blob: 2549edba85470a5e2796ac62ec9cbe286aade8ef [file] [log] [blame]
// KMSAN: uninit-value in vprintk_emit
// https://syzkaller.appspot.com/bug?id=1bc933ff3f95204574beaa5f98a9c919bf99d556
// status:invalid
// autogenerated by syzkaller (https://github.com/google/syzkaller)
#define _GNU_SOURCE
#include <arpa/inet.h>
#include <dirent.h>
#include <endian.h>
#include <errno.h>
#include <fcntl.h>
#include <net/if_arp.h>
#include <sched.h>
#include <setjmp.h>
#include <signal.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mount.h>
#include <sys/prctl.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>
#include <linux/if.h>
#include <linux/if_ether.h>
#include <linux/if_tun.h>
#include <linux/ip.h>
#include <linux/tcp.h>
static __thread int skip_segv;
static __thread jmp_buf segv_env;
static void segv_handler(int sig, siginfo_t* info, void* ctx)
{
uintptr_t addr = (uintptr_t)info->si_addr;
const uintptr_t prog_start = 1 << 20;
const uintptr_t prog_end = 100 << 20;
if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED) &&
(addr < prog_start || addr > prog_end)) {
_longjmp(segv_env, 1);
}
exit(sig);
}
static void install_segv_handler(void)
{
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_handler = SIG_IGN;
syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8);
syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8);
memset(&sa, 0, sizeof(sa));
sa.sa_sigaction = segv_handler;
sa.sa_flags = SA_NODEFER | SA_SIGINFO;
sigaction(SIGSEGV, &sa, NULL);
sigaction(SIGBUS, &sa, NULL);
}
#define NONFAILING(...) \
{ \
__atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \
if (_setjmp(segv_env) == 0) { \
__VA_ARGS__; \
} \
__atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \
}
static void sleep_ms(uint64_t ms)
{
usleep(ms * 1000);
}
static uint64_t current_time_ms(void)
{
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts))
exit(1);
return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000;
}
#define BITMASK_LEN(type, bf_len) (type)((1ull << (bf_len)) - 1)
#define BITMASK_LEN_OFF(type, bf_off, bf_len) \
(type)(BITMASK_LEN(type, (bf_len)) << (bf_off))
#define STORE_BY_BITMASK(type, addr, val, bf_off, bf_len) \
if ((bf_off) == 0 && (bf_len) == 0) { \
*(type*)(addr) = (type)(val); \
} else { \
type new_val = *(type*)(addr); \
new_val &= ~BITMASK_LEN_OFF(type, (bf_off), (bf_len)); \
new_val |= ((type)(val)&BITMASK_LEN(type, (bf_len))) << (bf_off); \
*(type*)(addr) = new_val; \
}
struct csum_inet {
uint32_t acc;
};
static void csum_inet_init(struct csum_inet* csum)
{
csum->acc = 0;
}
static void csum_inet_update(struct csum_inet* csum, const uint8_t* data,
size_t length)
{
if (length == 0)
return;
size_t i;
for (i = 0; i < length - 1; i += 2)
csum->acc += *(uint16_t*)&data[i];
if (length & 1)
csum->acc += (uint16_t)data[length - 1];
while (csum->acc > 0xffff)
csum->acc = (csum->acc & 0xffff) + (csum->acc >> 16);
}
static uint16_t csum_inet_digest(struct csum_inet* csum)
{
return ~csum->acc;
}
static void vsnprintf_check(char* str, size_t size, const char* format,
va_list args)
{
int rv;
rv = vsnprintf(str, size, format, args);
if (rv < 0)
exit(1);
if ((size_t)rv >= size)
exit(1);
}
#define COMMAND_MAX_LEN 128
#define PATH_PREFIX \
"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin "
#define PATH_PREFIX_LEN (sizeof(PATH_PREFIX) - 1)
static void execute_command(bool panic, const char* format, ...)
{
va_list args;
char command[PATH_PREFIX_LEN + COMMAND_MAX_LEN];
int rv;
va_start(args, format);
memcpy(command, PATH_PREFIX, PATH_PREFIX_LEN);
vsnprintf_check(command + PATH_PREFIX_LEN, COMMAND_MAX_LEN, format, args);
va_end(args);
rv = system(command);
if (rv) {
if (panic)
exit(1);
}
}
static int tunfd = -1;
static int tun_frags_enabled;
#define SYZ_TUN_MAX_PACKET_SIZE 1000
#define TUN_IFACE "syz_tun"
#define LOCAL_MAC "aa:aa:aa:aa:aa:aa"
#define REMOTE_MAC "aa:aa:aa:aa:aa:bb"
#define LOCAL_IPV4 "172.20.20.170"
#define REMOTE_IPV4 "172.20.20.187"
#define LOCAL_IPV6 "fe80::aa"
#define REMOTE_IPV6 "fe80::bb"
#define IFF_NAPI 0x0010
#define IFF_NAPI_FRAGS 0x0020
static void initialize_tun(void)
{
tunfd = open("/dev/net/tun", O_RDWR | O_NONBLOCK);
if (tunfd == -1) {
printf("tun: can't open /dev/net/tun: please enable CONFIG_TUN=y\n");
printf("otherwise fuzzing or reproducing might not work as intended\n");
return;
}
const int kTunFd = 240;
if (dup2(tunfd, kTunFd) < 0)
exit(1);
close(tunfd);
tunfd = kTunFd;
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, TUN_IFACE, IFNAMSIZ);
ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_NAPI | IFF_NAPI_FRAGS;
if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) {
ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0)
exit(1);
}
if (ioctl(tunfd, TUNGETIFF, (void*)&ifr) < 0)
exit(1);
tun_frags_enabled = (ifr.ifr_flags & IFF_NAPI_FRAGS) != 0;
execute_command(0, "sysctl -w net.ipv6.conf.%s.accept_dad=0", TUN_IFACE);
execute_command(0, "sysctl -w net.ipv6.conf.%s.router_solicitations=0",
TUN_IFACE);
execute_command(1, "ip link set dev %s address %s", TUN_IFACE, LOCAL_MAC);
execute_command(1, "ip addr add %s/24 dev %s", LOCAL_IPV4, TUN_IFACE);
execute_command(1, "ip neigh add %s lladdr %s dev %s nud permanent",
REMOTE_IPV4, REMOTE_MAC, TUN_IFACE);
execute_command(0, "ip -6 addr add %s/120 dev %s", LOCAL_IPV6, TUN_IFACE);
execute_command(0, "ip -6 neigh add %s lladdr %s dev %s nud permanent",
REMOTE_IPV6, REMOTE_MAC, TUN_IFACE);
execute_command(1, "ip link set dev %s up", TUN_IFACE);
}
static int read_tun(char* data, int size)
{
if (tunfd < 0)
return -1;
int rv = read(tunfd, data, size);
if (rv < 0) {
if (errno == EAGAIN)
return -1;
if (errno == EBADFD)
return -1;
exit(1);
}
return rv;
}
#define MAX_FRAGS 4
struct vnet_fragmentation {
uint32_t full;
uint32_t count;
uint32_t frags[MAX_FRAGS];
};
static long syz_emit_ethernet(long a0, long a1, long a2)
{
if (tunfd < 0)
return (uintptr_t)-1;
uint32_t length = a0;
char* data = (char*)a1;
struct vnet_fragmentation* frags = (struct vnet_fragmentation*)a2;
struct iovec vecs[MAX_FRAGS + 1];
uint32_t nfrags = 0;
if (!tun_frags_enabled || frags == NULL) {
vecs[nfrags].iov_base = data;
vecs[nfrags].iov_len = length;
nfrags++;
} else {
bool full = true;
uint32_t i, count = 0;
NONFAILING(full = frags->full);
NONFAILING(count = frags->count);
if (count > MAX_FRAGS)
count = MAX_FRAGS;
for (i = 0; i < count && length != 0; i++) {
uint32_t size = 0;
NONFAILING(size = frags->frags[i]);
if (size > length)
size = length;
vecs[nfrags].iov_base = data;
vecs[nfrags].iov_len = size;
nfrags++;
data += size;
length -= size;
}
if (length != 0 && (full || nfrags == 0)) {
vecs[nfrags].iov_base = data;
vecs[nfrags].iov_len = length;
nfrags++;
}
}
return writev(tunfd, vecs, nfrags);
}
static void flush_tun()
{
char data[SYZ_TUN_MAX_PACKET_SIZE];
while (read_tun(&data[0], sizeof(data)) != -1) {
}
}
static void setup_common()
{
if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) {
}
}
static void loop();
static void sandbox_common()
{
prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
setpgrp();
setsid();
struct rlimit rlim;
rlim.rlim_cur = rlim.rlim_max = 200 << 20;
setrlimit(RLIMIT_AS, &rlim);
rlim.rlim_cur = rlim.rlim_max = 32 << 20;
setrlimit(RLIMIT_MEMLOCK, &rlim);
rlim.rlim_cur = rlim.rlim_max = 136 << 20;
setrlimit(RLIMIT_FSIZE, &rlim);
rlim.rlim_cur = rlim.rlim_max = 1 << 20;
setrlimit(RLIMIT_STACK, &rlim);
rlim.rlim_cur = rlim.rlim_max = 0;
setrlimit(RLIMIT_CORE, &rlim);
rlim.rlim_cur = rlim.rlim_max = 256;
setrlimit(RLIMIT_NOFILE, &rlim);
if (unshare(CLONE_NEWNS)) {
}
if (unshare(CLONE_NEWIPC)) {
}
if (unshare(0x02000000)) {
}
if (unshare(CLONE_NEWUTS)) {
}
if (unshare(CLONE_SYSVSEM)) {
}
}
int wait_for_loop(int pid)
{
if (pid < 0)
exit(1);
int status = 0;
while (waitpid(-1, &status, __WALL) != pid) {
}
return WEXITSTATUS(status);
}
static int do_sandbox_none(void)
{
if (unshare(CLONE_NEWPID)) {
}
int pid = fork();
if (pid != 0)
return wait_for_loop(pid);
setup_common();
sandbox_common();
if (unshare(CLONE_NEWNET)) {
}
initialize_tun();
loop();
exit(1);
}
static void kill_and_wait(int pid, int* status)
{
kill(-pid, SIGKILL);
kill(pid, SIGKILL);
int i;
for (i = 0; i < 100; i++) {
if (waitpid(-1, status, WNOHANG | __WALL) == pid)
return;
usleep(1000);
}
DIR* dir = opendir("/sys/fs/fuse/connections");
if (dir) {
for (;;) {
struct dirent* ent = readdir(dir);
if (!ent)
break;
if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0)
continue;
char abort[300];
snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort",
ent->d_name);
int fd = open(abort, O_WRONLY);
if (fd == -1) {
continue;
}
if (write(fd, abort, 1) < 0) {
}
close(fd);
}
closedir(dir);
} else {
}
while (waitpid(-1, status, __WALL) != pid) {
}
}
#define SYZ_HAVE_SETUP_TEST 1
static void setup_test()
{
prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
setpgrp();
flush_tun();
}
#define SYZ_HAVE_RESET_TEST 1
static void reset_test()
{
int fd;
for (fd = 3; fd < 30; fd++)
close(fd);
}
static void execute_one(void);
#define WAIT_FLAGS __WALL
static void loop(void)
{
int iter;
for (iter = 0;; iter++) {
int pid = fork();
if (pid < 0)
exit(1);
if (pid == 0) {
setup_test();
execute_one();
reset_test();
exit(0);
}
int status = 0;
uint64_t start = current_time_ms();
for (;;) {
if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid)
break;
sleep_ms(1);
if (current_time_ms() - start < 5 * 1000)
continue;
kill_and_wait(pid, &status);
break;
}
}
}
void execute_one(void)
{
NONFAILING(*(uint8_t*)0x20000700 = 0xaa);
NONFAILING(*(uint8_t*)0x20000701 = 0xaa);
NONFAILING(*(uint8_t*)0x20000702 = 0xaa);
NONFAILING(*(uint8_t*)0x20000703 = 0xaa);
NONFAILING(*(uint8_t*)0x20000704 = 0xaa);
NONFAILING(*(uint8_t*)0x20000705 = 0xaa);
NONFAILING(*(uint8_t*)0x20000706 = -1);
NONFAILING(*(uint8_t*)0x20000707 = -1);
NONFAILING(*(uint8_t*)0x20000708 = -1);
NONFAILING(*(uint8_t*)0x20000709 = -1);
NONFAILING(*(uint8_t*)0x2000070a = -1);
NONFAILING(*(uint8_t*)0x2000070b = -1);
NONFAILING(*(uint16_t*)0x2000070c = htobe16(0x86dd));
NONFAILING(STORE_BY_BITMASK(uint8_t, 0x2000070e, 0, 0, 4));
NONFAILING(STORE_BY_BITMASK(uint8_t, 0x2000070e, 6, 4, 4));
NONFAILING(memcpy((void*)0x2000070f, "\xc2\x2d\xf7", 3));
NONFAILING(*(uint16_t*)0x20000712 = htobe16(0x7c00));
NONFAILING(*(uint8_t*)0x20000714 = 0x2c);
NONFAILING(*(uint8_t*)0x20000715 = 0);
NONFAILING(*(uint8_t*)0x20000716 = 0xfe);
NONFAILING(*(uint8_t*)0x20000717 = 0x80);
NONFAILING(*(uint8_t*)0x20000718 = 0);
NONFAILING(*(uint8_t*)0x20000719 = 0);
NONFAILING(*(uint8_t*)0x2000071a = 0);
NONFAILING(*(uint8_t*)0x2000071b = 0);
NONFAILING(*(uint8_t*)0x2000071c = 0);
NONFAILING(*(uint8_t*)0x2000071d = 0);
NONFAILING(*(uint8_t*)0x2000071e = 0);
NONFAILING(*(uint8_t*)0x2000071f = 0);
NONFAILING(*(uint8_t*)0x20000720 = 0);
NONFAILING(*(uint8_t*)0x20000721 = 0);
NONFAILING(*(uint8_t*)0x20000722 = 0x88);
NONFAILING(*(uint8_t*)0x20000723 = 0);
NONFAILING(*(uint8_t*)0x20000724 = 0);
NONFAILING(*(uint8_t*)0x20000725 = 0);
NONFAILING(*(uint8_t*)0x20000726 = 0xfe);
NONFAILING(*(uint8_t*)0x20000727 = 0x80);
NONFAILING(*(uint8_t*)0x20000728 = 0);
NONFAILING(*(uint8_t*)0x20000729 = 0);
NONFAILING(*(uint8_t*)0x2000072a = 0);
NONFAILING(*(uint8_t*)0x2000072b = 0);
NONFAILING(*(uint8_t*)0x2000072c = 0);
NONFAILING(*(uint8_t*)0x2000072d = 0);
NONFAILING(*(uint8_t*)0x2000072e = 0);
NONFAILING(*(uint8_t*)0x2000072f = 0);
NONFAILING(*(uint8_t*)0x20000730 = 0);
NONFAILING(*(uint8_t*)0x20000731 = 0);
NONFAILING(*(uint8_t*)0x20000732 = 0);
NONFAILING(*(uint8_t*)0x20000733 = 0);
NONFAILING(*(uint8_t*)0x20000734 = 0);
NONFAILING(*(uint8_t*)0x20000735 = 0xaa);
NONFAILING(*(uint16_t*)0x20000736 = htobe16(0));
NONFAILING(*(uint16_t*)0x20000738 = htobe16(0));
NONFAILING(*(uint8_t*)0x2000073a = 4);
NONFAILING(STORE_BY_BITMASK(uint8_t, 0x2000073b, 1, 0, 4));
NONFAILING(STORE_BY_BITMASK(uint8_t, 0x2000073b, 0, 4, 4));
NONFAILING(*(uint16_t*)0x2000073c = htobe16(0));
NONFAILING(STORE_BY_BITMASK(uint8_t, 0x2000073e, 0, 0, 1));
NONFAILING(STORE_BY_BITMASK(uint8_t, 0x2000073e, 0, 1, 4));
NONFAILING(STORE_BY_BITMASK(uint8_t, 0x2000073e, 0, 5, 3));
NONFAILING(memcpy((void*)0x2000073f, "\x00\x87\xae", 3));
NONFAILING(*(uint8_t*)0x20000742 = 0);
NONFAILING(memcpy((void*)0x20000743, "\xca\x83\x45", 3));
NONFAILING(*(uint32_t*)0x20000000 = 0);
NONFAILING(*(uint32_t*)0x20000004 = 0);
NONFAILING(*(uint32_t*)0x20000008 = 0);
NONFAILING(*(uint32_t*)0x2000000c = 0);
NONFAILING(*(uint32_t*)0x20000010 = 0);
NONFAILING(*(uint32_t*)0x20000014 = 0);
struct csum_inet csum_1;
csum_inet_init(&csum_1);
NONFAILING(csum_inet_update(&csum_1, (const uint8_t*)0x0, 16));
NONFAILING(csum_inet_update(&csum_1, (const uint8_t*)0x0, 16));
uint32_t csum_1_chunk_2 = 0x10000000;
csum_inet_update(&csum_1, (const uint8_t*)&csum_1_chunk_2, 4);
uint32_t csum_1_chunk_3 = 0x21000000;
csum_inet_update(&csum_1, (const uint8_t*)&csum_1_chunk_3, 4);
NONFAILING(csum_inet_update(&csum_1, (const uint8_t*)0x0, 16));
NONFAILING(*(uint16_t*)0x2000073c = csum_inet_digest(&csum_1));
syz_emit_ethernet(0x1019f, 0x20000700, 0x20000000);
}
int main(void)
{
syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0);
install_segv_handler();
do_sandbox_none();
return 0;
}