| // SPDX-License-Identifier: GPL-2.0 | 
 |  | 
 | /* | 
 |  * Test module for stress and analyze performance of vmalloc allocator. | 
 |  * (C) 2018 Uladzislau Rezki (Sony) <urezki@gmail.com> | 
 |  */ | 
 | #include <linux/init.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/random.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/srcu.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #define __param(type, name, init, msg)		\ | 
 | 	static type name = init;				\ | 
 | 	module_param(name, type, 0444);			\ | 
 | 	MODULE_PARM_DESC(name, msg)				\ | 
 |  | 
 | __param(int, nr_threads, 0, | 
 | 	"Number of workers to perform tests(min: 1 max: USHRT_MAX)"); | 
 |  | 
 | __param(bool, sequential_test_order, false, | 
 | 	"Use sequential stress tests order"); | 
 |  | 
 | __param(int, test_repeat_count, 1, | 
 | 	"Set test repeat counter"); | 
 |  | 
 | __param(int, test_loop_count, 1000000, | 
 | 	"Set test loop counter"); | 
 |  | 
 | __param(int, nr_pages, 0, | 
 | 	"Set number of pages for fix_size_alloc_test(default: 1)"); | 
 |  | 
 | __param(bool, use_huge, false, | 
 | 	"Use vmalloc_huge in fix_size_alloc_test"); | 
 |  | 
 | __param(int, run_test_mask, 7, | 
 | 	"Set tests specified in the mask.\n\n" | 
 | 		"\t\tid: 1,    name: fix_size_alloc_test\n" | 
 | 		"\t\tid: 2,    name: full_fit_alloc_test\n" | 
 | 		"\t\tid: 4,    name: long_busy_list_alloc_test\n" | 
 | 		"\t\tid: 8,    name: random_size_alloc_test\n" | 
 | 		"\t\tid: 16,   name: fix_align_alloc_test\n" | 
 | 		"\t\tid: 32,   name: random_size_align_alloc_test\n" | 
 | 		"\t\tid: 64,   name: align_shift_alloc_test\n" | 
 | 		"\t\tid: 128,  name: pcpu_alloc_test\n" | 
 | 		"\t\tid: 256,  name: kvfree_rcu_1_arg_vmalloc_test\n" | 
 | 		"\t\tid: 512,  name: kvfree_rcu_2_arg_vmalloc_test\n" | 
 | 		"\t\tid: 1024, name: vm_map_ram_test\n" | 
 | 		/* Add a new test case description here. */ | 
 | ); | 
 |  | 
 | /* | 
 |  * This is for synchronization of setup phase. | 
 |  */ | 
 | DEFINE_STATIC_SRCU(prepare_for_test_srcu); | 
 |  | 
 | /* | 
 |  * Completion tracking for worker threads. | 
 |  */ | 
 | static DECLARE_COMPLETION(test_all_done_comp); | 
 | static atomic_t test_n_undone = ATOMIC_INIT(0); | 
 |  | 
 | static inline void | 
 | test_report_one_done(void) | 
 | { | 
 | 	if (atomic_dec_and_test(&test_n_undone)) | 
 | 		complete(&test_all_done_comp); | 
 | } | 
 |  | 
 | static int random_size_align_alloc_test(void) | 
 | { | 
 | 	unsigned long size, align; | 
 | 	unsigned int rnd; | 
 | 	void *ptr; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < test_loop_count; i++) { | 
 | 		rnd = get_random_u8(); | 
 |  | 
 | 		/* | 
 | 		 * Maximum 1024 pages, if PAGE_SIZE is 4096. | 
 | 		 */ | 
 | 		align = 1 << (rnd % 23); | 
 |  | 
 | 		/* | 
 | 		 * Maximum 10 pages. | 
 | 		 */ | 
 | 		size = ((rnd % 10) + 1) * PAGE_SIZE; | 
 |  | 
 | 		ptr = __vmalloc_node(size, align, GFP_KERNEL | __GFP_ZERO, 0, | 
 | 				__builtin_return_address(0)); | 
 | 		if (!ptr) | 
 | 			return -1; | 
 |  | 
 | 		vfree(ptr); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This test case is supposed to be failed. | 
 |  */ | 
 | static int align_shift_alloc_test(void) | 
 | { | 
 | 	unsigned long align; | 
 | 	void *ptr; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < BITS_PER_LONG; i++) { | 
 | 		align = 1UL << i; | 
 |  | 
 | 		ptr = __vmalloc_node(PAGE_SIZE, align, GFP_KERNEL|__GFP_ZERO, 0, | 
 | 				__builtin_return_address(0)); | 
 | 		if (!ptr) | 
 | 			return -1; | 
 |  | 
 | 		vfree(ptr); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int fix_align_alloc_test(void) | 
 | { | 
 | 	void *ptr; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < test_loop_count; i++) { | 
 | 		ptr = __vmalloc_node(5 * PAGE_SIZE, THREAD_ALIGN << 1, | 
 | 				GFP_KERNEL | __GFP_ZERO, 0, | 
 | 				__builtin_return_address(0)); | 
 | 		if (!ptr) | 
 | 			return -1; | 
 |  | 
 | 		vfree(ptr); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int random_size_alloc_test(void) | 
 | { | 
 | 	unsigned int n; | 
 | 	void *p; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < test_loop_count; i++) { | 
 | 		n = get_random_u32_inclusive(1, 100); | 
 | 		p = vmalloc(n * PAGE_SIZE); | 
 |  | 
 | 		if (!p) | 
 | 			return -1; | 
 |  | 
 | 		*((__u8 *)p) = 1; | 
 | 		vfree(p); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int long_busy_list_alloc_test(void) | 
 | { | 
 | 	void *ptr_1, *ptr_2; | 
 | 	void **ptr; | 
 | 	int rv = -1; | 
 | 	int i; | 
 |  | 
 | 	ptr = vmalloc(sizeof(void *) * 15000); | 
 | 	if (!ptr) | 
 | 		return rv; | 
 |  | 
 | 	for (i = 0; i < 15000; i++) | 
 | 		ptr[i] = vmalloc(1 * PAGE_SIZE); | 
 |  | 
 | 	for (i = 0; i < test_loop_count; i++) { | 
 | 		ptr_1 = vmalloc(100 * PAGE_SIZE); | 
 | 		if (!ptr_1) | 
 | 			goto leave; | 
 |  | 
 | 		ptr_2 = vmalloc(1 * PAGE_SIZE); | 
 | 		if (!ptr_2) { | 
 | 			vfree(ptr_1); | 
 | 			goto leave; | 
 | 		} | 
 |  | 
 | 		*((__u8 *)ptr_1) = 0; | 
 | 		*((__u8 *)ptr_2) = 1; | 
 |  | 
 | 		vfree(ptr_1); | 
 | 		vfree(ptr_2); | 
 | 	} | 
 |  | 
 | 	/*  Success */ | 
 | 	rv = 0; | 
 |  | 
 | leave: | 
 | 	for (i = 0; i < 15000; i++) | 
 | 		vfree(ptr[i]); | 
 |  | 
 | 	vfree(ptr); | 
 | 	return rv; | 
 | } | 
 |  | 
 | static int full_fit_alloc_test(void) | 
 | { | 
 | 	void **ptr, **junk_ptr, *tmp; | 
 | 	int junk_length; | 
 | 	int rv = -1; | 
 | 	int i; | 
 |  | 
 | 	junk_length = fls(num_online_cpus()); | 
 | 	junk_length *= (32 * 1024 * 1024 / PAGE_SIZE); | 
 |  | 
 | 	ptr = vmalloc(sizeof(void *) * junk_length); | 
 | 	if (!ptr) | 
 | 		return rv; | 
 |  | 
 | 	junk_ptr = vmalloc(sizeof(void *) * junk_length); | 
 | 	if (!junk_ptr) { | 
 | 		vfree(ptr); | 
 | 		return rv; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < junk_length; i++) { | 
 | 		ptr[i] = vmalloc(1 * PAGE_SIZE); | 
 | 		junk_ptr[i] = vmalloc(1 * PAGE_SIZE); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < junk_length; i++) | 
 | 		vfree(junk_ptr[i]); | 
 |  | 
 | 	for (i = 0; i < test_loop_count; i++) { | 
 | 		tmp = vmalloc(1 * PAGE_SIZE); | 
 |  | 
 | 		if (!tmp) | 
 | 			goto error; | 
 |  | 
 | 		*((__u8 *)tmp) = 1; | 
 | 		vfree(tmp); | 
 | 	} | 
 |  | 
 | 	/* Success */ | 
 | 	rv = 0; | 
 |  | 
 | error: | 
 | 	for (i = 0; i < junk_length; i++) | 
 | 		vfree(ptr[i]); | 
 |  | 
 | 	vfree(ptr); | 
 | 	vfree(junk_ptr); | 
 |  | 
 | 	return rv; | 
 | } | 
 |  | 
 | static int fix_size_alloc_test(void) | 
 | { | 
 | 	void *ptr; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < test_loop_count; i++) { | 
 | 		if (use_huge) | 
 | 			ptr = vmalloc_huge((nr_pages > 0 ? nr_pages:1) * PAGE_SIZE, GFP_KERNEL); | 
 | 		else | 
 | 			ptr = vmalloc((nr_pages > 0 ? nr_pages:1) * PAGE_SIZE); | 
 |  | 
 | 		if (!ptr) | 
 | 			return -1; | 
 |  | 
 | 		*((__u8 *)ptr) = 0; | 
 |  | 
 | 		vfree(ptr); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | pcpu_alloc_test(void) | 
 | { | 
 | 	int rv = 0; | 
 | #ifndef CONFIG_NEED_PER_CPU_KM | 
 | 	void __percpu **pcpu; | 
 | 	size_t size, align; | 
 | 	int i; | 
 |  | 
 | 	pcpu = vmalloc(sizeof(void __percpu *) * 35000); | 
 | 	if (!pcpu) | 
 | 		return -1; | 
 |  | 
 | 	for (i = 0; i < 35000; i++) { | 
 | 		size = get_random_u32_inclusive(1, PAGE_SIZE / 4); | 
 |  | 
 | 		/* | 
 | 		 * Maximum PAGE_SIZE | 
 | 		 */ | 
 | 		align = 1 << get_random_u32_inclusive(1, 11); | 
 |  | 
 | 		pcpu[i] = __alloc_percpu(size, align); | 
 | 		if (!pcpu[i]) | 
 | 			rv = -1; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < 35000; i++) | 
 | 		free_percpu(pcpu[i]); | 
 |  | 
 | 	vfree(pcpu); | 
 | #endif | 
 | 	return rv; | 
 | } | 
 |  | 
 | struct test_kvfree_rcu { | 
 | 	struct rcu_head rcu; | 
 | 	unsigned char array[20]; | 
 | }; | 
 |  | 
 | static int | 
 | kvfree_rcu_1_arg_vmalloc_test(void) | 
 | { | 
 | 	struct test_kvfree_rcu *p; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < test_loop_count; i++) { | 
 | 		p = vmalloc(1 * PAGE_SIZE); | 
 | 		if (!p) | 
 | 			return -1; | 
 |  | 
 | 		p->array[0] = 'a'; | 
 | 		kvfree_rcu_mightsleep(p); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | kvfree_rcu_2_arg_vmalloc_test(void) | 
 | { | 
 | 	struct test_kvfree_rcu *p; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < test_loop_count; i++) { | 
 | 		p = vmalloc(1 * PAGE_SIZE); | 
 | 		if (!p) | 
 | 			return -1; | 
 |  | 
 | 		p->array[0] = 'a'; | 
 | 		kvfree_rcu(p, rcu); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | vm_map_ram_test(void) | 
 | { | 
 | 	unsigned long nr_allocated; | 
 | 	unsigned int map_nr_pages; | 
 | 	unsigned char *v_ptr; | 
 | 	struct page **pages; | 
 | 	int i; | 
 |  | 
 | 	map_nr_pages = nr_pages > 0 ? nr_pages:1; | 
 | 	pages = kcalloc(map_nr_pages, sizeof(struct page *), GFP_KERNEL); | 
 | 	if (!pages) | 
 | 		return -1; | 
 |  | 
 | 	nr_allocated = alloc_pages_bulk(GFP_KERNEL, map_nr_pages, pages); | 
 | 	if (nr_allocated != map_nr_pages) | 
 | 		goto cleanup; | 
 |  | 
 | 	/* Run the test loop. */ | 
 | 	for (i = 0; i < test_loop_count; i++) { | 
 | 		v_ptr = vm_map_ram(pages, map_nr_pages, NUMA_NO_NODE); | 
 | 		*v_ptr = 'a'; | 
 | 		vm_unmap_ram(v_ptr, map_nr_pages); | 
 | 	} | 
 |  | 
 | cleanup: | 
 | 	for (i = 0; i < nr_allocated; i++) | 
 | 		__free_page(pages[i]); | 
 |  | 
 | 	kfree(pages); | 
 |  | 
 | 	/* 0 indicates success. */ | 
 | 	return nr_allocated != map_nr_pages; | 
 | } | 
 |  | 
 | struct test_case_desc { | 
 | 	const char *test_name; | 
 | 	int (*test_func)(void); | 
 | 	bool xfail; | 
 | }; | 
 |  | 
 | static struct test_case_desc test_case_array[] = { | 
 | 	{ "fix_size_alloc_test", fix_size_alloc_test, }, | 
 | 	{ "full_fit_alloc_test", full_fit_alloc_test, }, | 
 | 	{ "long_busy_list_alloc_test", long_busy_list_alloc_test, }, | 
 | 	{ "random_size_alloc_test", random_size_alloc_test, }, | 
 | 	{ "fix_align_alloc_test", fix_align_alloc_test, }, | 
 | 	{ "random_size_align_alloc_test", random_size_align_alloc_test, }, | 
 | 	{ "align_shift_alloc_test", align_shift_alloc_test, true }, | 
 | 	{ "pcpu_alloc_test", pcpu_alloc_test, }, | 
 | 	{ "kvfree_rcu_1_arg_vmalloc_test", kvfree_rcu_1_arg_vmalloc_test, }, | 
 | 	{ "kvfree_rcu_2_arg_vmalloc_test", kvfree_rcu_2_arg_vmalloc_test, }, | 
 | 	{ "vm_map_ram_test", vm_map_ram_test, }, | 
 | 	/* Add a new test case here. */ | 
 | }; | 
 |  | 
 | struct test_case_data { | 
 | 	int test_failed; | 
 | 	int test_xfailed; | 
 | 	int test_passed; | 
 | 	u64 time; | 
 | }; | 
 |  | 
 | static struct test_driver { | 
 | 	struct task_struct *task; | 
 | 	struct test_case_data data[ARRAY_SIZE(test_case_array)]; | 
 |  | 
 | 	unsigned long start; | 
 | 	unsigned long stop; | 
 | } *tdriver; | 
 |  | 
 | static void shuffle_array(int *arr, int n) | 
 | { | 
 | 	int i, j; | 
 |  | 
 | 	for (i = n - 1; i > 0; i--)  { | 
 | 		/* Cut the range. */ | 
 | 		j = get_random_u32_below(i); | 
 |  | 
 | 		/* Swap indexes. */ | 
 | 		swap(arr[i], arr[j]); | 
 | 	} | 
 | } | 
 |  | 
 | static int test_func(void *private) | 
 | { | 
 | 	struct test_driver *t = private; | 
 | 	int random_array[ARRAY_SIZE(test_case_array)]; | 
 | 	int index, i, j, ret; | 
 | 	ktime_t kt; | 
 | 	u64 delta; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(test_case_array); i++) | 
 | 		random_array[i] = i; | 
 |  | 
 | 	if (!sequential_test_order) | 
 | 		shuffle_array(random_array, ARRAY_SIZE(test_case_array)); | 
 |  | 
 | 	/* | 
 | 	 * Block until initialization is done. | 
 | 	 */ | 
 | 	synchronize_srcu(&prepare_for_test_srcu); | 
 |  | 
 | 	t->start = get_cycles(); | 
 | 	for (i = 0; i < ARRAY_SIZE(test_case_array); i++) { | 
 | 		index = random_array[i]; | 
 |  | 
 | 		/* | 
 | 		 * Skip tests if run_test_mask has been specified. | 
 | 		 */ | 
 | 		if (!((run_test_mask & (1 << index)) >> index)) | 
 | 			continue; | 
 | 		kt = ktime_get(); | 
 | 		for (j = 0; j < test_repeat_count; j++) { | 
 | 			ret = test_case_array[index].test_func(); | 
 |  | 
 | 			if (!ret && !test_case_array[index].xfail) | 
 | 				t->data[index].test_passed++; | 
 | 			else if (ret && test_case_array[index].xfail) | 
 | 				t->data[index].test_xfailed++; | 
 | 			else | 
 | 				t->data[index].test_failed++; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Take an average time that test took. | 
 | 		 */ | 
 | 		delta = (u64) ktime_us_delta(ktime_get(), kt); | 
 | 		do_div(delta, (u32) test_repeat_count); | 
 |  | 
 | 		t->data[index].time = delta; | 
 | 	} | 
 | 	t->stop = get_cycles(); | 
 | 	test_report_one_done(); | 
 |  | 
 | 	/* | 
 | 	 * Wait for the kthread_stop() call. | 
 | 	 */ | 
 | 	while (!kthread_should_stop()) | 
 | 		msleep(10); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | init_test_configuration(void) | 
 | { | 
 | 	/* | 
 | 	 * A maximum number of workers is defined as hard-coded | 
 | 	 * value and set to USHRT_MAX. We add such gap just in | 
 | 	 * case and for potential heavy stressing. | 
 | 	 */ | 
 | 	nr_threads = clamp(nr_threads, 1, (int) USHRT_MAX); | 
 |  | 
 | 	/* Allocate the space for test instances. */ | 
 | 	tdriver = kvcalloc(nr_threads, sizeof(*tdriver), GFP_KERNEL); | 
 | 	if (tdriver == NULL) | 
 | 		return -1; | 
 |  | 
 | 	if (test_repeat_count <= 0) | 
 | 		test_repeat_count = 1; | 
 |  | 
 | 	if (test_loop_count <= 0) | 
 | 		test_loop_count = 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void do_concurrent_test(void) | 
 | { | 
 | 	int i, ret, idx; | 
 |  | 
 | 	/* | 
 | 	 * Set some basic configurations plus sanity check. | 
 | 	 */ | 
 | 	ret = init_test_configuration(); | 
 | 	if (ret < 0) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Put on hold all workers. | 
 | 	 */ | 
 | 	idx = srcu_read_lock(&prepare_for_test_srcu); | 
 |  | 
 | 	for (i = 0; i < nr_threads; i++) { | 
 | 		struct test_driver *t = &tdriver[i]; | 
 |  | 
 | 		t->task = kthread_run(test_func, t, "vmalloc_test/%d", i); | 
 |  | 
 | 		if (!IS_ERR(t->task)) | 
 | 			/* Success. */ | 
 | 			atomic_inc(&test_n_undone); | 
 | 		else | 
 | 			pr_err("Failed to start %d kthread\n", i); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now let the workers do their job. | 
 | 	 */ | 
 | 	srcu_read_unlock(&prepare_for_test_srcu, idx); | 
 |  | 
 | 	/* | 
 | 	 * Sleep quiet until all workers are done with 1 second | 
 | 	 * interval. Since the test can take a lot of time we | 
 | 	 * can run into a stack trace of the hung task. That is | 
 | 	 * why we go with completion_timeout and HZ value. | 
 | 	 */ | 
 | 	do { | 
 | 		ret = wait_for_completion_timeout(&test_all_done_comp, HZ); | 
 | 	} while (!ret); | 
 |  | 
 | 	for (i = 0; i < nr_threads; i++) { | 
 | 		struct test_driver *t = &tdriver[i]; | 
 | 		int j; | 
 |  | 
 | 		if (!IS_ERR(t->task)) | 
 | 			kthread_stop(t->task); | 
 |  | 
 | 		for (j = 0; j < ARRAY_SIZE(test_case_array); j++) { | 
 | 			if (!((run_test_mask & (1 << j)) >> j)) | 
 | 				continue; | 
 |  | 
 | 			pr_info( | 
 | 				"Summary: %s passed: %d failed: %d xfailed: %d repeat: %d loops: %d avg: %llu usec\n", | 
 | 				test_case_array[j].test_name, | 
 | 				t->data[j].test_passed, | 
 | 				t->data[j].test_failed, | 
 | 				t->data[j].test_xfailed, | 
 | 				test_repeat_count, test_loop_count, | 
 | 				t->data[j].time); | 
 | 		} | 
 |  | 
 | 		pr_info("All test took worker%d=%lu cycles\n", | 
 | 			i, t->stop - t->start); | 
 | 	} | 
 |  | 
 | 	kvfree(tdriver); | 
 | } | 
 |  | 
 | static int __init vmalloc_test_init(void) | 
 | { | 
 | 	do_concurrent_test(); | 
 | 	/* Fail will directly unload the module */ | 
 | 	return IS_BUILTIN(CONFIG_TEST_VMALLOC) ? 0:-EAGAIN; | 
 | } | 
 |  | 
 | #ifdef MODULE | 
 | module_init(vmalloc_test_init) | 
 | #else | 
 | late_initcall(vmalloc_test_init); | 
 | #endif | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_AUTHOR("Uladzislau Rezki"); | 
 | MODULE_DESCRIPTION("vmalloc test module"); |