_path, path, | 
 | 						 &last_extent, start_slot, | 
 | 						 ins_nr, 1, 0); | 
 | 				/* can't be 1, extent items aren't processed */ | 
 | 				ASSERT(ret <= 0); | 
 | 				if (ret < 0) | 
 | 					return ret; | 
 | 				ins_nr = 0; | 
 | 			} | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 | 			else if (ret > 0) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &key, slot); | 
 | 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) | 
 | 			break; | 
 |  | 
 | 		if (ins_nr == 0) | 
 | 			start_slot = slot; | 
 | 		ins_nr++; | 
 | 		path->slots[0]++; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	if (ins_nr > 0) { | 
 | 		u64 last_extent = 0; | 
 |  | 
 | 		ret = copy_items(trans, inode, dst_path, path, | 
 | 				 &last_extent, start_slot, | 
 | 				 ins_nr, 1, 0); | 
 | 		/* can't be 1, extent items aren't processed */ | 
 | 		ASSERT(ret <= 0); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * If the no holes feature is enabled we need to make sure any hole between the | 
 |  * last extent and the i_size of our inode is explicitly marked in the log. This | 
 |  * is to make sure that doing something like: | 
 |  * | 
 |  *      1) create file with 128Kb of data | 
 |  *      2) truncate file to 64Kb | 
 |  *      3) truncate file to 256Kb | 
 |  *      4) fsync file | 
 |  *      5) <crash/power failure> | 
 |  *      6) mount fs and trigger log replay | 
 |  * | 
 |  * Will give us a file with a size of 256Kb, the first 64Kb of data match what | 
 |  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the | 
 |  * file correspond to a hole. The presence of explicit holes in a log tree is | 
 |  * what guarantees that log replay will remove/adjust file extent items in the | 
 |  * fs/subvol tree. | 
 |  * | 
 |  * Here we do not need to care about holes between extents, that is already done | 
 |  * by copy_items(). We also only need to do this in the full sync path, where we | 
 |  * lookup for extents from the fs/subvol tree only. In the fast path case, we | 
 |  * lookup the list of modified extent maps and if any represents a hole, we | 
 |  * insert a corresponding extent representing a hole in the log tree. | 
 |  */ | 
 | static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_root *root, | 
 | 				   struct inode *inode, | 
 | 				   struct btrfs_path *path) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	u64 hole_start; | 
 | 	u64 hole_size; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_root *log = root->log_root; | 
 | 	const u64 ino = btrfs_ino(inode); | 
 | 	const u64 i_size = i_size_read(inode); | 
 |  | 
 | 	if (!btrfs_fs_incompat(root->fs_info, NO_HOLES)) | 
 | 		return 0; | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	ASSERT(ret != 0); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	ASSERT(path->slots[0] > 0); | 
 | 	path->slots[0]--; | 
 | 	leaf = path->nodes[0]; | 
 | 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 |  | 
 | 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { | 
 | 		/* inode does not have any extents */ | 
 | 		hole_start = 0; | 
 | 		hole_size = i_size; | 
 | 	} else { | 
 | 		struct btrfs_file_extent_item *extent; | 
 | 		u64 len; | 
 |  | 
 | 		/* | 
 | 		 * If there's an extent beyond i_size, an explicit hole was | 
 | 		 * already inserted by copy_items(). | 
 | 		 */ | 
 | 		if (key.offset >= i_size) | 
 | 			return 0; | 
 |  | 
 | 		extent = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					struct btrfs_file_extent_item); | 
 |  | 
 | 		if (btrfs_file_extent_type(leaf, extent) == | 
 | 		    BTRFS_FILE_EXTENT_INLINE) { | 
 | 			len = btrfs_file_extent_inline_len(leaf, | 
 | 							   path->slots[0], | 
 | 							   extent); | 
 | 			ASSERT(len == i_size); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		len = btrfs_file_extent_num_bytes(leaf, extent); | 
 | 		/* Last extent goes beyond i_size, no need to log a hole. */ | 
 | 		if (key.offset + len > i_size) | 
 | 			return 0; | 
 | 		hole_start = key.offset + len; | 
 | 		hole_size = i_size - hole_start; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* Last extent ends at i_size. */ | 
 | 	if (hole_size == 0) | 
 | 		return 0; | 
 |  | 
 | 	hole_size = ALIGN(hole_size, root->sectorsize); | 
 | 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0, | 
 | 				       hole_size, 0, hole_size, 0, 0, 0); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* log a single inode in the tree log. | 
 |  * At least one parent directory for this inode must exist in the tree | 
 |  * or be logged already. | 
 |  * | 
 |  * Any items from this inode changed by the current transaction are copied | 
 |  * to the log tree.  An extra reference is taken on any extents in this | 
 |  * file, allowing us to avoid a whole pile of corner cases around logging | 
 |  * blocks that have been removed from the tree. | 
 |  * | 
 |  * See LOG_INODE_ALL and related defines for a description of what inode_only | 
 |  * does. | 
 |  * | 
 |  * This handles both files and directories. | 
 |  */ | 
 | static int btrfs_log_inode(struct btrfs_trans_handle *trans, | 
 | 			   struct btrfs_root *root, struct inode *inode, | 
 | 			   int inode_only, | 
 | 			   const loff_t start, | 
 | 			   const loff_t end, | 
 | 			   struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_path *dst_path; | 
 | 	struct btrfs_key min_key; | 
 | 	struct btrfs_key max_key; | 
 | 	struct btrfs_root *log = root->log_root; | 
 | 	struct extent_buffer *src = NULL; | 
 | 	LIST_HEAD(logged_list); | 
 | 	u64 last_extent = 0; | 
 | 	int err = 0; | 
 | 	int ret; | 
 | 	int nritems; | 
 | 	int ins_start_slot = 0; | 
 | 	int ins_nr; | 
 | 	bool fast_search = false; | 
 | 	u64 ino = btrfs_ino(inode); | 
 | 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | 
 | 	u64 logged_isize = 0; | 
 | 	bool need_log_inode_item = true; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | 	dst_path = btrfs_alloc_path(); | 
 | 	if (!dst_path) { | 
 | 		btrfs_free_path(path); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	min_key.objectid = ino; | 
 | 	min_key.type = BTRFS_INODE_ITEM_KEY; | 
 | 	min_key.offset = 0; | 
 |  | 
 | 	max_key.objectid = ino; | 
 |  | 
 |  | 
 | 	/* today the code can only do partial logging of directories */ | 
 | 	if (S_ISDIR(inode->i_mode) || | 
 | 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
 | 		       &BTRFS_I(inode)->runtime_flags) && | 
 | 	     inode_only == LOG_INODE_EXISTS)) | 
 | 		max_key.type = BTRFS_XATTR_ITEM_KEY; | 
 | 	else | 
 | 		max_key.type = (u8)-1; | 
 | 	max_key.offset = (u64)-1; | 
 |  | 
 | 	/* | 
 | 	 * Only run delayed items if we are a dir or a new file. | 
 | 	 * Otherwise commit the delayed inode only, which is needed in | 
 | 	 * order for the log replay code to mark inodes for link count | 
 | 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items). | 
 | 	 */ | 
 | 	if (S_ISDIR(inode->i_mode) || | 
 | 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) | 
 | 		ret = btrfs_commit_inode_delayed_items(trans, inode); | 
 | 	else | 
 | 		ret = btrfs_commit_inode_delayed_inode(inode); | 
 |  | 
 | 	if (ret) { | 
 | 		btrfs_free_path(path); | 
 | 		btrfs_free_path(dst_path); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&BTRFS_I(inode)->log_mutex); | 
 |  | 
 | 	btrfs_get_logged_extents(inode, &logged_list, start, end); | 
 |  | 
 | 	/* | 
 | 	 * a brute force approach to making sure we get the most uptodate | 
 | 	 * copies of everything. | 
 | 	 */ | 
 | 	if (S_ISDIR(inode->i_mode)) { | 
 | 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; | 
 |  | 
 | 		if (inode_only == LOG_INODE_EXISTS) | 
 | 			max_key_type = BTRFS_XATTR_ITEM_KEY; | 
 | 		ret = drop_objectid_items(trans, log, path, ino, max_key_type); | 
 | 	} else { | 
 | 		if (inode_only == LOG_INODE_EXISTS) { | 
 | 			/* | 
 | 			 * Make sure the new inode item we write to the log has | 
 | 			 * the same isize as the current one (if it exists). | 
 | 			 * This is necessary to prevent data loss after log | 
 | 			 * replay, and also to prevent doing a wrong expanding | 
 | 			 * truncate - for e.g. create file, write 4K into offset | 
 | 			 * 0, fsync, write 4K into offset 4096, add hard link, | 
 | 			 * fsync some other file (to sync log), power fail - if | 
 | 			 * we use the inode's current i_size, after log replay | 
 | 			 * we get a 8Kb file, with the last 4Kb extent as a hole | 
 | 			 * (zeroes), as if an expanding truncate happened, | 
 | 			 * instead of getting a file of 4Kb only. | 
 | 			 */ | 
 | 			err = logged_inode_size(log, inode, path, | 
 | 						&logged_isize); | 
 | 			if (err) | 
 | 				goto out_unlock; | 
 | 		} | 
 | 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
 | 			     &BTRFS_I(inode)->runtime_flags)) { | 
 | 			if (inode_only == LOG_INODE_EXISTS) { | 
 | 				max_key.type = BTRFS_XATTR_ITEM_KEY; | 
 | 				ret = drop_objectid_items(trans, log, path, ino, | 
 | 							  max_key.type); | 
 | 			} else { | 
 | 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
 | 					  &BTRFS_I(inode)->runtime_flags); | 
 | 				clear_bit(BTRFS_INODE_COPY_EVERYTHING, | 
 | 					  &BTRFS_I(inode)->runtime_flags); | 
 | 				while(1) { | 
 | 					ret = btrfs_truncate_inode_items(trans, | 
 | 							 log, inode, 0, 0); | 
 | 					if (ret != -EAGAIN) | 
 | 						break; | 
 | 				} | 
 | 			} | 
 | 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, | 
 | 					      &BTRFS_I(inode)->runtime_flags) || | 
 | 			   inode_only == LOG_INODE_EXISTS) { | 
 | 			if (inode_only == LOG_INODE_ALL) | 
 | 				fast_search = true; | 
 | 			max_key.type = BTRFS_XATTR_ITEM_KEY; | 
 | 			ret = drop_objectid_items(trans, log, path, ino, | 
 | 						  max_key.type); | 
 | 		} else { | 
 | 			if (inode_only == LOG_INODE_ALL) | 
 | 				fast_search = true; | 
 | 			goto log_extents; | 
 | 		} | 
 |  | 
 | 	} | 
 | 	if (ret) { | 
 | 		err = ret; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		ins_nr = 0; | 
 | 		ret = btrfs_search_forward(root, &min_key, | 
 | 					   path, trans->transid); | 
 | 		if (ret != 0) | 
 | 			break; | 
 | again: | 
 | 		/* note, ins_nr might be > 0 here, cleanup outside the loop */ | 
 | 		if (min_key.objectid != ino) | 
 | 			break; | 
 | 		if (min_key.type > max_key.type) | 
 | 			break; | 
 |  | 
 | 		if (min_key.type == BTRFS_INODE_ITEM_KEY) | 
 | 			need_log_inode_item = false; | 
 |  | 
 | 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ | 
 | 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) { | 
 | 			if (ins_nr == 0) | 
 | 				goto next_slot; | 
 | 			ret = copy_items(trans, inode, dst_path, path, | 
 | 					 &last_extent, ins_start_slot, | 
 | 					 ins_nr, inode_only, logged_isize); | 
 | 			if (ret < 0) { | 
 | 				err = ret; | 
 | 				goto out_unlock; | 
 | 			} | 
 | 			ins_nr = 0; | 
 | 			if (ret) { | 
 | 				btrfs_release_path(path); | 
 | 				continue; | 
 | 			} | 
 | 			goto next_slot; | 
 | 		} | 
 |  | 
 | 		src = path->nodes[0]; | 
 | 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { | 
 | 			ins_nr++; | 
 | 			goto next_slot; | 
 | 		} else if (!ins_nr) { | 
 | 			ins_start_slot = path->slots[0]; | 
 | 			ins_nr = 1; | 
 | 			goto next_slot; | 
 | 		} | 
 |  | 
 | 		ret = copy_items(trans, inode, dst_path, path, &last_extent, | 
 | 				 ins_start_slot, ins_nr, inode_only, | 
 | 				 logged_isize); | 
 | 		if (ret < 0) { | 
 | 			err = ret; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 		if (ret) { | 
 | 			ins_nr = 0; | 
 | 			btrfs_release_path(path); | 
 | 			continue; | 
 | 		} | 
 | 		ins_nr = 1; | 
 | 		ins_start_slot = path->slots[0]; | 
 | next_slot: | 
 |  | 
 | 		nritems = btrfs_header_nritems(path->nodes[0]); | 
 | 		path->slots[0]++; | 
 | 		if (path->slots[0] < nritems) { | 
 | 			btrfs_item_key_to_cpu(path->nodes[0], &min_key, | 
 | 					      path->slots[0]); | 
 | 			goto again; | 
 | 		} | 
 | 		if (ins_nr) { | 
 | 			ret = copy_items(trans, inode, dst_path, path, | 
 | 					 &last_extent, ins_start_slot, | 
 | 					 ins_nr, inode_only, logged_isize); | 
 | 			if (ret < 0) { | 
 | 				err = ret; | 
 | 				goto out_unlock; | 
 | 			} | 
 | 			ret = 0; | 
 | 			ins_nr = 0; | 
 | 		} | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		if (min_key.offset < (u64)-1) { | 
 | 			min_key.offset++; | 
 | 		} else if (min_key.type < max_key.type) { | 
 | 			min_key.type++; | 
 | 			min_key.offset = 0; | 
 | 		} else { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (ins_nr) { | 
 | 		ret = copy_items(trans, inode, dst_path, path, &last_extent, | 
 | 				 ins_start_slot, ins_nr, inode_only, | 
 | 				 logged_isize); | 
 | 		if (ret < 0) { | 
 | 			err = ret; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 		ret = 0; | 
 | 		ins_nr = 0; | 
 | 	} | 
 |  | 
 | 	btrfs_release_path(path); | 
 | 	btrfs_release_path(dst_path); | 
 | 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path); | 
 | 	if (err) | 
 | 		goto out_unlock; | 
 | 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { | 
 | 		btrfs_release_path(path); | 
 | 		btrfs_release_path(dst_path); | 
 | 		err = btrfs_log_trailing_hole(trans, root, inode, path); | 
 | 		if (err) | 
 | 			goto out_unlock; | 
 | 	} | 
 | log_extents: | 
 | 	btrfs_release_path(path); | 
 | 	btrfs_release_path(dst_path); | 
 | 	if (need_log_inode_item) { | 
 | 		err = log_inode_item(trans, log, dst_path, inode); | 
 | 		if (err) | 
 | 			goto out_unlock; | 
 | 	} | 
 | 	if (fast_search) { | 
 | 		/* | 
 | 		 * Some ordered extents started by fsync might have completed | 
 | 		 * before we collected the ordered extents in logged_list, which | 
 | 		 * means they're gone, not in our logged_list nor in the inode's | 
 | 		 * ordered tree. We want the application/user space to know an | 
 | 		 * error happened while attempting to persist file data so that | 
 | 		 * it can take proper action. If such error happened, we leave | 
 | 		 * without writing to the log tree and the fsync must report the | 
 | 		 * file data write error and not commit the current transaction. | 
 | 		 */ | 
 | 		err = btrfs_inode_check_errors(inode); | 
 | 		if (err) { | 
 | 			ctx->io_err = err; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path, | 
 | 						&logged_list, ctx); | 
 | 		if (ret) { | 
 | 			err = ret; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 	} else if (inode_only == LOG_INODE_ALL) { | 
 | 		struct extent_map *em, *n; | 
 |  | 
 | 		write_lock(&em_tree->lock); | 
 | 		/* | 
 | 		 * We can't just remove every em if we're called for a ranged | 
 | 		 * fsync - that is, one that doesn't cover the whole possible | 
 | 		 * file range (0 to LLONG_MAX). This is because we can have | 
 | 		 * em's that fall outside the range we're logging and therefore | 
 | 		 * their ordered operations haven't completed yet | 
 | 		 * (btrfs_finish_ordered_io() not invoked yet). This means we | 
 | 		 * didn't get their respective file extent item in the fs/subvol | 
 | 		 * tree yet, and need to let the next fast fsync (one which | 
 | 		 * consults the list of modified extent maps) find the em so | 
 | 		 * that it logs a matching file extent item and waits for the | 
 | 		 * respective ordered operation to complete (if it's still | 
 | 		 * running). | 
 | 		 * | 
 | 		 * Removing every em outside the range we're logging would make | 
 | 		 * the next fast fsync not log their matching file extent items, | 
 | 		 * therefore making us lose data after a log replay. | 
 | 		 */ | 
 | 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, | 
 | 					 list) { | 
 | 			const u64 mod_end = em->mod_start + em->mod_len - 1; | 
 |  | 
 | 			if (em->mod_start >= start && mod_end <= end) | 
 | 				list_del_init(&em->list); | 
 | 		} | 
 | 		write_unlock(&em_tree->lock); | 
 | 	} | 
 |  | 
 | 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { | 
 | 		ret = log_directory_changes(trans, root, inode, path, dst_path, | 
 | 					    ctx); | 
 | 		if (ret) { | 
 | 			err = ret; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_lock(&BTRFS_I(inode)->lock); | 
 | 	BTRFS_I(inode)->logged_trans = trans->transid; | 
 | 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans; | 
 | 	spin_unlock(&BTRFS_I(inode)->lock); | 
 | out_unlock: | 
 | 	if (unlikely(err)) | 
 | 		btrfs_put_logged_extents(&logged_list); | 
 | 	else | 
 | 		btrfs_submit_logged_extents(&logged_list, log); | 
 | 	mutex_unlock(&BTRFS_I(inode)->log_mutex); | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	btrfs_free_path(dst_path); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * follow the dentry parent pointers up the chain and see if any | 
 |  * of the directories in it require a full commit before they can | 
 |  * be logged.  Returns zero if nothing special needs to be done or 1 if | 
 |  * a full commit is required. | 
 |  */ | 
 | static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, | 
 | 					       struct inode *inode, | 
 | 					       struct dentry *parent, | 
 | 					       struct super_block *sb, | 
 | 					       u64 last_committed) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct btrfs_root *root; | 
 | 	struct dentry *old_parent = NULL; | 
 | 	struct inode *orig_inode = inode; | 
 |  | 
 | 	/* | 
 | 	 * for regular files, if its inode is already on disk, we don't | 
 | 	 * have to worry about the parents at all.  This is because | 
 | 	 * we can use the last_unlink_trans field to record renames | 
 | 	 * and other fun in this file. | 
 | 	 */ | 
 | 	if (S_ISREG(inode->i_mode) && | 
 | 	    BTRFS_I(inode)->generation <= last_committed && | 
 | 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) | 
 | 			goto out; | 
 |  | 
 | 	if (!S_ISDIR(inode->i_mode)) { | 
 | 		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb) | 
 | 			goto out; | 
 | 		inode = d_inode(parent); | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		/* | 
 | 		 * If we are logging a directory then we start with our inode, | 
 | 		 * not our parents inode, so we need to skipp setting the | 
 | 		 * logged_trans so that further down in the log code we don't | 
 | 		 * think this inode has already been logged. | 
 | 		 */ | 
 | 		if (inode != orig_inode) | 
 | 			BTRFS_I(inode)->logged_trans = trans->transid; | 
 | 		smp_mb(); | 
 |  | 
 | 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) { | 
 | 			root = BTRFS_I(inode)->root; | 
 |  | 
 | 			/* | 
 | 			 * make sure any commits to the log are forced | 
 | 			 * to be full commits | 
 | 			 */ | 
 | 			btrfs_set_log_full_commit(root->fs_info, trans); | 
 | 			ret = 1; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb) | 
 | 			break; | 
 |  | 
 | 		if (IS_ROOT(parent)) | 
 | 			break; | 
 |  | 
 | 		parent = dget_parent(parent); | 
 | 		dput(old_parent); | 
 | 		old_parent = parent; | 
 | 		inode = d_inode(parent); | 
 |  | 
 | 	} | 
 | 	dput(old_parent); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct btrfs_dir_list { | 
 | 	u64 ino; | 
 | 	struct list_head list; | 
 | }; | 
 |  | 
 | /* | 
 |  * Log the inodes of the new dentries of a directory. See log_dir_items() for | 
 |  * details about the why it is needed. | 
 |  * This is a recursive operation - if an existing dentry corresponds to a | 
 |  * directory, that directory's new entries are logged too (same behaviour as | 
 |  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes | 
 |  * the dentries point to we do not lock their i_mutex, otherwise lockdep | 
 |  * complains about the following circular lock dependency / possible deadlock: | 
 |  * | 
 |  *        CPU0                                        CPU1 | 
 |  *        ----                                        ---- | 
 |  * lock(&type->i_mutex_dir_key#3/2); | 
 |  *                                            lock(sb_internal#2); | 
 |  *                                            lock(&type->i_mutex_dir_key#3/2); | 
 |  * lock(&sb->s_type->i_mutex_key#14); | 
 |  * | 
 |  * Where sb_internal is the lock (a counter that works as a lock) acquired by | 
 |  * sb_start_intwrite() in btrfs_start_transaction(). | 
 |  * Not locking i_mutex of the inodes is still safe because: | 
 |  * | 
 |  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible | 
 |  *    that while logging the inode new references (names) are added or removed | 
 |  *    from the inode, leaving the logged inode item with a link count that does | 
 |  *    not match the number of logged inode reference items. This is fine because | 
 |  *    at log replay time we compute the real number of links and correct the | 
 |  *    link count in the inode item (see replay_one_buffer() and | 
 |  *    link_to_fixup_dir()); | 
 |  * | 
 |  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that | 
 |  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and | 
 |  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item | 
 |  *    has a size that doesn't match the sum of the lengths of all the logged | 
 |  *    names. This does not result in a problem because if a dir_item key is | 
 |  *    logged but its matching dir_index key is not logged, at log replay time we | 
 |  *    don't use it to replay the respective name (see replay_one_name()). On the | 
 |  *    other hand if only the dir_index key ends up being logged, the respective | 
 |  *    name is added to the fs/subvol tree with both the dir_item and dir_index | 
 |  *    keys created (see replay_one_name()). | 
 |  *    The directory's inode item with a wrong i_size is not a problem as well, | 
 |  *    since we don't use it at log replay time to set the i_size in the inode | 
 |  *    item of the fs/subvol tree (see overwrite_item()). | 
 |  */ | 
 | static int log_new_dir_dentries(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root, | 
 | 				struct inode *start_inode, | 
 | 				struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct btrfs_root *log = root->log_root; | 
 | 	struct btrfs_path *path; | 
 | 	LIST_HEAD(dir_list); | 
 | 	struct btrfs_dir_list *dir_elem; | 
 | 	int ret = 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); | 
 | 	if (!dir_elem) { | 
 | 		btrfs_free_path(path); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	dir_elem->ino = btrfs_ino(start_inode); | 
 | 	list_add_tail(&dir_elem->list, &dir_list); | 
 |  | 
 | 	while (!list_empty(&dir_list)) { | 
 | 		struct extent_buffer *leaf; | 
 | 		struct btrfs_key min_key; | 
 | 		int nritems; | 
 | 		int i; | 
 |  | 
 | 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, | 
 | 					    list); | 
 | 		if (ret) | 
 | 			goto next_dir_inode; | 
 |  | 
 | 		min_key.objectid = dir_elem->ino; | 
 | 		min_key.type = BTRFS_DIR_ITEM_KEY; | 
 | 		min_key.offset = 0; | 
 | again: | 
 | 		btrfs_release_path(path); | 
 | 		ret = btrfs_search_forward(log, &min_key, path, trans->transid); | 
 | 		if (ret < 0) { | 
 | 			goto next_dir_inode; | 
 | 		} else if (ret > 0) { | 
 | 			ret = 0; | 
 | 			goto next_dir_inode; | 
 | 		} | 
 |  | 
 | process_leaf: | 
 | 		leaf = path->nodes[0]; | 
 | 		nritems = btrfs_header_nritems(leaf); | 
 | 		for (i = path->slots[0]; i < nritems; i++) { | 
 | 			struct btrfs_dir_item *di; | 
 | 			struct btrfs_key di_key; | 
 | 			struct inode *di_inode; | 
 | 			struct btrfs_dir_list *new_dir_elem; | 
 | 			int log_mode = LOG_INODE_EXISTS; | 
 | 			int type; | 
 |  | 
 | 			btrfs_item_key_to_cpu(leaf, &min_key, i); | 
 | 			if (min_key.objectid != dir_elem->ino || | 
 | 			    min_key.type != BTRFS_DIR_ITEM_KEY) | 
 | 				goto next_dir_inode; | 
 |  | 
 | 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); | 
 | 			type = btrfs_dir_type(leaf, di); | 
 | 			if (btrfs_dir_transid(leaf, di) < trans->transid && | 
 | 			    type != BTRFS_FT_DIR) | 
 | 				continue; | 
 | 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key); | 
 | 			if (di_key.type == BTRFS_ROOT_ITEM_KEY) | 
 | 				continue; | 
 |  | 
 | 			di_inode = btrfs_iget(root->fs_info->sb, &di_key, | 
 | 					      root, NULL); | 
 | 			if (IS_ERR(di_inode)) { | 
 | 				ret = PTR_ERR(di_inode); | 
 | 				goto next_dir_inode; | 
 | 			} | 
 |  | 
 | 			if (btrfs_inode_in_log(di_inode, trans->transid)) { | 
 | 				iput(di_inode); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			ctx->log_new_dentries = false; | 
 | 			if (type == BTRFS_FT_DIR) | 
 | 				log_mode = LOG_INODE_ALL; | 
 | 			btrfs_release_path(path); | 
 | 			ret = btrfs_log_inode(trans, root, di_inode, | 
 | 					      log_mode, 0, LLONG_MAX, ctx); | 
 | 			iput(di_inode); | 
 | 			if (ret) | 
 | 				goto next_dir_inode; | 
 | 			if (ctx->log_new_dentries) { | 
 | 				new_dir_elem = kmalloc(sizeof(*new_dir_elem), | 
 | 						       GFP_NOFS); | 
 | 				if (!new_dir_elem) { | 
 | 					ret = -ENOMEM; | 
 | 					goto next_dir_inode; | 
 | 				} | 
 | 				new_dir_elem->ino = di_key.objectid; | 
 | 				list_add_tail(&new_dir_elem->list, &dir_list); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		if (i == nritems) { | 
 | 			ret = btrfs_next_leaf(log, path); | 
 | 			if (ret < 0) { | 
 | 				goto next_dir_inode; | 
 | 			} else if (ret > 0) { | 
 | 				ret = 0; | 
 | 				goto next_dir_inode; | 
 | 			} | 
 | 			goto process_leaf; | 
 | 		} | 
 | 		if (min_key.offset < (u64)-1) { | 
 | 			min_key.offset++; | 
 | 			goto again; | 
 | 		} | 
 | next_dir_inode: | 
 | 		list_del(&dir_elem->list); | 
 | 		kfree(dir_elem); | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, | 
 | 				 struct inode *inode, | 
 | 				 struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	const u64 ino = btrfs_ino(inode); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | 	path->skip_locking = 1; | 
 | 	path->search_commit_root = 1; | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_INODE_REF_KEY; | 
 | 	key.offset = 0; | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	while (true) { | 
 | 		struct extent_buffer *leaf = path->nodes[0]; | 
 | 		int slot = path->slots[0]; | 
 | 		u32 cur_offset = 0; | 
 | 		u32 item_size; | 
 | 		unsigned long ptr; | 
 |  | 
 | 		if (slot >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			else if (ret > 0) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &key, slot); | 
 | 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ | 
 | 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) | 
 | 			break; | 
 |  | 
 | 		item_size = btrfs_item_size_nr(leaf, slot); | 
 | 		ptr = btrfs_item_ptr_offset(leaf, slot); | 
 | 		while (cur_offset < item_size) { | 
 | 			struct btrfs_key inode_key; | 
 | 			struct inode *dir_inode; | 
 |  | 
 | 			inode_key.type = BTRFS_INODE_ITEM_KEY; | 
 | 			inode_key.offset = 0; | 
 |  | 
 | 			if (key.type == BTRFS_INODE_EXTREF_KEY) { | 
 | 				struct btrfs_inode_extref *extref; | 
 |  | 
 | 				extref = (struct btrfs_inode_extref *) | 
 | 					(ptr + cur_offset); | 
 | 				inode_key.objectid = btrfs_inode_extref_parent( | 
 | 					leaf, extref); | 
 | 				cur_offset += sizeof(*extref); | 
 | 				cur_offset += btrfs_inode_extref_name_len(leaf, | 
 | 					extref); | 
 | 			} else { | 
 | 				inode_key.objectid = key.offset; | 
 | 				cur_offset = item_size; | 
 | 			} | 
 |  | 
 | 			dir_inode = btrfs_iget(root->fs_info->sb, &inode_key, | 
 | 					       root, NULL); | 
 | 			/* If parent inode was deleted, skip it. */ | 
 | 			if (IS_ERR(dir_inode)) | 
 | 				continue; | 
 |  | 
 | 			ret = btrfs_log_inode(trans, root, dir_inode, | 
 | 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx); | 
 | 			iput(dir_inode); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 		} | 
 | 		path->slots[0]++; | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper function around btrfs_log_inode to make sure newly created | 
 |  * parent directories also end up in the log.  A minimal inode and backref | 
 |  * only logging is done of any parent directories that are older than | 
 |  * the last committed transaction | 
 |  */ | 
 | static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, | 
 | 			    	  struct btrfs_root *root, struct inode *inode, | 
 | 				  struct dentry *parent, | 
 | 				  const loff_t start, | 
 | 				  const loff_t end, | 
 | 				  int exists_only, | 
 | 				  struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL; | 
 | 	struct super_block *sb; | 
 | 	struct dentry *old_parent = NULL; | 
 | 	int ret = 0; | 
 | 	u64 last_committed = root->fs_info->last_trans_committed; | 
 | 	bool log_dentries = false; | 
 | 	struct inode *orig_inode = inode; | 
 |  | 
 | 	sb = inode->i_sb; | 
 |  | 
 | 	if (btrfs_test_opt(root, NOTREELOG)) { | 
 | 		ret = 1; | 
 | 		goto end_no_trans; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The prev transaction commit doesn't complete, we need do | 
 | 	 * full commit by ourselves. | 
 | 	 */ | 
 | 	if (root->fs_info->last_trans_log_full_commit > | 
 | 	    root->fs_info->last_trans_committed) { | 
 | 		ret = 1; | 
 | 		goto end_no_trans; | 
 | 	} | 
 |  | 
 | 	if (root != BTRFS_I(inode)->root || | 
 | 	    btrfs_root_refs(&root->root_item) == 0) { | 
 | 		ret = 1; | 
 | 		goto end_no_trans; | 
 | 	} | 
 |  | 
 | 	ret = check_parent_dirs_for_sync(trans, inode, parent, | 
 | 					 sb, last_committed); | 
 | 	if (ret) | 
 | 		goto end_no_trans; | 
 |  | 
 | 	if (btrfs_inode_in_log(inode, trans->transid)) { | 
 | 		ret = BTRFS_NO_LOG_SYNC; | 
 | 		goto end_no_trans; | 
 | 	} | 
 |  | 
 | 	ret = start_log_trans(trans, root, ctx); | 
 | 	if (ret) | 
 | 		goto end_no_trans; | 
 |  | 
 | 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx); | 
 | 	if (ret) | 
 | 		goto end_trans; | 
 |  | 
 | 	/* | 
 | 	 * for regular files, if its inode is already on disk, we don't | 
 | 	 * have to worry about the parents at all.  This is because | 
 | 	 * we can use the last_unlink_trans field to record renames | 
 | 	 * and other fun in this file. | 
 | 	 */ | 
 | 	if (S_ISREG(inode->i_mode) && | 
 | 	    BTRFS_I(inode)->generation <= last_committed && | 
 | 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) { | 
 | 		ret = 0; | 
 | 		goto end_trans; | 
 | 	} | 
 |  | 
 | 	if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries) | 
 | 		log_dentries = true; | 
 |  | 
 | 	/* | 
 | 	 * On unlink we must make sure all our current and old parent directores | 
 | 	 * inodes are fully logged. This is to prevent leaving dangling | 
 | 	 * directory index entries in directories that were our parents but are | 
 | 	 * not anymore. Not doing this results in old parent directory being | 
 | 	 * impossible to delete after log replay (rmdir will always fail with | 
 | 	 * error -ENOTEMPTY). | 
 | 	 * | 
 | 	 * Example 1: | 
 | 	 * | 
 | 	 * mkdir testdir | 
 | 	 * touch testdir/foo | 
 | 	 * ln testdir/foo testdir/bar | 
 | 	 * sync | 
 | 	 * unlink testdir/bar | 
 | 	 * xfs_io -c fsync testdir/foo | 
 | 	 * <power failure> | 
 | 	 * mount fs, triggers log replay | 
 | 	 * | 
 | 	 * If we don't log the parent directory (testdir), after log replay the | 
 | 	 * directory still has an entry pointing to the file inode using the bar | 
 | 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and | 
 | 	 * the file inode has a link count of 1. | 
 | 	 * | 
 | 	 * Example 2: | 
 | 	 * | 
 | 	 * mkdir testdir | 
 | 	 * touch foo | 
 | 	 * ln foo testdir/foo2 | 
 | 	 * ln foo testdir/foo3 | 
 | 	 * sync | 
 | 	 * unlink testdir/foo3 | 
 | 	 * xfs_io -c fsync foo | 
 | 	 * <power failure> | 
 | 	 * mount fs, triggers log replay | 
 | 	 * | 
 | 	 * Similar as the first example, after log replay the parent directory | 
 | 	 * testdir still has an entry pointing to the inode file with name foo3 | 
 | 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item | 
 | 	 * and has a link count of 2. | 
 | 	 */ | 
 | 	if (BTRFS_I(inode)->last_unlink_trans > last_committed) { | 
 | 		ret = btrfs_log_all_parents(trans, orig_inode, ctx); | 
 | 		if (ret) | 
 | 			goto end_trans; | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb) | 
 | 			break; | 
 |  | 
 | 		inode = d_inode(parent); | 
 | 		if (root != BTRFS_I(inode)->root) | 
 | 			break; | 
 |  | 
 | 		if (BTRFS_I(inode)->generation > last_committed) { | 
 | 			ret = btrfs_log_inode(trans, root, inode, | 
 | 					      LOG_INODE_EXISTS, | 
 | 					      0, LLONG_MAX, ctx); | 
 | 			if (ret) | 
 | 				goto end_trans; | 
 | 		} | 
 | 		if (IS_ROOT(parent)) | 
 | 			break; | 
 |  | 
 | 		parent = dget_parent(parent); | 
 | 		dput(old_parent); | 
 | 		old_parent = parent; | 
 | 	} | 
 | 	if (log_dentries) | 
 | 		ret = log_new_dir_dentries(trans, root, orig_inode, ctx); | 
 | 	else | 
 | 		ret = 0; | 
 | end_trans: | 
 | 	dput(old_parent); | 
 | 	if (ret < 0) { | 
 | 		btrfs_set_log_full_commit(root->fs_info, trans); | 
 | 		ret = 1; | 
 | 	} | 
 |  | 
 | 	if (ret) | 
 | 		btrfs_remove_log_ctx(root, ctx); | 
 | 	btrfs_end_log_trans(root); | 
 | end_no_trans: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * it is not safe to log dentry if the chunk root has added new | 
 |  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise. | 
 |  * If this returns 1, you must commit the transaction to safely get your | 
 |  * data on disk. | 
 |  */ | 
 | int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *root, struct dentry *dentry, | 
 | 			  const loff_t start, | 
 | 			  const loff_t end, | 
 | 			  struct btrfs_log_ctx *ctx) | 
 | { | 
 | 	struct dentry *parent = dget_parent(dentry); | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent, | 
 | 				     start, end, 0, ctx); | 
 | 	dput(parent); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * should be called during mount to recover any replay any log trees | 
 |  * from the FS | 
 |  */ | 
 | int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_key tmp_key; | 
 | 	struct btrfs_root *log; | 
 | 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info; | 
 | 	struct walk_control wc = { | 
 | 		.process_func = process_one_buffer, | 
 | 		.stage = 0, | 
 | 	}; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	fs_info->log_root_recovering = 1; | 
 |  | 
 | 	trans = btrfs_start_transaction(fs_info->tree_root, 0); | 
 | 	if (IS_ERR(trans)) { | 
 | 		ret = PTR_ERR(trans); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	wc.trans = trans; | 
 | 	wc.pin = 1; | 
 |  | 
 | 	ret = walk_log_tree(trans, log_root_tree, &wc); | 
 | 	if (ret) { | 
 | 		btrfs_std_error(fs_info, ret, "Failed to pin buffers while " | 
 | 			    "recovering log root tree."); | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | again: | 
 | 	key.objectid = BTRFS_TREE_LOG_OBJECTID; | 
 | 	key.offset = (u64)-1; | 
 | 	key.type = BTRFS_ROOT_ITEM_KEY; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); | 
 |  | 
 | 		if (ret < 0) { | 
 | 			btrfs_std_error(fs_info, ret, | 
 | 				    "Couldn't find tree log root."); | 
 | 			goto error; | 
 | 		} | 
 | 		if (ret > 0) { | 
 | 			if (path->slots[0] == 0) | 
 | 				break; | 
 | 			path->slots[0]--; | 
 | 		} | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
 | 				      path->slots[0]); | 
 | 		btrfs_release_path(path); | 
 | 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) | 
 | 			break; | 
 |  | 
 | 		log = btrfs_read_fs_root(log_root_tree, &found_key); | 
 | 		if (IS_ERR(log)) { | 
 | 			ret = PTR_ERR(log); | 
 | 			btrfs_std_error(fs_info, ret, | 
 | 				    "Couldn't read tree log root."); | 
 | 			goto error; | 
 | 		} | 
 |  | 
 | 		tmp_key.objectid = found_key.offset; | 
 | 		tmp_key.type = BTRFS_ROOT_ITEM_KEY; | 
 | 		tmp_key.offset = (u64)-1; | 
 |  | 
 | 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); | 
 | 		if (IS_ERR(wc.replay_dest)) { | 
 | 			ret = PTR_ERR(wc.replay_dest); | 
 | 			free_extent_buffer(log->node); | 
 | 			free_extent_buffer(log->commit_root); | 
 | 			kfree(log); | 
 | 			btrfs_std_error(fs_info, ret, "Couldn't read target root " | 
 | 				    "for tree log recovery."); | 
 | 			goto error; | 
 | 		} | 
 |  | 
 | 		wc.replay_dest->log_root = log; | 
 | 		btrfs_record_root_in_trans(trans, wc.replay_dest); | 
 | 		ret = walk_log_tree(trans, log, &wc); | 
 |  | 
 | 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { | 
 | 			ret = fixup_inode_link_counts(trans, wc.replay_dest, | 
 | 						      path); | 
 | 		} | 
 |  | 
 | 		key.offset = found_key.offset - 1; | 
 | 		wc.replay_dest->log_root = NULL; | 
 | 		free_extent_buffer(log->node); | 
 | 		free_extent_buffer(log->commit_root); | 
 | 		kfree(log); | 
 |  | 
 | 		if (ret) | 
 | 			goto error; | 
 |  | 
 | 		if (found_key.offset == 0) | 
 | 			break; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* step one is to pin it all, step two is to replay just inodes */ | 
 | 	if (wc.pin) { | 
 | 		wc.pin = 0; | 
 | 		wc.process_func = replay_one_buffer; | 
 | 		wc.stage = LOG_WALK_REPLAY_INODES; | 
 | 		goto again; | 
 | 	} | 
 | 	/* step three is to replay everything */ | 
 | 	if (wc.stage < LOG_WALK_REPLAY_ALL) { | 
 | 		wc.stage++; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 |  | 
 | 	/* step 4: commit the transaction, which also unpins the blocks */ | 
 | 	ret = btrfs_commit_transaction(trans, fs_info->tree_root); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	free_extent_buffer(log_root_tree->node); | 
 | 	log_root_tree->log_root = NULL; | 
 | 	fs_info->log_root_recovering = 0; | 
 | 	kfree(log_root_tree); | 
 |  | 
 | 	return 0; | 
 | error: | 
 | 	if (wc.trans) | 
 | 		btrfs_end_transaction(wc.trans, fs_info->tree_root); | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * there are some corner cases where we want to force a full | 
 |  * commit instead of allowing a directory to be logged. | 
 |  * | 
 |  * They revolve around files there were unlinked from the directory, and | 
 |  * this function updates the parent directory so that a full commit is | 
 |  * properly done if it is fsync'd later after the unlinks are done. | 
 |  */ | 
 | void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, | 
 | 			     struct inode *dir, struct inode *inode, | 
 | 			     int for_rename) | 
 | { | 
 | 	/* | 
 | 	 * when we're logging a file, if it hasn't been renamed | 
 | 	 * or unlinked, and its inode is fully committed on disk, | 
 | 	 * we don't have to worry about walking up the directory chain | 
 | 	 * to log its parents. | 
 | 	 * | 
 | 	 * So, we use the last_unlink_trans field to put this transid | 
 | 	 * into the file.  When the file is logged we check it and | 
 | 	 * don't log the parents if the file is fully on disk. | 
 | 	 */ | 
 | 	if (S_ISREG(inode->i_mode)) | 
 | 		BTRFS_I(inode)->last_unlink_trans = trans->transid; | 
 |  | 
 | 	/* | 
 | 	 * if this directory was already logged any new | 
 | 	 * names for this file/dir will get recorded | 
 | 	 */ | 
 | 	smp_mb(); | 
 | 	if (BTRFS_I(dir)->logged_trans == trans->transid) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * if the inode we're about to unlink was logged, | 
 | 	 * the log will be properly updated for any new names | 
 | 	 */ | 
 | 	if (BTRFS_I(inode)->logged_trans == trans->transid) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * when renaming files across directories, if the directory | 
 | 	 * there we're unlinking from gets fsync'd later on, there's | 
 | 	 * no way to find the destination directory later and fsync it | 
 | 	 * properly.  So, we have to be conservative and force commits | 
 | 	 * so the new name gets discovered. | 
 | 	 */ | 
 | 	if (for_rename) | 
 | 		goto record; | 
 |  | 
 | 	/* we can safely do the unlink without any special recording */ | 
 | 	return; | 
 |  | 
 | record: | 
 | 	BTRFS_I(dir)->last_unlink_trans = trans->transid; | 
 | } | 
 |  | 
 | /* | 
 |  * Call this after adding a new name for a file and it will properly | 
 |  * update the log to reflect the new name. | 
 |  * | 
 |  * It will return zero if all goes well, and it will return 1 if a | 
 |  * full transaction commit is required. | 
 |  */ | 
 | int btrfs_log_new_name(struct btrfs_trans_handle *trans, | 
 | 			struct inode *inode, struct inode *old_dir, | 
 | 			struct dentry *parent) | 
 | { | 
 | 	struct btrfs_root * root = BTRFS_I(inode)->root; | 
 |  | 
 | 	/* | 
 | 	 * this will force the logging code to walk the dentry chain | 
 | 	 * up for the file | 
 | 	 */ | 
 | 	if (S_ISREG(inode->i_mode)) | 
 | 		BTRFS_I(inode)->last_unlink_trans = trans->transid; | 
 |  | 
 | 	/* | 
 | 	 * if this inode hasn't been logged and directory we're renaming it | 
 | 	 * from hasn't been logged, we don't need to log it | 
 | 	 */ | 
 | 	if (BTRFS_I(inode)->logged_trans <= | 
 | 	    root->fs_info->last_trans_committed && | 
 | 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <= | 
 | 		    root->fs_info->last_trans_committed)) | 
 | 		return 0; | 
 |  | 
 | 	return btrfs_log_inode_parent(trans, root, inode, parent, 0, | 
 | 				      LLONG_MAX, 1, NULL); | 
 | } | 
 |  |