|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
|  | *		operating system.  INET is implemented using the  BSD Socket | 
|  | *		interface as the means of communication with the user level. | 
|  | * | 
|  | *		The User Datagram Protocol (UDP). | 
|  | * | 
|  | * Authors:	Ross Biro | 
|  | *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | 
|  | *		Arnt Gulbrandsen, <agulbra@nvg.unit.no> | 
|  | *		Alan Cox, <alan@lxorguk.ukuu.org.uk> | 
|  | *		Hirokazu Takahashi, <taka@valinux.co.jp> | 
|  | * | 
|  | * Fixes: | 
|  | *		Alan Cox	:	verify_area() calls | 
|  | *		Alan Cox	: 	stopped close while in use off icmp | 
|  | *					messages. Not a fix but a botch that | 
|  | *					for udp at least is 'valid'. | 
|  | *		Alan Cox	:	Fixed icmp handling properly | 
|  | *		Alan Cox	: 	Correct error for oversized datagrams | 
|  | *		Alan Cox	:	Tidied select() semantics. | 
|  | *		Alan Cox	:	udp_err() fixed properly, also now | 
|  | *					select and read wake correctly on errors | 
|  | *		Alan Cox	:	udp_send verify_area moved to avoid mem leak | 
|  | *		Alan Cox	:	UDP can count its memory | 
|  | *		Alan Cox	:	send to an unknown connection causes | 
|  | *					an ECONNREFUSED off the icmp, but | 
|  | *					does NOT close. | 
|  | *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog! | 
|  | *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK | 
|  | *					bug no longer crashes it. | 
|  | *		Fred Van Kempen	: 	Net2e support for sk->broadcast. | 
|  | *		Alan Cox	:	Uses skb_free_datagram | 
|  | *		Alan Cox	:	Added get/set sockopt support. | 
|  | *		Alan Cox	:	Broadcasting without option set returns EACCES. | 
|  | *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks. | 
|  | *		Alan Cox	:	Use ip_tos and ip_ttl | 
|  | *		Alan Cox	:	SNMP Mibs | 
|  | *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support. | 
|  | *		Matt Dillon	:	UDP length checks. | 
|  | *		Alan Cox	:	Smarter af_inet used properly. | 
|  | *		Alan Cox	:	Use new kernel side addressing. | 
|  | *		Alan Cox	:	Incorrect return on truncated datagram receive. | 
|  | *	Arnt Gulbrandsen 	:	New udp_send and stuff | 
|  | *		Alan Cox	:	Cache last socket | 
|  | *		Alan Cox	:	Route cache | 
|  | *		Jon Peatfield	:	Minor efficiency fix to sendto(). | 
|  | *		Mike Shaver	:	RFC1122 checks. | 
|  | *		Alan Cox	:	Nonblocking error fix. | 
|  | *	Willy Konynenberg	:	Transparent proxying support. | 
|  | *		Mike McLagan	:	Routing by source | 
|  | *		David S. Miller	:	New socket lookup architecture. | 
|  | *					Last socket cache retained as it | 
|  | *					does have a high hit rate. | 
|  | *		Olaf Kirch	:	Don't linearise iovec on sendmsg. | 
|  | *		Andi Kleen	:	Some cleanups, cache destination entry | 
|  | *					for connect. | 
|  | *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma. | 
|  | *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(), | 
|  | *					return ENOTCONN for unconnected sockets (POSIX) | 
|  | *		Janos Farkas	:	don't deliver multi/broadcasts to a different | 
|  | *					bound-to-device socket | 
|  | *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP | 
|  | *					datagrams. | 
|  | *	Hirokazu Takahashi	:	sendfile() on UDP works now. | 
|  | *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file | 
|  | *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which | 
|  | *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind | 
|  | *					a single port at the same time. | 
|  | *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support | 
|  | *	James Chapman		:	Add L2TP encapsulation type. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "UDP: " fmt | 
|  |  | 
|  | #include <linux/bpf-cgroup.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/ioctls.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/fcntl.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/socket.h> | 
|  | #include <linux/sockios.h> | 
|  | #include <linux/igmp.h> | 
|  | #include <linux/inetdevice.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/inet.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sock_diag.h> | 
|  | #include <net/tcp_states.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <net/net_namespace.h> | 
|  | #include <net/icmp.h> | 
|  | #include <net/inet_hashtables.h> | 
|  | #include <net/ip.h> | 
|  | #include <net/ip_tunnels.h> | 
|  | #include <net/route.h> | 
|  | #include <net/checksum.h> | 
|  | #include <net/gso.h> | 
|  | #include <net/xfrm.h> | 
|  | #include <trace/events/udp.h> | 
|  | #include <linux/static_key.h> | 
|  | #include <linux/btf_ids.h> | 
|  | #include <trace/events/skb.h> | 
|  | #include <net/busy_poll.h> | 
|  | #include "udp_impl.h" | 
|  | #include <net/sock_reuseport.h> | 
|  | #include <net/addrconf.h> | 
|  | #include <net/udp_tunnel.h> | 
|  | #include <net/gro.h> | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | #include <net/ipv6_stubs.h> | 
|  | #endif | 
|  | #include <net/rps.h> | 
|  |  | 
|  | struct udp_table udp_table __read_mostly; | 
|  |  | 
|  | long sysctl_udp_mem[3] __read_mostly; | 
|  | EXPORT_IPV6_MOD(sysctl_udp_mem); | 
|  |  | 
|  | DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); | 
|  | EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); | 
|  |  | 
|  | #define MAX_UDP_PORTS 65536 | 
|  | #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) | 
|  |  | 
|  | static struct udp_table *udp_get_table_prot(struct sock *sk) | 
|  | { | 
|  | return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; | 
|  | } | 
|  |  | 
|  | static int udp_lib_lport_inuse(struct net *net, __u16 num, | 
|  | const struct udp_hslot *hslot, | 
|  | unsigned long *bitmap, | 
|  | struct sock *sk, unsigned int log) | 
|  | { | 
|  | kuid_t uid = sk_uid(sk); | 
|  | struct sock *sk2; | 
|  |  | 
|  | sk_for_each(sk2, &hslot->head) { | 
|  | if (net_eq(sock_net(sk2), net) && | 
|  | sk2 != sk && | 
|  | (bitmap || udp_sk(sk2)->udp_port_hash == num) && | 
|  | (!sk2->sk_reuse || !sk->sk_reuse) && | 
|  | (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || | 
|  | sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && | 
|  | inet_rcv_saddr_equal(sk, sk2, true)) { | 
|  | if (sk2->sk_reuseport && sk->sk_reuseport && | 
|  | !rcu_access_pointer(sk->sk_reuseport_cb) && | 
|  | uid_eq(uid, sk_uid(sk2))) { | 
|  | if (!bitmap) | 
|  | return 0; | 
|  | } else { | 
|  | if (!bitmap) | 
|  | return 1; | 
|  | __set_bit(udp_sk(sk2)->udp_port_hash >> log, | 
|  | bitmap); | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: we still hold spinlock of primary hash chain, so no other writer | 
|  | * can insert/delete a socket with local_port == num | 
|  | */ | 
|  | static int udp_lib_lport_inuse2(struct net *net, __u16 num, | 
|  | struct udp_hslot *hslot2, | 
|  | struct sock *sk) | 
|  | { | 
|  | kuid_t uid = sk_uid(sk); | 
|  | struct sock *sk2; | 
|  | int res = 0; | 
|  |  | 
|  | spin_lock(&hslot2->lock); | 
|  | udp_portaddr_for_each_entry(sk2, &hslot2->head) { | 
|  | if (net_eq(sock_net(sk2), net) && | 
|  | sk2 != sk && | 
|  | (udp_sk(sk2)->udp_port_hash == num) && | 
|  | (!sk2->sk_reuse || !sk->sk_reuse) && | 
|  | (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || | 
|  | sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && | 
|  | inet_rcv_saddr_equal(sk, sk2, true)) { | 
|  | if (sk2->sk_reuseport && sk->sk_reuseport && | 
|  | !rcu_access_pointer(sk->sk_reuseport_cb) && | 
|  | uid_eq(uid, sk_uid(sk2))) { | 
|  | res = 0; | 
|  | } else { | 
|  | res = 1; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock(&hslot2->lock); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) | 
|  | { | 
|  | struct net *net = sock_net(sk); | 
|  | kuid_t uid = sk_uid(sk); | 
|  | struct sock *sk2; | 
|  |  | 
|  | sk_for_each(sk2, &hslot->head) { | 
|  | if (net_eq(sock_net(sk2), net) && | 
|  | sk2 != sk && | 
|  | sk2->sk_family == sk->sk_family && | 
|  | ipv6_only_sock(sk2) == ipv6_only_sock(sk) && | 
|  | (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && | 
|  | (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && | 
|  | sk2->sk_reuseport && uid_eq(uid, sk_uid(sk2)) && | 
|  | inet_rcv_saddr_equal(sk, sk2, false)) { | 
|  | return reuseport_add_sock(sk, sk2, | 
|  | inet_rcv_saddr_any(sk)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return reuseport_alloc(sk, inet_rcv_saddr_any(sk)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6 | 
|  | * | 
|  | *  @sk:          socket struct in question | 
|  | *  @snum:        port number to look up | 
|  | *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains, | 
|  | *                   with NULL address | 
|  | */ | 
|  | int udp_lib_get_port(struct sock *sk, unsigned short snum, | 
|  | unsigned int hash2_nulladdr) | 
|  | { | 
|  | struct udp_table *udptable = udp_get_table_prot(sk); | 
|  | struct udp_hslot *hslot, *hslot2; | 
|  | struct net *net = sock_net(sk); | 
|  | int error = -EADDRINUSE; | 
|  |  | 
|  | if (!snum) { | 
|  | DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); | 
|  | unsigned short first, last; | 
|  | int low, high, remaining; | 
|  | unsigned int rand; | 
|  |  | 
|  | inet_sk_get_local_port_range(sk, &low, &high); | 
|  | remaining = (high - low) + 1; | 
|  |  | 
|  | rand = get_random_u32(); | 
|  | first = reciprocal_scale(rand, remaining) + low; | 
|  | /* | 
|  | * force rand to be an odd multiple of UDP_HTABLE_SIZE | 
|  | */ | 
|  | rand = (rand | 1) * (udptable->mask + 1); | 
|  | last = first + udptable->mask + 1; | 
|  | do { | 
|  | hslot = udp_hashslot(udptable, net, first); | 
|  | bitmap_zero(bitmap, PORTS_PER_CHAIN); | 
|  | spin_lock_bh(&hslot->lock); | 
|  | udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, | 
|  | udptable->log); | 
|  |  | 
|  | snum = first; | 
|  | /* | 
|  | * Iterate on all possible values of snum for this hash. | 
|  | * Using steps of an odd multiple of UDP_HTABLE_SIZE | 
|  | * give us randomization and full range coverage. | 
|  | */ | 
|  | do { | 
|  | if (low <= snum && snum <= high && | 
|  | !test_bit(snum >> udptable->log, bitmap) && | 
|  | !inet_is_local_reserved_port(net, snum)) | 
|  | goto found; | 
|  | snum += rand; | 
|  | } while (snum != first); | 
|  | spin_unlock_bh(&hslot->lock); | 
|  | cond_resched(); | 
|  | } while (++first != last); | 
|  | goto fail; | 
|  | } else { | 
|  | hslot = udp_hashslot(udptable, net, snum); | 
|  | spin_lock_bh(&hslot->lock); | 
|  | if (hslot->count > 10) { | 
|  | int exist; | 
|  | unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; | 
|  |  | 
|  | slot2          &= udptable->mask; | 
|  | hash2_nulladdr &= udptable->mask; | 
|  |  | 
|  | hslot2 = udp_hashslot2(udptable, slot2); | 
|  | if (hslot->count < hslot2->count) | 
|  | goto scan_primary_hash; | 
|  |  | 
|  | exist = udp_lib_lport_inuse2(net, snum, hslot2, sk); | 
|  | if (!exist && (hash2_nulladdr != slot2)) { | 
|  | hslot2 = udp_hashslot2(udptable, hash2_nulladdr); | 
|  | exist = udp_lib_lport_inuse2(net, snum, hslot2, | 
|  | sk); | 
|  | } | 
|  | if (exist) | 
|  | goto fail_unlock; | 
|  | else | 
|  | goto found; | 
|  | } | 
|  | scan_primary_hash: | 
|  | if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0)) | 
|  | goto fail_unlock; | 
|  | } | 
|  | found: | 
|  | inet_sk(sk)->inet_num = snum; | 
|  | udp_sk(sk)->udp_port_hash = snum; | 
|  | udp_sk(sk)->udp_portaddr_hash ^= snum; | 
|  | if (sk_unhashed(sk)) { | 
|  | if (sk->sk_reuseport && | 
|  | udp_reuseport_add_sock(sk, hslot)) { | 
|  | inet_sk(sk)->inet_num = 0; | 
|  | udp_sk(sk)->udp_port_hash = 0; | 
|  | udp_sk(sk)->udp_portaddr_hash ^= snum; | 
|  | goto fail_unlock; | 
|  | } | 
|  |  | 
|  | sock_set_flag(sk, SOCK_RCU_FREE); | 
|  |  | 
|  | sk_add_node_rcu(sk, &hslot->head); | 
|  | hslot->count++; | 
|  | sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); | 
|  |  | 
|  | hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); | 
|  | spin_lock(&hslot2->lock); | 
|  | if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && | 
|  | sk->sk_family == AF_INET6) | 
|  | hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node, | 
|  | &hslot2->head); | 
|  | else | 
|  | hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, | 
|  | &hslot2->head); | 
|  | hslot2->count++; | 
|  | spin_unlock(&hslot2->lock); | 
|  | } | 
|  |  | 
|  | error = 0; | 
|  | fail_unlock: | 
|  | spin_unlock_bh(&hslot->lock); | 
|  | fail: | 
|  | return error; | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_lib_get_port); | 
|  |  | 
|  | int udp_v4_get_port(struct sock *sk, unsigned short snum) | 
|  | { | 
|  | unsigned int hash2_nulladdr = | 
|  | ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); | 
|  | unsigned int hash2_partial = | 
|  | ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); | 
|  |  | 
|  | /* precompute partial secondary hash */ | 
|  | udp_sk(sk)->udp_portaddr_hash = hash2_partial; | 
|  | return udp_lib_get_port(sk, snum, hash2_nulladdr); | 
|  | } | 
|  |  | 
|  | static int compute_score(struct sock *sk, const struct net *net, | 
|  | __be32 saddr, __be16 sport, | 
|  | __be32 daddr, unsigned short hnum, | 
|  | int dif, int sdif) | 
|  | { | 
|  | int score; | 
|  | struct inet_sock *inet; | 
|  | bool dev_match; | 
|  |  | 
|  | if (!net_eq(sock_net(sk), net) || | 
|  | udp_sk(sk)->udp_port_hash != hnum || | 
|  | ipv6_only_sock(sk)) | 
|  | return -1; | 
|  |  | 
|  | if (sk->sk_rcv_saddr != daddr) | 
|  | return -1; | 
|  |  | 
|  | score = (sk->sk_family == PF_INET) ? 2 : 1; | 
|  |  | 
|  | inet = inet_sk(sk); | 
|  | if (inet->inet_daddr) { | 
|  | if (inet->inet_daddr != saddr) | 
|  | return -1; | 
|  | score += 4; | 
|  | } | 
|  |  | 
|  | if (inet->inet_dport) { | 
|  | if (inet->inet_dport != sport) | 
|  | return -1; | 
|  | score += 4; | 
|  | } | 
|  |  | 
|  | dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, | 
|  | dif, sdif); | 
|  | if (!dev_match) | 
|  | return -1; | 
|  | if (sk->sk_bound_dev_if) | 
|  | score += 4; | 
|  |  | 
|  | if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) | 
|  | score++; | 
|  | return score; | 
|  | } | 
|  |  | 
|  | u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, | 
|  | const __be32 faddr, const __be16 fport) | 
|  | { | 
|  | net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); | 
|  |  | 
|  | return __inet_ehashfn(laddr, lport, faddr, fport, | 
|  | udp_ehash_secret + net_hash_mix(net)); | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_ehashfn); | 
|  |  | 
|  | /** | 
|  | * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port) | 
|  | * @net:	Network namespace | 
|  | * @saddr:	Source address, network order | 
|  | * @sport:	Source port, network order | 
|  | * @daddr:	Destination address, network order | 
|  | * @hnum:	Destination port, host order | 
|  | * @dif:	Destination interface index | 
|  | * @sdif:	Destination bridge port index, if relevant | 
|  | * @udptable:	Set of UDP hash tables | 
|  | * | 
|  | * Simplified lookup to be used as fallback if no sockets are found due to a | 
|  | * potential race between (receive) address change, and lookup happening before | 
|  | * the rehash operation. This function ignores SO_REUSEPORT groups while scoring | 
|  | * result sockets, because if we have one, we don't need the fallback at all. | 
|  | * | 
|  | * Called under rcu_read_lock(). | 
|  | * | 
|  | * Return: socket with highest matching score if any, NULL if none | 
|  | */ | 
|  | static struct sock *udp4_lib_lookup1(const struct net *net, | 
|  | __be32 saddr, __be16 sport, | 
|  | __be32 daddr, unsigned int hnum, | 
|  | int dif, int sdif, | 
|  | const struct udp_table *udptable) | 
|  | { | 
|  | unsigned int slot = udp_hashfn(net, hnum, udptable->mask); | 
|  | struct udp_hslot *hslot = &udptable->hash[slot]; | 
|  | struct sock *sk, *result = NULL; | 
|  | int score, badness = 0; | 
|  |  | 
|  | sk_for_each_rcu(sk, &hslot->head) { | 
|  | score = compute_score(sk, net, | 
|  | saddr, sport, daddr, hnum, dif, sdif); | 
|  | if (score > badness) { | 
|  | result = sk; | 
|  | badness = score; | 
|  | } | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* called with rcu_read_lock() */ | 
|  | static struct sock *udp4_lib_lookup2(const struct net *net, | 
|  | __be32 saddr, __be16 sport, | 
|  | __be32 daddr, unsigned int hnum, | 
|  | int dif, int sdif, | 
|  | struct udp_hslot *hslot2, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct sock *sk, *result; | 
|  | int score, badness; | 
|  | bool need_rescore; | 
|  |  | 
|  | result = NULL; | 
|  | badness = 0; | 
|  | udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { | 
|  | need_rescore = false; | 
|  | rescore: | 
|  | score = compute_score(need_rescore ? result : sk, net, saddr, | 
|  | sport, daddr, hnum, dif, sdif); | 
|  | if (score > badness) { | 
|  | badness = score; | 
|  |  | 
|  | if (need_rescore) | 
|  | continue; | 
|  |  | 
|  | if (sk->sk_state == TCP_ESTABLISHED) { | 
|  | result = sk; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr), | 
|  | saddr, sport, daddr, hnum, udp_ehashfn); | 
|  | if (!result) { | 
|  | result = sk; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Fall back to scoring if group has connections */ | 
|  | if (!reuseport_has_conns(sk)) | 
|  | return result; | 
|  |  | 
|  | /* Reuseport logic returned an error, keep original score. */ | 
|  | if (IS_ERR(result)) | 
|  | continue; | 
|  |  | 
|  | /* compute_score is too long of a function to be | 
|  | * inlined, and calling it again here yields | 
|  | * measureable overhead for some | 
|  | * workloads. Work around it by jumping | 
|  | * backwards to rescore 'result'. | 
|  | */ | 
|  | need_rescore = true; | 
|  | goto rescore; | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_BASE_SMALL) | 
|  | static struct sock *udp4_lib_lookup4(const struct net *net, | 
|  | __be32 saddr, __be16 sport, | 
|  | __be32 daddr, unsigned int hnum, | 
|  | int dif, int sdif, | 
|  | struct udp_table *udptable) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void udp_rehash4(struct udp_table *udptable, struct sock *sk, | 
|  | u16 newhash4) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void udp_unhash4(struct udp_table *udptable, struct sock *sk) | 
|  | { | 
|  | } | 
|  | #else /* !CONFIG_BASE_SMALL */ | 
|  | static struct sock *udp4_lib_lookup4(const struct net *net, | 
|  | __be32 saddr, __be16 sport, | 
|  | __be32 daddr, unsigned int hnum, | 
|  | int dif, int sdif, | 
|  | struct udp_table *udptable) | 
|  | { | 
|  | const __portpair ports = INET_COMBINED_PORTS(sport, hnum); | 
|  | const struct hlist_nulls_node *node; | 
|  | struct udp_hslot *hslot4; | 
|  | unsigned int hash4, slot; | 
|  | struct udp_sock *up; | 
|  | struct sock *sk; | 
|  |  | 
|  | hash4 = udp_ehashfn(net, daddr, hnum, saddr, sport); | 
|  | slot = hash4 & udptable->mask; | 
|  | hslot4 = &udptable->hash4[slot]; | 
|  | INET_ADDR_COOKIE(acookie, saddr, daddr); | 
|  |  | 
|  | begin: | 
|  | /* SLAB_TYPESAFE_BY_RCU not used, so we don't need to touch sk_refcnt */ | 
|  | udp_lrpa_for_each_entry_rcu(up, node, &hslot4->nulls_head) { | 
|  | sk = (struct sock *)up; | 
|  | if (inet_match(net, sk, acookie, ports, dif, sdif)) | 
|  | return sk; | 
|  | } | 
|  |  | 
|  | /* if the nulls value we got at the end of this lookup is not the | 
|  | * expected one, we must restart lookup. We probably met an item that | 
|  | * was moved to another chain due to rehash. | 
|  | */ | 
|  | if (get_nulls_value(node) != slot) | 
|  | goto begin; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* udp_rehash4() only checks hslot4, and hash4_cnt is not processed. */ | 
|  | static void udp_rehash4(struct udp_table *udptable, struct sock *sk, | 
|  | u16 newhash4) | 
|  | { | 
|  | struct udp_hslot *hslot4, *nhslot4; | 
|  |  | 
|  | hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); | 
|  | nhslot4 = udp_hashslot4(udptable, newhash4); | 
|  | udp_sk(sk)->udp_lrpa_hash = newhash4; | 
|  |  | 
|  | if (hslot4 != nhslot4) { | 
|  | spin_lock_bh(&hslot4->lock); | 
|  | hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); | 
|  | hslot4->count--; | 
|  | spin_unlock_bh(&hslot4->lock); | 
|  |  | 
|  | spin_lock_bh(&nhslot4->lock); | 
|  | hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, | 
|  | &nhslot4->nulls_head); | 
|  | nhslot4->count++; | 
|  | spin_unlock_bh(&nhslot4->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void udp_unhash4(struct udp_table *udptable, struct sock *sk) | 
|  | { | 
|  | struct udp_hslot *hslot2, *hslot4; | 
|  |  | 
|  | if (udp_hashed4(sk)) { | 
|  | hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); | 
|  | hslot4 = udp_hashslot4(udptable, udp_sk(sk)->udp_lrpa_hash); | 
|  |  | 
|  | spin_lock(&hslot4->lock); | 
|  | hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_lrpa_node); | 
|  | hslot4->count--; | 
|  | spin_unlock(&hslot4->lock); | 
|  |  | 
|  | spin_lock(&hslot2->lock); | 
|  | udp_hash4_dec(hslot2); | 
|  | spin_unlock(&hslot2->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | void udp_lib_hash4(struct sock *sk, u16 hash) | 
|  | { | 
|  | struct udp_hslot *hslot, *hslot2, *hslot4; | 
|  | struct net *net = sock_net(sk); | 
|  | struct udp_table *udptable; | 
|  |  | 
|  | /* Connected udp socket can re-connect to another remote address, which | 
|  | * will be handled by rehash. Thus no need to redo hash4 here. | 
|  | */ | 
|  | if (udp_hashed4(sk)) | 
|  | return; | 
|  |  | 
|  | udptable = net->ipv4.udp_table; | 
|  | hslot = udp_hashslot(udptable, net, udp_sk(sk)->udp_port_hash); | 
|  | hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); | 
|  | hslot4 = udp_hashslot4(udptable, hash); | 
|  | udp_sk(sk)->udp_lrpa_hash = hash; | 
|  |  | 
|  | spin_lock_bh(&hslot->lock); | 
|  | if (rcu_access_pointer(sk->sk_reuseport_cb)) | 
|  | reuseport_detach_sock(sk); | 
|  |  | 
|  | spin_lock(&hslot4->lock); | 
|  | hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_lrpa_node, | 
|  | &hslot4->nulls_head); | 
|  | hslot4->count++; | 
|  | spin_unlock(&hslot4->lock); | 
|  |  | 
|  | spin_lock(&hslot2->lock); | 
|  | udp_hash4_inc(hslot2); | 
|  | spin_unlock(&hslot2->lock); | 
|  |  | 
|  | spin_unlock_bh(&hslot->lock); | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_lib_hash4); | 
|  |  | 
|  | /* call with sock lock */ | 
|  | void udp4_hash4(struct sock *sk) | 
|  | { | 
|  | struct net *net = sock_net(sk); | 
|  | unsigned int hash; | 
|  |  | 
|  | if (sk_unhashed(sk) || sk->sk_rcv_saddr == htonl(INADDR_ANY)) | 
|  | return; | 
|  |  | 
|  | hash = udp_ehashfn(net, sk->sk_rcv_saddr, sk->sk_num, | 
|  | sk->sk_daddr, sk->sk_dport); | 
|  |  | 
|  | udp_lib_hash4(sk, hash); | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp4_hash4); | 
|  | #endif /* CONFIG_BASE_SMALL */ | 
|  |  | 
|  | /* UDP is nearly always wildcards out the wazoo, it makes no sense to try | 
|  | * harder than this. -DaveM | 
|  | */ | 
|  | struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr, | 
|  | __be16 sport, __be32 daddr, __be16 dport, int dif, | 
|  | int sdif, struct udp_table *udptable, struct sk_buff *skb) | 
|  | { | 
|  | unsigned short hnum = ntohs(dport); | 
|  | struct udp_hslot *hslot2; | 
|  | struct sock *result, *sk; | 
|  | unsigned int hash2; | 
|  |  | 
|  | hash2 = ipv4_portaddr_hash(net, daddr, hnum); | 
|  | hslot2 = udp_hashslot2(udptable, hash2); | 
|  |  | 
|  | if (udp_has_hash4(hslot2)) { | 
|  | result = udp4_lib_lookup4(net, saddr, sport, daddr, hnum, | 
|  | dif, sdif, udptable); | 
|  | if (result) /* udp4_lib_lookup4 return sk or NULL */ | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Lookup connected or non-wildcard socket */ | 
|  | result = udp4_lib_lookup2(net, saddr, sport, | 
|  | daddr, hnum, dif, sdif, | 
|  | hslot2, skb); | 
|  | if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED) | 
|  | goto done; | 
|  |  | 
|  | /* Lookup redirect from BPF */ | 
|  | if (static_branch_unlikely(&bpf_sk_lookup_enabled) && | 
|  | udptable == net->ipv4.udp_table) { | 
|  | sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr), | 
|  | saddr, sport, daddr, hnum, dif, | 
|  | udp_ehashfn); | 
|  | if (sk) { | 
|  | result = sk; | 
|  | goto done; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Got non-wildcard socket or error on first lookup */ | 
|  | if (result) | 
|  | goto done; | 
|  |  | 
|  | /* Lookup wildcard sockets */ | 
|  | hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum); | 
|  | hslot2 = udp_hashslot2(udptable, hash2); | 
|  |  | 
|  | result = udp4_lib_lookup2(net, saddr, sport, | 
|  | htonl(INADDR_ANY), hnum, dif, sdif, | 
|  | hslot2, skb); | 
|  | if (!IS_ERR_OR_NULL(result)) | 
|  | goto done; | 
|  |  | 
|  | /* Primary hash (destination port) lookup as fallback for this race: | 
|  | *   1. __ip4_datagram_connect() sets sk_rcv_saddr | 
|  | *   2. lookup (this function): new sk_rcv_saddr, hashes not updated yet | 
|  | *   3. rehash operation updating _secondary and four-tuple_ hashes | 
|  | * The primary hash doesn't need an update after 1., so, thanks to this | 
|  | * further step, 1. and 3. don't need to be atomic against the lookup. | 
|  | */ | 
|  | result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif, | 
|  | udptable); | 
|  |  | 
|  | done: | 
|  | if (IS_ERR(result)) | 
|  | return NULL; | 
|  | return result; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__udp4_lib_lookup); | 
|  |  | 
|  | static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, | 
|  | __be16 sport, __be16 dport, | 
|  | struct udp_table *udptable) | 
|  | { | 
|  | const struct iphdr *iph = ip_hdr(skb); | 
|  |  | 
|  | return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport, | 
|  | iph->daddr, dport, inet_iif(skb), | 
|  | inet_sdif(skb), udptable, skb); | 
|  | } | 
|  |  | 
|  | struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, | 
|  | __be16 sport, __be16 dport) | 
|  | { | 
|  | const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation]; | 
|  | const struct iphdr *iph = (struct iphdr *)(skb->data + offset); | 
|  | struct net *net = dev_net(skb->dev); | 
|  | int iif, sdif; | 
|  |  | 
|  | inet_get_iif_sdif(skb, &iif, &sdif); | 
|  |  | 
|  | return __udp4_lib_lookup(net, iph->saddr, sport, | 
|  | iph->daddr, dport, iif, | 
|  | sdif, net->ipv4.udp_table, NULL); | 
|  | } | 
|  |  | 
|  | /* Must be called under rcu_read_lock(). | 
|  | * Does increment socket refcount. | 
|  | */ | 
|  | #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) | 
|  | struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport, | 
|  | __be32 daddr, __be16 dport, int dif) | 
|  | { | 
|  | struct sock *sk; | 
|  |  | 
|  | sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, | 
|  | dif, 0, net->ipv4.udp_table, NULL); | 
|  | if (sk && !refcount_inc_not_zero(&sk->sk_refcnt)) | 
|  | sk = NULL; | 
|  | return sk; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(udp4_lib_lookup); | 
|  | #endif | 
|  |  | 
|  | static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, | 
|  | __be16 loc_port, __be32 loc_addr, | 
|  | __be16 rmt_port, __be32 rmt_addr, | 
|  | int dif, int sdif, unsigned short hnum) | 
|  | { | 
|  | const struct inet_sock *inet = inet_sk(sk); | 
|  |  | 
|  | if (!net_eq(sock_net(sk), net) || | 
|  | udp_sk(sk)->udp_port_hash != hnum || | 
|  | (inet->inet_daddr && inet->inet_daddr != rmt_addr) || | 
|  | (inet->inet_dport != rmt_port && inet->inet_dport) || | 
|  | (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || | 
|  | ipv6_only_sock(sk) || | 
|  | !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif)) | 
|  | return false; | 
|  | if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); | 
|  | EXPORT_IPV6_MOD(udp_encap_needed_key); | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); | 
|  | EXPORT_IPV6_MOD(udpv6_encap_needed_key); | 
|  | #endif | 
|  |  | 
|  | void udp_encap_enable(void) | 
|  | { | 
|  | static_branch_inc(&udp_encap_needed_key); | 
|  | } | 
|  | EXPORT_SYMBOL(udp_encap_enable); | 
|  |  | 
|  | void udp_encap_disable(void) | 
|  | { | 
|  | static_branch_dec(&udp_encap_needed_key); | 
|  | } | 
|  | EXPORT_SYMBOL(udp_encap_disable); | 
|  |  | 
|  | /* Handler for tunnels with arbitrary destination ports: no socket lookup, go | 
|  | * through error handlers in encapsulations looking for a match. | 
|  | */ | 
|  | static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { | 
|  | int (*handler)(struct sk_buff *skb, u32 info); | 
|  | const struct ip_tunnel_encap_ops *encap; | 
|  |  | 
|  | encap = rcu_dereference(iptun_encaps[i]); | 
|  | if (!encap) | 
|  | continue; | 
|  | handler = encap->err_handler; | 
|  | if (handler && !handler(skb, info)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | /* Try to match ICMP errors to UDP tunnels by looking up a socket without | 
|  | * reversing source and destination port: this will match tunnels that force the | 
|  | * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that | 
|  | * lwtunnels might actually break this assumption by being configured with | 
|  | * different destination ports on endpoints, in this case we won't be able to | 
|  | * trace ICMP messages back to them. | 
|  | * | 
|  | * If this doesn't match any socket, probe tunnels with arbitrary destination | 
|  | * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port | 
|  | * we've sent packets to won't necessarily match the local destination port. | 
|  | * | 
|  | * Then ask the tunnel implementation to match the error against a valid | 
|  | * association. | 
|  | * | 
|  | * Return an error if we can't find a match, the socket if we need further | 
|  | * processing, zero otherwise. | 
|  | */ | 
|  | static struct sock *__udp4_lib_err_encap(struct net *net, | 
|  | const struct iphdr *iph, | 
|  | struct udphdr *uh, | 
|  | struct udp_table *udptable, | 
|  | struct sock *sk, | 
|  | struct sk_buff *skb, u32 info) | 
|  | { | 
|  | int (*lookup)(struct sock *sk, struct sk_buff *skb); | 
|  | int network_offset, transport_offset; | 
|  | struct udp_sock *up; | 
|  |  | 
|  | network_offset = skb_network_offset(skb); | 
|  | transport_offset = skb_transport_offset(skb); | 
|  |  | 
|  | /* Network header needs to point to the outer IPv4 header inside ICMP */ | 
|  | skb_reset_network_header(skb); | 
|  |  | 
|  | /* Transport header needs to point to the UDP header */ | 
|  | skb_set_transport_header(skb, iph->ihl << 2); | 
|  |  | 
|  | if (sk) { | 
|  | up = udp_sk(sk); | 
|  |  | 
|  | lookup = READ_ONCE(up->encap_err_lookup); | 
|  | if (lookup && lookup(sk, skb)) | 
|  | sk = NULL; | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | sk = __udp4_lib_lookup(net, iph->daddr, uh->source, | 
|  | iph->saddr, uh->dest, skb->dev->ifindex, 0, | 
|  | udptable, NULL); | 
|  | if (sk) { | 
|  | up = udp_sk(sk); | 
|  |  | 
|  | lookup = READ_ONCE(up->encap_err_lookup); | 
|  | if (!lookup || lookup(sk, skb)) | 
|  | sk = NULL; | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (!sk) | 
|  | sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info)); | 
|  |  | 
|  | skb_set_transport_header(skb, transport_offset); | 
|  | skb_set_network_header(skb, network_offset); | 
|  |  | 
|  | return sk; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine is called by the ICMP module when it gets some | 
|  | * sort of error condition.  If err < 0 then the socket should | 
|  | * be closed and the error returned to the user.  If err > 0 | 
|  | * it's just the icmp type << 8 | icmp code. | 
|  | * Header points to the ip header of the error packet. We move | 
|  | * on past this. Then (as it used to claim before adjustment) | 
|  | * header points to the first 8 bytes of the udp header.  We need | 
|  | * to find the appropriate port. | 
|  | */ | 
|  |  | 
|  | int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) | 
|  | { | 
|  | struct inet_sock *inet; | 
|  | const struct iphdr *iph = (const struct iphdr *)skb->data; | 
|  | struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); | 
|  | const int type = icmp_hdr(skb)->type; | 
|  | const int code = icmp_hdr(skb)->code; | 
|  | bool tunnel = false; | 
|  | struct sock *sk; | 
|  | int harderr; | 
|  | int err; | 
|  | struct net *net = dev_net(skb->dev); | 
|  |  | 
|  | sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, | 
|  | iph->saddr, uh->source, skb->dev->ifindex, | 
|  | inet_sdif(skb), udptable, NULL); | 
|  |  | 
|  | if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) { | 
|  | /* No socket for error: try tunnels before discarding */ | 
|  | if (static_branch_unlikely(&udp_encap_needed_key)) { | 
|  | sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, | 
|  | info); | 
|  | if (!sk) | 
|  | return 0; | 
|  | } else | 
|  | sk = ERR_PTR(-ENOENT); | 
|  |  | 
|  | if (IS_ERR(sk)) { | 
|  | __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); | 
|  | return PTR_ERR(sk); | 
|  | } | 
|  |  | 
|  | tunnel = true; | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  | harderr = 0; | 
|  | inet = inet_sk(sk); | 
|  |  | 
|  | switch (type) { | 
|  | default: | 
|  | case ICMP_TIME_EXCEEDED: | 
|  | err = EHOSTUNREACH; | 
|  | break; | 
|  | case ICMP_SOURCE_QUENCH: | 
|  | goto out; | 
|  | case ICMP_PARAMETERPROB: | 
|  | err = EPROTO; | 
|  | harderr = 1; | 
|  | break; | 
|  | case ICMP_DEST_UNREACH: | 
|  | if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ | 
|  | ipv4_sk_update_pmtu(skb, sk, info); | 
|  | if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) { | 
|  | err = EMSGSIZE; | 
|  | harderr = 1; | 
|  | break; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  | err = EHOSTUNREACH; | 
|  | if (code <= NR_ICMP_UNREACH) { | 
|  | harderr = icmp_err_convert[code].fatal; | 
|  | err = icmp_err_convert[code].errno; | 
|  | } | 
|  | break; | 
|  | case ICMP_REDIRECT: | 
|  | ipv4_sk_redirect(skb, sk); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *      RFC1122: OK.  Passes ICMP errors back to application, as per | 
|  | *	4.1.3.3. | 
|  | */ | 
|  | if (tunnel) { | 
|  | /* ...not for tunnels though: we don't have a sending socket */ | 
|  | if (udp_sk(sk)->encap_err_rcv) | 
|  | udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, | 
|  | (u8 *)(uh+1)); | 
|  | goto out; | 
|  | } | 
|  | if (!inet_test_bit(RECVERR, sk)) { | 
|  | if (!harderr || sk->sk_state != TCP_ESTABLISHED) | 
|  | goto out; | 
|  | } else | 
|  | ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); | 
|  |  | 
|  | sk->sk_err = err; | 
|  | sk_error_report(sk); | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int udp_err(struct sk_buff *skb, u32 info) | 
|  | { | 
|  | return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Throw away all pending data and cancel the corking. Socket is locked. | 
|  | */ | 
|  | void udp_flush_pending_frames(struct sock *sk) | 
|  | { | 
|  | struct udp_sock *up = udp_sk(sk); | 
|  |  | 
|  | if (up->pending) { | 
|  | up->len = 0; | 
|  | WRITE_ONCE(up->pending, 0); | 
|  | ip_flush_pending_frames(sk); | 
|  | } | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_flush_pending_frames); | 
|  |  | 
|  | /** | 
|  | * 	udp4_hwcsum  -  handle outgoing HW checksumming | 
|  | * 	@skb: 	sk_buff containing the filled-in UDP header | 
|  | * 	        (checksum field must be zeroed out) | 
|  | *	@src:	source IP address | 
|  | *	@dst:	destination IP address | 
|  | */ | 
|  | void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) | 
|  | { | 
|  | struct udphdr *uh = udp_hdr(skb); | 
|  | int offset = skb_transport_offset(skb); | 
|  | int len = skb->len - offset; | 
|  | int hlen = len; | 
|  | __wsum csum = 0; | 
|  |  | 
|  | if (!skb_has_frag_list(skb)) { | 
|  | /* | 
|  | * Only one fragment on the socket. | 
|  | */ | 
|  | skb->csum_start = skb_transport_header(skb) - skb->head; | 
|  | skb->csum_offset = offsetof(struct udphdr, check); | 
|  | uh->check = ~csum_tcpudp_magic(src, dst, len, | 
|  | IPPROTO_UDP, 0); | 
|  | } else { | 
|  | struct sk_buff *frags; | 
|  |  | 
|  | /* | 
|  | * HW-checksum won't work as there are two or more | 
|  | * fragments on the socket so that all csums of sk_buffs | 
|  | * should be together | 
|  | */ | 
|  | skb_walk_frags(skb, frags) { | 
|  | csum = csum_add(csum, frags->csum); | 
|  | hlen -= frags->len; | 
|  | } | 
|  |  | 
|  | csum = skb_checksum(skb, offset, hlen, csum); | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  |  | 
|  | uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); | 
|  | if (uh->check == 0) | 
|  | uh->check = CSUM_MANGLED_0; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(udp4_hwcsum); | 
|  |  | 
|  | /* Function to set UDP checksum for an IPv4 UDP packet. This is intended | 
|  | * for the simple case like when setting the checksum for a UDP tunnel. | 
|  | */ | 
|  | void udp_set_csum(bool nocheck, struct sk_buff *skb, | 
|  | __be32 saddr, __be32 daddr, int len) | 
|  | { | 
|  | struct udphdr *uh = udp_hdr(skb); | 
|  |  | 
|  | if (nocheck) { | 
|  | uh->check = 0; | 
|  | } else if (skb_is_gso(skb)) { | 
|  | uh->check = ~udp_v4_check(len, saddr, daddr, 0); | 
|  | } else if (skb->ip_summed == CHECKSUM_PARTIAL) { | 
|  | uh->check = 0; | 
|  | uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb)); | 
|  | if (uh->check == 0) | 
|  | uh->check = CSUM_MANGLED_0; | 
|  | } else { | 
|  | skb->ip_summed = CHECKSUM_PARTIAL; | 
|  | skb->csum_start = skb_transport_header(skb) - skb->head; | 
|  | skb->csum_offset = offsetof(struct udphdr, check); | 
|  | uh->check = ~udp_v4_check(len, saddr, daddr, 0); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(udp_set_csum); | 
|  |  | 
|  | static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, | 
|  | struct inet_cork *cork) | 
|  | { | 
|  | struct sock *sk = skb->sk; | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  | struct udphdr *uh; | 
|  | int err; | 
|  | int is_udplite = IS_UDPLITE(sk); | 
|  | int offset = skb_transport_offset(skb); | 
|  | int len = skb->len - offset; | 
|  | int datalen = len - sizeof(*uh); | 
|  | __wsum csum = 0; | 
|  |  | 
|  | /* | 
|  | * Create a UDP header | 
|  | */ | 
|  | uh = udp_hdr(skb); | 
|  | uh->source = inet->inet_sport; | 
|  | uh->dest = fl4->fl4_dport; | 
|  | uh->len = htons(len); | 
|  | uh->check = 0; | 
|  |  | 
|  | if (cork->gso_size) { | 
|  | const int hlen = skb_network_header_len(skb) + | 
|  | sizeof(struct udphdr); | 
|  |  | 
|  | if (hlen + min(datalen, cork->gso_size) > cork->fragsize) { | 
|  | kfree_skb(skb); | 
|  | return -EMSGSIZE; | 
|  | } | 
|  | if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { | 
|  | kfree_skb(skb); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (sk->sk_no_check_tx) { | 
|  | kfree_skb(skb); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (is_udplite || dst_xfrm(skb_dst(skb))) { | 
|  | kfree_skb(skb); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (datalen > cork->gso_size) { | 
|  | skb_shinfo(skb)->gso_size = cork->gso_size; | 
|  | skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; | 
|  | skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, | 
|  | cork->gso_size); | 
|  |  | 
|  | /* Don't checksum the payload, skb will get segmented */ | 
|  | goto csum_partial; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (is_udplite)  				 /*     UDP-Lite      */ | 
|  | csum = udplite_csum(skb); | 
|  |  | 
|  | else if (sk->sk_no_check_tx) {			 /* UDP csum off */ | 
|  |  | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  | goto send; | 
|  |  | 
|  | } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ | 
|  | csum_partial: | 
|  |  | 
|  | udp4_hwcsum(skb, fl4->saddr, fl4->daddr); | 
|  | goto send; | 
|  |  | 
|  | } else | 
|  | csum = udp_csum(skb); | 
|  |  | 
|  | /* add protocol-dependent pseudo-header */ | 
|  | uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len, | 
|  | sk->sk_protocol, csum); | 
|  | if (uh->check == 0) | 
|  | uh->check = CSUM_MANGLED_0; | 
|  |  | 
|  | send: | 
|  | err = ip_send_skb(sock_net(sk), skb); | 
|  | if (err) { | 
|  | if (err == -ENOBUFS && | 
|  | !inet_test_bit(RECVERR, sk)) { | 
|  | UDP_INC_STATS(sock_net(sk), | 
|  | UDP_MIB_SNDBUFERRORS, is_udplite); | 
|  | err = 0; | 
|  | } | 
|  | } else | 
|  | UDP_INC_STATS(sock_net(sk), | 
|  | UDP_MIB_OUTDATAGRAMS, is_udplite); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Push out all pending data as one UDP datagram. Socket is locked. | 
|  | */ | 
|  | int udp_push_pending_frames(struct sock *sk) | 
|  | { | 
|  | struct udp_sock  *up = udp_sk(sk); | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  | struct flowi4 *fl4 = &inet->cork.fl.u.ip4; | 
|  | struct sk_buff *skb; | 
|  | int err = 0; | 
|  |  | 
|  | skb = ip_finish_skb(sk, fl4); | 
|  | if (!skb) | 
|  | goto out; | 
|  |  | 
|  | err = udp_send_skb(skb, fl4, &inet->cork.base); | 
|  |  | 
|  | out: | 
|  | up->len = 0; | 
|  | WRITE_ONCE(up->pending, 0); | 
|  | return err; | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_push_pending_frames); | 
|  |  | 
|  | static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) | 
|  | { | 
|  | switch (cmsg->cmsg_type) { | 
|  | case UDP_SEGMENT: | 
|  | if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) | 
|  | return -EINVAL; | 
|  | *gso_size = *(__u16 *)CMSG_DATA(cmsg); | 
|  | return 0; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) | 
|  | { | 
|  | struct cmsghdr *cmsg; | 
|  | bool need_ip = false; | 
|  | int err; | 
|  |  | 
|  | for_each_cmsghdr(cmsg, msg) { | 
|  | if (!CMSG_OK(msg, cmsg)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (cmsg->cmsg_level != SOL_UDP) { | 
|  | need_ip = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | err = __udp_cmsg_send(cmsg, gso_size); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return need_ip; | 
|  | } | 
|  | EXPORT_IPV6_MOD_GPL(udp_cmsg_send); | 
|  |  | 
|  | int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) | 
|  | { | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  | struct udp_sock *up = udp_sk(sk); | 
|  | DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); | 
|  | struct flowi4 fl4_stack; | 
|  | struct flowi4 *fl4; | 
|  | int ulen = len; | 
|  | struct ipcm_cookie ipc; | 
|  | struct rtable *rt = NULL; | 
|  | int free = 0; | 
|  | int connected = 0; | 
|  | __be32 daddr, faddr, saddr; | 
|  | u8 scope; | 
|  | __be16 dport; | 
|  | int err, is_udplite = IS_UDPLITE(sk); | 
|  | int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE; | 
|  | int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); | 
|  | struct sk_buff *skb; | 
|  | struct ip_options_data opt_copy; | 
|  | int uc_index; | 
|  |  | 
|  | if (len > 0xFFFF) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | /* | 
|  | *	Check the flags. | 
|  | */ | 
|  |  | 
|  | if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; | 
|  |  | 
|  | fl4 = &inet->cork.fl.u.ip4; | 
|  | if (READ_ONCE(up->pending)) { | 
|  | /* | 
|  | * There are pending frames. | 
|  | * The socket lock must be held while it's corked. | 
|  | */ | 
|  | lock_sock(sk); | 
|  | if (likely(up->pending)) { | 
|  | if (unlikely(up->pending != AF_INET)) { | 
|  | release_sock(sk); | 
|  | return -EINVAL; | 
|  | } | 
|  | goto do_append_data; | 
|  | } | 
|  | release_sock(sk); | 
|  | } | 
|  | ulen += sizeof(struct udphdr); | 
|  |  | 
|  | /* | 
|  | *	Get and verify the address. | 
|  | */ | 
|  | if (usin) { | 
|  | if (msg->msg_namelen < sizeof(*usin)) | 
|  | return -EINVAL; | 
|  | if (usin->sin_family != AF_INET) { | 
|  | if (usin->sin_family != AF_UNSPEC) | 
|  | return -EAFNOSUPPORT; | 
|  | } | 
|  |  | 
|  | daddr = usin->sin_addr.s_addr; | 
|  | dport = usin->sin_port; | 
|  | if (dport == 0) | 
|  | return -EINVAL; | 
|  | } else { | 
|  | if (sk->sk_state != TCP_ESTABLISHED) | 
|  | return -EDESTADDRREQ; | 
|  | daddr = inet->inet_daddr; | 
|  | dport = inet->inet_dport; | 
|  | /* Open fast path for connected socket. | 
|  | Route will not be used, if at least one option is set. | 
|  | */ | 
|  | connected = 1; | 
|  | } | 
|  |  | 
|  | ipcm_init_sk(&ipc, inet); | 
|  | ipc.gso_size = READ_ONCE(up->gso_size); | 
|  |  | 
|  | if (msg->msg_controllen) { | 
|  | err = udp_cmsg_send(sk, msg, &ipc.gso_size); | 
|  | if (err > 0) { | 
|  | err = ip_cmsg_send(sk, msg, &ipc, | 
|  | sk->sk_family == AF_INET6); | 
|  | connected = 0; | 
|  | } | 
|  | if (unlikely(err < 0)) { | 
|  | kfree(ipc.opt); | 
|  | return err; | 
|  | } | 
|  | if (ipc.opt) | 
|  | free = 1; | 
|  | } | 
|  | if (!ipc.opt) { | 
|  | struct ip_options_rcu *inet_opt; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | inet_opt = rcu_dereference(inet->inet_opt); | 
|  | if (inet_opt) { | 
|  | memcpy(&opt_copy, inet_opt, | 
|  | sizeof(*inet_opt) + inet_opt->opt.optlen); | 
|  | ipc.opt = &opt_copy.opt; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { | 
|  | err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, | 
|  | (struct sockaddr *)usin, | 
|  | &msg->msg_namelen, | 
|  | &ipc.addr); | 
|  | if (err) | 
|  | goto out_free; | 
|  | if (usin) { | 
|  | if (usin->sin_port == 0) { | 
|  | /* BPF program set invalid port. Reject it. */ | 
|  | err = -EINVAL; | 
|  | goto out_free; | 
|  | } | 
|  | daddr = usin->sin_addr.s_addr; | 
|  | dport = usin->sin_port; | 
|  | } | 
|  | } | 
|  |  | 
|  | saddr = ipc.addr; | 
|  | ipc.addr = faddr = daddr; | 
|  |  | 
|  | if (ipc.opt && ipc.opt->opt.srr) { | 
|  | if (!daddr) { | 
|  | err = -EINVAL; | 
|  | goto out_free; | 
|  | } | 
|  | faddr = ipc.opt->opt.faddr; | 
|  | connected = 0; | 
|  | } | 
|  | scope = ip_sendmsg_scope(inet, &ipc, msg); | 
|  | if (scope == RT_SCOPE_LINK) | 
|  | connected = 0; | 
|  |  | 
|  | uc_index = READ_ONCE(inet->uc_index); | 
|  | if (ipv4_is_multicast(daddr)) { | 
|  | if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) | 
|  | ipc.oif = READ_ONCE(inet->mc_index); | 
|  | if (!saddr) | 
|  | saddr = READ_ONCE(inet->mc_addr); | 
|  | connected = 0; | 
|  | } else if (!ipc.oif) { | 
|  | ipc.oif = uc_index; | 
|  | } else if (ipv4_is_lbcast(daddr) && uc_index) { | 
|  | /* oif is set, packet is to local broadcast and | 
|  | * uc_index is set. oif is most likely set | 
|  | * by sk_bound_dev_if. If uc_index != oif check if the | 
|  | * oif is an L3 master and uc_index is an L3 slave. | 
|  | * If so, we want to allow the send using the uc_index. | 
|  | */ | 
|  | if (ipc.oif != uc_index && | 
|  | ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk), | 
|  | uc_index)) { | 
|  | ipc.oif = uc_index; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (connected) | 
|  | rt = dst_rtable(sk_dst_check(sk, 0)); | 
|  |  | 
|  | if (!rt) { | 
|  | struct net *net = sock_net(sk); | 
|  | __u8 flow_flags = inet_sk_flowi_flags(sk); | 
|  |  | 
|  | fl4 = &fl4_stack; | 
|  |  | 
|  | flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, | 
|  | ipc.tos & INET_DSCP_MASK, scope, | 
|  | sk->sk_protocol, flow_flags, faddr, saddr, | 
|  | dport, inet->inet_sport, | 
|  | sk_uid(sk)); | 
|  |  | 
|  | security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4)); | 
|  | rt = ip_route_output_flow(net, fl4, sk); | 
|  | if (IS_ERR(rt)) { | 
|  | err = PTR_ERR(rt); | 
|  | rt = NULL; | 
|  | if (err == -ENETUNREACH) | 
|  | IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = -EACCES; | 
|  | if ((rt->rt_flags & RTCF_BROADCAST) && | 
|  | !sock_flag(sk, SOCK_BROADCAST)) | 
|  | goto out; | 
|  | if (connected) | 
|  | sk_dst_set(sk, dst_clone(&rt->dst)); | 
|  | } | 
|  |  | 
|  | if (msg->msg_flags&MSG_CONFIRM) | 
|  | goto do_confirm; | 
|  | back_from_confirm: | 
|  |  | 
|  | saddr = fl4->saddr; | 
|  | if (!ipc.addr) | 
|  | daddr = ipc.addr = fl4->daddr; | 
|  |  | 
|  | /* Lockless fast path for the non-corking case. */ | 
|  | if (!corkreq) { | 
|  | struct inet_cork cork; | 
|  |  | 
|  | skb = ip_make_skb(sk, fl4, getfrag, msg, ulen, | 
|  | sizeof(struct udphdr), &ipc, &rt, | 
|  | &cork, msg->msg_flags); | 
|  | err = PTR_ERR(skb); | 
|  | if (!IS_ERR_OR_NULL(skb)) | 
|  | err = udp_send_skb(skb, fl4, &cork); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | lock_sock(sk); | 
|  | if (unlikely(up->pending)) { | 
|  | /* The socket is already corked while preparing it. */ | 
|  | /* ... which is an evident application bug. --ANK */ | 
|  | release_sock(sk); | 
|  |  | 
|  | net_dbg_ratelimited("socket already corked\n"); | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | *	Now cork the socket to pend data. | 
|  | */ | 
|  | fl4 = &inet->cork.fl.u.ip4; | 
|  | fl4->daddr = daddr; | 
|  | fl4->saddr = saddr; | 
|  | fl4->fl4_dport = dport; | 
|  | fl4->fl4_sport = inet->inet_sport; | 
|  | WRITE_ONCE(up->pending, AF_INET); | 
|  |  | 
|  | do_append_data: | 
|  | up->len += ulen; | 
|  | err = ip_append_data(sk, fl4, getfrag, msg, ulen, | 
|  | sizeof(struct udphdr), &ipc, &rt, | 
|  | corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); | 
|  | if (err) | 
|  | udp_flush_pending_frames(sk); | 
|  | else if (!corkreq) | 
|  | err = udp_push_pending_frames(sk); | 
|  | else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) | 
|  | WRITE_ONCE(up->pending, 0); | 
|  | release_sock(sk); | 
|  |  | 
|  | out: | 
|  | ip_rt_put(rt); | 
|  | out_free: | 
|  | if (free) | 
|  | kfree(ipc.opt); | 
|  | if (!err) | 
|  | return len; | 
|  | /* | 
|  | * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting | 
|  | * ENOBUFS might not be good (it's not tunable per se), but otherwise | 
|  | * we don't have a good statistic (IpOutDiscards but it can be too many | 
|  | * things).  We could add another new stat but at least for now that | 
|  | * seems like overkill. | 
|  | */ | 
|  | if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { | 
|  | UDP_INC_STATS(sock_net(sk), | 
|  | UDP_MIB_SNDBUFERRORS, is_udplite); | 
|  | } | 
|  | return err; | 
|  |  | 
|  | do_confirm: | 
|  | if (msg->msg_flags & MSG_PROBE) | 
|  | dst_confirm_neigh(&rt->dst, &fl4->daddr); | 
|  | if (!(msg->msg_flags&MSG_PROBE) || len) | 
|  | goto back_from_confirm; | 
|  | err = 0; | 
|  | goto out; | 
|  | } | 
|  | EXPORT_SYMBOL(udp_sendmsg); | 
|  |  | 
|  | void udp_splice_eof(struct socket *sock) | 
|  | { | 
|  | struct sock *sk = sock->sk; | 
|  | struct udp_sock *up = udp_sk(sk); | 
|  |  | 
|  | if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk)) | 
|  | return; | 
|  |  | 
|  | lock_sock(sk); | 
|  | if (up->pending && !udp_test_bit(CORK, sk)) | 
|  | udp_push_pending_frames(sk); | 
|  | release_sock(sk); | 
|  | } | 
|  | EXPORT_IPV6_MOD_GPL(udp_splice_eof); | 
|  |  | 
|  | #define UDP_SKB_IS_STATELESS 0x80000000 | 
|  |  | 
|  | /* all head states (dst, sk, nf conntrack) except skb extensions are | 
|  | * cleared by udp_rcv(). | 
|  | * | 
|  | * We need to preserve secpath, if present, to eventually process | 
|  | * IP_CMSG_PASSSEC at recvmsg() time. | 
|  | * | 
|  | * Other extensions can be cleared. | 
|  | */ | 
|  | static bool udp_try_make_stateless(struct sk_buff *skb) | 
|  | { | 
|  | if (!skb_has_extensions(skb)) | 
|  | return true; | 
|  |  | 
|  | if (!secpath_exists(skb)) { | 
|  | skb_ext_reset(skb); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void udp_set_dev_scratch(struct sk_buff *skb) | 
|  | { | 
|  | struct udp_dev_scratch *scratch = udp_skb_scratch(skb); | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); | 
|  | scratch->_tsize_state = skb->truesize; | 
|  | #if BITS_PER_LONG == 64 | 
|  | scratch->len = skb->len; | 
|  | scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); | 
|  | scratch->is_linear = !skb_is_nonlinear(skb); | 
|  | #endif | 
|  | if (udp_try_make_stateless(skb)) | 
|  | scratch->_tsize_state |= UDP_SKB_IS_STATELESS; | 
|  | } | 
|  |  | 
|  | static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) | 
|  | { | 
|  | /* We come here after udp_lib_checksum_complete() returned 0. | 
|  | * This means that __skb_checksum_complete() might have | 
|  | * set skb->csum_valid to 1. | 
|  | * On 64bit platforms, we can set csum_unnecessary | 
|  | * to true, but only if the skb is not shared. | 
|  | */ | 
|  | #if BITS_PER_LONG == 64 | 
|  | if (!skb_shared(skb)) | 
|  | udp_skb_scratch(skb)->csum_unnecessary = true; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int udp_skb_truesize(struct sk_buff *skb) | 
|  | { | 
|  | return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; | 
|  | } | 
|  |  | 
|  | static bool udp_skb_has_head_state(struct sk_buff *skb) | 
|  | { | 
|  | return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); | 
|  | } | 
|  |  | 
|  | /* fully reclaim rmem/fwd memory allocated for skb */ | 
|  | static void udp_rmem_release(struct sock *sk, unsigned int size, | 
|  | int partial, bool rx_queue_lock_held) | 
|  | { | 
|  | struct udp_sock *up = udp_sk(sk); | 
|  | struct sk_buff_head *sk_queue; | 
|  | unsigned int amt; | 
|  |  | 
|  | if (likely(partial)) { | 
|  | up->forward_deficit += size; | 
|  | size = up->forward_deficit; | 
|  | if (size < READ_ONCE(up->forward_threshold) && | 
|  | !skb_queue_empty(&up->reader_queue)) | 
|  | return; | 
|  | } else { | 
|  | size += up->forward_deficit; | 
|  | } | 
|  | up->forward_deficit = 0; | 
|  |  | 
|  | /* acquire the sk_receive_queue for fwd allocated memory scheduling, | 
|  | * if the called don't held it already | 
|  | */ | 
|  | sk_queue = &sk->sk_receive_queue; | 
|  | if (!rx_queue_lock_held) | 
|  | spin_lock(&sk_queue->lock); | 
|  |  | 
|  | amt = (size + sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); | 
|  | sk_forward_alloc_add(sk, size - amt); | 
|  |  | 
|  | if (amt) | 
|  | __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT); | 
|  |  | 
|  | atomic_sub(size, &sk->sk_rmem_alloc); | 
|  |  | 
|  | /* this can save us from acquiring the rx queue lock on next receive */ | 
|  | skb_queue_splice_tail_init(sk_queue, &up->reader_queue); | 
|  |  | 
|  | if (!rx_queue_lock_held) | 
|  | spin_unlock(&sk_queue->lock); | 
|  | } | 
|  |  | 
|  | /* Note: called with reader_queue.lock held. | 
|  | * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch | 
|  | * This avoids a cache line miss while receive_queue lock is held. | 
|  | * Look at __udp_enqueue_schedule_skb() to find where this copy is done. | 
|  | */ | 
|  | void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | prefetch(&skb->data); | 
|  | udp_rmem_release(sk, udp_skb_truesize(skb), 1, false); | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_skb_destructor); | 
|  |  | 
|  | /* as above, but the caller held the rx queue lock, too */ | 
|  | static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | prefetch(&skb->data); | 
|  | udp_rmem_release(sk, udp_skb_truesize(skb), 1, true); | 
|  | } | 
|  |  | 
|  | /* Idea of busylocks is to let producers grab an extra spinlock | 
|  | * to relieve pressure on the receive_queue spinlock shared by consumer. | 
|  | * Under flood, this means that only one producer can be in line | 
|  | * trying to acquire the receive_queue spinlock. | 
|  | * These busylock can be allocated on a per cpu manner, instead of a | 
|  | * per socket one (that would consume a cache line per socket) | 
|  | */ | 
|  | static int udp_busylocks_log __read_mostly; | 
|  | static spinlock_t *udp_busylocks __read_mostly; | 
|  |  | 
|  | static spinlock_t *busylock_acquire(void *ptr) | 
|  | { | 
|  | spinlock_t *busy; | 
|  |  | 
|  | busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log); | 
|  | spin_lock(busy); | 
|  | return busy; | 
|  | } | 
|  |  | 
|  | static void busylock_release(spinlock_t *busy) | 
|  | { | 
|  | if (busy) | 
|  | spin_unlock(busy); | 
|  | } | 
|  |  | 
|  | static int udp_rmem_schedule(struct sock *sk, int size) | 
|  | { | 
|  | int delta; | 
|  |  | 
|  | delta = size - sk->sk_forward_alloc; | 
|  | if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV)) | 
|  | return -ENOBUFS; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct sk_buff_head *list = &sk->sk_receive_queue; | 
|  | unsigned int rmem, rcvbuf; | 
|  | spinlock_t *busy = NULL; | 
|  | int size, err = -ENOMEM; | 
|  |  | 
|  | rmem = atomic_read(&sk->sk_rmem_alloc); | 
|  | rcvbuf = READ_ONCE(sk->sk_rcvbuf); | 
|  | size = skb->truesize; | 
|  |  | 
|  | /* Immediately drop when the receive queue is full. | 
|  | * Cast to unsigned int performs the boundary check for INT_MAX. | 
|  | */ | 
|  | if (rmem + size > rcvbuf) { | 
|  | if (rcvbuf > INT_MAX >> 1) | 
|  | goto drop; | 
|  |  | 
|  | /* Always allow at least one packet for small buffer. */ | 
|  | if (rmem > rcvbuf) | 
|  | goto drop; | 
|  | } | 
|  |  | 
|  | /* Under mem pressure, it might be helpful to help udp_recvmsg() | 
|  | * having linear skbs : | 
|  | * - Reduce memory overhead and thus increase receive queue capacity | 
|  | * - Less cache line misses at copyout() time | 
|  | * - Less work at consume_skb() (less alien page frag freeing) | 
|  | */ | 
|  | if (rmem > (rcvbuf >> 1)) { | 
|  | skb_condense(skb); | 
|  | size = skb->truesize; | 
|  | busy = busylock_acquire(sk); | 
|  | } | 
|  |  | 
|  | udp_set_dev_scratch(skb); | 
|  |  | 
|  | atomic_add(size, &sk->sk_rmem_alloc); | 
|  |  | 
|  | spin_lock(&list->lock); | 
|  | err = udp_rmem_schedule(sk, size); | 
|  | if (err) { | 
|  | spin_unlock(&list->lock); | 
|  | goto uncharge_drop; | 
|  | } | 
|  |  | 
|  | sk_forward_alloc_add(sk, -size); | 
|  |  | 
|  | /* no need to setup a destructor, we will explicitly release the | 
|  | * forward allocated memory on dequeue | 
|  | */ | 
|  | sock_skb_set_dropcount(sk, skb); | 
|  |  | 
|  | __skb_queue_tail(list, skb); | 
|  | spin_unlock(&list->lock); | 
|  |  | 
|  | if (!sock_flag(sk, SOCK_DEAD)) | 
|  | INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk); | 
|  |  | 
|  | busylock_release(busy); | 
|  | return 0; | 
|  |  | 
|  | uncharge_drop: | 
|  | atomic_sub(skb->truesize, &sk->sk_rmem_alloc); | 
|  |  | 
|  | drop: | 
|  | atomic_inc(&sk->sk_drops); | 
|  | busylock_release(busy); | 
|  | return err; | 
|  | } | 
|  | EXPORT_IPV6_MOD_GPL(__udp_enqueue_schedule_skb); | 
|  |  | 
|  | void udp_destruct_common(struct sock *sk) | 
|  | { | 
|  | /* reclaim completely the forward allocated memory */ | 
|  | struct udp_sock *up = udp_sk(sk); | 
|  | unsigned int total = 0; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue); | 
|  | while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) { | 
|  | total += skb->truesize; | 
|  | kfree_skb(skb); | 
|  | } | 
|  | udp_rmem_release(sk, total, 0, true); | 
|  | } | 
|  | EXPORT_IPV6_MOD_GPL(udp_destruct_common); | 
|  |  | 
|  | static void udp_destruct_sock(struct sock *sk) | 
|  | { | 
|  | udp_destruct_common(sk); | 
|  | inet_sock_destruct(sk); | 
|  | } | 
|  |  | 
|  | int udp_init_sock(struct sock *sk) | 
|  | { | 
|  | udp_lib_init_sock(sk); | 
|  | sk->sk_destruct = udp_destruct_sock; | 
|  | set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) | 
|  | { | 
|  | if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset))) | 
|  | sk_peek_offset_bwd(sk, len); | 
|  |  | 
|  | if (!skb_unref(skb)) | 
|  | return; | 
|  |  | 
|  | /* In the more common cases we cleared the head states previously, | 
|  | * see __udp_queue_rcv_skb(). | 
|  | */ | 
|  | if (unlikely(udp_skb_has_head_state(skb))) | 
|  | skb_release_head_state(skb); | 
|  | __consume_stateless_skb(skb); | 
|  | } | 
|  | EXPORT_IPV6_MOD_GPL(skb_consume_udp); | 
|  |  | 
|  | static struct sk_buff *__first_packet_length(struct sock *sk, | 
|  | struct sk_buff_head *rcvq, | 
|  | unsigned int *total) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | while ((skb = skb_peek(rcvq)) != NULL) { | 
|  | if (udp_lib_checksum_complete(skb)) { | 
|  | __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, | 
|  | IS_UDPLITE(sk)); | 
|  | __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, | 
|  | IS_UDPLITE(sk)); | 
|  | atomic_inc(&sk->sk_drops); | 
|  | __skb_unlink(skb, rcvq); | 
|  | *total += skb->truesize; | 
|  | kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); | 
|  | } else { | 
|  | udp_skb_csum_unnecessary_set(skb); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	first_packet_length	- return length of first packet in receive queue | 
|  | *	@sk: socket | 
|  | * | 
|  | *	Drops all bad checksum frames, until a valid one is found. | 
|  | *	Returns the length of found skb, or -1 if none is found. | 
|  | */ | 
|  | static int first_packet_length(struct sock *sk) | 
|  | { | 
|  | struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; | 
|  | struct sk_buff_head *sk_queue = &sk->sk_receive_queue; | 
|  | unsigned int total = 0; | 
|  | struct sk_buff *skb; | 
|  | int res; | 
|  |  | 
|  | spin_lock_bh(&rcvq->lock); | 
|  | skb = __first_packet_length(sk, rcvq, &total); | 
|  | if (!skb && !skb_queue_empty_lockless(sk_queue)) { | 
|  | spin_lock(&sk_queue->lock); | 
|  | skb_queue_splice_tail_init(sk_queue, rcvq); | 
|  | spin_unlock(&sk_queue->lock); | 
|  |  | 
|  | skb = __first_packet_length(sk, rcvq, &total); | 
|  | } | 
|  | res = skb ? skb->len : -1; | 
|  | if (total) | 
|  | udp_rmem_release(sk, total, 1, false); | 
|  | spin_unlock_bh(&rcvq->lock); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	IOCTL requests applicable to the UDP protocol | 
|  | */ | 
|  |  | 
|  | int udp_ioctl(struct sock *sk, int cmd, int *karg) | 
|  | { | 
|  | switch (cmd) { | 
|  | case SIOCOUTQ: | 
|  | { | 
|  | *karg = sk_wmem_alloc_get(sk); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | case SIOCINQ: | 
|  | { | 
|  | *karg = max_t(int, 0, first_packet_length(sk)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | default: | 
|  | return -ENOIOCTLCMD; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_ioctl); | 
|  |  | 
|  | struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, | 
|  | int *off, int *err) | 
|  | { | 
|  | struct sk_buff_head *sk_queue = &sk->sk_receive_queue; | 
|  | struct sk_buff_head *queue; | 
|  | struct sk_buff *last; | 
|  | long timeo; | 
|  | int error; | 
|  |  | 
|  | queue = &udp_sk(sk)->reader_queue; | 
|  | timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); | 
|  | do { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | error = sock_error(sk); | 
|  | if (error) | 
|  | break; | 
|  |  | 
|  | error = -EAGAIN; | 
|  | do { | 
|  | spin_lock_bh(&queue->lock); | 
|  | skb = __skb_try_recv_from_queue(queue, flags, off, err, | 
|  | &last); | 
|  | if (skb) { | 
|  | if (!(flags & MSG_PEEK)) | 
|  | udp_skb_destructor(sk, skb); | 
|  | spin_unlock_bh(&queue->lock); | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | if (skb_queue_empty_lockless(sk_queue)) { | 
|  | spin_unlock_bh(&queue->lock); | 
|  | goto busy_check; | 
|  | } | 
|  |  | 
|  | /* refill the reader queue and walk it again | 
|  | * keep both queues locked to avoid re-acquiring | 
|  | * the sk_receive_queue lock if fwd memory scheduling | 
|  | * is needed. | 
|  | */ | 
|  | spin_lock(&sk_queue->lock); | 
|  | skb_queue_splice_tail_init(sk_queue, queue); | 
|  |  | 
|  | skb = __skb_try_recv_from_queue(queue, flags, off, err, | 
|  | &last); | 
|  | if (skb && !(flags & MSG_PEEK)) | 
|  | udp_skb_dtor_locked(sk, skb); | 
|  | spin_unlock(&sk_queue->lock); | 
|  | spin_unlock_bh(&queue->lock); | 
|  | if (skb) | 
|  | return skb; | 
|  |  | 
|  | busy_check: | 
|  | if (!sk_can_busy_loop(sk)) | 
|  | break; | 
|  |  | 
|  | sk_busy_loop(sk, flags & MSG_DONTWAIT); | 
|  | } while (!skb_queue_empty_lockless(sk_queue)); | 
|  |  | 
|  | /* sk_queue is empty, reader_queue may contain peeked packets */ | 
|  | } while (timeo && | 
|  | !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue, | 
|  | &error, &timeo, | 
|  | (struct sk_buff *)sk_queue)); | 
|  |  | 
|  | *err = error; | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(__skb_recv_udp); | 
|  |  | 
|  | int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | int err; | 
|  |  | 
|  | try_again: | 
|  | skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); | 
|  | if (!skb) | 
|  | return err; | 
|  |  | 
|  | if (udp_lib_checksum_complete(skb)) { | 
|  | int is_udplite = IS_UDPLITE(sk); | 
|  | struct net *net = sock_net(sk); | 
|  |  | 
|  | __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); | 
|  | __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); | 
|  | atomic_inc(&sk->sk_drops); | 
|  | kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); | 
|  | goto try_again; | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); | 
|  | return recv_actor(sk, skb); | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_read_skb); | 
|  |  | 
|  | /* | 
|  | * 	This should be easy, if there is something there we | 
|  | * 	return it, otherwise we block. | 
|  | */ | 
|  |  | 
|  | int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, | 
|  | int *addr_len) | 
|  | { | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  | DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); | 
|  | struct sk_buff *skb; | 
|  | unsigned int ulen, copied; | 
|  | int off, err, peeking = flags & MSG_PEEK; | 
|  | int is_udplite = IS_UDPLITE(sk); | 
|  | bool checksum_valid = false; | 
|  |  | 
|  | if (flags & MSG_ERRQUEUE) | 
|  | return ip_recv_error(sk, msg, len, addr_len); | 
|  |  | 
|  | try_again: | 
|  | off = sk_peek_offset(sk, flags); | 
|  | skb = __skb_recv_udp(sk, flags, &off, &err); | 
|  | if (!skb) | 
|  | return err; | 
|  |  | 
|  | ulen = udp_skb_len(skb); | 
|  | copied = len; | 
|  | if (copied > ulen - off) | 
|  | copied = ulen - off; | 
|  | else if (copied < ulen) | 
|  | msg->msg_flags |= MSG_TRUNC; | 
|  |  | 
|  | /* | 
|  | * If checksum is needed at all, try to do it while copying the | 
|  | * data.  If the data is truncated, or if we only want a partial | 
|  | * coverage checksum (UDP-Lite), do it before the copy. | 
|  | */ | 
|  |  | 
|  | if (copied < ulen || peeking || | 
|  | (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { | 
|  | checksum_valid = udp_skb_csum_unnecessary(skb) || | 
|  | !__udp_lib_checksum_complete(skb); | 
|  | if (!checksum_valid) | 
|  | goto csum_copy_err; | 
|  | } | 
|  |  | 
|  | if (checksum_valid || udp_skb_csum_unnecessary(skb)) { | 
|  | if (udp_skb_is_linear(skb)) | 
|  | err = copy_linear_skb(skb, copied, off, &msg->msg_iter); | 
|  | else | 
|  | err = skb_copy_datagram_msg(skb, off, msg, copied); | 
|  | } else { | 
|  | err = skb_copy_and_csum_datagram_msg(skb, off, msg); | 
|  |  | 
|  | if (err == -EINVAL) | 
|  | goto csum_copy_err; | 
|  | } | 
|  |  | 
|  | if (unlikely(err)) { | 
|  | if (!peeking) { | 
|  | atomic_inc(&sk->sk_drops); | 
|  | UDP_INC_STATS(sock_net(sk), | 
|  | UDP_MIB_INERRORS, is_udplite); | 
|  | } | 
|  | kfree_skb(skb); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (!peeking) | 
|  | UDP_INC_STATS(sock_net(sk), | 
|  | UDP_MIB_INDATAGRAMS, is_udplite); | 
|  |  | 
|  | sock_recv_cmsgs(msg, sk, skb); | 
|  |  | 
|  | /* Copy the address. */ | 
|  | if (sin) { | 
|  | sin->sin_family = AF_INET; | 
|  | sin->sin_port = udp_hdr(skb)->source; | 
|  | sin->sin_addr.s_addr = ip_hdr(skb)->saddr; | 
|  | memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); | 
|  | *addr_len = sizeof(*sin); | 
|  |  | 
|  | BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, | 
|  | (struct sockaddr *)sin, | 
|  | addr_len); | 
|  | } | 
|  |  | 
|  | if (udp_test_bit(GRO_ENABLED, sk)) | 
|  | udp_cmsg_recv(msg, sk, skb); | 
|  |  | 
|  | if (inet_cmsg_flags(inet)) | 
|  | ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off); | 
|  |  | 
|  | err = copied; | 
|  | if (flags & MSG_TRUNC) | 
|  | err = ulen; | 
|  |  | 
|  | skb_consume_udp(sk, skb, peeking ? -err : err); | 
|  | return err; | 
|  |  | 
|  | csum_copy_err: | 
|  | if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags, | 
|  | udp_skb_destructor)) { | 
|  | UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); | 
|  | UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); | 
|  | } | 
|  | kfree_skb_reason(skb, SKB_DROP_REASON_UDP_CSUM); | 
|  |  | 
|  | /* starting over for a new packet, but check if we need to yield */ | 
|  | cond_resched(); | 
|  | msg->msg_flags &= ~MSG_TRUNC; | 
|  | goto try_again; | 
|  | } | 
|  |  | 
|  | int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) | 
|  | { | 
|  | /* This check is replicated from __ip4_datagram_connect() and | 
|  | * intended to prevent BPF program called below from accessing bytes | 
|  | * that are out of the bound specified by user in addr_len. | 
|  | */ | 
|  | if (addr_len < sizeof(struct sockaddr_in)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_pre_connect); | 
|  |  | 
|  | static int udp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) | 
|  | { | 
|  | int res; | 
|  |  | 
|  | lock_sock(sk); | 
|  | res = __ip4_datagram_connect(sk, uaddr, addr_len); | 
|  | if (!res) | 
|  | udp4_hash4(sk); | 
|  | release_sock(sk); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | int __udp_disconnect(struct sock *sk, int flags) | 
|  | { | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  | /* | 
|  | *	1003.1g - break association. | 
|  | */ | 
|  |  | 
|  | sk->sk_state = TCP_CLOSE; | 
|  | inet->inet_daddr = 0; | 
|  | inet->inet_dport = 0; | 
|  | sock_rps_reset_rxhash(sk); | 
|  | sk->sk_bound_dev_if = 0; | 
|  | if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { | 
|  | inet_reset_saddr(sk); | 
|  | if (sk->sk_prot->rehash && | 
|  | (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) | 
|  | sk->sk_prot->rehash(sk); | 
|  | } | 
|  |  | 
|  | if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { | 
|  | sk->sk_prot->unhash(sk); | 
|  | inet->inet_sport = 0; | 
|  | } | 
|  | sk_dst_reset(sk); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(__udp_disconnect); | 
|  |  | 
|  | int udp_disconnect(struct sock *sk, int flags) | 
|  | { | 
|  | lock_sock(sk); | 
|  | __udp_disconnect(sk, flags); | 
|  | release_sock(sk); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_disconnect); | 
|  |  | 
|  | void udp_lib_unhash(struct sock *sk) | 
|  | { | 
|  | if (sk_hashed(sk)) { | 
|  | struct udp_table *udptable = udp_get_table_prot(sk); | 
|  | struct udp_hslot *hslot, *hslot2; | 
|  |  | 
|  | sock_rps_delete_flow(sk); | 
|  | hslot  = udp_hashslot(udptable, sock_net(sk), | 
|  | udp_sk(sk)->udp_port_hash); | 
|  | hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); | 
|  |  | 
|  | spin_lock_bh(&hslot->lock); | 
|  | if (rcu_access_pointer(sk->sk_reuseport_cb)) | 
|  | reuseport_detach_sock(sk); | 
|  | if (sk_del_node_init_rcu(sk)) { | 
|  | hslot->count--; | 
|  | inet_sk(sk)->inet_num = 0; | 
|  | sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); | 
|  |  | 
|  | spin_lock(&hslot2->lock); | 
|  | hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); | 
|  | hslot2->count--; | 
|  | spin_unlock(&hslot2->lock); | 
|  |  | 
|  | udp_unhash4(udptable, sk); | 
|  | } | 
|  | spin_unlock_bh(&hslot->lock); | 
|  | } | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_lib_unhash); | 
|  |  | 
|  | /* | 
|  | * inet_rcv_saddr was changed, we must rehash secondary hash | 
|  | */ | 
|  | void udp_lib_rehash(struct sock *sk, u16 newhash, u16 newhash4) | 
|  | { | 
|  | if (sk_hashed(sk)) { | 
|  | struct udp_table *udptable = udp_get_table_prot(sk); | 
|  | struct udp_hslot *hslot, *hslot2, *nhslot2; | 
|  |  | 
|  | hslot = udp_hashslot(udptable, sock_net(sk), | 
|  | udp_sk(sk)->udp_port_hash); | 
|  | hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); | 
|  | nhslot2 = udp_hashslot2(udptable, newhash); | 
|  | udp_sk(sk)->udp_portaddr_hash = newhash; | 
|  |  | 
|  | if (hslot2 != nhslot2 || | 
|  | rcu_access_pointer(sk->sk_reuseport_cb)) { | 
|  | /* we must lock primary chain too */ | 
|  | spin_lock_bh(&hslot->lock); | 
|  | if (rcu_access_pointer(sk->sk_reuseport_cb)) | 
|  | reuseport_detach_sock(sk); | 
|  |  | 
|  | if (hslot2 != nhslot2) { | 
|  | spin_lock(&hslot2->lock); | 
|  | hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); | 
|  | hslot2->count--; | 
|  | spin_unlock(&hslot2->lock); | 
|  |  | 
|  | spin_lock(&nhslot2->lock); | 
|  | hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, | 
|  | &nhslot2->head); | 
|  | nhslot2->count++; | 
|  | spin_unlock(&nhslot2->lock); | 
|  | } | 
|  |  | 
|  | spin_unlock_bh(&hslot->lock); | 
|  | } | 
|  |  | 
|  | /* Now process hash4 if necessary: | 
|  | * (1) update hslot4; | 
|  | * (2) update hslot2->hash4_cnt. | 
|  | * Note that hslot2/hslot4 should be checked separately, as | 
|  | * either of them may change with the other unchanged. | 
|  | */ | 
|  | if (udp_hashed4(sk)) { | 
|  | spin_lock_bh(&hslot->lock); | 
|  |  | 
|  | udp_rehash4(udptable, sk, newhash4); | 
|  | if (hslot2 != nhslot2) { | 
|  | spin_lock(&hslot2->lock); | 
|  | udp_hash4_dec(hslot2); | 
|  | spin_unlock(&hslot2->lock); | 
|  |  | 
|  | spin_lock(&nhslot2->lock); | 
|  | udp_hash4_inc(nhslot2); | 
|  | spin_unlock(&nhslot2->lock); | 
|  | } | 
|  |  | 
|  | spin_unlock_bh(&hslot->lock); | 
|  | } | 
|  | } | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_lib_rehash); | 
|  |  | 
|  | void udp_v4_rehash(struct sock *sk) | 
|  | { | 
|  | u16 new_hash = ipv4_portaddr_hash(sock_net(sk), | 
|  | inet_sk(sk)->inet_rcv_saddr, | 
|  | inet_sk(sk)->inet_num); | 
|  | u16 new_hash4 = udp_ehashfn(sock_net(sk), | 
|  | sk->sk_rcv_saddr, sk->sk_num, | 
|  | sk->sk_daddr, sk->sk_dport); | 
|  |  | 
|  | udp_lib_rehash(sk, new_hash, new_hash4); | 
|  | } | 
|  |  | 
|  | static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | if (inet_sk(sk)->inet_daddr) { | 
|  | sock_rps_save_rxhash(sk, skb); | 
|  | sk_mark_napi_id(sk, skb); | 
|  | sk_incoming_cpu_update(sk); | 
|  | } else { | 
|  | sk_mark_napi_id_once(sk, skb); | 
|  | } | 
|  |  | 
|  | rc = __udp_enqueue_schedule_skb(sk, skb); | 
|  | if (rc < 0) { | 
|  | int is_udplite = IS_UDPLITE(sk); | 
|  | int drop_reason; | 
|  |  | 
|  | /* Note that an ENOMEM error is charged twice */ | 
|  | if (rc == -ENOMEM) { | 
|  | UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, | 
|  | is_udplite); | 
|  | drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; | 
|  | } else { | 
|  | UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, | 
|  | is_udplite); | 
|  | drop_reason = SKB_DROP_REASON_PROTO_MEM; | 
|  | } | 
|  | UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); | 
|  | trace_udp_fail_queue_rcv_skb(rc, sk, skb); | 
|  | sk_skb_reason_drop(sk, skb, drop_reason); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* returns: | 
|  | *  -1: error | 
|  | *   0: success | 
|  | *  >0: "udp encap" protocol resubmission | 
|  | * | 
|  | * Note that in the success and error cases, the skb is assumed to | 
|  | * have either been requeued or freed. | 
|  | */ | 
|  | static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | enum skb_drop_reason drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; | 
|  | struct udp_sock *up = udp_sk(sk); | 
|  | int is_udplite = IS_UDPLITE(sk); | 
|  |  | 
|  | /* | 
|  | *	Charge it to the socket, dropping if the queue is full. | 
|  | */ | 
|  | if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { | 
|  | drop_reason = SKB_DROP_REASON_XFRM_POLICY; | 
|  | goto drop; | 
|  | } | 
|  | nf_reset_ct(skb); | 
|  |  | 
|  | if (static_branch_unlikely(&udp_encap_needed_key) && | 
|  | READ_ONCE(up->encap_type)) { | 
|  | int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); | 
|  |  | 
|  | /* | 
|  | * This is an encapsulation socket so pass the skb to | 
|  | * the socket's udp_encap_rcv() hook. Otherwise, just | 
|  | * fall through and pass this up the UDP socket. | 
|  | * up->encap_rcv() returns the following value: | 
|  | * =0 if skb was successfully passed to the encap | 
|  | *    handler or was discarded by it. | 
|  | * >0 if skb should be passed on to UDP. | 
|  | * <0 if skb should be resubmitted as proto -N | 
|  | */ | 
|  |  | 
|  | /* if we're overly short, let UDP handle it */ | 
|  | encap_rcv = READ_ONCE(up->encap_rcv); | 
|  | if (encap_rcv) { | 
|  | int ret; | 
|  |  | 
|  | /* Verify checksum before giving to encap */ | 
|  | if (udp_lib_checksum_complete(skb)) | 
|  | goto csum_error; | 
|  |  | 
|  | ret = encap_rcv(sk, skb); | 
|  | if (ret <= 0) { | 
|  | __UDP_INC_STATS(sock_net(sk), | 
|  | UDP_MIB_INDATAGRAMS, | 
|  | is_udplite); | 
|  | return -ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* FALLTHROUGH -- it's a UDP Packet */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 	UDP-Lite specific tests, ignored on UDP sockets | 
|  | */ | 
|  | if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) { | 
|  | u16 pcrlen = READ_ONCE(up->pcrlen); | 
|  |  | 
|  | /* | 
|  | * MIB statistics other than incrementing the error count are | 
|  | * disabled for the following two types of errors: these depend | 
|  | * on the application settings, not on the functioning of the | 
|  | * protocol stack as such. | 
|  | * | 
|  | * RFC 3828 here recommends (sec 3.3): "There should also be a | 
|  | * way ... to ... at least let the receiving application block | 
|  | * delivery of packets with coverage values less than a value | 
|  | * provided by the application." | 
|  | */ | 
|  | if (pcrlen == 0) {          /* full coverage was set  */ | 
|  | net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", | 
|  | UDP_SKB_CB(skb)->cscov, skb->len); | 
|  | goto drop; | 
|  | } | 
|  | /* The next case involves violating the min. coverage requested | 
|  | * by the receiver. This is subtle: if receiver wants x and x is | 
|  | * greater than the buffersize/MTU then receiver will complain | 
|  | * that it wants x while sender emits packets of smaller size y. | 
|  | * Therefore the above ...()->partial_cov statement is essential. | 
|  | */ | 
|  | if (UDP_SKB_CB(skb)->cscov < pcrlen) { | 
|  | net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", | 
|  | UDP_SKB_CB(skb)->cscov, pcrlen); | 
|  | goto drop; | 
|  | } | 
|  | } | 
|  |  | 
|  | prefetch(&sk->sk_rmem_alloc); | 
|  | if (rcu_access_pointer(sk->sk_filter) && | 
|  | udp_lib_checksum_complete(skb)) | 
|  | goto csum_error; | 
|  |  | 
|  | if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr), &drop_reason)) | 
|  | goto drop; | 
|  |  | 
|  | udp_csum_pull_header(skb); | 
|  |  | 
|  | ipv4_pktinfo_prepare(sk, skb, true); | 
|  | return __udp_queue_rcv_skb(sk, skb); | 
|  |  | 
|  | csum_error: | 
|  | drop_reason = SKB_DROP_REASON_UDP_CSUM; | 
|  | __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); | 
|  | drop: | 
|  | __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); | 
|  | atomic_inc(&sk->sk_drops); | 
|  | sk_skb_reason_drop(sk, skb, drop_reason); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct sk_buff *next, *segs; | 
|  | int ret; | 
|  |  | 
|  | if (likely(!udp_unexpected_gso(sk, skb))) | 
|  | return udp_queue_rcv_one_skb(sk, skb); | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); | 
|  | __skb_push(skb, -skb_mac_offset(skb)); | 
|  | segs = udp_rcv_segment(sk, skb, true); | 
|  | skb_list_walk_safe(segs, skb, next) { | 
|  | __skb_pull(skb, skb_transport_offset(skb)); | 
|  |  | 
|  | udp_post_segment_fix_csum(skb); | 
|  | ret = udp_queue_rcv_one_skb(sk, skb); | 
|  | if (ret > 0) | 
|  | ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* For TCP sockets, sk_rx_dst is protected by socket lock | 
|  | * For UDP, we use xchg() to guard against concurrent changes. | 
|  | */ | 
|  | bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) | 
|  | { | 
|  | struct dst_entry *old; | 
|  |  | 
|  | if (dst_hold_safe(dst)) { | 
|  | old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst))); | 
|  | dst_release(old); | 
|  | return old != dst; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_sk_rx_dst_set); | 
|  |  | 
|  | /* | 
|  | *	Multicasts and broadcasts go to each listener. | 
|  | * | 
|  | *	Note: called only from the BH handler context. | 
|  | */ | 
|  | static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, | 
|  | struct udphdr  *uh, | 
|  | __be32 saddr, __be32 daddr, | 
|  | struct udp_table *udptable, | 
|  | int proto) | 
|  | { | 
|  | struct sock *sk, *first = NULL; | 
|  | unsigned short hnum = ntohs(uh->dest); | 
|  | struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum); | 
|  | unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); | 
|  | unsigned int offset = offsetof(typeof(*sk), sk_node); | 
|  | int dif = skb->dev->ifindex; | 
|  | int sdif = inet_sdif(skb); | 
|  | struct hlist_node *node; | 
|  | struct sk_buff *nskb; | 
|  |  | 
|  | if (use_hash2) { | 
|  | hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) & | 
|  | udptable->mask; | 
|  | hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask; | 
|  | start_lookup: | 
|  | hslot = &udptable->hash2[hash2].hslot; | 
|  | offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); | 
|  | } | 
|  |  | 
|  | sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { | 
|  | if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr, | 
|  | uh->source, saddr, dif, sdif, hnum)) | 
|  | continue; | 
|  |  | 
|  | if (!first) { | 
|  | first = sk; | 
|  | continue; | 
|  | } | 
|  | nskb = skb_clone(skb, GFP_ATOMIC); | 
|  |  | 
|  | if (unlikely(!nskb)) { | 
|  | atomic_inc(&sk->sk_drops); | 
|  | __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, | 
|  | IS_UDPLITE(sk)); | 
|  | __UDP_INC_STATS(net, UDP_MIB_INERRORS, | 
|  | IS_UDPLITE(sk)); | 
|  | continue; | 
|  | } | 
|  | if (udp_queue_rcv_skb(sk, nskb) > 0) | 
|  | consume_skb(nskb); | 
|  | } | 
|  |  | 
|  | /* Also lookup *:port if we are using hash2 and haven't done so yet. */ | 
|  | if (use_hash2 && hash2 != hash2_any) { | 
|  | hash2 = hash2_any; | 
|  | goto start_lookup; | 
|  | } | 
|  |  | 
|  | if (first) { | 
|  | if (udp_queue_rcv_skb(first, skb) > 0) | 
|  | consume_skb(skb); | 
|  | } else { | 
|  | kfree_skb(skb); | 
|  | __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, | 
|  | proto == IPPROTO_UDPLITE); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Initialize UDP checksum. If exited with zero value (success), | 
|  | * CHECKSUM_UNNECESSARY means, that no more checks are required. | 
|  | * Otherwise, csum completion requires checksumming packet body, | 
|  | * including udp header and folding it to skb->csum. | 
|  | */ | 
|  | static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, | 
|  | int proto) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | UDP_SKB_CB(skb)->partial_cov = 0; | 
|  | UDP_SKB_CB(skb)->cscov = skb->len; | 
|  |  | 
|  | if (proto == IPPROTO_UDPLITE) { | 
|  | err = udplite_checksum_init(skb, uh); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (UDP_SKB_CB(skb)->partial_cov) { | 
|  | skb->csum = inet_compute_pseudo(skb, proto); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Note, we are only interested in != 0 or == 0, thus the | 
|  | * force to int. | 
|  | */ | 
|  | err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, | 
|  | inet_compute_pseudo); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { | 
|  | /* If SW calculated the value, we know it's bad */ | 
|  | if (skb->csum_complete_sw) | 
|  | return 1; | 
|  |  | 
|  | /* HW says the value is bad. Let's validate that. | 
|  | * skb->csum is no longer the full packet checksum, | 
|  | * so don't treat it as such. | 
|  | */ | 
|  | skb_checksum_complete_unset(skb); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and | 
|  | * return code conversion for ip layer consumption | 
|  | */ | 
|  | static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, | 
|  | struct udphdr *uh) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) | 
|  | skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); | 
|  |  | 
|  | ret = udp_queue_rcv_skb(sk, skb); | 
|  |  | 
|  | /* a return value > 0 means to resubmit the input, but | 
|  | * it wants the return to be -protocol, or 0 | 
|  | */ | 
|  | if (ret > 0) | 
|  | return -ret; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	All we need to do is get the socket, and then do a checksum. | 
|  | */ | 
|  |  | 
|  | int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, | 
|  | int proto) | 
|  | { | 
|  | struct sock *sk = NULL; | 
|  | struct udphdr *uh; | 
|  | unsigned short ulen; | 
|  | struct rtable *rt = skb_rtable(skb); | 
|  | __be32 saddr, daddr; | 
|  | struct net *net = dev_net(skb->dev); | 
|  | bool refcounted; | 
|  | int drop_reason; | 
|  |  | 
|  | drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; | 
|  |  | 
|  | /* | 
|  | *  Validate the packet. | 
|  | */ | 
|  | if (!pskb_may_pull(skb, sizeof(struct udphdr))) | 
|  | goto drop;		/* No space for header. */ | 
|  |  | 
|  | uh   = udp_hdr(skb); | 
|  | ulen = ntohs(uh->len); | 
|  | saddr = ip_hdr(skb)->saddr; | 
|  | daddr = ip_hdr(skb)->daddr; | 
|  |  | 
|  | if (ulen > skb->len) | 
|  | goto short_packet; | 
|  |  | 
|  | if (proto == IPPROTO_UDP) { | 
|  | /* UDP validates ulen. */ | 
|  | if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) | 
|  | goto short_packet; | 
|  | uh = udp_hdr(skb); | 
|  | } | 
|  |  | 
|  | if (udp4_csum_init(skb, uh, proto)) | 
|  | goto csum_error; | 
|  |  | 
|  | sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest, | 
|  | &refcounted, udp_ehashfn); | 
|  | if (IS_ERR(sk)) | 
|  | goto no_sk; | 
|  |  | 
|  | if (sk) { | 
|  | struct dst_entry *dst = skb_dst(skb); | 
|  | int ret; | 
|  |  | 
|  | if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) | 
|  | udp_sk_rx_dst_set(sk, dst); | 
|  |  | 
|  | ret = udp_unicast_rcv_skb(sk, skb, uh); | 
|  | if (refcounted) | 
|  | sock_put(sk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) | 
|  | return __udp4_lib_mcast_deliver(net, skb, uh, | 
|  | saddr, daddr, udptable, proto); | 
|  |  | 
|  | sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); | 
|  | if (sk) | 
|  | return udp_unicast_rcv_skb(sk, skb, uh); | 
|  | no_sk: | 
|  | if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) | 
|  | goto drop; | 
|  | nf_reset_ct(skb); | 
|  |  | 
|  | /* No socket. Drop packet silently, if checksum is wrong */ | 
|  | if (udp_lib_checksum_complete(skb)) | 
|  | goto csum_error; | 
|  |  | 
|  | drop_reason = SKB_DROP_REASON_NO_SOCKET; | 
|  | __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); | 
|  | icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); | 
|  |  | 
|  | /* | 
|  | * Hmm.  We got an UDP packet to a port to which we | 
|  | * don't wanna listen.  Ignore it. | 
|  | */ | 
|  | sk_skb_reason_drop(sk, skb, drop_reason); | 
|  | return 0; | 
|  |  | 
|  | short_packet: | 
|  | drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; | 
|  | net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", | 
|  | proto == IPPROTO_UDPLITE ? "Lite" : "", | 
|  | &saddr, ntohs(uh->source), | 
|  | ulen, skb->len, | 
|  | &daddr, ntohs(uh->dest)); | 
|  | goto drop; | 
|  |  | 
|  | csum_error: | 
|  | /* | 
|  | * RFC1122: OK.  Discards the bad packet silently (as far as | 
|  | * the network is concerned, anyway) as per 4.1.3.4 (MUST). | 
|  | */ | 
|  | drop_reason = SKB_DROP_REASON_UDP_CSUM; | 
|  | net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", | 
|  | proto == IPPROTO_UDPLITE ? "Lite" : "", | 
|  | &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), | 
|  | ulen); | 
|  | __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); | 
|  | drop: | 
|  | __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); | 
|  | sk_skb_reason_drop(sk, skb, drop_reason); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* We can only early demux multicast if there is a single matching socket. | 
|  | * If more than one socket found returns NULL | 
|  | */ | 
|  | static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, | 
|  | __be16 loc_port, __be32 loc_addr, | 
|  | __be16 rmt_port, __be32 rmt_addr, | 
|  | int dif, int sdif) | 
|  | { | 
|  | struct udp_table *udptable = net->ipv4.udp_table; | 
|  | unsigned short hnum = ntohs(loc_port); | 
|  | struct sock *sk, *result; | 
|  | struct udp_hslot *hslot; | 
|  | unsigned int slot; | 
|  |  | 
|  | slot = udp_hashfn(net, hnum, udptable->mask); | 
|  | hslot = &udptable->hash[slot]; | 
|  |  | 
|  | /* Do not bother scanning a too big list */ | 
|  | if (hslot->count > 10) | 
|  | return NULL; | 
|  |  | 
|  | result = NULL; | 
|  | sk_for_each_rcu(sk, &hslot->head) { | 
|  | if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, | 
|  | rmt_port, rmt_addr, dif, sdif, hnum)) { | 
|  | if (result) | 
|  | return NULL; | 
|  | result = sk; | 
|  | } | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* For unicast we should only early demux connected sockets or we can | 
|  | * break forwarding setups.  The chains here can be long so only check | 
|  | * if the first socket is an exact match and if not move on. | 
|  | */ | 
|  | static struct sock *__udp4_lib_demux_lookup(struct net *net, | 
|  | __be16 loc_port, __be32 loc_addr, | 
|  | __be16 rmt_port, __be32 rmt_addr, | 
|  | int dif, int sdif) | 
|  | { | 
|  | struct udp_table *udptable = net->ipv4.udp_table; | 
|  | INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); | 
|  | unsigned short hnum = ntohs(loc_port); | 
|  | struct udp_hslot *hslot2; | 
|  | unsigned int hash2; | 
|  | __portpair ports; | 
|  | struct sock *sk; | 
|  |  | 
|  | hash2 = ipv4_portaddr_hash(net, loc_addr, hnum); | 
|  | hslot2 = udp_hashslot2(udptable, hash2); | 
|  | ports = INET_COMBINED_PORTS(rmt_port, hnum); | 
|  |  | 
|  | udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { | 
|  | if (inet_match(net, sk, acookie, ports, dif, sdif)) | 
|  | return sk; | 
|  | /* Only check first socket in chain */ | 
|  | break; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int udp_v4_early_demux(struct sk_buff *skb) | 
|  | { | 
|  | struct net *net = dev_net(skb->dev); | 
|  | struct in_device *in_dev = NULL; | 
|  | const struct iphdr *iph; | 
|  | const struct udphdr *uh; | 
|  | struct sock *sk = NULL; | 
|  | struct dst_entry *dst; | 
|  | int dif = skb->dev->ifindex; | 
|  | int sdif = inet_sdif(skb); | 
|  | int ours; | 
|  |  | 
|  | /* validate the packet */ | 
|  | if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr))) | 
|  | return 0; | 
|  |  | 
|  | iph = ip_hdr(skb); | 
|  | uh = udp_hdr(skb); | 
|  |  | 
|  | if (skb->pkt_type == PACKET_MULTICAST) { | 
|  | in_dev = __in_dev_get_rcu(skb->dev); | 
|  |  | 
|  | if (!in_dev) | 
|  | return 0; | 
|  |  | 
|  | ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr, | 
|  | iph->protocol); | 
|  | if (!ours) | 
|  | return 0; | 
|  |  | 
|  | sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr, | 
|  | uh->source, iph->saddr, | 
|  | dif, sdif); | 
|  | } else if (skb->pkt_type == PACKET_HOST) { | 
|  | sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr, | 
|  | uh->source, iph->saddr, dif, sdif); | 
|  | } | 
|  |  | 
|  | if (!sk) | 
|  | return 0; | 
|  |  | 
|  | skb->sk = sk; | 
|  | DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk)); | 
|  | skb->destructor = sock_pfree; | 
|  | dst = rcu_dereference(sk->sk_rx_dst); | 
|  |  | 
|  | if (dst) | 
|  | dst = dst_check(dst, 0); | 
|  | if (dst) { | 
|  | u32 itag = 0; | 
|  |  | 
|  | /* set noref for now. | 
|  | * any place which wants to hold dst has to call | 
|  | * dst_hold_safe() | 
|  | */ | 
|  | skb_dst_set_noref(skb, dst); | 
|  |  | 
|  | /* for unconnected multicast sockets we need to validate | 
|  | * the source on each packet | 
|  | */ | 
|  | if (!inet_sk(sk)->inet_daddr && in_dev) | 
|  | return ip_mc_validate_source(skb, iph->daddr, | 
|  | iph->saddr, | 
|  | ip4h_dscp(iph), | 
|  | skb->dev, in_dev, &itag); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int udp_rcv(struct sk_buff *skb) | 
|  | { | 
|  | return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP); | 
|  | } | 
|  |  | 
|  | void udp_destroy_sock(struct sock *sk) | 
|  | { | 
|  | struct udp_sock *up = udp_sk(sk); | 
|  | bool slow = lock_sock_fast(sk); | 
|  |  | 
|  | /* protects from races with udp_abort() */ | 
|  | sock_set_flag(sk, SOCK_DEAD); | 
|  | udp_flush_pending_frames(sk); | 
|  | unlock_sock_fast(sk, slow); | 
|  | if (static_branch_unlikely(&udp_encap_needed_key)) { | 
|  | if (up->encap_type) { | 
|  | void (*encap_destroy)(struct sock *sk); | 
|  | encap_destroy = READ_ONCE(up->encap_destroy); | 
|  | if (encap_destroy) | 
|  | encap_destroy(sk); | 
|  | } | 
|  | if (udp_test_bit(ENCAP_ENABLED, sk)) { | 
|  | static_branch_dec(&udp_encap_needed_key); | 
|  | udp_tunnel_cleanup_gro(sk); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef struct sk_buff *(*udp_gro_receive_t)(struct sock *sk, | 
|  | struct list_head *head, | 
|  | struct sk_buff *skb); | 
|  |  | 
|  | static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family, | 
|  | struct sock *sk) | 
|  | { | 
|  | #ifdef CONFIG_XFRM | 
|  | udp_gro_receive_t new_gro_receive; | 
|  |  | 
|  | if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) { | 
|  | if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) | 
|  | new_gro_receive = ipv6_stub->xfrm6_gro_udp_encap_rcv; | 
|  | else | 
|  | new_gro_receive = xfrm4_gro_udp_encap_rcv; | 
|  |  | 
|  | if (udp_sk(sk)->gro_receive != new_gro_receive) { | 
|  | /* | 
|  | * With IPV6_ADDRFORM the gro callback could change | 
|  | * after being set, unregister the old one, if valid. | 
|  | */ | 
|  | if (udp_sk(sk)->gro_receive) | 
|  | udp_tunnel_update_gro_rcv(sk, false); | 
|  |  | 
|  | WRITE_ONCE(udp_sk(sk)->gro_receive, new_gro_receive); | 
|  | udp_tunnel_update_gro_rcv(sk, true); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Socket option code for UDP | 
|  | */ | 
|  | int udp_lib_setsockopt(struct sock *sk, int level, int optname, | 
|  | sockptr_t optval, unsigned int optlen, | 
|  | int (*push_pending_frames)(struct sock *)) | 
|  | { | 
|  | struct udp_sock *up = udp_sk(sk); | 
|  | int val, valbool; | 
|  | int err = 0; | 
|  | int is_udplite = IS_UDPLITE(sk); | 
|  |  | 
|  | if (level == SOL_SOCKET) { | 
|  | err = sk_setsockopt(sk, level, optname, optval, optlen); | 
|  |  | 
|  | if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { | 
|  | sockopt_lock_sock(sk); | 
|  | /* paired with READ_ONCE in udp_rmem_release() */ | 
|  | WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); | 
|  | sockopt_release_sock(sk); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (optlen < sizeof(int)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_sockptr(&val, optval, sizeof(val))) | 
|  | return -EFAULT; | 
|  |  | 
|  | valbool = val ? 1 : 0; | 
|  |  | 
|  | switch (optname) { | 
|  | case UDP_CORK: | 
|  | if (val != 0) { | 
|  | udp_set_bit(CORK, sk); | 
|  | } else { | 
|  | udp_clear_bit(CORK, sk); | 
|  | lock_sock(sk); | 
|  | push_pending_frames(sk); | 
|  | release_sock(sk); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case UDP_ENCAP: | 
|  | sockopt_lock_sock(sk); | 
|  | switch (val) { | 
|  | case 0: | 
|  | #ifdef CONFIG_XFRM | 
|  | case UDP_ENCAP_ESPINUDP: | 
|  | set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk); | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | if (sk->sk_family == AF_INET6) | 
|  | WRITE_ONCE(up->encap_rcv, | 
|  | ipv6_stub->xfrm6_udp_encap_rcv); | 
|  | else | 
|  | #endif | 
|  | WRITE_ONCE(up->encap_rcv, | 
|  | xfrm4_udp_encap_rcv); | 
|  | #endif | 
|  | fallthrough; | 
|  | case UDP_ENCAP_L2TPINUDP: | 
|  | WRITE_ONCE(up->encap_type, val); | 
|  | udp_tunnel_encap_enable(sk); | 
|  | break; | 
|  | default: | 
|  | err = -ENOPROTOOPT; | 
|  | break; | 
|  | } | 
|  | sockopt_release_sock(sk); | 
|  | break; | 
|  |  | 
|  | case UDP_NO_CHECK6_TX: | 
|  | udp_set_no_check6_tx(sk, valbool); | 
|  | break; | 
|  |  | 
|  | case UDP_NO_CHECK6_RX: | 
|  | udp_set_no_check6_rx(sk, valbool); | 
|  | break; | 
|  |  | 
|  | case UDP_SEGMENT: | 
|  | if (val < 0 || val > USHRT_MAX) | 
|  | return -EINVAL; | 
|  | WRITE_ONCE(up->gso_size, val); | 
|  | break; | 
|  |  | 
|  | case UDP_GRO: | 
|  | sockopt_lock_sock(sk); | 
|  | /* when enabling GRO, accept the related GSO packet type */ | 
|  | if (valbool) | 
|  | udp_tunnel_encap_enable(sk); | 
|  | udp_assign_bit(GRO_ENABLED, sk, valbool); | 
|  | udp_assign_bit(ACCEPT_L4, sk, valbool); | 
|  | set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk); | 
|  | sockopt_release_sock(sk); | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * 	UDP-Lite's partial checksum coverage (RFC 3828). | 
|  | */ | 
|  | /* The sender sets actual checksum coverage length via this option. | 
|  | * The case coverage > packet length is handled by send module. */ | 
|  | case UDPLITE_SEND_CSCOV: | 
|  | if (!is_udplite)         /* Disable the option on UDP sockets */ | 
|  | return -ENOPROTOOPT; | 
|  | if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ | 
|  | val = 8; | 
|  | else if (val > USHRT_MAX) | 
|  | val = USHRT_MAX; | 
|  | WRITE_ONCE(up->pcslen, val); | 
|  | udp_set_bit(UDPLITE_SEND_CC, sk); | 
|  | break; | 
|  |  | 
|  | /* The receiver specifies a minimum checksum coverage value. To make | 
|  | * sense, this should be set to at least 8 (as done below). If zero is | 
|  | * used, this again means full checksum coverage.                     */ | 
|  | case UDPLITE_RECV_CSCOV: | 
|  | if (!is_udplite)         /* Disable the option on UDP sockets */ | 
|  | return -ENOPROTOOPT; | 
|  | if (val != 0 && val < 8) /* Avoid silly minimal values.       */ | 
|  | val = 8; | 
|  | else if (val > USHRT_MAX) | 
|  | val = USHRT_MAX; | 
|  | WRITE_ONCE(up->pcrlen, val); | 
|  | udp_set_bit(UDPLITE_RECV_CC, sk); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | err = -ENOPROTOOPT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_lib_setsockopt); | 
|  |  | 
|  | int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, | 
|  | unsigned int optlen) | 
|  | { | 
|  | if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET) | 
|  | return udp_lib_setsockopt(sk, level, optname, | 
|  | optval, optlen, | 
|  | udp_push_pending_frames); | 
|  | return ip_setsockopt(sk, level, optname, optval, optlen); | 
|  | } | 
|  |  | 
|  | int udp_lib_getsockopt(struct sock *sk, int level, int optname, | 
|  | char __user *optval, int __user *optlen) | 
|  | { | 
|  | struct udp_sock *up = udp_sk(sk); | 
|  | int val, len; | 
|  |  | 
|  | if (get_user(len, optlen)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (len < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | len = min_t(unsigned int, len, sizeof(int)); | 
|  |  | 
|  | switch (optname) { | 
|  | case UDP_CORK: | 
|  | val = udp_test_bit(CORK, sk); | 
|  | break; | 
|  |  | 
|  | case UDP_ENCAP: | 
|  | val = READ_ONCE(up->encap_type); | 
|  | break; | 
|  |  | 
|  | case UDP_NO_CHECK6_TX: | 
|  | val = udp_get_no_check6_tx(sk); | 
|  | break; | 
|  |  | 
|  | case UDP_NO_CHECK6_RX: | 
|  | val = udp_get_no_check6_rx(sk); | 
|  | break; | 
|  |  | 
|  | case UDP_SEGMENT: | 
|  | val = READ_ONCE(up->gso_size); | 
|  | break; | 
|  |  | 
|  | case UDP_GRO: | 
|  | val = udp_test_bit(GRO_ENABLED, sk); | 
|  | break; | 
|  |  | 
|  | /* The following two cannot be changed on UDP sockets, the return is | 
|  | * always 0 (which corresponds to the full checksum coverage of UDP). */ | 
|  | case UDPLITE_SEND_CSCOV: | 
|  | val = READ_ONCE(up->pcslen); | 
|  | break; | 
|  |  | 
|  | case UDPLITE_RECV_CSCOV: | 
|  | val = READ_ONCE(up->pcrlen); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -ENOPROTOOPT; | 
|  | } | 
|  |  | 
|  | if (put_user(len, optlen)) | 
|  | return -EFAULT; | 
|  | if (copy_to_user(optval, &val, len)) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_lib_getsockopt); | 
|  |  | 
|  | int udp_getsockopt(struct sock *sk, int level, int optname, | 
|  | char __user *optval, int __user *optlen) | 
|  | { | 
|  | if (level == SOL_UDP  ||  level == SOL_UDPLITE) | 
|  | return udp_lib_getsockopt(sk, level, optname, optval, optlen); | 
|  | return ip_getsockopt(sk, level, optname, optval, optlen); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * 	udp_poll - wait for a UDP event. | 
|  | *	@file: - file struct | 
|  | *	@sock: - socket | 
|  | *	@wait: - poll table | 
|  | * | 
|  | *	This is same as datagram poll, except for the special case of | 
|  | *	blocking sockets. If application is using a blocking fd | 
|  | *	and a packet with checksum error is in the queue; | 
|  | *	then it could get return from select indicating data available | 
|  | *	but then block when reading it. Add special case code | 
|  | *	to work around these arguably broken applications. | 
|  | */ | 
|  | __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) | 
|  | { | 
|  | __poll_t mask = datagram_poll(file, sock, wait); | 
|  | struct sock *sk = sock->sk; | 
|  |  | 
|  | if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue)) | 
|  | mask |= EPOLLIN | EPOLLRDNORM; | 
|  |  | 
|  | /* Check for false positives due to checksum errors */ | 
|  | if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && | 
|  | !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) | 
|  | mask &= ~(EPOLLIN | EPOLLRDNORM); | 
|  |  | 
|  | /* psock ingress_msg queue should not contain any bad checksum frames */ | 
|  | if (sk_is_readable(sk)) | 
|  | mask |= EPOLLIN | EPOLLRDNORM; | 
|  | return mask; | 
|  |  | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_poll); | 
|  |  | 
|  | int udp_abort(struct sock *sk, int err) | 
|  | { | 
|  | if (!has_current_bpf_ctx()) | 
|  | lock_sock(sk); | 
|  |  | 
|  | /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing | 
|  | * with close() | 
|  | */ | 
|  | if (sock_flag(sk, SOCK_DEAD)) | 
|  | goto out; | 
|  |  | 
|  | sk->sk_err = err; | 
|  | sk_error_report(sk); | 
|  | __udp_disconnect(sk, 0); | 
|  |  | 
|  | out: | 
|  | if (!has_current_bpf_ctx()) | 
|  | release_sock(sk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_IPV6_MOD_GPL(udp_abort); | 
|  |  | 
|  | struct proto udp_prot = { | 
|  | .name			= "UDP", | 
|  | .owner			= THIS_MODULE, | 
|  | .close			= udp_lib_close, | 
|  | .pre_connect		= udp_pre_connect, | 
|  | .connect		= udp_connect, | 
|  | .disconnect		= udp_disconnect, | 
|  | .ioctl			= udp_ioctl, | 
|  | .init			= udp_init_sock, | 
|  | .destroy		= udp_destroy_sock, | 
|  | .setsockopt		= udp_setsockopt, | 
|  | .getsockopt		= udp_getsockopt, | 
|  | .sendmsg		= udp_sendmsg, | 
|  | .recvmsg		= udp_recvmsg, | 
|  | .splice_eof		= udp_splice_eof, | 
|  | .release_cb		= ip4_datagram_release_cb, | 
|  | .hash			= udp_lib_hash, | 
|  | .unhash			= udp_lib_unhash, | 
|  | .rehash			= udp_v4_rehash, | 
|  | .get_port		= udp_v4_get_port, | 
|  | .put_port		= udp_lib_unhash, | 
|  | #ifdef CONFIG_BPF_SYSCALL | 
|  | .psock_update_sk_prot	= udp_bpf_update_proto, | 
|  | #endif | 
|  | .memory_allocated	= &net_aligned_data.udp_memory_allocated, | 
|  | .per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc, | 
|  |  | 
|  | .sysctl_mem		= sysctl_udp_mem, | 
|  | .sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min), | 
|  | .sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min), | 
|  | .obj_size		= sizeof(struct udp_sock), | 
|  | .h.udp_table		= NULL, | 
|  | .diag_destroy		= udp_abort, | 
|  | }; | 
|  | EXPORT_SYMBOL(udp_prot); | 
|  |  | 
|  | /* ------------------------------------------------------------------------ */ | 
|  | #ifdef CONFIG_PROC_FS | 
|  |  | 
|  | static unsigned short seq_file_family(const struct seq_file *seq); | 
|  | static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) | 
|  | { | 
|  | unsigned short family = seq_file_family(seq); | 
|  |  | 
|  | /* AF_UNSPEC is used as a match all */ | 
|  | return ((family == AF_UNSPEC || family == sk->sk_family) && | 
|  | net_eq(sock_net(sk), seq_file_net(seq))); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BPF_SYSCALL | 
|  | static const struct seq_operations bpf_iter_udp_seq_ops; | 
|  | #endif | 
|  | static struct udp_table *udp_get_table_seq(struct seq_file *seq, | 
|  | struct net *net) | 
|  | { | 
|  | const struct udp_seq_afinfo *afinfo; | 
|  |  | 
|  | #ifdef CONFIG_BPF_SYSCALL | 
|  | if (seq->op == &bpf_iter_udp_seq_ops) | 
|  | return net->ipv4.udp_table; | 
|  | #endif | 
|  |  | 
|  | afinfo = pde_data(file_inode(seq->file)); | 
|  | return afinfo->udp_table ? : net->ipv4.udp_table; | 
|  | } | 
|  |  | 
|  | static struct sock *udp_get_first(struct seq_file *seq, int start) | 
|  | { | 
|  | struct udp_iter_state *state = seq->private; | 
|  | struct net *net = seq_file_net(seq); | 
|  | struct udp_table *udptable; | 
|  | struct sock *sk; | 
|  |  | 
|  | udptable = udp_get_table_seq(seq, net); | 
|  |  | 
|  | for (state->bucket = start; state->bucket <= udptable->mask; | 
|  | ++state->bucket) { | 
|  | struct udp_hslot *hslot = &udptable->hash[state->bucket]; | 
|  |  | 
|  | if (hlist_empty(&hslot->head)) | 
|  | continue; | 
|  |  | 
|  | spin_lock_bh(&hslot->lock); | 
|  | sk_for_each(sk, &hslot->head) { | 
|  | if (seq_sk_match(seq, sk)) | 
|  | goto found; | 
|  | } | 
|  | spin_unlock_bh(&hslot->lock); | 
|  | } | 
|  | sk = NULL; | 
|  | found: | 
|  | return sk; | 
|  | } | 
|  |  | 
|  | static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) | 
|  | { | 
|  | struct udp_iter_state *state = seq->private; | 
|  | struct net *net = seq_file_net(seq); | 
|  | struct udp_table *udptable; | 
|  |  | 
|  | do { | 
|  | sk = sk_next(sk); | 
|  | } while (sk && !seq_sk_match(seq, sk)); | 
|  |  | 
|  | if (!sk) { | 
|  | udptable = udp_get_table_seq(seq, net); | 
|  |  | 
|  | if (state->bucket <= udptable->mask) | 
|  | spin_unlock_bh(&udptable->hash[state->bucket].lock); | 
|  |  | 
|  | return udp_get_first(seq, state->bucket + 1); | 
|  | } | 
|  | return sk; | 
|  | } | 
|  |  | 
|  | static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) | 
|  | { | 
|  | struct sock *sk = udp_get_first(seq, 0); | 
|  |  | 
|  | if (sk) | 
|  | while (pos && (sk = udp_get_next(seq, sk)) != NULL) | 
|  | --pos; | 
|  | return pos ? NULL : sk; | 
|  | } | 
|  |  | 
|  | void *udp_seq_start(struct seq_file *seq, loff_t *pos) | 
|  | { | 
|  | struct udp_iter_state *state = seq->private; | 
|  | state->bucket = MAX_UDP_PORTS; | 
|  |  | 
|  | return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_seq_start); | 
|  |  | 
|  | void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) | 
|  | { | 
|  | struct sock *sk; | 
|  |  | 
|  | if (v == SEQ_START_TOKEN) | 
|  | sk = udp_get_idx(seq, 0); | 
|  | else | 
|  | sk = udp_get_next(seq, v); | 
|  |  | 
|  | ++*pos; | 
|  | return sk; | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_seq_next); | 
|  |  | 
|  | void udp_seq_stop(struct seq_file *seq, void *v) | 
|  | { | 
|  | struct udp_iter_state *state = seq->private; | 
|  | struct udp_table *udptable; | 
|  |  | 
|  | udptable = udp_get_table_seq(seq, seq_file_net(seq)); | 
|  |  | 
|  | if (state->bucket <= udptable->mask) | 
|  | spin_unlock_bh(&udptable->hash[state->bucket].lock); | 
|  | } | 
|  | EXPORT_IPV6_MOD(udp_seq_stop); | 
|  |  | 
|  | /* ------------------------------------------------------------------------ */ | 
|  | static void udp4_format_sock(struct sock *sp, struct seq_file *f, | 
|  | int bucket) | 
|  | { | 
|  | struct inet_sock *inet = inet_sk(sp); | 
|  | __be32 dest = inet->inet_daddr; | 
|  | __be32 src  = inet->inet_rcv_saddr; | 
|  | __u16 destp	  = ntohs(inet->inet_dport); | 
|  | __u16 srcp	  = ntohs(inet->inet_sport); | 
|  |  | 
|  | seq_printf(f, "%5d: %08X:%04X %08X:%04X" | 
|  | " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", | 
|  | bucket, src, srcp, dest, destp, sp->sk_state, | 
|  | sk_wmem_alloc_get(sp), | 
|  | udp_rqueue_get(sp), | 
|  | 0, 0L, 0, | 
|  | from_kuid_munged(seq_user_ns(f), sk_uid(sp)), | 
|  | 0, sock_i_ino(sp), | 
|  | refcount_read(&sp->sk_refcnt), sp, | 
|  | atomic_read(&sp->sk_drops)); | 
|  | } | 
|  |  | 
|  | int udp4_seq_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | seq_setwidth(seq, 127); | 
|  | if (v == SEQ_START_TOKEN) | 
|  | seq_puts(seq, "   sl  local_address rem_address   st tx_queue " | 
|  | "rx_queue tr tm->when retrnsmt   uid  timeout " | 
|  | "inode ref pointer drops"); | 
|  | else { | 
|  | struct udp_iter_state *state = seq->private; | 
|  |  | 
|  | udp4_format_sock(v, seq, state->bucket); | 
|  | } | 
|  | seq_pad(seq, '\n'); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BPF_SYSCALL | 
|  | struct bpf_iter__udp { | 
|  | __bpf_md_ptr(struct bpf_iter_meta *, meta); | 
|  | __bpf_md_ptr(struct udp_sock *, udp_sk); | 
|  | uid_t uid __aligned(8); | 
|  | int bucket __aligned(8); | 
|  | }; | 
|  |  | 
|  | union bpf_udp_iter_batch_item { | 
|  | struct sock *sk; | 
|  | __u64 cookie; | 
|  | }; | 
|  |  | 
|  | struct bpf_udp_iter_state { | 
|  | struct udp_iter_state state; | 
|  | unsigned int cur_sk; | 
|  | unsigned int end_sk; | 
|  | unsigned int max_sk; | 
|  | union bpf_udp_iter_batch_item *batch; | 
|  | }; | 
|  |  | 
|  | static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, | 
|  | unsigned int new_batch_sz, gfp_t flags); | 
|  | static struct sock *bpf_iter_udp_resume(struct sock *first_sk, | 
|  | union bpf_udp_iter_batch_item *cookies, | 
|  | int n_cookies) | 
|  | { | 
|  | struct sock *sk = NULL; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < n_cookies; i++) { | 
|  | sk = first_sk; | 
|  | udp_portaddr_for_each_entry_from(sk) | 
|  | if (cookies[i].cookie == atomic64_read(&sk->sk_cookie)) | 
|  | goto done; | 
|  | } | 
|  | done: | 
|  | return sk; | 
|  | } | 
|  |  | 
|  | static struct sock *bpf_iter_udp_batch(struct seq_file *seq) | 
|  | { | 
|  | struct bpf_udp_iter_state *iter = seq->private; | 
|  | struct udp_iter_state *state = &iter->state; | 
|  | unsigned int find_cookie, end_cookie; | 
|  | struct net *net = seq_file_net(seq); | 
|  | struct udp_table *udptable; | 
|  | unsigned int batch_sks = 0; | 
|  | int resume_bucket; | 
|  | int resizes = 0; | 
|  | struct sock *sk; | 
|  | int err = 0; | 
|  |  | 
|  | resume_bucket = state->bucket; | 
|  |  | 
|  | /* The current batch is done, so advance the bucket. */ | 
|  | if (iter->cur_sk == iter->end_sk) | 
|  | state->bucket++; | 
|  |  | 
|  | udptable = udp_get_table_seq(seq, net); | 
|  |  | 
|  | again: | 
|  | /* New batch for the next bucket. | 
|  | * Iterate over the hash table to find a bucket with sockets matching | 
|  | * the iterator attributes, and return the first matching socket from | 
|  | * the bucket. The remaining matched sockets from the bucket are batched | 
|  | * before releasing the bucket lock. This allows BPF programs that are | 
|  | * called in seq_show to acquire the bucket lock if needed. | 
|  | */ | 
|  | find_cookie = iter->cur_sk; | 
|  | end_cookie = iter->end_sk; | 
|  | iter->cur_sk = 0; | 
|  | iter->end_sk = 0; | 
|  | batch_sks = 0; | 
|  |  | 
|  | for (; state->bucket <= udptable->mask; state->bucket++) { | 
|  | struct udp_hslot *hslot2 = &udptable->hash2[state->bucket].hslot; | 
|  |  | 
|  | if (hlist_empty(&hslot2->head)) | 
|  | goto next_bucket; | 
|  |  | 
|  | spin_lock_bh(&hslot2->lock); | 
|  | sk = hlist_entry_safe(hslot2->head.first, struct sock, | 
|  | __sk_common.skc_portaddr_node); | 
|  | /* Resume from the first (in iteration order) unseen socket from | 
|  | * the last batch that still exists in resume_bucket. Most of | 
|  | * the time this will just be where the last iteration left off | 
|  | * in resume_bucket unless that socket disappeared between | 
|  | * reads. | 
|  | */ | 
|  | if (state->bucket == resume_bucket) | 
|  | sk = bpf_iter_udp_resume(sk, &iter->batch[find_cookie], | 
|  | end_cookie - find_cookie); | 
|  | fill_batch: | 
|  | udp_portaddr_for_each_entry_from(sk) { | 
|  | if (seq_sk_match(seq, sk)) { | 
|  | if (iter->end_sk < iter->max_sk) { | 
|  | sock_hold(sk); | 
|  | iter->batch[iter->end_sk++].sk = sk; | 
|  | } | 
|  | batch_sks++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allocate a larger batch and try again. */ | 
|  | if (unlikely(resizes <= 1 && iter->end_sk && | 
|  | iter->end_sk != batch_sks)) { | 
|  | resizes++; | 
|  |  | 
|  | /* First, try with GFP_USER to maximize the chances of | 
|  | * grabbing more memory. | 
|  | */ | 
|  | if (resizes == 1) { | 
|  | spin_unlock_bh(&hslot2->lock); | 
|  | err = bpf_iter_udp_realloc_batch(iter, | 
|  | batch_sks * 3 / 2, | 
|  | GFP_USER); | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  | /* Start over. */ | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | /* Next, hold onto the lock, so the bucket doesn't | 
|  | * change while we get the rest of the sockets. | 
|  | */ | 
|  | err = bpf_iter_udp_realloc_batch(iter, batch_sks, | 
|  | GFP_NOWAIT); | 
|  | if (err) { | 
|  | spin_unlock_bh(&hslot2->lock); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /* Pick up where we left off. */ | 
|  | sk = iter->batch[iter->end_sk - 1].sk; | 
|  | sk = hlist_entry_safe(sk->__sk_common.skc_portaddr_node.next, | 
|  | struct sock, | 
|  | __sk_common.skc_portaddr_node); | 
|  | batch_sks = iter->end_sk; | 
|  | goto fill_batch; | 
|  | } | 
|  |  | 
|  | spin_unlock_bh(&hslot2->lock); | 
|  |  | 
|  | if (iter->end_sk) | 
|  | break; | 
|  | next_bucket: | 
|  | resizes = 0; | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(iter->end_sk != batch_sks); | 
|  | return iter->end_sk ? iter->batch[0].sk : NULL; | 
|  | } | 
|  |  | 
|  | static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) | 
|  | { | 
|  | struct bpf_udp_iter_state *iter = seq->private; | 
|  | struct sock *sk; | 
|  |  | 
|  | /* Whenever seq_next() is called, the iter->cur_sk is | 
|  | * done with seq_show(), so unref the iter->cur_sk. | 
|  | */ | 
|  | if (iter->cur_sk < iter->end_sk) | 
|  | sock_put(iter->batch[iter->cur_sk++].sk); | 
|  |  | 
|  | /* After updating iter->cur_sk, check if there are more sockets | 
|  | * available in the current bucket batch. | 
|  | */ | 
|  | if (iter->cur_sk < iter->end_sk) | 
|  | sk = iter->batch[iter->cur_sk].sk; | 
|  | else | 
|  | /* Prepare a new batch. */ | 
|  | sk = bpf_iter_udp_batch(seq); | 
|  |  | 
|  | ++*pos; | 
|  | return sk; | 
|  | } | 
|  |  | 
|  | static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) | 
|  | { | 
|  | /* bpf iter does not support lseek, so it always | 
|  | * continue from where it was stop()-ped. | 
|  | */ | 
|  | if (*pos) | 
|  | return bpf_iter_udp_batch(seq); | 
|  |  | 
|  | return SEQ_START_TOKEN; | 
|  | } | 
|  |  | 
|  | static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, | 
|  | struct udp_sock *udp_sk, uid_t uid, int bucket) | 
|  | { | 
|  | struct bpf_iter__udp ctx; | 
|  |  | 
|  | meta->seq_num--;  /* skip SEQ_START_TOKEN */ | 
|  | ctx.meta = meta; | 
|  | ctx.udp_sk = udp_sk; | 
|  | ctx.uid = uid; | 
|  | ctx.bucket = bucket; | 
|  | return bpf_iter_run_prog(prog, &ctx); | 
|  | } | 
|  |  | 
|  | static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | struct udp_iter_state *state = seq->private; | 
|  | struct bpf_iter_meta meta; | 
|  | struct bpf_prog *prog; | 
|  | struct sock *sk = v; | 
|  | uid_t uid; | 
|  | int ret; | 
|  |  | 
|  | if (v == SEQ_START_TOKEN) | 
|  | return 0; | 
|  |  | 
|  | lock_sock(sk); | 
|  |  | 
|  | if (unlikely(sk_unhashed(sk))) { | 
|  | ret = SEQ_SKIP; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | uid = from_kuid_munged(seq_user_ns(seq), sk_uid(sk)); | 
|  | meta.seq = seq; | 
|  | prog = bpf_iter_get_info(&meta, false); | 
|  | ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket); | 
|  |  | 
|  | unlock: | 
|  | release_sock(sk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) | 
|  | { | 
|  | union bpf_udp_iter_batch_item *item; | 
|  | unsigned int cur_sk = iter->cur_sk; | 
|  | __u64 cookie; | 
|  |  | 
|  | /* Remember the cookies of the sockets we haven't seen yet, so we can | 
|  | * pick up where we left off next time around. | 
|  | */ | 
|  | while (cur_sk < iter->end_sk) { | 
|  | item = &iter->batch[cur_sk++]; | 
|  | cookie = sock_gen_cookie(item->sk); | 
|  | sock_put(item->sk); | 
|  | item->cookie = cookie; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) | 
|  | { | 
|  | struct bpf_udp_iter_state *iter = seq->private; | 
|  | struct bpf_iter_meta meta; | 
|  | struct bpf_prog *prog; | 
|  |  | 
|  | if (!v) { | 
|  | meta.seq = seq; | 
|  | prog = bpf_iter_get_info(&meta, true); | 
|  | if (prog) | 
|  | (void)udp_prog_seq_show(prog, &meta, v, 0, 0); | 
|  | } | 
|  |  | 
|  | if (iter->cur_sk < iter->end_sk) | 
|  | bpf_iter_udp_put_batch(iter); | 
|  | } | 
|  |  | 
|  | static const struct seq_operations bpf_iter_udp_seq_ops = { | 
|  | .start		= bpf_iter_udp_seq_start, | 
|  | .next		= bpf_iter_udp_seq_next, | 
|  | .stop		= bpf_iter_udp_seq_stop, | 
|  | .show		= bpf_iter_udp_seq_show, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static unsigned short seq_file_family(const struct seq_file *seq) | 
|  | { | 
|  | const struct udp_seq_afinfo *afinfo; | 
|  |  | 
|  | #ifdef CONFIG_BPF_SYSCALL | 
|  | /* BPF iterator: bpf programs to filter sockets. */ | 
|  | if (seq->op == &bpf_iter_udp_seq_ops) | 
|  | return AF_UNSPEC; | 
|  | #endif | 
|  |  | 
|  | /* Proc fs iterator */ | 
|  | afinfo = pde_data(file_inode(seq->file)); | 
|  | return afinfo->family; | 
|  | } | 
|  |  | 
|  | const struct seq_operations udp_seq_ops = { | 
|  | .start		= udp_seq_start, | 
|  | .next		= udp_seq_next, | 
|  | .stop		= udp_seq_stop, | 
|  | .show		= udp4_seq_show, | 
|  | }; | 
|  | EXPORT_IPV6_MOD(udp_seq_ops); | 
|  |  | 
|  | static struct udp_seq_afinfo udp4_seq_afinfo = { | 
|  | .family		= AF_INET, | 
|  | .udp_table	= NULL, | 
|  | }; | 
|  |  | 
|  | static int __net_init udp4_proc_init_net(struct net *net) | 
|  | { | 
|  | if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops, | 
|  | sizeof(struct udp_iter_state), &udp4_seq_afinfo)) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __net_exit udp4_proc_exit_net(struct net *net) | 
|  | { | 
|  | remove_proc_entry("udp", net->proc_net); | 
|  | } | 
|  |  | 
|  | static struct pernet_operations udp4_net_ops = { | 
|  | .init = udp4_proc_init_net, | 
|  | .exit = udp4_proc_exit_net, | 
|  | }; | 
|  |  | 
|  | int __init udp4_proc_init(void) | 
|  | { | 
|  | return register_pernet_subsys(&udp4_net_ops); | 
|  | } | 
|  |  | 
|  | void udp4_proc_exit(void) | 
|  | { | 
|  | unregister_pernet_subsys(&udp4_net_ops); | 
|  | } | 
|  | #endif /* CONFIG_PROC_FS */ | 
|  |  | 
|  | static __initdata unsigned long uhash_entries; | 
|  | static int __init set_uhash_entries(char *str) | 
|  | { | 
|  | ssize_t ret; | 
|  |  | 
|  | if (!str) | 
|  | return 0; | 
|  |  | 
|  | ret = kstrtoul(str, 0, &uhash_entries); | 
|  | if (ret) | 
|  | return 0; | 
|  |  | 
|  | if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) | 
|  | uhash_entries = UDP_HTABLE_SIZE_MIN; | 
|  | return 1; | 
|  | } | 
|  | __setup("uhash_entries=", set_uhash_entries); | 
|  |  | 
|  | void __init udp_table_init(struct udp_table *table, const char *name) | 
|  | { | 
|  | unsigned int i, slot_size; | 
|  |  | 
|  | slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + | 
|  | udp_hash4_slot_size(); | 
|  | table->hash = alloc_large_system_hash(name, | 
|  | slot_size, | 
|  | uhash_entries, | 
|  | 21, /* one slot per 2 MB */ | 
|  | 0, | 
|  | &table->log, | 
|  | &table->mask, | 
|  | UDP_HTABLE_SIZE_MIN, | 
|  | UDP_HTABLE_SIZE_MAX); | 
|  |  | 
|  | table->hash2 = (void *)(table->hash + (table->mask + 1)); | 
|  | for (i = 0; i <= table->mask; i++) { | 
|  | INIT_HLIST_HEAD(&table->hash[i].head); | 
|  | table->hash[i].count = 0; | 
|  | spin_lock_init(&table->hash[i].lock); | 
|  | } | 
|  | for (i = 0; i <= table->mask; i++) { | 
|  | INIT_HLIST_HEAD(&table->hash2[i].hslot.head); | 
|  | table->hash2[i].hslot.count = 0; | 
|  | spin_lock_init(&table->hash2[i].hslot.lock); | 
|  | } | 
|  | udp_table_hash4_init(table); | 
|  | } | 
|  |  | 
|  | u32 udp_flow_hashrnd(void) | 
|  | { | 
|  | static u32 hashrnd __read_mostly; | 
|  |  | 
|  | net_get_random_once(&hashrnd, sizeof(hashrnd)); | 
|  |  | 
|  | return hashrnd; | 
|  | } | 
|  | EXPORT_SYMBOL(udp_flow_hashrnd); | 
|  |  | 
|  | static void __net_init udp_sysctl_init(struct net *net) | 
|  | { | 
|  | net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; | 
|  | net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; | 
|  |  | 
|  | #ifdef CONFIG_NET_L3_MASTER_DEV | 
|  | net->ipv4.sysctl_udp_l3mdev_accept = 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) | 
|  | { | 
|  | struct udp_table *udptable; | 
|  | unsigned int slot_size; | 
|  | int i; | 
|  |  | 
|  | udptable = kmalloc(sizeof(*udptable), GFP_KERNEL); | 
|  | if (!udptable) | 
|  | goto out; | 
|  |  | 
|  | slot_size = sizeof(struct udp_hslot) + sizeof(struct udp_hslot_main) + | 
|  | udp_hash4_slot_size(); | 
|  | udptable->hash = vmalloc_huge(hash_entries * slot_size, | 
|  | GFP_KERNEL_ACCOUNT); | 
|  | if (!udptable->hash) | 
|  | goto free_table; | 
|  |  | 
|  | udptable->hash2 = (void *)(udptable->hash + hash_entries); | 
|  | udptable->mask = hash_entries - 1; | 
|  | udptable->log = ilog2(hash_entries); | 
|  |  | 
|  | for (i = 0; i < hash_entries; i++) { | 
|  | INIT_HLIST_HEAD(&udptable->hash[i].head); | 
|  | udptable->hash[i].count = 0; | 
|  | spin_lock_init(&udptable->hash[i].lock); | 
|  |  | 
|  | INIT_HLIST_HEAD(&udptable->hash2[i].hslot.head); | 
|  | udptable->hash2[i].hslot.count = 0; | 
|  | spin_lock_init(&udptable->hash2[i].hslot.lock); | 
|  | } | 
|  | udp_table_hash4_init(udptable); | 
|  |  | 
|  | return udptable; | 
|  |  | 
|  | free_table: | 
|  | kfree(udptable); | 
|  | out: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void __net_exit udp_pernet_table_free(struct net *net) | 
|  | { | 
|  | struct udp_table *udptable = net->ipv4.udp_table; | 
|  |  | 
|  | if (udptable == &udp_table) | 
|  | return; | 
|  |  | 
|  | kvfree(udptable->hash); | 
|  | kfree(udptable); | 
|  | } | 
|  |  | 
|  | static void __net_init udp_set_table(struct net *net) | 
|  | { | 
|  | struct udp_table *udptable; | 
|  | unsigned int hash_entries; | 
|  | struct net *old_net; | 
|  |  | 
|  | if (net_eq(net, &init_net)) | 
|  | goto fallback; | 
|  |  | 
|  | old_net = current->nsproxy->net_ns; | 
|  | hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); | 
|  | if (!hash_entries) | 
|  | goto fallback; | 
|  |  | 
|  | /* Set min to keep the bitmap on stack in udp_lib_get_port() */ | 
|  | if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) | 
|  | hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; | 
|  | else | 
|  | hash_entries = roundup_pow_of_two(hash_entries); | 
|  |  | 
|  | udptable = udp_pernet_table_alloc(hash_entries); | 
|  | if (udptable) { | 
|  | net->ipv4.udp_table = udptable; | 
|  | } else { | 
|  | pr_warn("Failed to allocate UDP hash table (entries: %u) " | 
|  | "for a netns, fallback to the global one\n", | 
|  | hash_entries); | 
|  | fallback: | 
|  | net->ipv4.udp_table = &udp_table; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __net_init udp_pernet_init(struct net *net) | 
|  | { | 
|  | #if IS_ENABLED(CONFIG_NET_UDP_TUNNEL) | 
|  | int i; | 
|  |  | 
|  | /* No tunnel is configured */ | 
|  | for (i = 0; i < ARRAY_SIZE(net->ipv4.udp_tunnel_gro); ++i) { | 
|  | INIT_HLIST_HEAD(&net->ipv4.udp_tunnel_gro[i].list); | 
|  | RCU_INIT_POINTER(net->ipv4.udp_tunnel_gro[i].sk, NULL); | 
|  | } | 
|  | #endif | 
|  | udp_sysctl_init(net); | 
|  | udp_set_table(net); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __net_exit udp_pernet_exit(struct net *net) | 
|  | { | 
|  | udp_pernet_table_free(net); | 
|  | } | 
|  |  | 
|  | static struct pernet_operations __net_initdata udp_sysctl_ops = { | 
|  | .init	= udp_pernet_init, | 
|  | .exit	= udp_pernet_exit, | 
|  | }; | 
|  |  | 
|  | #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) | 
|  | DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, | 
|  | struct udp_sock *udp_sk, uid_t uid, int bucket) | 
|  |  | 
|  | static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, | 
|  | unsigned int new_batch_sz, gfp_t flags) | 
|  | { | 
|  | union bpf_udp_iter_batch_item *new_batch; | 
|  |  | 
|  | new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch), | 
|  | flags | __GFP_NOWARN); | 
|  | if (!new_batch) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (flags != GFP_NOWAIT) | 
|  | bpf_iter_udp_put_batch(iter); | 
|  |  | 
|  | memcpy(new_batch, iter->batch, sizeof(*iter->batch) * iter->end_sk); | 
|  | kvfree(iter->batch); | 
|  | iter->batch = new_batch; | 
|  | iter->max_sk = new_batch_sz; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define INIT_BATCH_SZ 16 | 
|  |  | 
|  | static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) | 
|  | { | 
|  | struct bpf_udp_iter_state *iter = priv_data; | 
|  | int ret; | 
|  |  | 
|  | ret = bpf_iter_init_seq_net(priv_data, aux); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ, GFP_USER); | 
|  | if (ret) | 
|  | bpf_iter_fini_seq_net(priv_data); | 
|  |  | 
|  | iter->state.bucket = -1; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void bpf_iter_fini_udp(void *priv_data) | 
|  | { | 
|  | struct bpf_udp_iter_state *iter = priv_data; | 
|  |  | 
|  | bpf_iter_fini_seq_net(priv_data); | 
|  | kvfree(iter->batch); | 
|  | } | 
|  |  | 
|  | static const struct bpf_iter_seq_info udp_seq_info = { | 
|  | .seq_ops		= &bpf_iter_udp_seq_ops, | 
|  | .init_seq_private	= bpf_iter_init_udp, | 
|  | .fini_seq_private	= bpf_iter_fini_udp, | 
|  | .seq_priv_size		= sizeof(struct bpf_udp_iter_state), | 
|  | }; | 
|  |  | 
|  | static struct bpf_iter_reg udp_reg_info = { | 
|  | .target			= "udp", | 
|  | .ctx_arg_info_size	= 1, | 
|  | .ctx_arg_info		= { | 
|  | { offsetof(struct bpf_iter__udp, udp_sk), | 
|  | PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, | 
|  | }, | 
|  | .seq_info		= &udp_seq_info, | 
|  | }; | 
|  |  | 
|  | static void __init bpf_iter_register(void) | 
|  | { | 
|  | udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; | 
|  | if (bpf_iter_reg_target(&udp_reg_info)) | 
|  | pr_warn("Warning: could not register bpf iterator udp\n"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __init udp_init(void) | 
|  | { | 
|  | unsigned long limit; | 
|  | unsigned int i; | 
|  |  | 
|  | udp_table_init(&udp_table, "UDP"); | 
|  | limit = nr_free_buffer_pages() / 8; | 
|  | limit = max(limit, 128UL); | 
|  | sysctl_udp_mem[0] = limit / 4 * 3; | 
|  | sysctl_udp_mem[1] = limit; | 
|  | sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; | 
|  |  | 
|  | /* 16 spinlocks per cpu */ | 
|  | udp_busylocks_log = ilog2(nr_cpu_ids) + 4; | 
|  | udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log, | 
|  | GFP_KERNEL); | 
|  | if (!udp_busylocks) | 
|  | panic("UDP: failed to alloc udp_busylocks\n"); | 
|  | for (i = 0; i < (1U << udp_busylocks_log); i++) | 
|  | spin_lock_init(udp_busylocks + i); | 
|  |  | 
|  | if (register_pernet_subsys(&udp_sysctl_ops)) | 
|  | panic("UDP: failed to init sysctl parameters.\n"); | 
|  |  | 
|  | #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) | 
|  | bpf_iter_register(); | 
|  | #endif | 
|  | } |