blob: 334fe3130285a0dc2556b36acfdac767eb137d36 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Freescale GPMI NAND Flash Driver
*
* Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
* Copyright (C) 2008 Embedded Alley Solutions, Inc.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/sched/task_stack.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mtd/partitions.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/dma/mxs-dma.h>
#include "gpmi-nand.h"
#include "gpmi-regs.h"
#include "bch-regs.h"
/* Resource names for the GPMI NAND driver. */
#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
/* Converts time to clock cycles */
#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
#define MXS_SET_ADDR 0x4
#define MXS_CLR_ADDR 0x8
/*
* Clear the bit and poll it cleared. This is usually called with
* a reset address and mask being either SFTRST(bit 31) or CLKGATE
* (bit 30).
*/
static int clear_poll_bit(void __iomem *addr, u32 mask)
{
int timeout = 0x400;
/* clear the bit */
writel(mask, addr + MXS_CLR_ADDR);
/*
* SFTRST needs 3 GPMI clocks to settle, the reference manual
* recommends to wait 1us.
*/
udelay(1);
/* poll the bit becoming clear */
while ((readl(addr) & mask) && --timeout)
/* nothing */;
return !timeout;
}
#define MODULE_CLKGATE (1 << 30)
#define MODULE_SFTRST (1 << 31)
/*
* The current mxs_reset_block() will do two things:
* [1] enable the module.
* [2] reset the module.
*
* In most of the cases, it's ok.
* But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
* If you try to soft reset the BCH block, it becomes unusable until
* the next hard reset. This case occurs in the NAND boot mode. When the board
* boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
* So If the driver tries to reset the BCH again, the BCH will not work anymore.
* You will see a DMA timeout in this case. The bug has been fixed
* in the following chips, such as MX28.
*
* To avoid this bug, just add a new parameter `just_enable` for
* the mxs_reset_block(), and rewrite it here.
*/
static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
{
int ret;
int timeout = 0x400;
/* clear and poll SFTRST */
ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
if (unlikely(ret))
goto error;
/* clear CLKGATE */
writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
if (!just_enable) {
/* set SFTRST to reset the block */
writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
udelay(1);
/* poll CLKGATE becoming set */
while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
/* nothing */;
if (unlikely(!timeout))
goto error;
}
/* clear and poll SFTRST */
ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
if (unlikely(ret))
goto error;
/* clear and poll CLKGATE */
ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
if (unlikely(ret))
goto error;
return 0;
error:
pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
return -ETIMEDOUT;
}
static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
{
struct clk *clk;
int ret;
int i;
for (i = 0; i < GPMI_CLK_MAX; i++) {
clk = this->resources.clock[i];
if (!clk)
break;
if (v) {
ret = clk_prepare_enable(clk);
if (ret)
goto err_clk;
} else {
clk_disable_unprepare(clk);
}
}
return 0;
err_clk:
for (; i > 0; i--)
clk_disable_unprepare(this->resources.clock[i - 1]);
return ret;
}
static int gpmi_init(struct gpmi_nand_data *this)
{
struct resources *r = &this->resources;
int ret;
ret = gpmi_reset_block(r->gpmi_regs, false);
if (ret)
goto err_out;
/*
* Reset BCH here, too. We got failures otherwise :(
* See later BCH reset for explanation of MX23 and MX28 handling
*/
ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
if (ret)
goto err_out;
/* Choose NAND mode. */
writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
/* Set the IRQ polarity. */
writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
r->gpmi_regs + HW_GPMI_CTRL1_SET);
/* Disable Write-Protection. */
writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
/* Select BCH ECC. */
writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
/*
* Decouple the chip select from dma channel. We use dma0 for all
* the chips.
*/
writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
return 0;
err_out:
return ret;
}
/* This function is very useful. It is called only when the bug occur. */
static void gpmi_dump_info(struct gpmi_nand_data *this)
{
struct resources *r = &this->resources;
struct bch_geometry *geo = &this->bch_geometry;
u32 reg;
int i;
dev_err(this->dev, "Show GPMI registers :\n");
for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
reg = readl(r->gpmi_regs + i * 0x10);
dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
}
/* start to print out the BCH info */
dev_err(this->dev, "Show BCH registers :\n");
for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
reg = readl(r->bch_regs + i * 0x10);
dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
}
dev_err(this->dev, "BCH Geometry :\n"
"GF length : %u\n"
"ECC Strength : %u\n"
"Page Size in Bytes : %u\n"
"Metadata Size in Bytes : %u\n"
"ECC Chunk Size in Bytes: %u\n"
"ECC Chunk Count : %u\n"
"Payload Size in Bytes : %u\n"
"Auxiliary Size in Bytes: %u\n"
"Auxiliary Status Offset: %u\n"
"Block Mark Byte Offset : %u\n"
"Block Mark Bit Offset : %u\n",
geo->gf_len,
geo->ecc_strength,
geo->page_size,
geo->metadata_size,
geo->ecc_chunk_size,
geo->ecc_chunk_count,
geo->payload_size,
geo->auxiliary_size,
geo->auxiliary_status_offset,
geo->block_mark_byte_offset,
geo->block_mark_bit_offset);
}
static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
/* Do the sanity check. */
if (GPMI_IS_MXS(this)) {
/* The mx23/mx28 only support the GF13. */
if (geo->gf_len == 14)
return false;
}
return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
}
/*
* If we can get the ECC information from the nand chip, we do not
* need to calculate them ourselves.
*
* We may have available oob space in this case.
*/
static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
unsigned int ecc_strength,
unsigned int ecc_step)
{
struct bch_geometry *geo = &this->bch_geometry;
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int block_mark_bit_offset;
switch (ecc_step) {
case SZ_512:
geo->gf_len = 13;
break;
case SZ_1K:
geo->gf_len = 14;
break;
default:
dev_err(this->dev,
"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
chip->base.eccreq.strength,
chip->base.eccreq.step_size);
return -EINVAL;
}
geo->ecc_chunk_size = ecc_step;
geo->ecc_strength = round_up(ecc_strength, 2);
if (!gpmi_check_ecc(this))
return -EINVAL;
/* Keep the C >= O */
if (geo->ecc_chunk_size < mtd->oobsize) {
dev_err(this->dev,
"unsupported nand chip. ecc size: %d, oob size : %d\n",
ecc_step, mtd->oobsize);
return -EINVAL;
}
/* The default value, see comment in the legacy_set_geometry(). */
geo->metadata_size = 10;
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
/*
* Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
*
* | P |
* |<----------------------------------------------------->|
* | |
* | (Block Mark) |
* | P' | | | |
* |<-------------------------------------------->| D | | O' |
* | |<---->| |<--->|
* V V V V V
* +---+----------+-+----------+-+----------+-+----------+-+-----+
* | M | data |E| data |E| data |E| data |E| |
* +---+----------+-+----------+-+----------+-+----------+-+-----+
* ^ ^
* | O |
* |<------------>|
* | |
*
* P : the page size for BCH module.
* E : The ECC strength.
* G : the length of Galois Field.
* N : The chunk count of per page.
* M : the metasize of per page.
* C : the ecc chunk size, aka the "data" above.
* P': the nand chip's page size.
* O : the nand chip's oob size.
* O': the free oob.
*
* The formula for P is :
*
* E * G * N
* P = ------------ + P' + M
* 8
*
* The position of block mark moves forward in the ECC-based view
* of page, and the delta is:
*
* E * G * (N - 1)
* D = (---------------- + M)
* 8
*
* Please see the comment in legacy_set_geometry().
* With the condition C >= O , we still can get same result.
* So the bit position of the physical block mark within the ECC-based
* view of the page is :
* (P' - D) * 8
*/
geo->page_size = mtd->writesize + geo->metadata_size +
(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
geo->payload_size = mtd->writesize;
geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
+ ALIGN(geo->ecc_chunk_count, 4);
if (!this->swap_block_mark)
return 0;
/* For bit swap. */
block_mark_bit_offset = mtd->writesize * 8 -
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
+ geo->metadata_size * 8);
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
geo->block_mark_bit_offset = block_mark_bit_offset % 8;
return 0;
}
/*
* Calculate the ECC strength by hand:
* E : The ECC strength.
* G : the length of Galois Field.
* N : The chunk count of per page.
* O : the oobsize of the NAND chip.
* M : the metasize of per page.
*
* The formula is :
* E * G * N
* ------------ <= (O - M)
* 8
*
* So, we get E by:
* (O - M) * 8
* E <= -------------
* G * N
*/
static inline int get_ecc_strength(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
struct mtd_info *mtd = nand_to_mtd(&this->nand);
int ecc_strength;
ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
/ (geo->gf_len * geo->ecc_chunk_count);
/* We need the minor even number. */
return round_down(ecc_strength, 2);
}
static int legacy_set_geometry(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
struct mtd_info *mtd = nand_to_mtd(&this->nand);
unsigned int metadata_size;
unsigned int status_size;
unsigned int block_mark_bit_offset;
/*
* The size of the metadata can be changed, though we set it to 10
* bytes now. But it can't be too large, because we have to save
* enough space for BCH.
*/
geo->metadata_size = 10;
/* The default for the length of Galois Field. */
geo->gf_len = 13;
/* The default for chunk size. */
geo->ecc_chunk_size = 512;
while (geo->ecc_chunk_size < mtd->oobsize) {
geo->ecc_chunk_size *= 2; /* keep C >= O */
geo->gf_len = 14;
}
geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
/* We use the same ECC strength for all chunks. */
geo->ecc_strength = get_ecc_strength(this);
if (!gpmi_check_ecc(this)) {
dev_err(this->dev,
"ecc strength: %d cannot be supported by the controller (%d)\n"
"try to use minimum ecc strength that NAND chip required\n",
geo->ecc_strength,
this->devdata->bch_max_ecc_strength);
return -EINVAL;
}
geo->page_size = mtd->writesize + geo->metadata_size +
(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
geo->payload_size = mtd->writesize;
/*
* The auxiliary buffer contains the metadata and the ECC status. The
* metadata is padded to the nearest 32-bit boundary. The ECC status
* contains one byte for every ECC chunk, and is also padded to the
* nearest 32-bit boundary.
*/
metadata_size = ALIGN(geo->metadata_size, 4);
status_size = ALIGN(geo->ecc_chunk_count, 4);
geo->auxiliary_size = metadata_size + status_size;
geo->auxiliary_status_offset = metadata_size;
if (!this->swap_block_mark)
return 0;
/*
* We need to compute the byte and bit offsets of
* the physical block mark within the ECC-based view of the page.
*
* NAND chip with 2K page shows below:
* (Block Mark)
* | |
* | D |
* |<---->|
* V V
* +---+----------+-+----------+-+----------+-+----------+-+
* | M | data |E| data |E| data |E| data |E|
* +---+----------+-+----------+-+----------+-+----------+-+
*
* The position of block mark moves forward in the ECC-based view
* of page, and the delta is:
*
* E * G * (N - 1)
* D = (---------------- + M)
* 8
*
* With the formula to compute the ECC strength, and the condition
* : C >= O (C is the ecc chunk size)
*
* It's easy to deduce to the following result:
*
* E * G (O - M) C - M C - M
* ----------- <= ------- <= -------- < ---------
* 8 N N (N - 1)
*
* So, we get:
*
* E * G * (N - 1)
* D = (---------------- + M) < C
* 8
*
* The above inequality means the position of block mark
* within the ECC-based view of the page is still in the data chunk,
* and it's NOT in the ECC bits of the chunk.
*
* Use the following to compute the bit position of the
* physical block mark within the ECC-based view of the page:
* (page_size - D) * 8
*
* --Huang Shijie
*/
block_mark_bit_offset = mtd->writesize * 8 -
(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
+ geo->metadata_size * 8);
geo->block_mark_byte_offset = block_mark_bit_offset / 8;
geo->block_mark_bit_offset = block_mark_bit_offset % 8;
return 0;
}
static int common_nfc_set_geometry(struct gpmi_nand_data *this)
{
struct nand_chip *chip = &this->nand;
if (chip->ecc.strength > 0 && chip->ecc.size > 0)
return set_geometry_by_ecc_info(this, chip->ecc.strength,
chip->ecc.size);
if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
|| legacy_set_geometry(this)) {
if (!(chip->base.eccreq.strength > 0 &&
chip->base.eccreq.step_size > 0))
return -EINVAL;
return set_geometry_by_ecc_info(this,
chip->base.eccreq.strength,
chip->base.eccreq.step_size);
}
return 0;
}
/* Configures the geometry for BCH. */
static int bch_set_geometry(struct gpmi_nand_data *this)
{
struct resources *r = &this->resources;
int ret;
ret = common_nfc_set_geometry(this);
if (ret)
return ret;
ret = pm_runtime_get_sync(this->dev);
if (ret < 0)
return ret;
/*
* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
* and MX28.
*/
ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
if (ret)
goto err_out;
/* Set *all* chip selects to use layout 0. */
writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
ret = 0;
err_out:
pm_runtime_mark_last_busy(this->dev);
pm_runtime_put_autosuspend(this->dev);
return ret;
}
/*
* <1> Firstly, we should know what's the GPMI-clock means.
* The GPMI-clock is the internal clock in the gpmi nand controller.
* If you set 100MHz to gpmi nand controller, the GPMI-clock's period
* is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
*
* <2> Secondly, we should know what's the frequency on the nand chip pins.
* The frequency on the nand chip pins is derived from the GPMI-clock.
* We can get it from the following equation:
*
* F = G / (DS + DH)
*
* F : the frequency on the nand chip pins.
* G : the GPMI clock, such as 100MHz.
* DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
* DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
*
* <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
* the nand EDO(extended Data Out) timing could be applied.
* The GPMI implements a feedback read strobe to sample the read data.
* The feedback read strobe can be delayed to support the nand EDO timing
* where the read strobe may deasserts before the read data is valid, and
* read data is valid for some time after read strobe.
*
* The following figure illustrates some aspects of a NAND Flash read:
*
* |<---tREA---->|
* | |
* | | |
* |<--tRP-->| |
* | | |
* __ ___|__________________________________
* RDN \________/ |
* |
* /---------\
* Read Data --------------< >---------
* \---------/
* | |
* |<-D->|
* FeedbackRDN ________ ____________
* \___________/
*
* D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
*
*
* <4> Now, we begin to describe how to compute the right RDN_DELAY.
*
* 4.1) From the aspect of the nand chip pins:
* Delay = (tREA + C - tRP) {1}
*
* tREA : the maximum read access time.
* C : a constant to adjust the delay. default is 4000ps.
* tRP : the read pulse width, which is exactly:
* tRP = (GPMI-clock-period) * DATA_SETUP
*
* 4.2) From the aspect of the GPMI nand controller:
* Delay = RDN_DELAY * 0.125 * RP {2}
*
* RP : the DLL reference period.
* if (GPMI-clock-period > DLL_THRETHOLD)
* RP = GPMI-clock-period / 2;
* else
* RP = GPMI-clock-period;
*
* Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
* is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
* is 16000ps, but in mx6q, we use 12000ps.
*
* 4.3) since {1} equals {2}, we get:
*
* (tREA + 4000 - tRP) * 8
* RDN_DELAY = ----------------------- {3}
* RP
*/
static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
const struct nand_sdr_timings *sdr)
{
struct gpmi_nfc_hardware_timing *hw = &this->hw;
unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
unsigned int period_ps, reference_period_ps;
unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
unsigned int tRP_ps;
bool use_half_period;
int sample_delay_ps, sample_delay_factor;
u16 busy_timeout_cycles;
u8 wrn_dly_sel;
if (sdr->tRC_min >= 30000) {
/* ONFI non-EDO modes [0-3] */
hw->clk_rate = 22000000;
wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
} else if (sdr->tRC_min >= 25000) {
/* ONFI EDO mode 4 */
hw->clk_rate = 80000000;
wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
} else {
/* ONFI EDO mode 5 */
hw->clk_rate = 100000000;
wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
}
/* SDR core timings are given in picoseconds */
period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
/*
* Derive NFC ideal delay from {3}:
*
* (tREA + 4000 - tRP) * 8
* RDN_DELAY = -----------------------
* RP
*/
if (period_ps > dll_threshold_ps) {
use_half_period = true;
reference_period_ps = period_ps / 2;
} else {
use_half_period = false;
reference_period_ps = period_ps;
}
tRP_ps = data_setup_cycles * period_ps;
sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
if (sample_delay_ps > 0)
sample_delay_factor = sample_delay_ps / reference_period_ps;
else
sample_delay_factor = 0;
hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
if (sample_delay_factor)
hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
BM_GPMI_CTRL1_DLL_ENABLE |
(use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
}
static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
{
struct gpmi_nfc_hardware_timing *hw = &this->hw;
struct resources *r = &this->resources;
void __iomem *gpmi_regs = r->gpmi_regs;
unsigned int dll_wait_time_us;
clk_set_rate(r->clock[0], hw->clk_rate);
writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
/*
* Clear several CTRL1 fields, DLL must be disabled when setting
* RDN_DELAY or HALF_PERIOD.
*/
writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
if (!dll_wait_time_us)
dll_wait_time_us = 1;
/* Wait for the DLL to settle. */
udelay(dll_wait_time_us);
}
static int gpmi_setup_data_interface(struct nand_chip *chip, int chipnr,
const struct nand_data_interface *conf)
{
struct gpmi_nand_data *this = nand_get_controller_data(chip);
const struct nand_sdr_timings *sdr;
/* Retrieve required NAND timings */
sdr = nand_get_sdr_timings(conf);
if (IS_ERR(sdr))
return PTR_ERR(sdr);
/* Only MX6 GPMI controller can reach EDO timings */
if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
return -ENOTSUPP;
/* Stop here if this call was just a check */
if (chipnr < 0)
return 0;
/* Do the actual derivation of the controller timings */
gpmi_nfc_compute_timings(this, sdr);
this->hw.must_apply_timings = true;
return 0;
}
/* Clears a BCH interrupt. */
static void gpmi_clear_bch(struct gpmi_nand_data *this)
{
struct resources *r = &this->resources;
writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
}
static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
{
/* We use the DMA channel 0 to access all the nand chips. */
return this->dma_chans[0];
}
/* This will be called after the DMA operation is finished. */
static void dma_irq_callback(void *param)
{
struct gpmi_nand_data *this = param;
struct completion *dma_c = &this->dma_done;
complete(dma_c);
}
static irqreturn_t bch_irq(int irq, void *cookie)
{
struct gpmi_nand_data *this = cookie;
gpmi_clear_bch(this);
complete(&this->bch_done);
return IRQ_HANDLED;
}
static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
{
/*
* raw_len is the length to read/write including bch data which
* we are passed in exec_op. Calculate the data length from it.
*/
if (this->bch)
return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size);
else
return raw_len;
}
/* Can we use the upper's buffer directly for DMA? */
static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
int raw_len, struct scatterlist *sgl,
enum dma_data_direction dr)
{
int ret;
int len = gpmi_raw_len_to_len(this, raw_len);
/* first try to map the upper buffer directly */
if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
sg_init_one(sgl, buf, len);
ret = dma_map_sg(this->dev, sgl, 1, dr);
if (ret == 0)
goto map_fail;
return true;
}
map_fail:
/* We have to use our own DMA buffer. */
sg_init_one(sgl, this->data_buffer_dma, len);
if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
memcpy(this->data_buffer_dma, buf, len);
dma_map_sg(this->dev, sgl, 1, dr);
return false;
}
/**
* gpmi_copy_bits - copy bits from one memory region to another
* @dst: destination buffer
* @dst_bit_off: bit offset we're starting to write at
* @src: source buffer
* @src_bit_off: bit offset we're starting to read from
* @nbits: number of bits to copy
*
* This functions copies bits from one memory region to another, and is used by
* the GPMI driver to copy ECC sections which are not guaranteed to be byte
* aligned.
*
* src and dst should not overlap.
*
*/
static void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, const u8 *src,
size_t src_bit_off, size_t nbits)
{
size_t i;
size_t nbytes;
u32 src_buffer = 0;
size_t bits_in_src_buffer = 0;
if (!nbits)
return;
/*
* Move src and dst pointers to the closest byte pointer and store bit
* offsets within a byte.
*/
src += src_bit_off / 8;
src_bit_off %= 8;
dst += dst_bit_off / 8;
dst_bit_off %= 8;
/*
* Initialize the src_buffer value with bits available in the first
* byte of data so that we end up with a byte aligned src pointer.
*/
if (src_bit_off) {
src_buffer = src[0] >> src_bit_off;
if (nbits >= (8 - src_bit_off)) {
bits_in_src_buffer += 8 - src_bit_off;
} else {
src_buffer &= GENMASK(nbits - 1, 0);
bits_in_src_buffer += nbits;
}
nbits -= bits_in_src_buffer;
src++;
}
/* Calculate the number of bytes that can be copied from src to dst. */
nbytes = nbits / 8;
/* Try to align dst to a byte boundary. */
if (dst_bit_off) {
if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
src_buffer |= src[0] << bits_in_src_buffer;
bits_in_src_buffer += 8;
src++;
nbytes--;
}
if (bits_in_src_buffer >= (8 - dst_bit_off)) {
dst[0] &= GENMASK(dst_bit_off - 1, 0);
dst[0] |= src_buffer << dst_bit_off;
src_buffer >>= (8 - dst_bit_off);
bits_in_src_buffer -= (8 - dst_bit_off);
dst_bit_off = 0;
dst++;
if (bits_in_src_buffer > 7) {
bits_in_src_buffer -= 8;
dst[0] = src_buffer;
dst++;
src_buffer >>= 8;
}
}
}
if (!bits_in_src_buffer && !dst_bit_off) {
/*
* Both src and dst pointers are byte aligned, thus we can
* just use the optimized memcpy function.
*/
if (nbytes)
memcpy(dst, src, nbytes);
} else {
/*
* src buffer is not byte aligned, hence we have to copy each
* src byte to the src_buffer variable before extracting a byte
* to store in dst.
*/
for (i = 0; i < nbytes; i++) {
src_buffer |= src[i] << bits_in_src_buffer;
dst[i] = src_buffer;
src_buffer >>= 8;
}
}
/* Update dst and src pointers */
dst += nbytes;
src += nbytes;
/*
* nbits is the number of remaining bits. It should not exceed 8 as
* we've already copied as much bytes as possible.
*/
nbits %= 8;
/*
* If there's no more bits to copy to the destination and src buffer
* was already byte aligned, then we're done.
*/
if (!nbits && !bits_in_src_buffer)
return;
/* Copy the remaining bits to src_buffer */
if (nbits)
src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
bits_in_src_buffer;
bits_in_src_buffer += nbits;
/*
* In case there were not enough bits to get a byte aligned dst buffer
* prepare the src_buffer variable to match the dst organization (shift
* src_buffer by dst_bit_off and retrieve the least significant bits
* from dst).
*/
if (dst_bit_off)
src_buffer = (src_buffer << dst_bit_off) |
(*dst & GENMASK(dst_bit_off - 1, 0));
bits_in_src_buffer += dst_bit_off;
/*
* Keep most significant bits from dst if we end up with an unaligned
* number of bits.
*/
nbytes = bits_in_src_buffer / 8;
if (bits_in_src_buffer % 8) {
src_buffer |= (dst[nbytes] &
GENMASK(7, bits_in_src_buffer % 8)) <<
(nbytes * 8);
nbytes++;
}
/* Copy the remaining bytes to dst */
for (i = 0; i < nbytes; i++) {
dst[i] = src_buffer;
src_buffer >>= 8;
}
}
/* add our owner bbt descriptor */
static uint8_t scan_ff_pattern[] = { 0xff };
static struct nand_bbt_descr gpmi_bbt_descr = {
.options = 0,
.offs = 0,
.len = 1,
.pattern = scan_ff_pattern
};
/*
* We may change the layout if we can get the ECC info from the datasheet,
* else we will use all the (page + OOB).
*/
static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *geo = &this->bch_geometry;
if (section)
return -ERANGE;
oobregion->offset = 0;
oobregion->length = geo->page_size - mtd->writesize;
return 0;
}
static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *geo = &this->bch_geometry;
if (section)
return -ERANGE;
/* The available oob size we have. */
if (geo->page_size < mtd->writesize + mtd->oobsize) {
oobregion->offset = geo->page_size - mtd->writesize;
oobregion->length = mtd->oobsize - oobregion->offset;
}
return 0;
}
static const char * const gpmi_clks_for_mx2x[] = {
"gpmi_io",
};
static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
.ecc = gpmi_ooblayout_ecc,
.free = gpmi_ooblayout_free,
};
static const struct gpmi_devdata gpmi_devdata_imx23 = {
.type = IS_MX23,
.bch_max_ecc_strength = 20,
.max_chain_delay = 16000,
.clks = gpmi_clks_for_mx2x,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
};
static const struct gpmi_devdata gpmi_devdata_imx28 = {
.type = IS_MX28,
.bch_max_ecc_strength = 20,
.max_chain_delay = 16000,
.clks = gpmi_clks_for_mx2x,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
};
static const char * const gpmi_clks_for_mx6[] = {
"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
};
static const struct gpmi_devdata gpmi_devdata_imx6q = {
.type = IS_MX6Q,
.bch_max_ecc_strength = 40,
.max_chain_delay = 12000,
.clks = gpmi_clks_for_mx6,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
};
static const struct gpmi_devdata gpmi_devdata_imx6sx = {
.type = IS_MX6SX,
.bch_max_ecc_strength = 62,
.max_chain_delay = 12000,
.clks = gpmi_clks_for_mx6,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
};
static const char * const gpmi_clks_for_mx7d[] = {
"gpmi_io", "gpmi_bch_apb",
};
static const struct gpmi_devdata gpmi_devdata_imx7d = {
.type = IS_MX7D,
.bch_max_ecc_strength = 62,
.max_chain_delay = 12000,
.clks = gpmi_clks_for_mx7d,
.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
};
static int acquire_register_block(struct gpmi_nand_data *this,
const char *res_name)
{
struct platform_device *pdev = this->pdev;
struct resources *res = &this->resources;
struct resource *r;
void __iomem *p;
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
p = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(p))
return PTR_ERR(p);
if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
res->gpmi_regs = p;
else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
res->bch_regs = p;
else
dev_err(this->dev, "unknown resource name : %s\n", res_name);
return 0;
}
static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
{
struct platform_device *pdev = this->pdev;
const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
struct resource *r;
int err;
r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
if (!r) {
dev_err(this->dev, "Can't get resource for %s\n", res_name);
return -ENODEV;
}
err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
if (err)
dev_err(this->dev, "error requesting BCH IRQ\n");
return err;
}
static void release_dma_channels(struct gpmi_nand_data *this)
{
unsigned int i;
for (i = 0; i < DMA_CHANS; i++)
if (this->dma_chans[i]) {
dma_release_channel(this->dma_chans[i]);
this->dma_chans[i] = NULL;
}
}
static int acquire_dma_channels(struct gpmi_nand_data *this)
{
struct platform_device *pdev = this->pdev;
struct dma_chan *dma_chan;
/* request dma channel */
dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
if (!dma_chan) {
dev_err(this->dev, "Failed to request DMA channel.\n");
goto acquire_err;
}
this->dma_chans[0] = dma_chan;
return 0;
acquire_err:
release_dma_channels(this);
return -EINVAL;
}
static int gpmi_get_clks(struct gpmi_nand_data *this)
{
struct resources *r = &this->resources;
struct clk *clk;
int err, i;
for (i = 0; i < this->devdata->clks_count; i++) {
clk = devm_clk_get(this->dev, this->devdata->clks[i]);
if (IS_ERR(clk)) {
err = PTR_ERR(clk);
goto err_clock;
}
r->clock[i] = clk;
}
if (GPMI_IS_MX6(this))
/*
* Set the default value for the gpmi clock.
*
* If you want to use the ONFI nand which is in the
* Synchronous Mode, you should change the clock as you need.
*/
clk_set_rate(r->clock[0], 22000000);
return 0;
err_clock:
dev_dbg(this->dev, "failed in finding the clocks.\n");
return err;
}
static int acquire_resources(struct gpmi_nand_data *this)
{
int ret;
ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
if (ret)
goto exit_regs;
ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
if (ret)
goto exit_regs;
ret = acquire_bch_irq(this, bch_irq);
if (ret)
goto exit_regs;
ret = acquire_dma_channels(this);
if (ret)
goto exit_regs;
ret = gpmi_get_clks(this);
if (ret)
goto exit_clock;
return 0;
exit_clock:
release_dma_channels(this);
exit_regs:
return ret;
}
static void release_resources(struct gpmi_nand_data *this)
{
release_dma_channels(this);
}
static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
{
struct device *dev = this->dev;
struct bch_geometry *geo = &this->bch_geometry;
if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
dma_free_coherent(dev, geo->auxiliary_size,
this->auxiliary_virt,
this->auxiliary_phys);
kfree(this->data_buffer_dma);
kfree(this->raw_buffer);
this->data_buffer_dma = NULL;
this->raw_buffer = NULL;
}
/* Allocate the DMA buffers */
static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
struct device *dev = this->dev;
struct mtd_info *mtd = nand_to_mtd(&this->nand);
/*
* [2] Allocate a read/write data buffer.
* The gpmi_alloc_dma_buffer can be called twice.
* We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
* is called before the NAND identification; and we allocate a
* buffer of the real NAND page size when the gpmi_alloc_dma_buffer
* is called after.
*/
this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
GFP_DMA | GFP_KERNEL);
if (this->data_buffer_dma == NULL)
goto error_alloc;
this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
&this->auxiliary_phys, GFP_DMA);
if (!this->auxiliary_virt)
goto error_alloc;
this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
if (!this->raw_buffer)
goto error_alloc;
return 0;
error_alloc:
gpmi_free_dma_buffer(this);
return -ENOMEM;
}
/*
* Handles block mark swapping.
* It can be called in swapping the block mark, or swapping it back,
* because the the operations are the same.
*/
static void block_mark_swapping(struct gpmi_nand_data *this,
void *payload, void *auxiliary)
{
struct bch_geometry *nfc_geo = &this->bch_geometry;
unsigned char *p;
unsigned char *a;
unsigned int bit;
unsigned char mask;
unsigned char from_data;
unsigned char from_oob;
if (!this->swap_block_mark)
return;
/*
* If control arrives here, we're swapping. Make some convenience
* variables.
*/
bit = nfc_geo->block_mark_bit_offset;
p = payload + nfc_geo->block_mark_byte_offset;
a = auxiliary;
/*
* Get the byte from the data area that overlays the block mark. Since
* the ECC engine applies its own view to the bits in the page, the
* physical block mark won't (in general) appear on a byte boundary in
* the data.
*/
from_data = (p[0] >> bit) | (p[1] << (8 - bit));
/* Get the byte from the OOB. */
from_oob = a[0];
/* Swap them. */
a[0] = from_data;
mask = (0x1 << bit) - 1;
p[0] = (p[0] & mask) | (from_oob << bit);
mask = ~0 << bit;
p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
}
static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
int last, int meta)
{
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *nfc_geo = &this->bch_geometry;
struct mtd_info *mtd = nand_to_mtd(chip);
int i;
unsigned char *status;
unsigned int max_bitflips = 0;
/* Loop over status bytes, accumulating ECC status. */
status = this->auxiliary_virt + ALIGN(meta, 4);
for (i = first; i < last; i++, status++) {
if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
continue;
if (*status == STATUS_UNCORRECTABLE) {
int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
u8 *eccbuf = this->raw_buffer;
int offset, bitoffset;
int eccbytes;
int flips;
/* Read ECC bytes into our internal raw_buffer */
offset = nfc_geo->metadata_size * 8;
offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
offset -= eccbits;
bitoffset = offset % 8;
eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
offset /= 8;
eccbytes -= offset;
nand_change_read_column_op(chip, offset, eccbuf,
eccbytes, false);
/*
* ECC data are not byte aligned and we may have
* in-band data in the first and last byte of
* eccbuf. Set non-eccbits to one so that
* nand_check_erased_ecc_chunk() does not count them
* as bitflips.
*/
if (bitoffset)
eccbuf[0] |= GENMASK(bitoffset - 1, 0);
bitoffset = (bitoffset + eccbits) % 8;
if (bitoffset)
eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
/*
* The ECC hardware has an uncorrectable ECC status
* code in case we have bitflips in an erased page. As
* nothing was written into this subpage the ECC is
* obviously wrong and we can not trust it. We assume
* at this point that we are reading an erased page and
* try to correct the bitflips in buffer up to
* ecc_strength bitflips. If this is a page with random
* data, we exceed this number of bitflips and have a
* ECC failure. Otherwise we use the corrected buffer.
*/
if (i == 0) {
/* The first block includes metadata */
flips = nand_check_erased_ecc_chunk(
buf + i * nfc_geo->ecc_chunk_size,
nfc_geo->ecc_chunk_size,
eccbuf, eccbytes,
this->auxiliary_virt,
nfc_geo->metadata_size,
nfc_geo->ecc_strength);
} else {
flips = nand_check_erased_ecc_chunk(
buf + i * nfc_geo->ecc_chunk_size,
nfc_geo->ecc_chunk_size,
eccbuf, eccbytes,
NULL, 0,
nfc_geo->ecc_strength);
}
if (flips > 0) {
max_bitflips = max_t(unsigned int, max_bitflips,
flips);
mtd->ecc_stats.corrected += flips;
continue;
}
mtd->ecc_stats.failed++;
continue;
}
mtd->ecc_stats.corrected += *status;
max_bitflips = max_t(unsigned int, max_bitflips, *status);
}
return max_bitflips;
}
static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
unsigned int ecc_strength = geo->ecc_strength >> 1;
unsigned int gf_len = geo->gf_len;
unsigned int block_size = geo->ecc_chunk_size;
this->bch_flashlayout0 =
BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this);
this->bch_flashlayout1 =
BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this);
}
static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct bch_geometry *geo = &this->bch_geometry;
unsigned int max_bitflips;
int ret;
gpmi_bch_layout_std(this);
this->bch = true;
ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
if (ret)
return ret;
max_bitflips = gpmi_count_bitflips(chip, buf, 0,
geo->ecc_chunk_count,
geo->auxiliary_status_offset);
/* handle the block mark swapping */
block_mark_swapping(this, buf, this->auxiliary_virt);
if (oob_required) {
/*
* It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
* for details about our policy for delivering the OOB.
*
* We fill the caller's buffer with set bits, and then copy the
* block mark to th caller's buffer. Note that, if block mark
* swapping was necessary, it has already been done, so we can
* rely on the first byte of the auxiliary buffer to contain
* the block mark.
*/
memset(chip->oob_poi, ~0, mtd->oobsize);
chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
}
return max_bitflips;
}
/* Fake a virtual small page for the subpage read */
static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
uint32_t len, uint8_t *buf, int page)
{
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *geo = &this->bch_geometry;
int size = chip->ecc.size; /* ECC chunk size */
int meta, n, page_size;
unsigned int max_bitflips;
unsigned int ecc_strength;
int first, last, marker_pos;
int ecc_parity_size;
int col = 0;
int ret;
/* The size of ECC parity */
ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
/* Align it with the chunk size */
first = offs / size;
last = (offs + len - 1) / size;
if (this->swap_block_mark) {
/*
* Find the chunk which contains the Block Marker.
* If this chunk is in the range of [first, last],
* we have to read out the whole page.
* Why? since we had swapped the data at the position of Block
* Marker to the metadata which is bound with the chunk 0.
*/
marker_pos = geo->block_mark_byte_offset / size;
if (last >= marker_pos && first <= marker_pos) {
dev_dbg(this->dev,
"page:%d, first:%d, last:%d, marker at:%d\n",
page, first, last, marker_pos);
return gpmi_ecc_read_page(chip, buf, 0, page);
}
}
meta = geo->metadata_size;
if (first) {
col = meta + (size + ecc_parity_size) * first;
meta = 0;
buf = buf + first * size;
}
ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
n = last - first + 1;
page_size = meta + (size + ecc_parity_size) * n;
ecc_strength = geo->ecc_strength >> 1;
this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) |
BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this);
this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this);
this->bch = true;
ret = nand_read_page_op(chip, page, col, buf, page_size);
if (ret)
return ret;
dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
page, offs, len, col, first, n, page_size);
max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
return max_bitflips;
}
static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *nfc_geo = &this->bch_geometry;
int ret;
dev_dbg(this->dev, "ecc write page.\n");
gpmi_bch_layout_std(this);
this->bch = true;
memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
if (this->swap_block_mark) {
/*
* When doing bad block marker swapping we must always copy the
* input buffer as we can't modify the const buffer.
*/
memcpy(this->data_buffer_dma, buf, mtd->writesize);
buf = this->data_buffer_dma;
block_mark_swapping(this, this->data_buffer_dma,
this->auxiliary_virt);
}
ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
return ret;
}
/*
* There are several places in this driver where we have to handle the OOB and
* block marks. This is the function where things are the most complicated, so
* this is where we try to explain it all. All the other places refer back to
* here.
*
* These are the rules, in order of decreasing importance:
*
* 1) Nothing the caller does can be allowed to imperil the block mark.
*
* 2) In read operations, the first byte of the OOB we return must reflect the
* true state of the block mark, no matter where that block mark appears in
* the physical page.
*
* 3) ECC-based read operations return an OOB full of set bits (since we never
* allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
* return).
*
* 4) "Raw" read operations return a direct view of the physical bytes in the
* page, using the conventional definition of which bytes are data and which
* are OOB. This gives the caller a way to see the actual, physical bytes
* in the page, without the distortions applied by our ECC engine.
*
*
* What we do for this specific read operation depends on two questions:
*
* 1) Are we doing a "raw" read, or an ECC-based read?
*
* 2) Are we using block mark swapping or transcription?
*
* There are four cases, illustrated by the following Karnaugh map:
*
* | Raw | ECC-based |
* -------------+-------------------------+-------------------------+
* | Read the conventional | |
* | OOB at the end of the | |
* Swapping | page and return it. It | |
* | contains exactly what | |
* | we want. | Read the block mark and |
* -------------+-------------------------+ return it in a buffer |
* | Read the conventional | full of set bits. |
* | OOB at the end of the | |
* | page and also the block | |
* Transcribing | mark in the metadata. | |
* | Copy the block mark | |
* | into the first byte of | |
* | the OOB. | |
* -------------+-------------------------+-------------------------+
*
* Note that we break rule #4 in the Transcribing/Raw case because we're not
* giving an accurate view of the actual, physical bytes in the page (we're
* overwriting the block mark). That's OK because it's more important to follow
* rule #2.
*
* It turns out that knowing whether we want an "ECC-based" or "raw" read is not
* easy. When reading a page, for example, the NAND Flash MTD code calls our
* ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
* ECC-based or raw view of the page is implicit in which function it calls
* (there is a similar pair of ECC-based/raw functions for writing).
*/
static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
int ret;
/* clear the OOB buffer */
memset(chip->oob_poi, ~0, mtd->oobsize);
/* Read out the conventional OOB. */
ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
mtd->oobsize);
if (ret)
return ret;
/*
* Now, we want to make sure the block mark is correct. In the
* non-transcribing case (!GPMI_IS_MX23()), we already have it.
* Otherwise, we need to explicitly read it.
*/
if (GPMI_IS_MX23(this)) {
/* Read the block mark into the first byte of the OOB buffer. */
ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
if (ret)
return ret;
}
return 0;
}
static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct mtd_oob_region of = { };
/* Do we have available oob area? */
mtd_ooblayout_free(mtd, 0, &of);
if (!of.length)
return -EPERM;
if (!nand_is_slc(chip))
return -EPERM;
return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
chip->oob_poi + of.offset, of.length);
}
/*
* This function reads a NAND page without involving the ECC engine (no HW
* ECC correction).
* The tricky part in the GPMI/BCH controller is that it stores ECC bits
* inline (interleaved with payload DATA), and do not align data chunk on
* byte boundaries.
* We thus need to take care moving the payload data and ECC bits stored in the
* page into the provided buffers, which is why we're using gpmi_copy_bits.
*
* See set_geometry_by_ecc_info inline comments to have a full description
* of the layout used by the GPMI controller.
*/
static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *nfc_geo = &this->bch_geometry;
int eccsize = nfc_geo->ecc_chunk_size;
int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
u8 *tmp_buf = this->raw_buffer;
size_t src_bit_off;
size_t oob_bit_off;
size_t oob_byte_off;
uint8_t *oob = chip->oob_poi;
int step;
int ret;
ret = nand_read_page_op(chip, page, 0, tmp_buf,
mtd->writesize + mtd->oobsize);
if (ret)
return ret;
/*
* If required, swap the bad block marker and the data stored in the
* metadata section, so that we don't wrongly consider a block as bad.
*
* See the layout description for a detailed explanation on why this
* is needed.
*/
if (this->swap_block_mark)
swap(tmp_buf[0], tmp_buf[mtd->writesize]);
/*
* Copy the metadata section into the oob buffer (this section is
* guaranteed to be aligned on a byte boundary).
*/
if (oob_required)
memcpy(oob, tmp_buf, nfc_geo->metadata_size);
oob_bit_off = nfc_geo->metadata_size * 8;
src_bit_off = oob_bit_off;
/* Extract interleaved payload data and ECC bits */
for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
if (buf)
gpmi_copy_bits(buf, step * eccsize * 8,
tmp_buf, src_bit_off,
eccsize * 8);
src_bit_off += eccsize * 8;
/* Align last ECC block to align a byte boundary */
if (step == nfc_geo->ecc_chunk_count - 1 &&
(oob_bit_off + eccbits) % 8)
eccbits += 8 - ((oob_bit_off + eccbits) % 8);
if (oob_required)
gpmi_copy_bits(oob, oob_bit_off,
tmp_buf, src_bit_off,
eccbits);
src_bit_off += eccbits;
oob_bit_off += eccbits;
}
if (oob_required) {
oob_byte_off = oob_bit_off / 8;
if (oob_byte_off < mtd->oobsize)
memcpy(oob + oob_byte_off,
tmp_buf + mtd->writesize + oob_byte_off,
mtd->oobsize - oob_byte_off);
}
return 0;
}
/*
* This function writes a NAND page without involving the ECC engine (no HW
* ECC generation).
* The tricky part in the GPMI/BCH controller is that it stores ECC bits
* inline (interleaved with payload DATA), and do not align data chunk on
* byte boundaries.
* We thus need to take care moving the OOB area at the right place in the
* final page, which is why we're using gpmi_copy_bits.
*
* See set_geometry_by_ecc_info inline comments to have a full description
* of the layout used by the GPMI controller.
*/
static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *nfc_geo = &this->bch_geometry;
int eccsize = nfc_geo->ecc_chunk_size;
int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
u8 *tmp_buf = this->raw_buffer;
uint8_t *oob = chip->oob_poi;
size_t dst_bit_off;
size_t oob_bit_off;
size_t oob_byte_off;
int step;
/*
* Initialize all bits to 1 in case we don't have a buffer for the
* payload or oob data in order to leave unspecified bits of data
* to their initial state.
*/
if (!buf || !oob_required)
memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
/*
* First copy the metadata section (stored in oob buffer) at the
* beginning of the page, as imposed by the GPMI layout.
*/
memcpy(tmp_buf, oob, nfc_geo->metadata_size);
oob_bit_off = nfc_geo->metadata_size * 8;
dst_bit_off = oob_bit_off;
/* Interleave payload data and ECC bits */
for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
if (buf)
gpmi_copy_bits(tmp_buf, dst_bit_off,
buf, step * eccsize * 8, eccsize * 8);
dst_bit_off += eccsize * 8;
/* Align last ECC block to align a byte boundary */
if (step == nfc_geo->ecc_chunk_count - 1 &&
(oob_bit_off + eccbits) % 8)
eccbits += 8 - ((oob_bit_off + eccbits) % 8);
if (oob_required)
gpmi_copy_bits(tmp_buf, dst_bit_off,
oob, oob_bit_off, eccbits);
dst_bit_off += eccbits;
oob_bit_off += eccbits;
}
oob_byte_off = oob_bit_off / 8;
if (oob_required && oob_byte_off < mtd->oobsize)
memcpy(tmp_buf + mtd->writesize + oob_byte_off,
oob + oob_byte_off, mtd->oobsize - oob_byte_off);
/*
* If required, swap the bad block marker and the first byte of the
* metadata section, so that we don't modify the bad block marker.
*
* See the layout description for a detailed explanation on why this
* is needed.
*/
if (this->swap_block_mark)
swap(tmp_buf[0], tmp_buf[mtd->writesize]);
return nand_prog_page_op(chip, page, 0, tmp_buf,
mtd->writesize + mtd->oobsize);
}
static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
{
return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
}
static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
{
return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
}
static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
int ret = 0;
uint8_t *block_mark;
int column, page, chipnr;
chipnr = (int)(ofs >> chip->chip_shift);
nand_select_target(chip, chipnr);
column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
/* Write the block mark. */
block_mark = this->data_buffer_dma;
block_mark[0] = 0; /* bad block marker */
/* Shift to get page */
page = (int)(ofs >> chip->page_shift);
ret = nand_prog_page_op(chip, page, column, block_mark, 1);
nand_deselect_target(chip);
return ret;
}
static int nand_boot_set_geometry(struct gpmi_nand_data *this)
{
struct boot_rom_geometry *geometry = &this->rom_geometry;
/*
* Set the boot block stride size.
*
* In principle, we should be reading this from the OTP bits, since
* that's where the ROM is going to get it. In fact, we don't have any
* way to read the OTP bits, so we go with the default and hope for the
* best.
*/
geometry->stride_size_in_pages = 64;
/*
* Set the search area stride exponent.
*
* In principle, we should be reading this from the OTP bits, since
* that's where the ROM is going to get it. In fact, we don't have any
* way to read the OTP bits, so we go with the default and hope for the
* best.
*/
geometry->search_area_stride_exponent = 2;
return 0;
}
static const char *fingerprint = "STMP";
static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
{
struct boot_rom_geometry *rom_geo = &this->rom_geometry;
struct device *dev = this->dev;
struct nand_chip *chip = &this->nand;
unsigned int search_area_size_in_strides;
unsigned int stride;
unsigned int page;
u8 *buffer = nand_get_data_buf(chip);
int found_an_ncb_fingerprint = false;
int ret;
/* Compute the number of strides in a search area. */
search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
nand_select_target(chip, 0);
/*
* Loop through the first search area, looking for the NCB fingerprint.
*/
dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
for (stride = 0; stride < search_area_size_in_strides; stride++) {
/* Compute the page addresses. */
page = stride * rom_geo->stride_size_in_pages;
dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
/*
* Read the NCB fingerprint. The fingerprint is four bytes long
* and starts in the 12th byte of the page.
*/
ret = nand_read_page_op(chip, page, 12, buffer,
strlen(fingerprint));
if (ret)
continue;
/* Look for the fingerprint. */
if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
found_an_ncb_fingerprint = true;
break;
}
}
nand_deselect_target(chip);
if (found_an_ncb_fingerprint)
dev_dbg(dev, "\tFound a fingerprint\n");
else
dev_dbg(dev, "\tNo fingerprint found\n");
return found_an_ncb_fingerprint;
}
/* Writes a transcription stamp. */
static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
{
struct device *dev = this->dev;
struct boot_rom_geometry *rom_geo = &this->rom_geometry;
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int block_size_in_pages;
unsigned int search_area_size_in_strides;
unsigned int search_area_size_in_pages;
unsigned int search_area_size_in_blocks;
unsigned int block;
unsigned int stride;
unsigned int page;
u8 *buffer = nand_get_data_buf(chip);
int status;
/* Compute the search area geometry. */
block_size_in_pages = mtd->erasesize / mtd->writesize;
search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
search_area_size_in_pages = search_area_size_in_strides *
rom_geo->stride_size_in_pages;
search_area_size_in_blocks =
(search_area_size_in_pages + (block_size_in_pages - 1)) /
block_size_in_pages;
dev_dbg(dev, "Search Area Geometry :\n");
dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
nand_select_target(chip, 0);
/* Loop over blocks in the first search area, erasing them. */
dev_dbg(dev, "Erasing the search area...\n");
for (block = 0; block < search_area_size_in_blocks; block++) {
/* Erase this block. */
dev_dbg(dev, "\tErasing block 0x%x\n", block);
status = nand_erase_op(chip, block);
if (status)
dev_err(dev, "[%s] Erase failed.\n", __func__);
}
/* Write the NCB fingerprint into the page buffer. */
memset(buffer, ~0, mtd->writesize);
memcpy(buffer + 12, fingerprint, strlen(fingerprint));
/* Loop through the first search area, writing NCB fingerprints. */
dev_dbg(dev, "Writing NCB fingerprints...\n");
for (stride = 0; stride < search_area_size_in_strides; stride++) {
/* Compute the page addresses. */
page = stride * rom_geo->stride_size_in_pages;
/* Write the first page of the current stride. */
dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
status = chip->ecc.write_page_raw(chip, buffer, 0, page);
if (status)
dev_err(dev, "[%s] Write failed.\n", __func__);
}
nand_deselect_target(chip);
return 0;
}
static int mx23_boot_init(struct gpmi_nand_data *this)
{
struct device *dev = this->dev;
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned int block_count;
unsigned int block;
int chipnr;
int page;
loff_t byte;
uint8_t block_mark;
int ret = 0;
/*
* If control arrives here, we can't use block mark swapping, which
* means we're forced to use transcription. First, scan for the
* transcription stamp. If we find it, then we don't have to do
* anything -- the block marks are already transcribed.
*/
if (mx23_check_transcription_stamp(this))
return 0;
/*
* If control arrives here, we couldn't find a transcription stamp, so
* so we presume the block marks are in the conventional location.
*/
dev_dbg(dev, "Transcribing bad block marks...\n");
/* Compute the number of blocks in the entire medium. */
block_count = nanddev_eraseblocks_per_target(&chip->base);
/*
* Loop over all the blocks in the medium, transcribing block marks as
* we go.
*/
for (block = 0; block < block_count; block++) {
/*
* Compute the chip, page and byte addresses for this block's
* conventional mark.
*/
chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
page = block << (chip->phys_erase_shift - chip->page_shift);
byte = block << chip->phys_erase_shift;
/* Send the command to read the conventional block mark. */
nand_select_target(chip, chipnr);
ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
1);
nand_deselect_target(chip);
if (ret)
continue;
/*
* Check if the block is marked bad. If so, we need to mark it
* again, but this time the result will be a mark in the
* location where we transcribe block marks.
*/
if (block_mark != 0xff) {
dev_dbg(dev, "Transcribing mark in block %u\n", block);
ret = chip->legacy.block_markbad(chip, byte);
if (ret)
dev_err(dev,
"Failed to mark block bad with ret %d\n",
ret);
}
}
/* Write the stamp that indicates we've transcribed the block marks. */
mx23_write_transcription_stamp(this);
return 0;
}
static int nand_boot_init(struct gpmi_nand_data *this)
{
nand_boot_set_geometry(this);
/* This is ROM arch-specific initilization before the BBT scanning. */
if (GPMI_IS_MX23(this))
return mx23_boot_init(this);
return 0;
}
static int gpmi_set_geometry(struct gpmi_nand_data *this)
{
int ret;
/* Free the temporary DMA memory for reading ID. */
gpmi_free_dma_buffer(this);
/* Set up the NFC geometry which is used by BCH. */
ret = bch_set_geometry(this);
if (ret) {
dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
return ret;
}
/* Alloc the new DMA buffers according to the pagesize and oobsize */
return gpmi_alloc_dma_buffer(this);
}
static int gpmi_init_last(struct gpmi_nand_data *this)
{
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
struct bch_geometry *bch_geo = &this->bch_geometry;
int ret;
/* Set up the medium geometry */
ret = gpmi_set_geometry(this);
if (ret)
return ret;
/* Init the nand_ecc_ctrl{} */
ecc->read_page = gpmi_ecc_read_page;
ecc->write_page = gpmi_ecc_write_page;
ecc->read_oob = gpmi_ecc_read_oob;
ecc->write_oob = gpmi_ecc_write_oob;
ecc->read_page_raw = gpmi_ecc_read_page_raw;
ecc->write_page_raw = gpmi_ecc_write_page_raw;
ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
ecc->mode = NAND_ECC_HW;
ecc->size = bch_geo->ecc_chunk_size;
ecc->strength = bch_geo->ecc_strength;
mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
/*
* We only enable the subpage read when:
* (1) the chip is imx6, and
* (2) the size of the ECC parity is byte aligned.
*/
if (GPMI_IS_MX6(this) &&
((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
ecc->read_subpage = gpmi_ecc_read_subpage;
chip->options |= NAND_SUBPAGE_READ;
}
return 0;
}
static int gpmi_nand_attach_chip(struct nand_chip *chip)
{
struct gpmi_nand_data *this = nand_get_controller_data(chip);
int ret;
if (chip->bbt_options & NAND_BBT_USE_FLASH) {
chip->bbt_options |= NAND_BBT_NO_OOB;
if (of_property_read_bool(this->dev->of_node,
"fsl,no-blockmark-swap"))
this->swap_block_mark = false;
}
dev_dbg(this->dev, "Blockmark swapping %sabled\n",
this->swap_block_mark ? "en" : "dis");
ret = gpmi_init_last(this);
if (ret)
return ret;
chip->options |= NAND_SKIP_BBTSCAN;
return 0;
}
static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
{
struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
this->ntransfers++;
if (this->ntransfers == GPMI_MAX_TRANSFERS)
return NULL;
return transfer;
}
static struct dma_async_tx_descriptor *gpmi_chain_command(
struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
{
struct dma_chan *channel = get_dma_chan(this);
struct dma_async_tx_descriptor *desc;
struct gpmi_transfer *transfer;
int chip = this->nand.cur_cs;
u32 pio[3];
/* [1] send out the PIO words */
pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
| BM_GPMI_CTRL0_WORD_LENGTH
| BF_GPMI_CTRL0_CS(chip, this)
| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
| BM_GPMI_CTRL0_ADDRESS_INCREMENT
| BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
pio[1] = 0;
pio[2] = 0;
desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
DMA_TRANS_NONE, 0);
if (!desc)
return NULL;
transfer = get_next_transfer(this);
if (!transfer)
return NULL;
transfer->cmdbuf[0] = cmd;
if (naddr)
memcpy(&transfer->cmdbuf[1], addr, naddr);
sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
transfer->direction = DMA_TO_DEVICE;
desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
MXS_DMA_CTRL_WAIT4END);
return desc;
}
static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
struct gpmi_nand_data *this)
{
struct dma_chan *channel = get_dma_chan(this);
u32 pio[2];
pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
| BM_GPMI_CTRL0_WORD_LENGTH
| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
| BF_GPMI_CTRL0_XFER_COUNT(0);
pio[1] = 0;
return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
}
static struct dma_async_tx_descriptor *gpmi_chain_data_read(
struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
{
struct dma_async_tx_descriptor *desc;
struct dma_chan *channel = get_dma_chan(this);
struct gpmi_transfer *transfer;
u32 pio[6] = {};
transfer = get_next_transfer(this);
if (!transfer)
return NULL;
transfer->direction = DMA_FROM_DEVICE;
*direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
DMA_FROM_DEVICE);
pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
| BM_GPMI_CTRL0_WORD_LENGTH
| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
if (this->bch) {
pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
pio[3] = raw_len;
pio[4] = transfer->sgl.dma_address;
pio[5] = this->auxiliary_phys;
}
desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
DMA_TRANS_NONE, 0);
if (!desc)
return NULL;
if (!this->bch)
desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
DMA_DEV_TO_MEM,
MXS_DMA_CTRL_WAIT4END);
return desc;
}
static struct dma_async_tx_descriptor *gpmi_chain_data_write(
struct gpmi_nand_data *this, const void *buf, int raw_len)
{
struct dma_chan *channel = get_dma_chan(this);
struct dma_async_tx_descriptor *desc;
struct gpmi_transfer *transfer;
u32 pio[6] = {};
transfer = get_next_transfer(this);
if (!transfer)
return NULL;
transfer->direction = DMA_TO_DEVICE;
prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
| BM_GPMI_CTRL0_WORD_LENGTH
| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
if (this->bch) {
pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
pio[3] = raw_len;
pio[4] = transfer->sgl.dma_address;
pio[5] = this->auxiliary_phys;
}
desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
DMA_TRANS_NONE,
(this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
if (!desc)
return NULL;
if (!this->bch)
desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
DMA_MEM_TO_DEV,
MXS_DMA_CTRL_WAIT4END);
return desc;
}
static int gpmi_nfc_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
const struct nand_op_instr *instr;
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct dma_async_tx_descriptor *desc = NULL;
int i, ret, buf_len = 0, nbufs = 0;
u8 cmd = 0;
void *buf_read = NULL;
const void *buf_write = NULL;
bool direct = false;
struct completion *completion;
unsigned long to;
this->ntransfers = 0;
for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
this->transfers[i].direction = DMA_NONE;
ret = pm_runtime_get_sync(this->dev);
if (ret < 0)
return ret;
/*
* This driver currently supports only one NAND chip. Plus, dies share
* the same configuration. So once timings have been applied on the
* controller side, they will not change anymore. When the time will
* come, the check on must_apply_timings will have to be dropped.
*/
if (this->hw.must_apply_timings) {
this->hw.must_apply_timings = false;
gpmi_nfc_apply_timings(this);
}
dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
for (i = 0; i < op->ninstrs; i++) {
instr = &op->instrs[i];
nand_op_trace(" ", instr);
switch (instr->type) {
case NAND_OP_WAITRDY_INSTR:
desc = gpmi_chain_wait_ready(this);
break;
case NAND_OP_CMD_INSTR:
cmd = instr->ctx.cmd.opcode;
/*
* When this command has an address cycle chain it
* together with the address cycle
*/
if (i + 1 != op->ninstrs &&
op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
continue;
desc = gpmi_chain_command(this, cmd, NULL, 0);
break;
case NAND_OP_ADDR_INSTR:
desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
instr->ctx.addr.naddrs);
break;
case NAND_OP_DATA_OUT_INSTR:
buf_write = instr->ctx.data.buf.out;
buf_len = instr->ctx.data.len;
nbufs++;
desc = gpmi_chain_data_write(this, buf_write, buf_len);
break;
case NAND_OP_DATA_IN_INSTR:
if (!instr->ctx.data.len)
break;
buf_read = instr->ctx.data.buf.in;
buf_len = instr->ctx.data.len;
nbufs++;
desc = gpmi_chain_data_read(this, buf_read, buf_len,
&direct);
break;
}
if (!desc) {
ret = -ENXIO;
goto unmap;
}
}
dev_dbg(this->dev, "%s setup done\n", __func__);
if (nbufs > 1) {
dev_err(this->dev, "Multiple data instructions not supported\n");
ret = -EINVAL;
goto unmap;
}
if (this->bch) {
writel(this->bch_flashlayout0,
this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
writel(this->bch_flashlayout1,
this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
}
if (this->bch && buf_read) {
writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
this->resources.bch_regs + HW_BCH_CTRL_SET);
completion = &this->bch_done;
} else {
desc->callback = dma_irq_callback;
desc->callback_param = this;
completion = &this->dma_done;
}
init_completion(completion);
dmaengine_submit(desc);
dma_async_issue_pending(get_dma_chan(this));
to = wait_for_completion_timeout(completion, msecs_to_jiffies(1000));
if (!to) {
dev_err(this->dev, "DMA timeout, last DMA\n");
gpmi_dump_info(this);
ret = -ETIMEDOUT;
goto unmap;
}
writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
this->resources.bch_regs + HW_BCH_CTRL_CLR);
gpmi_clear_bch(this);
ret = 0;
unmap:
for (i = 0; i < this->ntransfers; i++) {
struct gpmi_transfer *transfer = &this->transfers[i];
if (transfer->direction != DMA_NONE)
dma_unmap_sg(this->dev, &transfer->sgl, 1,
transfer->direction);
}
if (!ret && buf_read && !direct)
memcpy(buf_read, this->data_buffer_dma,
gpmi_raw_len_to_len(this, buf_len));
this->bch = false;
pm_runtime_mark_last_busy(this->dev);
pm_runtime_put_autosuspend(this->dev);
return ret;
}
static const struct nand_controller_ops gpmi_nand_controller_ops = {
.attach_chip = gpmi_nand_attach_chip,
.setup_data_interface = gpmi_setup_data_interface,
.exec_op = gpmi_nfc_exec_op,
};
static int gpmi_nand_init(struct gpmi_nand_data *this)
{
struct nand_chip *chip = &this->nand;
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
/* init the MTD data structures */
mtd->name = "gpmi-nand";
mtd->dev.parent = this->dev;
/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
nand_set_controller_data(chip, this);
nand_set_flash_node(chip, this->pdev->dev.of_node);
chip->legacy.block_markbad = gpmi_block_markbad;
chip->badblock_pattern = &gpmi_bbt_descr;
chip->options |= NAND_NO_SUBPAGE_WRITE;
/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
this->swap_block_mark = !GPMI_IS_MX23(this);
/*
* Allocate a temporary DMA buffer for reading ID in the
* nand_scan_ident().
*/
this->bch_geometry.payload_size = 1024;
this->bch_geometry.auxiliary_size = 128;
ret = gpmi_alloc_dma_buffer(this);
if (ret)
goto err_out;
nand_controller_init(&this->base);
this->base.ops = &gpmi_nand_controller_ops;
chip->controller = &this->base;
ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
if (ret)
goto err_out;
ret = nand_boot_init(this);
if (ret)
goto err_nand_cleanup;
ret = nand_create_bbt(chip);
if (ret)
goto err_nand_cleanup;
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
goto err_nand_cleanup;
return 0;
err_nand_cleanup:
nand_cleanup(chip);
err_out:
gpmi_free_dma_buffer(this);
return ret;
}
static const struct of_device_id gpmi_nand_id_table[] = {
{
.compatible = "fsl,imx23-gpmi-nand",
.data = &gpmi_devdata_imx23,
}, {
.compatible = "fsl,imx28-gpmi-nand",
.data = &gpmi_devdata_imx28,
}, {
.compatible = "fsl,imx6q-gpmi-nand",
.data = &gpmi_devdata_imx6q,
}, {
.compatible = "fsl,imx6sx-gpmi-nand",
.data = &gpmi_devdata_imx6sx,
}, {
.compatible = "fsl,imx7d-gpmi-nand",
.data = &gpmi_devdata_imx7d,
}, {}
};
MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
static int gpmi_nand_probe(struct platform_device *pdev)
{
struct gpmi_nand_data *this;
const struct of_device_id *of_id;
int ret;
this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
if (!this)
return -ENOMEM;
of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
if (of_id) {
this->devdata = of_id->data;
} else {
dev_err(&pdev->dev, "Failed to find the right device id.\n");
return -ENODEV;
}
platform_set_drvdata(pdev, this);
this->pdev = pdev;
this->dev = &pdev->dev;
ret = acquire_resources(this);
if (ret)
goto exit_acquire_resources;
ret = __gpmi_enable_clk(this, true);
if (ret)
goto exit_nfc_init;
pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_get_sync(&pdev->dev);
ret = gpmi_init(this);
if (ret)
goto exit_nfc_init;
ret = gpmi_nand_init(this);
if (ret)
goto exit_nfc_init;
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
dev_info(this->dev, "driver registered.\n");
return 0;
exit_nfc_init:
pm_runtime_put(&pdev->dev);
pm_runtime_disable(&pdev->dev);
release_resources(this);
exit_acquire_resources:
return ret;
}
static int gpmi_nand_remove(struct platform_device *pdev)
{
struct gpmi_nand_data *this = platform_get_drvdata(pdev);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
nand_release(&this->nand);
gpmi_free_dma_buffer(this);
release_resources(this);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int gpmi_pm_suspend(struct device *dev)
{
struct gpmi_nand_data *this = dev_get_drvdata(dev);
release_dma_channels(this);
return 0;
}
static int gpmi_pm_resume(struct device *dev)
{
struct gpmi_nand_data *this = dev_get_drvdata(dev);
int ret;
ret = acquire_dma_channels(this);
if (ret < 0)
return ret;
/* re-init the GPMI registers */
ret = gpmi_init(this);
if (ret) {
dev_err(this->dev, "Error setting GPMI : %d\n", ret);
return ret;
}
/* re-init the BCH registers */
ret = bch_set_geometry(this);
if (ret) {
dev_err(this->dev, "Error setting BCH : %d\n", ret);
return ret;
}
return 0;
}
#endif /* CONFIG_PM_SLEEP */
static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
{
struct gpmi_nand_data *this = dev_get_drvdata(dev);
return __gpmi_enable_clk(this, false);
}
static int __maybe_unused gpmi_runtime_resume(struct device *dev)
{
struct gpmi_nand_data *this = dev_get_drvdata(dev);
return __gpmi_enable_clk(this, true);
}
static const struct dev_pm_ops gpmi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
};
static struct platform_driver gpmi_nand_driver = {
.driver = {
.name = "gpmi-nand",
.pm = &gpmi_pm_ops,
.of_match_table = gpmi_nand_id_table,
},
.probe = gpmi_nand_probe,
.remove = gpmi_nand_remove,
};
module_platform_driver(gpmi_nand_driver);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
MODULE_LICENSE("GPL");