|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | #include <linux/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/sched/task_stack.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/userfaultfd_k.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/elf-randomize.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/processor.h> | 
|  | #include <linux/sizes.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/fsnotify.h> | 
|  | #include <linux/page_idle.h> | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include <kunit/visibility.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "swap.h" | 
|  |  | 
|  | /** | 
|  | * kfree_const - conditionally free memory | 
|  | * @x: pointer to the memory | 
|  | * | 
|  | * Function calls kfree only if @x is not in .rodata section. | 
|  | */ | 
|  | void kfree_const(const void *x) | 
|  | { | 
|  | if (!is_kernel_rodata((unsigned long)x)) | 
|  | kfree(x); | 
|  | } | 
|  | EXPORT_SYMBOL(kfree_const); | 
|  |  | 
|  | /** | 
|  | * __kmemdup_nul - Create a NUL-terminated string from @s, which might be unterminated. | 
|  | * @s: The data to copy | 
|  | * @len: The size of the data, not including the NUL terminator | 
|  | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | 
|  | * | 
|  | * Return: newly allocated copy of @s with NUL-termination or %NULL in | 
|  | * case of error | 
|  | */ | 
|  | static __always_inline char *__kmemdup_nul(const char *s, size_t len, gfp_t gfp) | 
|  | { | 
|  | char *buf; | 
|  |  | 
|  | /* '+1' for the NUL terminator */ | 
|  | buf = kmalloc_track_caller(len + 1, gfp); | 
|  | if (!buf) | 
|  | return NULL; | 
|  |  | 
|  | memcpy(buf, s, len); | 
|  | /* Ensure the buf is always NUL-terminated, regardless of @s. */ | 
|  | buf[len] = '\0'; | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kstrdup - allocate space for and copy an existing string | 
|  | * @s: the string to duplicate | 
|  | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | 
|  | * | 
|  | * Return: newly allocated copy of @s or %NULL in case of error | 
|  | */ | 
|  | noinline | 
|  | char *kstrdup(const char *s, gfp_t gfp) | 
|  | { | 
|  | return s ? __kmemdup_nul(s, strlen(s), gfp) : NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(kstrdup); | 
|  |  | 
|  | /** | 
|  | * kstrdup_const - conditionally duplicate an existing const string | 
|  | * @s: the string to duplicate | 
|  | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | 
|  | * | 
|  | * Note: Strings allocated by kstrdup_const should be freed by kfree_const and | 
|  | * must not be passed to krealloc(). | 
|  | * | 
|  | * Return: source string if it is in .rodata section otherwise | 
|  | * fallback to kstrdup. | 
|  | */ | 
|  | const char *kstrdup_const(const char *s, gfp_t gfp) | 
|  | { | 
|  | if (is_kernel_rodata((unsigned long)s)) | 
|  | return s; | 
|  |  | 
|  | return kstrdup(s, gfp); | 
|  | } | 
|  | EXPORT_SYMBOL(kstrdup_const); | 
|  |  | 
|  | /** | 
|  | * kstrndup - allocate space for and copy an existing string | 
|  | * @s: the string to duplicate | 
|  | * @max: read at most @max chars from @s | 
|  | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | 
|  | * | 
|  | * Note: Use kmemdup_nul() instead if the size is known exactly. | 
|  | * | 
|  | * Return: newly allocated copy of @s or %NULL in case of error | 
|  | */ | 
|  | char *kstrndup(const char *s, size_t max, gfp_t gfp) | 
|  | { | 
|  | return s ? __kmemdup_nul(s, strnlen(s, max), gfp) : NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(kstrndup); | 
|  |  | 
|  | /** | 
|  | * kmemdup - duplicate region of memory | 
|  | * | 
|  | * @src: memory region to duplicate | 
|  | * @len: memory region length | 
|  | * @gfp: GFP mask to use | 
|  | * | 
|  | * Return: newly allocated copy of @src or %NULL in case of error, | 
|  | * result is physically contiguous. Use kfree() to free. | 
|  | */ | 
|  | void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_); | 
|  | if (p) | 
|  | memcpy(p, src, len); | 
|  | return p; | 
|  | } | 
|  | EXPORT_SYMBOL(kmemdup_noprof); | 
|  |  | 
|  | /** | 
|  | * kmemdup_array - duplicate a given array. | 
|  | * | 
|  | * @src: array to duplicate. | 
|  | * @count: number of elements to duplicate from array. | 
|  | * @element_size: size of each element of array. | 
|  | * @gfp: GFP mask to use. | 
|  | * | 
|  | * Return: duplicated array of @src or %NULL in case of error, | 
|  | * result is physically contiguous. Use kfree() to free. | 
|  | */ | 
|  | void *kmemdup_array(const void *src, size_t count, size_t element_size, gfp_t gfp) | 
|  | { | 
|  | return kmemdup(src, size_mul(element_size, count), gfp); | 
|  | } | 
|  | EXPORT_SYMBOL(kmemdup_array); | 
|  |  | 
|  | /** | 
|  | * kvmemdup - duplicate region of memory | 
|  | * | 
|  | * @src: memory region to duplicate | 
|  | * @len: memory region length | 
|  | * @gfp: GFP mask to use | 
|  | * | 
|  | * Return: newly allocated copy of @src or %NULL in case of error, | 
|  | * result may be not physically contiguous. Use kvfree() to free. | 
|  | */ | 
|  | void *kvmemdup(const void *src, size_t len, gfp_t gfp) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | p = kvmalloc(len, gfp); | 
|  | if (p) | 
|  | memcpy(p, src, len); | 
|  | return p; | 
|  | } | 
|  | EXPORT_SYMBOL(kvmemdup); | 
|  |  | 
|  | /** | 
|  | * kmemdup_nul - Create a NUL-terminated string from unterminated data | 
|  | * @s: The data to stringify | 
|  | * @len: The size of the data | 
|  | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | 
|  | * | 
|  | * Return: newly allocated copy of @s with NUL-termination or %NULL in | 
|  | * case of error | 
|  | */ | 
|  | char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) | 
|  | { | 
|  | return s ? __kmemdup_nul(s, len, gfp) : NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(kmemdup_nul); | 
|  |  | 
|  | static kmem_buckets *user_buckets __ro_after_init; | 
|  |  | 
|  | static int __init init_user_buckets(void) | 
|  | { | 
|  | user_buckets = kmem_buckets_create("memdup_user", 0, 0, INT_MAX, NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(init_user_buckets); | 
|  |  | 
|  | /** | 
|  | * memdup_user - duplicate memory region from user space | 
|  | * | 
|  | * @src: source address in user space | 
|  | * @len: number of bytes to copy | 
|  | * | 
|  | * Return: an ERR_PTR() on failure.  Result is physically | 
|  | * contiguous, to be freed by kfree(). | 
|  | */ | 
|  | void *memdup_user(const void __user *src, size_t len) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | p = kmem_buckets_alloc_track_caller(user_buckets, len, GFP_USER | __GFP_NOWARN); | 
|  | if (!p) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (copy_from_user(p, src, len)) { | 
|  | kfree(p); | 
|  | return ERR_PTR(-EFAULT); | 
|  | } | 
|  |  | 
|  | return p; | 
|  | } | 
|  | EXPORT_SYMBOL(memdup_user); | 
|  |  | 
|  | /** | 
|  | * vmemdup_user - duplicate memory region from user space | 
|  | * | 
|  | * @src: source address in user space | 
|  | * @len: number of bytes to copy | 
|  | * | 
|  | * Return: an ERR_PTR() on failure.  Result may be not | 
|  | * physically contiguous.  Use kvfree() to free. | 
|  | */ | 
|  | void *vmemdup_user(const void __user *src, size_t len) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | p = kmem_buckets_valloc(user_buckets, len, GFP_USER); | 
|  | if (!p) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (copy_from_user(p, src, len)) { | 
|  | kvfree(p); | 
|  | return ERR_PTR(-EFAULT); | 
|  | } | 
|  |  | 
|  | return p; | 
|  | } | 
|  | EXPORT_SYMBOL(vmemdup_user); | 
|  |  | 
|  | /** | 
|  | * strndup_user - duplicate an existing string from user space | 
|  | * @s: The string to duplicate | 
|  | * @n: Maximum number of bytes to copy, including the trailing NUL. | 
|  | * | 
|  | * Return: newly allocated copy of @s or an ERR_PTR() in case of error | 
|  | */ | 
|  | char *strndup_user(const char __user *s, long n) | 
|  | { | 
|  | char *p; | 
|  | long length; | 
|  |  | 
|  | length = strnlen_user(s, n); | 
|  |  | 
|  | if (!length) | 
|  | return ERR_PTR(-EFAULT); | 
|  |  | 
|  | if (length > n) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | p = memdup_user(s, length); | 
|  |  | 
|  | if (IS_ERR(p)) | 
|  | return p; | 
|  |  | 
|  | p[length - 1] = '\0'; | 
|  |  | 
|  | return p; | 
|  | } | 
|  | EXPORT_SYMBOL(strndup_user); | 
|  |  | 
|  | /** | 
|  | * memdup_user_nul - duplicate memory region from user space and NUL-terminate | 
|  | * | 
|  | * @src: source address in user space | 
|  | * @len: number of bytes to copy | 
|  | * | 
|  | * Return: an ERR_PTR() on failure. | 
|  | */ | 
|  | void *memdup_user_nul(const void __user *src, size_t len) | 
|  | { | 
|  | char *p; | 
|  |  | 
|  | p = kmem_buckets_alloc_track_caller(user_buckets, len + 1, GFP_USER | __GFP_NOWARN); | 
|  | if (!p) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (copy_from_user(p, src, len)) { | 
|  | kfree(p); | 
|  | return ERR_PTR(-EFAULT); | 
|  | } | 
|  | p[len] = '\0'; | 
|  |  | 
|  | return p; | 
|  | } | 
|  | EXPORT_SYMBOL(memdup_user_nul); | 
|  |  | 
|  | /* Check if the vma is being used as a stack by this task */ | 
|  | int vma_is_stack_for_current(const struct vm_area_struct *vma) | 
|  | { | 
|  | struct task_struct * __maybe_unused t = current; | 
|  |  | 
|  | return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Change backing file, only valid to use during initial VMA setup. | 
|  | */ | 
|  | void vma_set_file(struct vm_area_struct *vma, struct file *file) | 
|  | { | 
|  | /* Changing an anonymous vma with this is illegal */ | 
|  | get_file(file); | 
|  | swap(vma->vm_file, file); | 
|  | fput(file); | 
|  | } | 
|  | EXPORT_SYMBOL(vma_set_file); | 
|  |  | 
|  | #ifndef STACK_RND_MASK | 
|  | #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */ | 
|  | #endif | 
|  |  | 
|  | unsigned long randomize_stack_top(unsigned long stack_top) | 
|  | { | 
|  | unsigned long random_variable = 0; | 
|  |  | 
|  | if (current->flags & PF_RANDOMIZE) { | 
|  | random_variable = get_random_long(); | 
|  | random_variable &= STACK_RND_MASK; | 
|  | random_variable <<= PAGE_SHIFT; | 
|  | } | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | return PAGE_ALIGN(stack_top) + random_variable; | 
|  | #else | 
|  | return PAGE_ALIGN(stack_top) - random_variable; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * randomize_page - Generate a random, page aligned address | 
|  | * @start:	The smallest acceptable address the caller will take. | 
|  | * @range:	The size of the area, starting at @start, within which the | 
|  | *		random address must fall. | 
|  | * | 
|  | * If @start + @range would overflow, @range is capped. | 
|  | * | 
|  | * NOTE: Historical use of randomize_range, which this replaces, presumed that | 
|  | * @start was already page aligned.  We now align it regardless. | 
|  | * | 
|  | * Return: A page aligned address within [start, start + range).  On error, | 
|  | * @start is returned. | 
|  | */ | 
|  | unsigned long randomize_page(unsigned long start, unsigned long range) | 
|  | { | 
|  | if (!PAGE_ALIGNED(start)) { | 
|  | range -= PAGE_ALIGN(start) - start; | 
|  | start = PAGE_ALIGN(start); | 
|  | } | 
|  |  | 
|  | if (start > ULONG_MAX - range) | 
|  | range = ULONG_MAX - start; | 
|  |  | 
|  | range >>= PAGE_SHIFT; | 
|  |  | 
|  | if (range == 0) | 
|  | return start; | 
|  |  | 
|  | return start + (get_random_long() % range << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT | 
|  | unsigned long __weak arch_randomize_brk(struct mm_struct *mm) | 
|  | { | 
|  | /* Is the current task 32bit ? */ | 
|  | if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) | 
|  | return randomize_page(mm->brk, SZ_32M); | 
|  |  | 
|  | return randomize_page(mm->brk, SZ_1G); | 
|  | } | 
|  |  | 
|  | unsigned long arch_mmap_rnd(void) | 
|  | { | 
|  | unsigned long rnd; | 
|  |  | 
|  | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS | 
|  | if (is_compat_task()) | 
|  | rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); | 
|  | else | 
|  | #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ | 
|  | rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); | 
|  |  | 
|  | return rnd << PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static int mmap_is_legacy(const struct rlimit *rlim_stack) | 
|  | { | 
|  | if (current->personality & ADDR_COMPAT_LAYOUT) | 
|  | return 1; | 
|  |  | 
|  | /* On parisc the stack always grows up - so a unlimited stack should | 
|  | * not be an indicator to use the legacy memory layout. */ | 
|  | if (rlim_stack->rlim_cur == RLIM_INFINITY && | 
|  | !IS_ENABLED(CONFIG_STACK_GROWSUP)) | 
|  | return 1; | 
|  |  | 
|  | return sysctl_legacy_va_layout; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Leave enough space between the mmap area and the stack to honour ulimit in | 
|  | * the face of randomisation. | 
|  | */ | 
|  | #define MIN_GAP		(SZ_128M) | 
|  | #define MAX_GAP		(STACK_TOP / 6 * 5) | 
|  |  | 
|  | static unsigned long mmap_base(const unsigned long rnd, const struct rlimit *rlim_stack) | 
|  | { | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | /* | 
|  | * For an upwards growing stack the calculation is much simpler. | 
|  | * Memory for the maximum stack size is reserved at the top of the | 
|  | * task. mmap_base starts directly below the stack and grows | 
|  | * downwards. | 
|  | */ | 
|  | return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd); | 
|  | #else | 
|  | unsigned long gap = rlim_stack->rlim_cur; | 
|  | unsigned long pad = stack_guard_gap; | 
|  |  | 
|  | /* Account for stack randomization if necessary */ | 
|  | if (current->flags & PF_RANDOMIZE) | 
|  | pad += (STACK_RND_MASK << PAGE_SHIFT); | 
|  |  | 
|  | /* Values close to RLIM_INFINITY can overflow. */ | 
|  | if (gap + pad > gap) | 
|  | gap += pad; | 
|  |  | 
|  | if (gap < MIN_GAP && MIN_GAP < MAX_GAP) | 
|  | gap = MIN_GAP; | 
|  | else if (gap > MAX_GAP) | 
|  | gap = MAX_GAP; | 
|  |  | 
|  | return PAGE_ALIGN(STACK_TOP - gap - rnd); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void arch_pick_mmap_layout(struct mm_struct *mm, const struct rlimit *rlim_stack) | 
|  | { | 
|  | unsigned long random_factor = 0UL; | 
|  |  | 
|  | if (current->flags & PF_RANDOMIZE) | 
|  | random_factor = arch_mmap_rnd(); | 
|  |  | 
|  | if (mmap_is_legacy(rlim_stack)) { | 
|  | mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; | 
|  | mm_flags_clear(MMF_TOPDOWN, mm); | 
|  | } else { | 
|  | mm->mmap_base = mmap_base(random_factor, rlim_stack); | 
|  | mm_flags_set(MMF_TOPDOWN, mm); | 
|  | } | 
|  | } | 
|  | #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) | 
|  | void arch_pick_mmap_layout(struct mm_struct *mm, const struct rlimit *rlim_stack) | 
|  | { | 
|  | mm->mmap_base = TASK_UNMAPPED_BASE; | 
|  | mm_flags_clear(MMF_TOPDOWN, mm); | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_MMU | 
|  | EXPORT_SYMBOL_IF_KUNIT(arch_pick_mmap_layout); | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * __account_locked_vm - account locked pages to an mm's locked_vm | 
|  | * @mm:          mm to account against | 
|  | * @pages:       number of pages to account | 
|  | * @inc:         %true if @pages should be considered positive, %false if not | 
|  | * @task:        task used to check RLIMIT_MEMLOCK | 
|  | * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped | 
|  | * | 
|  | * Assumes @task and @mm are valid (i.e. at least one reference on each), and | 
|  | * that mmap_lock is held as writer. | 
|  | * | 
|  | * Return: | 
|  | * * 0       on success | 
|  | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. | 
|  | */ | 
|  | int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, | 
|  | const struct task_struct *task, bool bypass_rlim) | 
|  | { | 
|  | unsigned long locked_vm, limit; | 
|  | int ret = 0; | 
|  |  | 
|  | mmap_assert_write_locked(mm); | 
|  |  | 
|  | locked_vm = mm->locked_vm; | 
|  | if (inc) { | 
|  | if (!bypass_rlim) { | 
|  | limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; | 
|  | if (locked_vm + pages > limit) | 
|  | ret = -ENOMEM; | 
|  | } | 
|  | if (!ret) | 
|  | mm->locked_vm = locked_vm + pages; | 
|  | } else { | 
|  | WARN_ON_ONCE(pages > locked_vm); | 
|  | mm->locked_vm = locked_vm - pages; | 
|  | } | 
|  |  | 
|  | pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, | 
|  | (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, | 
|  | locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), | 
|  | ret ? " - exceeded" : ""); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__account_locked_vm); | 
|  |  | 
|  | /** | 
|  | * account_locked_vm - account locked pages to an mm's locked_vm | 
|  | * @mm:          mm to account against, may be NULL | 
|  | * @pages:       number of pages to account | 
|  | * @inc:         %true if @pages should be considered positive, %false if not | 
|  | * | 
|  | * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). | 
|  | * | 
|  | * Return: | 
|  | * * 0       on success, or if mm is NULL | 
|  | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. | 
|  | */ | 
|  | int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (pages == 0 || !mm) | 
|  | return 0; | 
|  |  | 
|  | mmap_write_lock(mm); | 
|  | ret = __account_locked_vm(mm, pages, inc, current, | 
|  | capable(CAP_IPC_LOCK)); | 
|  | mmap_write_unlock(mm); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(account_locked_vm); | 
|  |  | 
|  | unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long prot, | 
|  | unsigned long flag, unsigned long pgoff) | 
|  | { | 
|  | loff_t off = (loff_t)pgoff << PAGE_SHIFT; | 
|  | unsigned long ret; | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned long populate; | 
|  | LIST_HEAD(uf); | 
|  |  | 
|  | ret = security_mmap_file(file, prot, flag); | 
|  | if (!ret) | 
|  | ret = fsnotify_mmap_perm(file, prot, off, len); | 
|  | if (!ret) { | 
|  | if (mmap_write_lock_killable(mm)) | 
|  | return -EINTR; | 
|  | ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate, | 
|  | &uf); | 
|  | mmap_write_unlock(mm); | 
|  | userfaultfd_unmap_complete(mm, &uf); | 
|  | if (populate) | 
|  | mm_populate(ret, populate); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform a userland memory mapping into the current process address space. See | 
|  | * the comment for do_mmap() for more details on this operation in general. | 
|  | * | 
|  | * This differs from do_mmap() in that: | 
|  | * | 
|  | * a. An offset parameter is provided rather than pgoff, which is both checked | 
|  | *    for overflow and page alignment. | 
|  | * b. mmap locking is performed on the caller's behalf. | 
|  | * c. Userfaultfd unmap events and memory population are handled. | 
|  | * | 
|  | * This means that this function performs essentially the same work as if | 
|  | * userland were invoking mmap (2). | 
|  | * | 
|  | * Returns either an error, or the address at which the requested mapping has | 
|  | * been performed. | 
|  | */ | 
|  | unsigned long vm_mmap(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long prot, | 
|  | unsigned long flag, unsigned long offset) | 
|  | { | 
|  | if (unlikely(offset + PAGE_ALIGN(len) < offset)) | 
|  | return -EINVAL; | 
|  | if (unlikely(offset_in_page(offset))) | 
|  | return -EINVAL; | 
|  |  | 
|  | return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_mmap); | 
|  |  | 
|  | /** | 
|  | * __vmalloc_array - allocate memory for a virtually contiguous array. | 
|  | * @n: number of elements. | 
|  | * @size: element size. | 
|  | * @flags: the type of memory to allocate (see kmalloc). | 
|  | */ | 
|  | void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags) | 
|  | { | 
|  | size_t bytes; | 
|  |  | 
|  | if (unlikely(check_mul_overflow(n, size, &bytes))) | 
|  | return NULL; | 
|  | return __vmalloc_noprof(bytes, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(__vmalloc_array_noprof); | 
|  |  | 
|  | /** | 
|  | * vmalloc_array - allocate memory for a virtually contiguous array. | 
|  | * @n: number of elements. | 
|  | * @size: element size. | 
|  | */ | 
|  | void *vmalloc_array_noprof(size_t n, size_t size) | 
|  | { | 
|  | return __vmalloc_array_noprof(n, size, GFP_KERNEL); | 
|  | } | 
|  | EXPORT_SYMBOL(vmalloc_array_noprof); | 
|  |  | 
|  | /** | 
|  | * __vcalloc - allocate and zero memory for a virtually contiguous array. | 
|  | * @n: number of elements. | 
|  | * @size: element size. | 
|  | * @flags: the type of memory to allocate (see kmalloc). | 
|  | */ | 
|  | void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags) | 
|  | { | 
|  | return __vmalloc_array_noprof(n, size, flags | __GFP_ZERO); | 
|  | } | 
|  | EXPORT_SYMBOL(__vcalloc_noprof); | 
|  |  | 
|  | /** | 
|  | * vcalloc - allocate and zero memory for a virtually contiguous array. | 
|  | * @n: number of elements. | 
|  | * @size: element size. | 
|  | */ | 
|  | void *vcalloc_noprof(size_t n, size_t size) | 
|  | { | 
|  | return __vmalloc_array_noprof(n, size, GFP_KERNEL | __GFP_ZERO); | 
|  | } | 
|  | EXPORT_SYMBOL(vcalloc_noprof); | 
|  |  | 
|  | struct anon_vma *folio_anon_vma(const struct folio *folio) | 
|  | { | 
|  | unsigned long mapping = (unsigned long)folio->mapping; | 
|  |  | 
|  | if ((mapping & FOLIO_MAPPING_FLAGS) != FOLIO_MAPPING_ANON) | 
|  | return NULL; | 
|  | return (void *)(mapping - FOLIO_MAPPING_ANON); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * folio_mapping - Find the mapping where this folio is stored. | 
|  | * @folio: The folio. | 
|  | * | 
|  | * For folios which are in the page cache, return the mapping that this | 
|  | * page belongs to.  Folios in the swap cache return the swap mapping | 
|  | * this page is stored in (which is different from the mapping for the | 
|  | * swap file or swap device where the data is stored). | 
|  | * | 
|  | * You can call this for folios which aren't in the swap cache or page | 
|  | * cache and it will return NULL. | 
|  | */ | 
|  | struct address_space *folio_mapping(const struct folio *folio) | 
|  | { | 
|  | struct address_space *mapping; | 
|  |  | 
|  | /* This happens if someone calls flush_dcache_page on slab page */ | 
|  | if (unlikely(folio_test_slab(folio))) | 
|  | return NULL; | 
|  |  | 
|  | if (unlikely(folio_test_swapcache(folio))) | 
|  | return swap_address_space(folio->swap); | 
|  |  | 
|  | mapping = folio->mapping; | 
|  | if ((unsigned long)mapping & FOLIO_MAPPING_FLAGS) | 
|  | return NULL; | 
|  |  | 
|  | return mapping; | 
|  | } | 
|  | EXPORT_SYMBOL(folio_mapping); | 
|  |  | 
|  | /** | 
|  | * folio_copy - Copy the contents of one folio to another. | 
|  | * @dst: Folio to copy to. | 
|  | * @src: Folio to copy from. | 
|  | * | 
|  | * The bytes in the folio represented by @src are copied to @dst. | 
|  | * Assumes the caller has validated that @dst is at least as large as @src. | 
|  | * Can be called in atomic context for order-0 folios, but if the folio is | 
|  | * larger, it may sleep. | 
|  | */ | 
|  | void folio_copy(struct folio *dst, struct folio *src) | 
|  | { | 
|  | long i = 0; | 
|  | long nr = folio_nr_pages(src); | 
|  |  | 
|  | for (;;) { | 
|  | copy_highpage(folio_page(dst, i), folio_page(src, i)); | 
|  | if (++i == nr) | 
|  | break; | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(folio_copy); | 
|  |  | 
|  | int folio_mc_copy(struct folio *dst, struct folio *src) | 
|  | { | 
|  | long nr = folio_nr_pages(src); | 
|  | long i = 0; | 
|  |  | 
|  | for (;;) { | 
|  | if (copy_mc_highpage(folio_page(dst, i), folio_page(src, i))) | 
|  | return -EHWPOISON; | 
|  | if (++i == nr) | 
|  | break; | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(folio_mc_copy); | 
|  |  | 
|  | int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; | 
|  | static int sysctl_overcommit_ratio __read_mostly = 50; | 
|  | static unsigned long sysctl_overcommit_kbytes __read_mostly; | 
|  | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; | 
|  | unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ | 
|  | unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  |  | 
|  | static int overcommit_ratio_handler(const struct ctl_table *table, int write, | 
|  | void *buffer, size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = proc_dointvec(table, write, buffer, lenp, ppos); | 
|  | if (ret == 0 && write) | 
|  | sysctl_overcommit_kbytes = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void sync_overcommit_as(struct work_struct *dummy) | 
|  | { | 
|  | percpu_counter_sync(&vm_committed_as); | 
|  | } | 
|  |  | 
|  | static int overcommit_policy_handler(const struct ctl_table *table, int write, | 
|  | void *buffer, size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | struct ctl_table t; | 
|  | int new_policy = -1; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * The deviation of sync_overcommit_as could be big with loose policy | 
|  | * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to | 
|  | * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply | 
|  | * with the strict "NEVER", and to avoid possible race condition (even | 
|  | * though user usually won't too frequently do the switching to policy | 
|  | * OVERCOMMIT_NEVER), the switch is done in the following order: | 
|  | *	1. changing the batch | 
|  | *	2. sync percpu count on each CPU | 
|  | *	3. switch the policy | 
|  | */ | 
|  | if (write) { | 
|  | t = *table; | 
|  | t.data = &new_policy; | 
|  | ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); | 
|  | if (ret || new_policy == -1) | 
|  | return ret; | 
|  |  | 
|  | mm_compute_batch(new_policy); | 
|  | if (new_policy == OVERCOMMIT_NEVER) | 
|  | schedule_on_each_cpu(sync_overcommit_as); | 
|  | sysctl_overcommit_memory = new_policy; | 
|  | } else { | 
|  | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int overcommit_kbytes_handler(const struct ctl_table *table, int write, | 
|  | void *buffer, size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | 
|  | if (ret == 0 && write) | 
|  | sysctl_overcommit_ratio = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct ctl_table util_sysctl_table[] = { | 
|  | { | 
|  | .procname	= "overcommit_memory", | 
|  | .data		= &sysctl_overcommit_memory, | 
|  | .maxlen		= sizeof(sysctl_overcommit_memory), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= overcommit_policy_handler, | 
|  | .extra1		= SYSCTL_ZERO, | 
|  | .extra2		= SYSCTL_TWO, | 
|  | }, | 
|  | { | 
|  | .procname	= "overcommit_ratio", | 
|  | .data		= &sysctl_overcommit_ratio, | 
|  | .maxlen		= sizeof(sysctl_overcommit_ratio), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= overcommit_ratio_handler, | 
|  | }, | 
|  | { | 
|  | .procname	= "overcommit_kbytes", | 
|  | .data		= &sysctl_overcommit_kbytes, | 
|  | .maxlen		= sizeof(sysctl_overcommit_kbytes), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= overcommit_kbytes_handler, | 
|  | }, | 
|  | { | 
|  | .procname	= "user_reserve_kbytes", | 
|  | .data		= &sysctl_user_reserve_kbytes, | 
|  | .maxlen		= sizeof(sysctl_user_reserve_kbytes), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_doulongvec_minmax, | 
|  | }, | 
|  | { | 
|  | .procname	= "admin_reserve_kbytes", | 
|  | .data		= &sysctl_admin_reserve_kbytes, | 
|  | .maxlen		= sizeof(sysctl_admin_reserve_kbytes), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_doulongvec_minmax, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int __init init_vm_util_sysctls(void) | 
|  | { | 
|  | register_sysctl_init("vm", util_sysctl_table); | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(init_vm_util_sysctls); | 
|  | #endif /* CONFIG_SYSCTL */ | 
|  |  | 
|  | /* | 
|  | * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used | 
|  | */ | 
|  | unsigned long vm_commit_limit(void) | 
|  | { | 
|  | unsigned long allowed; | 
|  |  | 
|  | if (sysctl_overcommit_kbytes) | 
|  | allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); | 
|  | else | 
|  | allowed = ((totalram_pages() - hugetlb_total_pages()) | 
|  | * sysctl_overcommit_ratio / 100); | 
|  | allowed += total_swap_pages; | 
|  |  | 
|  | return allowed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure vm_committed_as in one cacheline and not cacheline shared with | 
|  | * other variables. It can be updated by several CPUs frequently. | 
|  | */ | 
|  | struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; | 
|  |  | 
|  | /* | 
|  | * The global memory commitment made in the system can be a metric | 
|  | * that can be used to drive ballooning decisions when Linux is hosted | 
|  | * as a guest. On Hyper-V, the host implements a policy engine for dynamically | 
|  | * balancing memory across competing virtual machines that are hosted. | 
|  | * Several metrics drive this policy engine including the guest reported | 
|  | * memory commitment. | 
|  | * | 
|  | * The time cost of this is very low for small platforms, and for big | 
|  | * platform like a 2S/36C/72T Skylake server, in worst case where | 
|  | * vm_committed_as's spinlock is under severe contention, the time cost | 
|  | * could be about 30~40 microseconds. | 
|  | */ | 
|  | unsigned long vm_memory_committed(void) | 
|  | { | 
|  | return percpu_counter_sum_positive(&vm_committed_as); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vm_memory_committed); | 
|  |  | 
|  | /* | 
|  | * Check that a process has enough memory to allocate a new virtual | 
|  | * mapping. 0 means there is enough memory for the allocation to | 
|  | * succeed and -ENOMEM implies there is not. | 
|  | * | 
|  | * We currently support three overcommit policies, which are set via the | 
|  | * vm.overcommit_memory sysctl.  See Documentation/mm/overcommit-accounting.rst | 
|  | * | 
|  | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. | 
|  | * Additional code 2002 Jul 20 by Robert Love. | 
|  | * | 
|  | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. | 
|  | * | 
|  | * Note this is a helper function intended to be used by LSMs which | 
|  | * wish to use this logic. | 
|  | */ | 
|  | int __vm_enough_memory(const struct mm_struct *mm, long pages, int cap_sys_admin) | 
|  | { | 
|  | long allowed; | 
|  | unsigned long bytes_failed; | 
|  |  | 
|  | vm_acct_memory(pages); | 
|  |  | 
|  | /* | 
|  | * Sometimes we want to use more memory than we have | 
|  | */ | 
|  | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) | 
|  | return 0; | 
|  |  | 
|  | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { | 
|  | if (pages > totalram_pages() + total_swap_pages) | 
|  | goto error; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | allowed = vm_commit_limit(); | 
|  | /* | 
|  | * Reserve some for root | 
|  | */ | 
|  | if (!cap_sys_admin) | 
|  | allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); | 
|  |  | 
|  | /* | 
|  | * Don't let a single process grow so big a user can't recover | 
|  | */ | 
|  | if (mm) { | 
|  | long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); | 
|  |  | 
|  | allowed -= min_t(long, mm->total_vm / 32, reserve); | 
|  | } | 
|  |  | 
|  | if (percpu_counter_read_positive(&vm_committed_as) < allowed) | 
|  | return 0; | 
|  | error: | 
|  | bytes_failed = pages << PAGE_SHIFT; | 
|  | pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n", | 
|  | __func__, current->pid, current->comm, bytes_failed); | 
|  | vm_unacct_memory(pages); | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * get_cmdline() - copy the cmdline value to a buffer. | 
|  | * @task:     the task whose cmdline value to copy. | 
|  | * @buffer:   the buffer to copy to. | 
|  | * @buflen:   the length of the buffer. Larger cmdline values are truncated | 
|  | *            to this length. | 
|  | * | 
|  | * Return: the size of the cmdline field copied. Note that the copy does | 
|  | * not guarantee an ending NULL byte. | 
|  | */ | 
|  | int get_cmdline(struct task_struct *task, char *buffer, int buflen) | 
|  | { | 
|  | int res = 0; | 
|  | unsigned int len; | 
|  | struct mm_struct *mm = get_task_mm(task); | 
|  | unsigned long arg_start, arg_end, env_start, env_end; | 
|  | if (!mm) | 
|  | goto out; | 
|  | if (!mm->arg_end) | 
|  | goto out_mm;	/* Shh! No looking before we're done */ | 
|  |  | 
|  | spin_lock(&mm->arg_lock); | 
|  | arg_start = mm->arg_start; | 
|  | arg_end = mm->arg_end; | 
|  | env_start = mm->env_start; | 
|  | env_end = mm->env_end; | 
|  | spin_unlock(&mm->arg_lock); | 
|  |  | 
|  | len = arg_end - arg_start; | 
|  |  | 
|  | if (len > buflen) | 
|  | len = buflen; | 
|  |  | 
|  | res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); | 
|  |  | 
|  | /* | 
|  | * If the nul at the end of args has been overwritten, then | 
|  | * assume application is using setproctitle(3). | 
|  | */ | 
|  | if (res > 0 && buffer[res-1] != '\0' && len < buflen) { | 
|  | len = strnlen(buffer, res); | 
|  | if (len < res) { | 
|  | res = len; | 
|  | } else { | 
|  | len = env_end - env_start; | 
|  | if (len > buflen - res) | 
|  | len = buflen - res; | 
|  | res += access_process_vm(task, env_start, | 
|  | buffer+res, len, | 
|  | FOLL_FORCE); | 
|  | res = strnlen(buffer, res); | 
|  | } | 
|  | } | 
|  | out_mm: | 
|  | mmput(mm); | 
|  | out: | 
|  | return res; | 
|  | } | 
|  |  | 
|  | int __weak memcmp_pages(struct page *page1, struct page *page2) | 
|  | { | 
|  | char *addr1, *addr2; | 
|  | int ret; | 
|  |  | 
|  | addr1 = kmap_local_page(page1); | 
|  | addr2 = kmap_local_page(page2); | 
|  | ret = memcmp(addr1, addr2, PAGE_SIZE); | 
|  | kunmap_local(addr2); | 
|  | kunmap_local(addr1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PRINTK | 
|  | /** | 
|  | * mem_dump_obj - Print available provenance information | 
|  | * @object: object for which to find provenance information. | 
|  | * | 
|  | * This function uses pr_cont(), so that the caller is expected to have | 
|  | * printed out whatever preamble is appropriate.  The provenance information | 
|  | * depends on the type of object and on how much debugging is enabled. | 
|  | * For example, for a slab-cache object, the slab name is printed, and, | 
|  | * if available, the return address and stack trace from the allocation | 
|  | * and last free path of that object. | 
|  | */ | 
|  | void mem_dump_obj(void *object) | 
|  | { | 
|  | const char *type; | 
|  |  | 
|  | if (kmem_dump_obj(object)) | 
|  | return; | 
|  |  | 
|  | if (vmalloc_dump_obj(object)) | 
|  | return; | 
|  |  | 
|  | if (is_vmalloc_addr(object)) | 
|  | type = "vmalloc memory"; | 
|  | else if (virt_addr_valid(object)) | 
|  | type = "non-slab/vmalloc memory"; | 
|  | else if (object == NULL) | 
|  | type = "NULL pointer"; | 
|  | else if (object == ZERO_SIZE_PTR) | 
|  | type = "zero-size pointer"; | 
|  | else | 
|  | type = "non-paged memory"; | 
|  |  | 
|  | pr_cont(" %s\n", type); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mem_dump_obj); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * A driver might set a page logically offline -- PageOffline() -- and | 
|  | * turn the page inaccessible in the hypervisor; after that, access to page | 
|  | * content can be fatal. | 
|  | * | 
|  | * Some special PFN walkers -- i.e., /proc/kcore -- read content of random | 
|  | * pages after checking PageOffline(); however, these PFN walkers can race | 
|  | * with drivers that set PageOffline(). | 
|  | * | 
|  | * page_offline_freeze()/page_offline_thaw() allows for a subsystem to | 
|  | * synchronize with such drivers, achieving that a page cannot be set | 
|  | * PageOffline() while frozen. | 
|  | * | 
|  | * page_offline_begin()/page_offline_end() is used by drivers that care about | 
|  | * such races when setting a page PageOffline(). | 
|  | */ | 
|  | static DECLARE_RWSEM(page_offline_rwsem); | 
|  |  | 
|  | void page_offline_freeze(void) | 
|  | { | 
|  | down_read(&page_offline_rwsem); | 
|  | } | 
|  |  | 
|  | void page_offline_thaw(void) | 
|  | { | 
|  | up_read(&page_offline_rwsem); | 
|  | } | 
|  |  | 
|  | void page_offline_begin(void) | 
|  | { | 
|  | down_write(&page_offline_rwsem); | 
|  | } | 
|  | EXPORT_SYMBOL(page_offline_begin); | 
|  |  | 
|  | void page_offline_end(void) | 
|  | { | 
|  | up_write(&page_offline_rwsem); | 
|  | } | 
|  | EXPORT_SYMBOL(page_offline_end); | 
|  |  | 
|  | #ifndef flush_dcache_folio | 
|  | void flush_dcache_folio(struct folio *folio) | 
|  | { | 
|  | long i, nr = folio_nr_pages(folio); | 
|  |  | 
|  | for (i = 0; i < nr; i++) | 
|  | flush_dcache_page(folio_page(folio, i)); | 
|  | } | 
|  | EXPORT_SYMBOL(flush_dcache_folio); | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * __compat_vma_mmap_prepare() - See description for compat_vma_mmap_prepare() | 
|  | * for details. This is the same operation, only with a specific file operations | 
|  | * struct which may or may not be the same as vma->vm_file->f_op. | 
|  | * @f_op: The file operations whose .mmap_prepare() hook is specified. | 
|  | * @file: The file which backs or will back the mapping. | 
|  | * @vma: The VMA to apply the .mmap_prepare() hook to. | 
|  | * Returns: 0 on success or error. | 
|  | */ | 
|  | int __compat_vma_mmap_prepare(const struct file_operations *f_op, | 
|  | struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | struct vm_area_desc desc = { | 
|  | .mm = vma->vm_mm, | 
|  | .file = file, | 
|  | .start = vma->vm_start, | 
|  | .end = vma->vm_end, | 
|  |  | 
|  | .pgoff = vma->vm_pgoff, | 
|  | .vm_file = vma->vm_file, | 
|  | .vm_flags = vma->vm_flags, | 
|  | .page_prot = vma->vm_page_prot, | 
|  | }; | 
|  | int err; | 
|  |  | 
|  | err = f_op->mmap_prepare(&desc); | 
|  | if (err) | 
|  | return err; | 
|  | set_vma_from_desc(vma, &desc); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(__compat_vma_mmap_prepare); | 
|  |  | 
|  | /** | 
|  | * compat_vma_mmap_prepare() - Apply the file's .mmap_prepare() hook to an | 
|  | * existing VMA. | 
|  | * @file: The file which possesss an f_op->mmap_prepare() hook. | 
|  | * @vma: The VMA to apply the .mmap_prepare() hook to. | 
|  | * | 
|  | * Ordinarily, .mmap_prepare() is invoked directly upon mmap(). However, certain | 
|  | * stacked filesystems invoke a nested mmap hook of an underlying file. | 
|  | * | 
|  | * Until all filesystems are converted to use .mmap_prepare(), we must be | 
|  | * conservative and continue to invoke these stacked filesystems using the | 
|  | * deprecated .mmap() hook. | 
|  | * | 
|  | * However we have a problem if the underlying file system possesses an | 
|  | * .mmap_prepare() hook, as we are in a different context when we invoke the | 
|  | * .mmap() hook, already having a VMA to deal with. | 
|  | * | 
|  | * compat_vma_mmap_prepare() is a compatibility function that takes VMA state, | 
|  | * establishes a struct vm_area_desc descriptor, passes to the underlying | 
|  | * .mmap_prepare() hook and applies any changes performed by it. | 
|  | * | 
|  | * Once the conversion of filesystems is complete this function will no longer | 
|  | * be required and will be removed. | 
|  | * | 
|  | * Returns: 0 on success or error. | 
|  | */ | 
|  | int compat_vma_mmap_prepare(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | return __compat_vma_mmap_prepare(file->f_op, file, vma); | 
|  | } | 
|  | EXPORT_SYMBOL(compat_vma_mmap_prepare); | 
|  |  | 
|  | static void set_ps_flags(struct page_snapshot *ps, const struct folio *folio, | 
|  | const struct page *page) | 
|  | { | 
|  | /* | 
|  | * Only the first page of a high-order buddy page has PageBuddy() set. | 
|  | * So we have to check manually whether this page is part of a high- | 
|  | * order buddy page. | 
|  | */ | 
|  | if (PageBuddy(page)) | 
|  | ps->flags |= PAGE_SNAPSHOT_PG_BUDDY; | 
|  | else if (page_count(page) == 0 && is_free_buddy_page(page)) | 
|  | ps->flags |= PAGE_SNAPSHOT_PG_BUDDY; | 
|  |  | 
|  | if (folio_test_idle(folio)) | 
|  | ps->flags |= PAGE_SNAPSHOT_PG_IDLE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * snapshot_page() - Create a snapshot of a struct page | 
|  | * @ps: Pointer to a struct page_snapshot to store the page snapshot | 
|  | * @page: The page to snapshot | 
|  | * | 
|  | * Create a snapshot of the page and store both its struct page and struct | 
|  | * folio representations in @ps. | 
|  | * | 
|  | * A snapshot is marked as "faithful" if the compound state of @page was | 
|  | * stable and allowed safe reconstruction of the folio representation. In | 
|  | * rare cases where this is not possible (e.g. due to folio splitting), | 
|  | * snapshot_page() falls back to treating @page as a single page and the | 
|  | * snapshot is marked as "unfaithful". The snapshot_page_is_faithful() | 
|  | * helper can be used to check for this condition. | 
|  | */ | 
|  | void snapshot_page(struct page_snapshot *ps, const struct page *page) | 
|  | { | 
|  | unsigned long head, nr_pages = 1; | 
|  | struct folio *foliop; | 
|  | int loops = 5; | 
|  |  | 
|  | ps->pfn = page_to_pfn(page); | 
|  | ps->flags = PAGE_SNAPSHOT_FAITHFUL; | 
|  |  | 
|  | again: | 
|  | memset(&ps->folio_snapshot, 0, sizeof(struct folio)); | 
|  | memcpy(&ps->page_snapshot, page, sizeof(*page)); | 
|  | head = ps->page_snapshot.compound_head; | 
|  | if ((head & 1) == 0) { | 
|  | ps->idx = 0; | 
|  | foliop = (struct folio *)&ps->page_snapshot; | 
|  | if (!folio_test_large(foliop)) { | 
|  | set_ps_flags(ps, page_folio(page), page); | 
|  | memcpy(&ps->folio_snapshot, foliop, | 
|  | sizeof(struct page)); | 
|  | return; | 
|  | } | 
|  | foliop = (struct folio *)page; | 
|  | } else { | 
|  | foliop = (struct folio *)(head - 1); | 
|  | ps->idx = folio_page_idx(foliop, page); | 
|  | } | 
|  |  | 
|  | if (ps->idx < MAX_FOLIO_NR_PAGES) { | 
|  | memcpy(&ps->folio_snapshot, foliop, 2 * sizeof(struct page)); | 
|  | nr_pages = folio_nr_pages(&ps->folio_snapshot); | 
|  | if (nr_pages > 1) | 
|  | memcpy(&ps->folio_snapshot.__page_2, &foliop->__page_2, | 
|  | sizeof(struct page)); | 
|  | set_ps_flags(ps, foliop, page); | 
|  | } | 
|  |  | 
|  | if (ps->idx > nr_pages) { | 
|  | if (loops-- > 0) | 
|  | goto again; | 
|  | clear_compound_head(&ps->page_snapshot); | 
|  | foliop = (struct folio *)&ps->page_snapshot; | 
|  | memcpy(&ps->folio_snapshot, foliop, sizeof(struct page)); | 
|  | ps->flags = 0; | 
|  | ps->idx = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | /** | 
|  | * folio_pte_batch - detect a PTE batch for a large folio | 
|  | * @folio: The large folio to detect a PTE batch for. | 
|  | * @ptep: Page table pointer for the first entry. | 
|  | * @pte: Page table entry for the first page. | 
|  | * @max_nr: The maximum number of table entries to consider. | 
|  | * | 
|  | * This is a simplified variant of folio_pte_batch_flags(). | 
|  | * | 
|  | * Detect a PTE batch: consecutive (present) PTEs that map consecutive | 
|  | * pages of the same large folio in a single VMA and a single page table. | 
|  | * | 
|  | * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN, | 
|  | * the accessed bit, writable bit, dirt-bit and soft-dirty bit. | 
|  | * | 
|  | * ptep must map any page of the folio. max_nr must be at least one and | 
|  | * must be limited by the caller so scanning cannot exceed a single VMA and | 
|  | * a single page table. | 
|  | * | 
|  | * Return: the number of table entries in the batch. | 
|  | */ | 
|  | unsigned int folio_pte_batch(struct folio *folio, pte_t *ptep, pte_t pte, | 
|  | unsigned int max_nr) | 
|  | { | 
|  | return folio_pte_batch_flags(folio, NULL, ptep, &pte, max_nr, 0); | 
|  | } | 
|  | #endif /* CONFIG_MMU */ | 
|  |  | 
|  | #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) | 
|  | /** | 
|  | * page_range_contiguous - test whether the page range is contiguous | 
|  | * @page: the start of the page range. | 
|  | * @nr_pages: the number of pages in the range. | 
|  | * | 
|  | * Test whether the page range is contiguous, such that they can be iterated | 
|  | * naively, corresponding to iterating a contiguous PFN range. | 
|  | * | 
|  | * This function should primarily only be used for debug checks, or when | 
|  | * working with page ranges that are not naturally contiguous (e.g., pages | 
|  | * within a folio are). | 
|  | * | 
|  | * Returns true if contiguous, otherwise false. | 
|  | */ | 
|  | bool page_range_contiguous(const struct page *page, unsigned long nr_pages) | 
|  | { | 
|  | const unsigned long start_pfn = page_to_pfn(page); | 
|  | const unsigned long end_pfn = start_pfn + nr_pages; | 
|  | unsigned long pfn; | 
|  |  | 
|  | /* | 
|  | * The memmap is allocated per memory section, so no need to check | 
|  | * within the first section. However, we need to check each other | 
|  | * spanned memory section once, making sure the first page in a | 
|  | * section could similarly be reached by just iterating pages. | 
|  | */ | 
|  | for (pfn = ALIGN(start_pfn, PAGES_PER_SECTION); | 
|  | pfn < end_pfn; pfn += PAGES_PER_SECTION) | 
|  | if (unlikely(page + (pfn - start_pfn) != pfn_to_page(pfn))) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL(page_range_contiguous); | 
|  | #endif |