| // SPDX-License-Identifier: GPL-2.0-only | 
 | #include <linux/ras.h> | 
 | #include <linux/string_choices.h> | 
 | #include "amd64_edac.h" | 
 | #include <asm/amd/nb.h> | 
 | #include <asm/amd/node.h> | 
 |  | 
 | static struct edac_pci_ctl_info *pci_ctl; | 
 |  | 
 | /* | 
 |  * Set by command line parameter. If BIOS has enabled the ECC, this override is | 
 |  * cleared to prevent re-enabling the hardware by this driver. | 
 |  */ | 
 | static int ecc_enable_override; | 
 | module_param(ecc_enable_override, int, 0644); | 
 |  | 
 | static struct msr __percpu *msrs; | 
 |  | 
 | static inline u32 get_umc_reg(struct amd64_pvt *pvt, u32 reg) | 
 | { | 
 | 	if (!pvt->flags.zn_regs_v2) | 
 | 		return reg; | 
 |  | 
 | 	switch (reg) { | 
 | 	case UMCCH_ADDR_MASK_SEC:	return UMCCH_ADDR_MASK_SEC_DDR5; | 
 | 	case UMCCH_DIMM_CFG:		return UMCCH_DIMM_CFG_DDR5; | 
 | 	} | 
 |  | 
 | 	WARN_ONCE(1, "%s: unknown register 0x%x", __func__, reg); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Per-node stuff */ | 
 | static struct ecc_settings **ecc_stngs; | 
 |  | 
 | /* Device for the PCI component */ | 
 | static struct device *pci_ctl_dev; | 
 |  | 
 | /* | 
 |  * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing | 
 |  * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching- | 
 |  * or higher value'. | 
 |  * | 
 |  *FIXME: Produce a better mapping/linearisation. | 
 |  */ | 
 | static const struct scrubrate { | 
 |        u32 scrubval;           /* bit pattern for scrub rate */ | 
 |        u32 bandwidth;          /* bandwidth consumed (bytes/sec) */ | 
 | } scrubrates[] = { | 
 | 	{ 0x01, 1600000000UL}, | 
 | 	{ 0x02, 800000000UL}, | 
 | 	{ 0x03, 400000000UL}, | 
 | 	{ 0x04, 200000000UL}, | 
 | 	{ 0x05, 100000000UL}, | 
 | 	{ 0x06, 50000000UL}, | 
 | 	{ 0x07, 25000000UL}, | 
 | 	{ 0x08, 12284069UL}, | 
 | 	{ 0x09, 6274509UL}, | 
 | 	{ 0x0A, 3121951UL}, | 
 | 	{ 0x0B, 1560975UL}, | 
 | 	{ 0x0C, 781440UL}, | 
 | 	{ 0x0D, 390720UL}, | 
 | 	{ 0x0E, 195300UL}, | 
 | 	{ 0x0F, 97650UL}, | 
 | 	{ 0x10, 48854UL}, | 
 | 	{ 0x11, 24427UL}, | 
 | 	{ 0x12, 12213UL}, | 
 | 	{ 0x13, 6101UL}, | 
 | 	{ 0x14, 3051UL}, | 
 | 	{ 0x15, 1523UL}, | 
 | 	{ 0x16, 761UL}, | 
 | 	{ 0x00, 0UL},        /* scrubbing off */ | 
 | }; | 
 |  | 
 | int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, | 
 | 			       u32 *val, const char *func) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	err = pci_read_config_dword(pdev, offset, val); | 
 | 	if (err) | 
 | 		amd64_warn("%s: error reading F%dx%03x.\n", | 
 | 			   func, PCI_FUNC(pdev->devfn), offset); | 
 |  | 
 | 	return pcibios_err_to_errno(err); | 
 | } | 
 |  | 
 | int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, | 
 | 				u32 val, const char *func) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	err = pci_write_config_dword(pdev, offset, val); | 
 | 	if (err) | 
 | 		amd64_warn("%s: error writing to F%dx%03x.\n", | 
 | 			   func, PCI_FUNC(pdev->devfn), offset); | 
 |  | 
 | 	return pcibios_err_to_errno(err); | 
 | } | 
 |  | 
 | /* | 
 |  * Select DCT to which PCI cfg accesses are routed | 
 |  */ | 
 | static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct) | 
 | { | 
 | 	u32 reg = 0; | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®); | 
 | 	reg &= (pvt->model == 0x30) ? ~3 : ~1; | 
 | 	reg |= dct; | 
 | 	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg); | 
 | } | 
 |  | 
 | /* | 
 |  * | 
 |  * Depending on the family, F2 DCT reads need special handling: | 
 |  * | 
 |  * K8: has a single DCT only and no address offsets >= 0x100 | 
 |  * | 
 |  * F10h: each DCT has its own set of regs | 
 |  *	DCT0 -> F2x040.. | 
 |  *	DCT1 -> F2x140.. | 
 |  * | 
 |  * F16h: has only 1 DCT | 
 |  * | 
 |  * F15h: we select which DCT we access using F1x10C[DctCfgSel] | 
 |  */ | 
 | static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct, | 
 | 					 int offset, u32 *val) | 
 | { | 
 | 	switch (pvt->fam) { | 
 | 	case 0xf: | 
 | 		if (dct || offset >= 0x100) | 
 | 			return -EINVAL; | 
 | 		break; | 
 |  | 
 | 	case 0x10: | 
 | 		if (dct) { | 
 | 			/* | 
 | 			 * Note: If ganging is enabled, barring the regs | 
 | 			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx | 
 | 			 * return 0. (cf. Section 2.8.1 F10h BKDG) | 
 | 			 */ | 
 | 			if (dct_ganging_enabled(pvt)) | 
 | 				return 0; | 
 |  | 
 | 			offset += 0x100; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case 0x15: | 
 | 		/* | 
 | 		 * F15h: F2x1xx addresses do not map explicitly to DCT1. | 
 | 		 * We should select which DCT we access using F1x10C[DctCfgSel] | 
 | 		 */ | 
 | 		dct = (dct && pvt->model == 0x30) ? 3 : dct; | 
 | 		f15h_select_dct(pvt, dct); | 
 | 		break; | 
 |  | 
 | 	case 0x16: | 
 | 		if (dct) | 
 | 			return -EINVAL; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return amd64_read_pci_cfg(pvt->F2, offset, val); | 
 | } | 
 |  | 
 | /* | 
 |  * Memory scrubber control interface. For K8, memory scrubbing is handled by | 
 |  * hardware and can involve L2 cache, dcache as well as the main memory. With | 
 |  * F10, this is extended to L3 cache scrubbing on CPU models sporting that | 
 |  * functionality. | 
 |  * | 
 |  * This causes the "units" for the scrubbing speed to vary from 64 byte blocks | 
 |  * (dram) over to cache lines. This is nasty, so we will use bandwidth in | 
 |  * bytes/sec for the setting. | 
 |  * | 
 |  * Currently, we only do dram scrubbing. If the scrubbing is done in software on | 
 |  * other archs, we might not have access to the caches directly. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Scan the scrub rate mapping table for a close or matching bandwidth value to | 
 |  * issue. If requested is too big, then use last maximum value found. | 
 |  */ | 
 | static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate) | 
 | { | 
 | 	u32 scrubval; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * map the configured rate (new_bw) to a value specific to the AMD64 | 
 | 	 * memory controller and apply to register. Search for the first | 
 | 	 * bandwidth entry that is greater or equal than the setting requested | 
 | 	 * and program that. If at last entry, turn off DRAM scrubbing. | 
 | 	 * | 
 | 	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely | 
 | 	 * by falling back to the last element in scrubrates[]. | 
 | 	 */ | 
 | 	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) { | 
 | 		/* | 
 | 		 * skip scrub rates which aren't recommended | 
 | 		 * (see F10 BKDG, F3x58) | 
 | 		 */ | 
 | 		if (scrubrates[i].scrubval < min_rate) | 
 | 			continue; | 
 |  | 
 | 		if (scrubrates[i].bandwidth <= new_bw) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	scrubval = scrubrates[i].scrubval; | 
 |  | 
 | 	if (pvt->fam == 0x15 && pvt->model == 0x60) { | 
 | 		f15h_select_dct(pvt, 0); | 
 | 		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F); | 
 | 		f15h_select_dct(pvt, 1); | 
 | 		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F); | 
 | 	} else { | 
 | 		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F); | 
 | 	} | 
 |  | 
 | 	if (scrubval) | 
 | 		return scrubrates[i].bandwidth; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	u32 min_scrubrate = 0x5; | 
 |  | 
 | 	if (pvt->fam == 0xf) | 
 | 		min_scrubrate = 0x0; | 
 |  | 
 | 	if (pvt->fam == 0x15) { | 
 | 		/* Erratum #505 */ | 
 | 		if (pvt->model < 0x10) | 
 | 			f15h_select_dct(pvt, 0); | 
 |  | 
 | 		if (pvt->model == 0x60) | 
 | 			min_scrubrate = 0x6; | 
 | 	} | 
 | 	return __set_scrub_rate(pvt, bw, min_scrubrate); | 
 | } | 
 |  | 
 | static int get_scrub_rate(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	int i, retval = -EINVAL; | 
 | 	u32 scrubval = 0; | 
 |  | 
 | 	if (pvt->fam == 0x15) { | 
 | 		/* Erratum #505 */ | 
 | 		if (pvt->model < 0x10) | 
 | 			f15h_select_dct(pvt, 0); | 
 |  | 
 | 		if (pvt->model == 0x60) | 
 | 			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval); | 
 | 		else | 
 | 			amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); | 
 | 	} else { | 
 | 		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval); | 
 | 	} | 
 |  | 
 | 	scrubval = scrubval & 0x001F; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { | 
 | 		if (scrubrates[i].scrubval == scrubval) { | 
 | 			retval = scrubrates[i].bandwidth; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * returns true if the SysAddr given by sys_addr matches the | 
 |  * DRAM base/limit associated with node_id | 
 |  */ | 
 | static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid) | 
 | { | 
 | 	u64 addr; | 
 |  | 
 | 	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be | 
 | 	 * all ones if the most significant implemented address bit is 1. | 
 | 	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication | 
 | 	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 | 
 | 	 * Application Programming. | 
 | 	 */ | 
 | 	addr = sys_addr & 0x000000ffffffffffull; | 
 |  | 
 | 	return ((addr >= get_dram_base(pvt, nid)) && | 
 | 		(addr <= get_dram_limit(pvt, nid))); | 
 | } | 
 |  | 
 | /* | 
 |  * Attempt to map a SysAddr to a node. On success, return a pointer to the | 
 |  * mem_ctl_info structure for the node that the SysAddr maps to. | 
 |  * | 
 |  * On failure, return NULL. | 
 |  */ | 
 | static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, | 
 | 						u64 sys_addr) | 
 | { | 
 | 	struct amd64_pvt *pvt; | 
 | 	u8 node_id; | 
 | 	u32 intlv_en, bits; | 
 |  | 
 | 	/* | 
 | 	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section | 
 | 	 * 3.4.4.2) registers to map the SysAddr to a node ID. | 
 | 	 */ | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	/* | 
 | 	 * The value of this field should be the same for all DRAM Base | 
 | 	 * registers.  Therefore we arbitrarily choose to read it from the | 
 | 	 * register for node 0. | 
 | 	 */ | 
 | 	intlv_en = dram_intlv_en(pvt, 0); | 
 |  | 
 | 	if (intlv_en == 0) { | 
 | 		for (node_id = 0; node_id < DRAM_RANGES; node_id++) { | 
 | 			if (base_limit_match(pvt, sys_addr, node_id)) | 
 | 				goto found; | 
 | 		} | 
 | 		goto err_no_match; | 
 | 	} | 
 |  | 
 | 	if (unlikely((intlv_en != 0x01) && | 
 | 		     (intlv_en != 0x03) && | 
 | 		     (intlv_en != 0x07))) { | 
 | 		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	bits = (((u32) sys_addr) >> 12) & intlv_en; | 
 |  | 
 | 	for (node_id = 0; ; ) { | 
 | 		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits) | 
 | 			break;	/* intlv_sel field matches */ | 
 |  | 
 | 		if (++node_id >= DRAM_RANGES) | 
 | 			goto err_no_match; | 
 | 	} | 
 |  | 
 | 	/* sanity test for sys_addr */ | 
 | 	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) { | 
 | 		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address" | 
 | 			   "range for node %d with node interleaving enabled.\n", | 
 | 			   __func__, sys_addr, node_id); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | found: | 
 | 	return edac_mc_find((int)node_id); | 
 |  | 
 | err_no_match: | 
 | 	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n", | 
 | 		 (unsigned long)sys_addr); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * compute the CS base address of the @csrow on the DRAM controller @dct. | 
 |  * For details see F2x[5C:40] in the processor's BKDG | 
 |  */ | 
 | static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct, | 
 | 				 u64 *base, u64 *mask) | 
 | { | 
 | 	u64 csbase, csmask, base_bits, mask_bits; | 
 | 	u8 addr_shift; | 
 |  | 
 | 	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { | 
 | 		csbase		= pvt->csels[dct].csbases[csrow]; | 
 | 		csmask		= pvt->csels[dct].csmasks[csrow]; | 
 | 		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9); | 
 | 		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9); | 
 | 		addr_shift	= 4; | 
 |  | 
 | 	/* | 
 | 	 * F16h and F15h, models 30h and later need two addr_shift values: | 
 | 	 * 8 for high and 6 for low (cf. F16h BKDG). | 
 | 	 */ | 
 | 	} else if (pvt->fam == 0x16 || | 
 | 		  (pvt->fam == 0x15 && pvt->model >= 0x30)) { | 
 | 		csbase          = pvt->csels[dct].csbases[csrow]; | 
 | 		csmask          = pvt->csels[dct].csmasks[csrow >> 1]; | 
 |  | 
 | 		*base  = (csbase & GENMASK_ULL(15,  5)) << 6; | 
 | 		*base |= (csbase & GENMASK_ULL(30, 19)) << 8; | 
 |  | 
 | 		*mask = ~0ULL; | 
 | 		/* poke holes for the csmask */ | 
 | 		*mask &= ~((GENMASK_ULL(15, 5)  << 6) | | 
 | 			   (GENMASK_ULL(30, 19) << 8)); | 
 |  | 
 | 		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6; | 
 | 		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8; | 
 |  | 
 | 		return; | 
 | 	} else { | 
 | 		csbase		= pvt->csels[dct].csbases[csrow]; | 
 | 		csmask		= pvt->csels[dct].csmasks[csrow >> 1]; | 
 | 		addr_shift	= 8; | 
 |  | 
 | 		if (pvt->fam == 0x15) | 
 | 			base_bits = mask_bits = | 
 | 				GENMASK_ULL(30,19) | GENMASK_ULL(13,5); | 
 | 		else | 
 | 			base_bits = mask_bits = | 
 | 				GENMASK_ULL(28,19) | GENMASK_ULL(13,5); | 
 | 	} | 
 |  | 
 | 	*base  = (csbase & base_bits) << addr_shift; | 
 |  | 
 | 	*mask  = ~0ULL; | 
 | 	/* poke holes for the csmask */ | 
 | 	*mask &= ~(mask_bits << addr_shift); | 
 | 	/* OR them in */ | 
 | 	*mask |= (csmask & mask_bits) << addr_shift; | 
 | } | 
 |  | 
 | #define for_each_chip_select(i, dct, pvt) \ | 
 | 	for (i = 0; i < pvt->csels[dct].b_cnt; i++) | 
 |  | 
 | #define chip_select_base(i, dct, pvt) \ | 
 | 	pvt->csels[dct].csbases[i] | 
 |  | 
 | #define for_each_chip_select_mask(i, dct, pvt) \ | 
 | 	for (i = 0; i < pvt->csels[dct].m_cnt; i++) | 
 |  | 
 | #define for_each_umc(i) \ | 
 | 	for (i = 0; i < pvt->max_mcs; i++) | 
 |  | 
 | /* | 
 |  * @input_addr is an InputAddr associated with the node given by mci. Return the | 
 |  * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). | 
 |  */ | 
 | static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) | 
 | { | 
 | 	struct amd64_pvt *pvt; | 
 | 	int csrow; | 
 | 	u64 base, mask; | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	for_each_chip_select(csrow, 0, pvt) { | 
 | 		if (!csrow_enabled(csrow, 0, pvt)) | 
 | 			continue; | 
 |  | 
 | 		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask); | 
 |  | 
 | 		mask = ~mask; | 
 |  | 
 | 		if ((input_addr & mask) == (base & mask)) { | 
 | 			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n", | 
 | 				 (unsigned long)input_addr, csrow, | 
 | 				 pvt->mc_node_id); | 
 |  | 
 | 			return csrow; | 
 | 		} | 
 | 	} | 
 | 	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n", | 
 | 		 (unsigned long)input_addr, pvt->mc_node_id); | 
 |  | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* | 
 |  * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) | 
 |  * for the node represented by mci. Info is passed back in *hole_base, | 
 |  * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if | 
 |  * info is invalid. Info may be invalid for either of the following reasons: | 
 |  * | 
 |  * - The revision of the node is not E or greater.  In this case, the DRAM Hole | 
 |  *   Address Register does not exist. | 
 |  * | 
 |  * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, | 
 |  *   indicating that its contents are not valid. | 
 |  * | 
 |  * The values passed back in *hole_base, *hole_offset, and *hole_size are | 
 |  * complete 32-bit values despite the fact that the bitfields in the DHAR | 
 |  * only represent bits 31-24 of the base and offset values. | 
 |  */ | 
 | static int get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, | 
 | 			      u64 *hole_offset, u64 *hole_size) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 |  | 
 | 	/* only revE and later have the DRAM Hole Address Register */ | 
 | 	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) { | 
 | 		edac_dbg(1, "  revision %d for node %d does not support DHAR\n", | 
 | 			 pvt->ext_model, pvt->mc_node_id); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* valid for Fam10h and above */ | 
 | 	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) { | 
 | 		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n"); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (!dhar_valid(pvt)) { | 
 | 		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n", | 
 | 			 pvt->mc_node_id); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* This node has Memory Hoisting */ | 
 |  | 
 | 	/* +------------------+--------------------+--------------------+----- | 
 | 	 * | memory           | DRAM hole          | relocated          | | 
 | 	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     | | 
 | 	 * |                  |                    | DRAM hole          | | 
 | 	 * |                  |                    | [0x100000000,      | | 
 | 	 * |                  |                    |  (0x100000000+     | | 
 | 	 * |                  |                    |   (0xffffffff-x))] | | 
 | 	 * +------------------+--------------------+--------------------+----- | 
 | 	 * | 
 | 	 * Above is a diagram of physical memory showing the DRAM hole and the | 
 | 	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole | 
 | 	 * starts at address x (the base address) and extends through address | 
 | 	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the | 
 | 	 * addresses in the hole so that they start at 0x100000000. | 
 | 	 */ | 
 |  | 
 | 	*hole_base = dhar_base(pvt); | 
 | 	*hole_size = (1ULL << 32) - *hole_base; | 
 |  | 
 | 	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt) | 
 | 					: k8_dhar_offset(pvt); | 
 |  | 
 | 	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", | 
 | 		 pvt->mc_node_id, (unsigned long)*hole_base, | 
 | 		 (unsigned long)*hole_offset, (unsigned long)*hole_size); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_EDAC_DEBUG | 
 | #define EDAC_DCT_ATTR_SHOW(reg)						\ | 
 | static ssize_t reg##_show(struct device *dev,				\ | 
 | 			 struct device_attribute *mattr, char *data)	\ | 
 | {									\ | 
 | 	struct mem_ctl_info *mci = to_mci(dev);				\ | 
 | 	struct amd64_pvt *pvt = mci->pvt_info;				\ | 
 | 									\ | 
 | 	return sprintf(data, "0x%016llx\n", (u64)pvt->reg);		\ | 
 | } | 
 |  | 
 | EDAC_DCT_ATTR_SHOW(dhar); | 
 | EDAC_DCT_ATTR_SHOW(dbam0); | 
 | EDAC_DCT_ATTR_SHOW(top_mem); | 
 | EDAC_DCT_ATTR_SHOW(top_mem2); | 
 |  | 
 | static ssize_t dram_hole_show(struct device *dev, struct device_attribute *mattr, | 
 | 			      char *data) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 |  | 
 | 	u64 hole_base = 0; | 
 | 	u64 hole_offset = 0; | 
 | 	u64 hole_size = 0; | 
 |  | 
 | 	get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size); | 
 |  | 
 | 	return sprintf(data, "%llx %llx %llx\n", hole_base, hole_offset, | 
 | 						 hole_size); | 
 | } | 
 |  | 
 | /* | 
 |  * update NUM_DBG_ATTRS in case you add new members | 
 |  */ | 
 | static DEVICE_ATTR(dhar, S_IRUGO, dhar_show, NULL); | 
 | static DEVICE_ATTR(dbam, S_IRUGO, dbam0_show, NULL); | 
 | static DEVICE_ATTR(topmem, S_IRUGO, top_mem_show, NULL); | 
 | static DEVICE_ATTR(topmem2, S_IRUGO, top_mem2_show, NULL); | 
 | static DEVICE_ATTR_RO(dram_hole); | 
 |  | 
 | static struct attribute *dbg_attrs[] = { | 
 | 	&dev_attr_dhar.attr, | 
 | 	&dev_attr_dbam.attr, | 
 | 	&dev_attr_topmem.attr, | 
 | 	&dev_attr_topmem2.attr, | 
 | 	&dev_attr_dram_hole.attr, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static const struct attribute_group dbg_group = { | 
 | 	.attrs = dbg_attrs, | 
 | }; | 
 |  | 
 | static ssize_t inject_section_show(struct device *dev, | 
 | 				   struct device_attribute *mattr, char *buf) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	return sprintf(buf, "0x%x\n", pvt->injection.section); | 
 | } | 
 |  | 
 | /* | 
 |  * store error injection section value which refers to one of 4 16-byte sections | 
 |  * within a 64-byte cacheline | 
 |  * | 
 |  * range: 0..3 | 
 |  */ | 
 | static ssize_t inject_section_store(struct device *dev, | 
 | 				    struct device_attribute *mattr, | 
 | 				    const char *data, size_t count) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	unsigned long value; | 
 | 	int ret; | 
 |  | 
 | 	ret = kstrtoul(data, 10, &value); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	if (value > 3) { | 
 | 		amd64_warn("%s: invalid section 0x%lx\n", __func__, value); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	pvt->injection.section = (u32) value; | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t inject_word_show(struct device *dev, | 
 | 				struct device_attribute *mattr, char *buf) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	return sprintf(buf, "0x%x\n", pvt->injection.word); | 
 | } | 
 |  | 
 | /* | 
 |  * store error injection word value which refers to one of 9 16-bit word of the | 
 |  * 16-byte (128-bit + ECC bits) section | 
 |  * | 
 |  * range: 0..8 | 
 |  */ | 
 | static ssize_t inject_word_store(struct device *dev, | 
 | 				 struct device_attribute *mattr, | 
 | 				 const char *data, size_t count) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	unsigned long value; | 
 | 	int ret; | 
 |  | 
 | 	ret = kstrtoul(data, 10, &value); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	if (value > 8) { | 
 | 		amd64_warn("%s: invalid word 0x%lx\n", __func__, value); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	pvt->injection.word = (u32) value; | 
 | 	return count; | 
 | } | 
 |  | 
 | static ssize_t inject_ecc_vector_show(struct device *dev, | 
 | 				      struct device_attribute *mattr, | 
 | 				      char *buf) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	return sprintf(buf, "0x%x\n", pvt->injection.bit_map); | 
 | } | 
 |  | 
 | /* | 
 |  * store 16 bit error injection vector which enables injecting errors to the | 
 |  * corresponding bit within the error injection word above. When used during a | 
 |  * DRAM ECC read, it holds the contents of the of the DRAM ECC bits. | 
 |  */ | 
 | static ssize_t inject_ecc_vector_store(struct device *dev, | 
 | 				       struct device_attribute *mattr, | 
 | 				       const char *data, size_t count) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	unsigned long value; | 
 | 	int ret; | 
 |  | 
 | 	ret = kstrtoul(data, 16, &value); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	if (value & 0xFFFF0000) { | 
 | 		amd64_warn("%s: invalid EccVector: 0x%lx\n", __func__, value); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	pvt->injection.bit_map = (u32) value; | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * Do a DRAM ECC read. Assemble staged values in the pvt area, format into | 
 |  * fields needed by the injection registers and read the NB Array Data Port. | 
 |  */ | 
 | static ssize_t inject_read_store(struct device *dev, | 
 | 				 struct device_attribute *mattr, | 
 | 				 const char *data, size_t count) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	unsigned long value; | 
 | 	u32 section, word_bits; | 
 | 	int ret; | 
 |  | 
 | 	ret = kstrtoul(data, 10, &value); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	/* Form value to choose 16-byte section of cacheline */ | 
 | 	section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section); | 
 |  | 
 | 	amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section); | 
 |  | 
 | 	word_bits = SET_NB_DRAM_INJECTION_READ(pvt->injection); | 
 |  | 
 | 	/* Issue 'word' and 'bit' along with the READ request */ | 
 | 	amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits); | 
 |  | 
 | 	edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits); | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * Do a DRAM ECC write. Assemble staged values in the pvt area and format into | 
 |  * fields needed by the injection registers. | 
 |  */ | 
 | static ssize_t inject_write_store(struct device *dev, | 
 | 				  struct device_attribute *mattr, | 
 | 				  const char *data, size_t count) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	u32 section, word_bits, tmp; | 
 | 	unsigned long value; | 
 | 	int ret; | 
 |  | 
 | 	ret = kstrtoul(data, 10, &value); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	/* Form value to choose 16-byte section of cacheline */ | 
 | 	section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section); | 
 |  | 
 | 	amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section); | 
 |  | 
 | 	word_bits = SET_NB_DRAM_INJECTION_WRITE(pvt->injection); | 
 |  | 
 | 	pr_notice_once("Don't forget to decrease MCE polling interval in\n" | 
 | 			"/sys/bus/machinecheck/devices/machinecheck<CPUNUM>/check_interval\n" | 
 | 			"so that you can get the error report faster.\n"); | 
 |  | 
 | 	on_each_cpu(disable_caches, NULL, 1); | 
 |  | 
 | 	/* Issue 'word' and 'bit' along with the READ request */ | 
 | 	amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits); | 
 |  | 
 |  retry: | 
 | 	/* wait until injection happens */ | 
 | 	amd64_read_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, &tmp); | 
 | 	if (tmp & F10_NB_ARR_ECC_WR_REQ) { | 
 | 		cpu_relax(); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	on_each_cpu(enable_caches, NULL, 1); | 
 |  | 
 | 	edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits); | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /* | 
 |  * update NUM_INJ_ATTRS in case you add new members | 
 |  */ | 
 |  | 
 | static DEVICE_ATTR_RW(inject_section); | 
 | static DEVICE_ATTR_RW(inject_word); | 
 | static DEVICE_ATTR_RW(inject_ecc_vector); | 
 | static DEVICE_ATTR_WO(inject_write); | 
 | static DEVICE_ATTR_WO(inject_read); | 
 |  | 
 | static struct attribute *inj_attrs[] = { | 
 | 	&dev_attr_inject_section.attr, | 
 | 	&dev_attr_inject_word.attr, | 
 | 	&dev_attr_inject_ecc_vector.attr, | 
 | 	&dev_attr_inject_write.attr, | 
 | 	&dev_attr_inject_read.attr, | 
 | 	NULL | 
 | }; | 
 |  | 
 | static umode_t inj_is_visible(struct kobject *kobj, struct attribute *attr, int idx) | 
 | { | 
 | 	struct device *dev = kobj_to_dev(kobj); | 
 | 	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 |  | 
 | 	/* Families which have that injection hw */ | 
 | 	if (pvt->fam >= 0x10 && pvt->fam <= 0x16) | 
 | 		return attr->mode; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct attribute_group inj_group = { | 
 | 	.attrs = inj_attrs, | 
 | 	.is_visible = inj_is_visible, | 
 | }; | 
 | #endif /* CONFIG_EDAC_DEBUG */ | 
 |  | 
 | /* | 
 |  * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is | 
 |  * assumed that sys_addr maps to the node given by mci. | 
 |  * | 
 |  * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section | 
 |  * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a | 
 |  * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, | 
 |  * then it is also involved in translating a SysAddr to a DramAddr. Sections | 
 |  * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. | 
 |  * These parts of the documentation are unclear. I interpret them as follows: | 
 |  * | 
 |  * When node n receives a SysAddr, it processes the SysAddr as follows: | 
 |  * | 
 |  * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM | 
 |  *    Limit registers for node n. If the SysAddr is not within the range | 
 |  *    specified by the base and limit values, then node n ignores the Sysaddr | 
 |  *    (since it does not map to node n). Otherwise continue to step 2 below. | 
 |  * | 
 |  * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is | 
 |  *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within | 
 |  *    the range of relocated addresses (starting at 0x100000000) from the DRAM | 
 |  *    hole. If not, skip to step 3 below. Else get the value of the | 
 |  *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the | 
 |  *    offset defined by this value from the SysAddr. | 
 |  * | 
 |  * 3. Obtain the base address for node n from the DRAMBase field of the DRAM | 
 |  *    Base register for node n. To obtain the DramAddr, subtract the base | 
 |  *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70). | 
 |  */ | 
 | static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; | 
 | 	int ret; | 
 |  | 
 | 	dram_base = get_dram_base(pvt, pvt->mc_node_id); | 
 |  | 
 | 	ret = get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size); | 
 | 	if (!ret) { | 
 | 		if ((sys_addr >= (1ULL << 32)) && | 
 | 		    (sys_addr < ((1ULL << 32) + hole_size))) { | 
 | 			/* use DHAR to translate SysAddr to DramAddr */ | 
 | 			dram_addr = sys_addr - hole_offset; | 
 |  | 
 | 			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n", | 
 | 				 (unsigned long)sys_addr, | 
 | 				 (unsigned long)dram_addr); | 
 |  | 
 | 			return dram_addr; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Translate the SysAddr to a DramAddr as shown near the start of | 
 | 	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8 | 
 | 	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of | 
 | 	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we | 
 | 	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See | 
 | 	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture | 
 | 	 * Programmer's Manual Volume 1 Application Programming. | 
 | 	 */ | 
 | 	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base; | 
 |  | 
 | 	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n", | 
 | 		 (unsigned long)sys_addr, (unsigned long)dram_addr); | 
 | 	return dram_addr; | 
 | } | 
 |  | 
 | /* | 
 |  * @intlv_en is the value of the IntlvEn field from a DRAM Base register | 
 |  * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used | 
 |  * for node interleaving. | 
 |  */ | 
 | static int num_node_interleave_bits(unsigned intlv_en) | 
 | { | 
 | 	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; | 
 | 	int n; | 
 |  | 
 | 	BUG_ON(intlv_en > 7); | 
 | 	n = intlv_shift_table[intlv_en]; | 
 | 	return n; | 
 | } | 
 |  | 
 | /* Translate the DramAddr given by @dram_addr to an InputAddr. */ | 
 | static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) | 
 | { | 
 | 	struct amd64_pvt *pvt; | 
 | 	int intlv_shift; | 
 | 	u64 input_addr; | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	/* | 
 | 	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) | 
 | 	 * concerning translating a DramAddr to an InputAddr. | 
 | 	 */ | 
 | 	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0)); | 
 | 	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) + | 
 | 		      (dram_addr & 0xfff); | 
 |  | 
 | 	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", | 
 | 		 intlv_shift, (unsigned long)dram_addr, | 
 | 		 (unsigned long)input_addr); | 
 |  | 
 | 	return input_addr; | 
 | } | 
 |  | 
 | /* | 
 |  * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is | 
 |  * assumed that @sys_addr maps to the node given by mci. | 
 |  */ | 
 | static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) | 
 | { | 
 | 	u64 input_addr; | 
 |  | 
 | 	input_addr = | 
 | 	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); | 
 |  | 
 | 	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n", | 
 | 		 (unsigned long)sys_addr, (unsigned long)input_addr); | 
 |  | 
 | 	return input_addr; | 
 | } | 
 |  | 
 | /* Map the Error address to a PAGE and PAGE OFFSET. */ | 
 | static inline void error_address_to_page_and_offset(u64 error_address, | 
 | 						    struct err_info *err) | 
 | { | 
 | 	err->page = (u32) (error_address >> PAGE_SHIFT); | 
 | 	err->offset = ((u32) error_address) & ~PAGE_MASK; | 
 | } | 
 |  | 
 | /* | 
 |  * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address | 
 |  * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers | 
 |  * of a node that detected an ECC memory error.  mci represents the node that | 
 |  * the error address maps to (possibly different from the node that detected | 
 |  * the error).  Return the number of the csrow that sys_addr maps to, or -1 on | 
 |  * error. | 
 |  */ | 
 | static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) | 
 | { | 
 | 	int csrow; | 
 |  | 
 | 	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); | 
 |  | 
 | 	if (csrow == -1) | 
 | 		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for " | 
 | 				  "address 0x%lx\n", (unsigned long)sys_addr); | 
 | 	return csrow; | 
 | } | 
 |  | 
 | /* | 
 |  * See AMD PPR DF::LclNodeTypeMap | 
 |  * | 
 |  * This register gives information for nodes of the same type within a system. | 
 |  * | 
 |  * Reading this register from a GPU node will tell how many GPU nodes are in the | 
 |  * system and what the lowest AMD Node ID value is for the GPU nodes. Use this | 
 |  * info to fixup the Linux logical "Node ID" value set in the AMD NB code and EDAC. | 
 |  */ | 
 | static struct local_node_map { | 
 | 	u16 node_count; | 
 | 	u16 base_node_id; | 
 | } gpu_node_map; | 
 |  | 
 | #define PCI_DEVICE_ID_AMD_MI200_DF_F1		0x14d1 | 
 | #define REG_LOCAL_NODE_TYPE_MAP			0x144 | 
 |  | 
 | /* Local Node Type Map (LNTM) fields */ | 
 | #define LNTM_NODE_COUNT				GENMASK(27, 16) | 
 | #define LNTM_BASE_NODE_ID			GENMASK(11, 0) | 
 |  | 
 | static int gpu_get_node_map(struct amd64_pvt *pvt) | 
 | { | 
 | 	struct pci_dev *pdev; | 
 | 	int ret; | 
 | 	u32 tmp; | 
 |  | 
 | 	/* | 
 | 	 * Mapping of nodes from hardware-provided AMD Node ID to a | 
 | 	 * Linux logical one is applicable for MI200 models. Therefore, | 
 | 	 * return early for other heterogeneous systems. | 
 | 	 */ | 
 | 	if (pvt->F3->device != PCI_DEVICE_ID_AMD_MI200_DF_F3) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Node ID 0 is reserved for CPUs. Therefore, a non-zero Node ID | 
 | 	 * means the values have been already cached. | 
 | 	 */ | 
 | 	if (gpu_node_map.base_node_id) | 
 | 		return 0; | 
 |  | 
 | 	pdev = pci_get_device(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_MI200_DF_F1, NULL); | 
 | 	if (!pdev) { | 
 | 		ret = -ENODEV; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = pci_read_config_dword(pdev, REG_LOCAL_NODE_TYPE_MAP, &tmp); | 
 | 	if (ret) { | 
 | 		ret = pcibios_err_to_errno(ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	gpu_node_map.node_count = FIELD_GET(LNTM_NODE_COUNT, tmp); | 
 | 	gpu_node_map.base_node_id = FIELD_GET(LNTM_BASE_NODE_ID, tmp); | 
 |  | 
 | out: | 
 | 	pci_dev_put(pdev); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int fixup_node_id(int node_id, struct mce *m) | 
 | { | 
 | 	/* MCA_IPID[InstanceIdHi] give the AMD Node ID for the bank. */ | 
 | 	u8 nid = (m->ipid >> 44) & 0xF; | 
 |  | 
 | 	if (smca_get_bank_type(m->extcpu, m->bank) != SMCA_UMC_V2) | 
 | 		return node_id; | 
 |  | 
 | 	/* Nodes below the GPU base node are CPU nodes and don't need a fixup. */ | 
 | 	if (nid < gpu_node_map.base_node_id) | 
 | 		return node_id; | 
 |  | 
 | 	/* Convert the hardware-provided AMD Node ID to a Linux logical one. */ | 
 | 	return nid - gpu_node_map.base_node_id + 1; | 
 | } | 
 |  | 
 | static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); | 
 |  | 
 | /* | 
 |  * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs | 
 |  * are ECC capable. | 
 |  */ | 
 | static unsigned long dct_determine_edac_cap(struct amd64_pvt *pvt) | 
 | { | 
 | 	unsigned long edac_cap = EDAC_FLAG_NONE; | 
 | 	u8 bit; | 
 |  | 
 | 	bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F) | 
 | 		? 19 | 
 | 		: 17; | 
 |  | 
 | 	if (pvt->dclr0 & BIT(bit)) | 
 | 		edac_cap = EDAC_FLAG_SECDED; | 
 |  | 
 | 	return edac_cap; | 
 | } | 
 |  | 
 | static unsigned long umc_determine_edac_cap(struct amd64_pvt *pvt) | 
 | { | 
 | 	u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0; | 
 | 	unsigned long edac_cap = EDAC_FLAG_NONE; | 
 |  | 
 | 	for_each_umc(i) { | 
 | 		if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT)) | 
 | 			continue; | 
 |  | 
 | 		umc_en_mask |= BIT(i); | 
 |  | 
 | 		/* UMC Configuration bit 12 (DimmEccEn) */ | 
 | 		if (pvt->umc[i].umc_cfg & BIT(12)) | 
 | 			dimm_ecc_en_mask |= BIT(i); | 
 | 	} | 
 |  | 
 | 	if (umc_en_mask == dimm_ecc_en_mask) | 
 | 		edac_cap = EDAC_FLAG_SECDED; | 
 |  | 
 | 	return edac_cap; | 
 | } | 
 |  | 
 | /* | 
 |  * debug routine to display the memory sizes of all logical DIMMs and its | 
 |  * CSROWs | 
 |  */ | 
 | static void dct_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) | 
 | { | 
 | 	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases; | 
 | 	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0; | 
 | 	int dimm, size0, size1; | 
 |  | 
 | 	if (pvt->fam == 0xf) { | 
 | 		/* K8 families < revF not supported yet */ | 
 | 		if (pvt->ext_model < K8_REV_F) | 
 | 			return; | 
 |  | 
 | 		WARN_ON(ctrl != 0); | 
 | 	} | 
 |  | 
 | 	if (pvt->fam == 0x10) { | 
 | 		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 | 
 | 							   : pvt->dbam0; | 
 | 		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? | 
 | 				 pvt->csels[1].csbases : | 
 | 				 pvt->csels[0].csbases; | 
 | 	} else if (ctrl) { | 
 | 		dbam = pvt->dbam0; | 
 | 		dcsb = pvt->csels[1].csbases; | 
 | 	} | 
 | 	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", | 
 | 		 ctrl, dbam); | 
 |  | 
 | 	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl); | 
 |  | 
 | 	/* Dump memory sizes for DIMM and its CSROWs */ | 
 | 	for (dimm = 0; dimm < 4; dimm++) { | 
 | 		size0 = 0; | 
 | 		if (dcsb[dimm * 2] & DCSB_CS_ENABLE) | 
 | 			/* | 
 | 			 * For F15m60h, we need multiplier for LRDIMM cs_size | 
 | 			 * calculation. We pass dimm value to the dbam_to_cs | 
 | 			 * mapper so we can find the multiplier from the | 
 | 			 * corresponding DCSM. | 
 | 			 */ | 
 | 			size0 = pvt->ops->dbam_to_cs(pvt, ctrl, | 
 | 						     DBAM_DIMM(dimm, dbam), | 
 | 						     dimm); | 
 |  | 
 | 		size1 = 0; | 
 | 		if (dcsb[dimm * 2 + 1] & DCSB_CS_ENABLE) | 
 | 			size1 = pvt->ops->dbam_to_cs(pvt, ctrl, | 
 | 						     DBAM_DIMM(dimm, dbam), | 
 | 						     dimm); | 
 |  | 
 | 		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", | 
 | 			   dimm * 2,     size0, | 
 | 			   dimm * 2 + 1, size1); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan) | 
 | { | 
 | 	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr); | 
 |  | 
 | 	if (pvt->dram_type == MEM_LRDDR3) { | 
 | 		u32 dcsm = pvt->csels[chan].csmasks[0]; | 
 | 		/* | 
 | 		 * It's assumed all LRDIMMs in a DCT are going to be of | 
 | 		 * same 'type' until proven otherwise. So, use a cs | 
 | 		 * value of '0' here to get dcsm value. | 
 | 		 */ | 
 | 		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3)); | 
 | 	} | 
 |  | 
 | 	edac_dbg(1, "All DIMMs support ECC: %s\n", str_yes_no(dclr & BIT(19))); | 
 |  | 
 |  | 
 | 	edac_dbg(1, "  PAR/ERR parity: %s\n", | 
 | 		 str_enabled_disabled(dclr & BIT(8))); | 
 |  | 
 | 	if (pvt->fam == 0x10) | 
 | 		edac_dbg(1, "  DCT 128bit mode width: %s\n", | 
 | 			 (dclr & BIT(11)) ?  "128b" : "64b"); | 
 |  | 
 | 	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n", | 
 | 		 str_yes_no(dclr & BIT(12)), | 
 | 		 str_yes_no(dclr & BIT(13)), | 
 | 		 str_yes_no(dclr & BIT(14)), | 
 | 		 str_yes_no(dclr & BIT(15))); | 
 | } | 
 |  | 
 | #define CS_EVEN_PRIMARY		BIT(0) | 
 | #define CS_ODD_PRIMARY		BIT(1) | 
 | #define CS_EVEN_SECONDARY	BIT(2) | 
 | #define CS_ODD_SECONDARY	BIT(3) | 
 | #define CS_3R_INTERLEAVE	BIT(4) | 
 |  | 
 | #define CS_EVEN			(CS_EVEN_PRIMARY | CS_EVEN_SECONDARY) | 
 | #define CS_ODD			(CS_ODD_PRIMARY | CS_ODD_SECONDARY) | 
 |  | 
 | static int umc_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt) | 
 | { | 
 | 	u8 base, count = 0; | 
 | 	int cs_mode = 0; | 
 |  | 
 | 	if (csrow_enabled(2 * dimm, ctrl, pvt)) | 
 | 		cs_mode |= CS_EVEN_PRIMARY; | 
 |  | 
 | 	if (csrow_enabled(2 * dimm + 1, ctrl, pvt)) | 
 | 		cs_mode |= CS_ODD_PRIMARY; | 
 |  | 
 | 	if (csrow_sec_enabled(2 * dimm, ctrl, pvt)) | 
 | 		cs_mode |= CS_EVEN_SECONDARY; | 
 |  | 
 | 	if (csrow_sec_enabled(2 * dimm + 1, ctrl, pvt)) | 
 | 		cs_mode |= CS_ODD_SECONDARY; | 
 |  | 
 | 	/* | 
 | 	 * 3 Rank inteleaving support. | 
 | 	 * There should be only three bases enabled and their two masks should | 
 | 	 * be equal. | 
 | 	 */ | 
 | 	for_each_chip_select(base, ctrl, pvt) | 
 | 		count += csrow_enabled(base, ctrl, pvt); | 
 |  | 
 | 	if (count == 3 && | 
 | 	    pvt->csels[ctrl].csmasks[0] == pvt->csels[ctrl].csmasks[1]) { | 
 | 		edac_dbg(1, "3R interleaving in use.\n"); | 
 | 		cs_mode |= CS_3R_INTERLEAVE; | 
 | 	} | 
 |  | 
 | 	return cs_mode; | 
 | } | 
 |  | 
 | static int calculate_cs_size(u32 mask, unsigned int cs_mode) | 
 | { | 
 | 	int msb, weight, num_zero_bits; | 
 | 	u32 deinterleaved_mask; | 
 |  | 
 | 	if (!mask) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * The number of zero bits in the mask is equal to the number of bits | 
 | 	 * in a full mask minus the number of bits in the current mask. | 
 | 	 * | 
 | 	 * The MSB is the number of bits in the full mask because BIT[0] is | 
 | 	 * always 0. | 
 | 	 * | 
 | 	 * In the special 3 Rank interleaving case, a single bit is flipped | 
 | 	 * without swapping with the most significant bit. This can be handled | 
 | 	 * by keeping the MSB where it is and ignoring the single zero bit. | 
 | 	 */ | 
 | 	msb = fls(mask) - 1; | 
 | 	weight = hweight_long(mask); | 
 | 	num_zero_bits = msb - weight - !!(cs_mode & CS_3R_INTERLEAVE); | 
 |  | 
 | 	/* Take the number of zero bits off from the top of the mask. */ | 
 | 	deinterleaved_mask = GENMASK(msb - num_zero_bits, 1); | 
 | 	edac_dbg(1, "  Deinterleaved AddrMask: 0x%x\n", deinterleaved_mask); | 
 |  | 
 | 	return (deinterleaved_mask >> 2) + 1; | 
 | } | 
 |  | 
 | static int __addr_mask_to_cs_size(u32 addr_mask, u32 addr_mask_sec, | 
 | 				  unsigned int cs_mode, int csrow_nr, int dimm) | 
 | { | 
 | 	int size; | 
 |  | 
 | 	edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm); | 
 | 	edac_dbg(1, "  Primary AddrMask: 0x%x\n", addr_mask); | 
 |  | 
 | 	/* Register [31:1] = Address [39:9]. Size is in kBs here. */ | 
 | 	size = calculate_cs_size(addr_mask, cs_mode); | 
 |  | 
 | 	edac_dbg(1, "  Secondary AddrMask: 0x%x\n", addr_mask_sec); | 
 | 	size += calculate_cs_size(addr_mask_sec, cs_mode); | 
 |  | 
 | 	/* Return size in MBs. */ | 
 | 	return size >> 10; | 
 | } | 
 |  | 
 | static int umc_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc, | 
 | 				    unsigned int cs_mode, int csrow_nr) | 
 | { | 
 | 	u32 addr_mask = 0, addr_mask_sec = 0; | 
 | 	int cs_mask_nr = csrow_nr; | 
 | 	int dimm, size = 0; | 
 |  | 
 | 	/* No Chip Selects are enabled. */ | 
 | 	if (!cs_mode) | 
 | 		return size; | 
 |  | 
 | 	/* Requested size of an even CS but none are enabled. */ | 
 | 	if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1)) | 
 | 		return size; | 
 |  | 
 | 	/* Requested size of an odd CS but none are enabled. */ | 
 | 	if (!(cs_mode & CS_ODD) && (csrow_nr & 1)) | 
 | 		return size; | 
 |  | 
 | 	/* | 
 | 	 * Family 17h introduced systems with one mask per DIMM, | 
 | 	 * and two Chip Selects per DIMM. | 
 | 	 * | 
 | 	 *	CS0 and CS1 -> MASK0 / DIMM0 | 
 | 	 *	CS2 and CS3 -> MASK1 / DIMM1 | 
 | 	 * | 
 | 	 * Family 19h Model 10h introduced systems with one mask per Chip Select, | 
 | 	 * and two Chip Selects per DIMM. | 
 | 	 * | 
 | 	 *	CS0 -> MASK0 -> DIMM0 | 
 | 	 *	CS1 -> MASK1 -> DIMM0 | 
 | 	 *	CS2 -> MASK2 -> DIMM1 | 
 | 	 *	CS3 -> MASK3 -> DIMM1 | 
 | 	 * | 
 | 	 * Keep the mask number equal to the Chip Select number for newer systems, | 
 | 	 * and shift the mask number for older systems. | 
 | 	 */ | 
 | 	dimm = csrow_nr >> 1; | 
 |  | 
 | 	if (!pvt->flags.zn_regs_v2) | 
 | 		cs_mask_nr >>= 1; | 
 |  | 
 | 	if (cs_mode & (CS_EVEN_PRIMARY | CS_ODD_PRIMARY)) | 
 | 		addr_mask = pvt->csels[umc].csmasks[cs_mask_nr]; | 
 |  | 
 | 	if (cs_mode & (CS_EVEN_SECONDARY | CS_ODD_SECONDARY)) | 
 | 		addr_mask_sec = pvt->csels[umc].csmasks_sec[cs_mask_nr]; | 
 |  | 
 | 	return __addr_mask_to_cs_size(addr_mask, addr_mask_sec, cs_mode, csrow_nr, dimm); | 
 | } | 
 |  | 
 | static void umc_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) | 
 | { | 
 | 	int dimm, size0, size1, cs0, cs1, cs_mode; | 
 |  | 
 | 	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl); | 
 |  | 
 | 	for (dimm = 0; dimm < 2; dimm++) { | 
 | 		cs0 = dimm * 2; | 
 | 		cs1 = dimm * 2 + 1; | 
 |  | 
 | 		cs_mode = umc_get_cs_mode(dimm, ctrl, pvt); | 
 |  | 
 | 		size0 = umc_addr_mask_to_cs_size(pvt, ctrl, cs_mode, cs0); | 
 | 		size1 = umc_addr_mask_to_cs_size(pvt, ctrl, cs_mode, cs1); | 
 |  | 
 | 		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n", | 
 | 				cs0,	size0, | 
 | 				cs1,	size1); | 
 | 	} | 
 | } | 
 |  | 
 | static void umc_dump_misc_regs(struct amd64_pvt *pvt) | 
 | { | 
 | 	struct amd64_umc *umc; | 
 | 	u32 i; | 
 |  | 
 | 	for_each_umc(i) { | 
 | 		umc = &pvt->umc[i]; | 
 |  | 
 | 		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg); | 
 | 		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg); | 
 | 		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl); | 
 | 		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl); | 
 | 		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi); | 
 |  | 
 | 		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n", | 
 | 				i, str_yes_no(umc->umc_cap_hi & BIT(30)), | 
 | 				    str_yes_no(umc->umc_cap_hi & BIT(31))); | 
 | 		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n", | 
 | 				i, str_yes_no(umc->umc_cfg & BIT(12))); | 
 | 		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n", | 
 | 				i, str_yes_no(umc->dimm_cfg & BIT(6))); | 
 | 		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n", | 
 | 				i, str_yes_no(umc->dimm_cfg & BIT(7))); | 
 |  | 
 | 		umc_debug_display_dimm_sizes(pvt, i); | 
 | 	} | 
 | } | 
 |  | 
 | static void dct_dump_misc_regs(struct amd64_pvt *pvt) | 
 | { | 
 | 	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap); | 
 |  | 
 | 	edac_dbg(1, "  NB two channel DRAM capable: %s\n", | 
 | 		 str_yes_no(pvt->nbcap & NBCAP_DCT_DUAL)); | 
 |  | 
 | 	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n", | 
 | 		 str_yes_no(pvt->nbcap & NBCAP_SECDED), | 
 | 		 str_yes_no(pvt->nbcap & NBCAP_CHIPKILL)); | 
 |  | 
 | 	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0); | 
 |  | 
 | 	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare); | 
 |  | 
 | 	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n", | 
 | 		 pvt->dhar, dhar_base(pvt), | 
 | 		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt) | 
 | 				   : f10_dhar_offset(pvt)); | 
 |  | 
 | 	dct_debug_display_dimm_sizes(pvt, 0); | 
 |  | 
 | 	/* everything below this point is Fam10h and above */ | 
 | 	if (pvt->fam == 0xf) | 
 | 		return; | 
 |  | 
 | 	dct_debug_display_dimm_sizes(pvt, 1); | 
 |  | 
 | 	/* Only if NOT ganged does dclr1 have valid info */ | 
 | 	if (!dct_ganging_enabled(pvt)) | 
 | 		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1); | 
 |  | 
 | 	edac_dbg(1, "  DramHoleValid: %s\n", str_yes_no(dhar_valid(pvt))); | 
 |  | 
 | 	amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz); | 
 | } | 
 |  | 
 | /* | 
 |  * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60] | 
 |  */ | 
 | static void dct_prep_chip_selects(struct amd64_pvt *pvt) | 
 | { | 
 | 	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) { | 
 | 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; | 
 | 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8; | 
 | 	} else if (pvt->fam == 0x15 && pvt->model == 0x30) { | 
 | 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4; | 
 | 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2; | 
 | 	} else { | 
 | 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8; | 
 | 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4; | 
 | 	} | 
 | } | 
 |  | 
 | static void umc_prep_chip_selects(struct amd64_pvt *pvt) | 
 | { | 
 | 	int umc; | 
 |  | 
 | 	for_each_umc(umc) { | 
 | 		pvt->csels[umc].b_cnt = 4; | 
 | 		pvt->csels[umc].m_cnt = pvt->flags.zn_regs_v2 ? 4 : 2; | 
 | 	} | 
 | } | 
 |  | 
 | static void umc_read_base_mask(struct amd64_pvt *pvt) | 
 | { | 
 | 	u32 umc_base_reg, umc_base_reg_sec; | 
 | 	u32 umc_mask_reg, umc_mask_reg_sec; | 
 | 	u32 base_reg, base_reg_sec; | 
 | 	u32 mask_reg, mask_reg_sec; | 
 | 	u32 *base, *base_sec; | 
 | 	u32 *mask, *mask_sec; | 
 | 	int cs, umc; | 
 | 	u32 tmp; | 
 |  | 
 | 	for_each_umc(umc) { | 
 | 		umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR; | 
 | 		umc_base_reg_sec = get_umc_base(umc) + UMCCH_BASE_ADDR_SEC; | 
 |  | 
 | 		for_each_chip_select(cs, umc, pvt) { | 
 | 			base = &pvt->csels[umc].csbases[cs]; | 
 | 			base_sec = &pvt->csels[umc].csbases_sec[cs]; | 
 |  | 
 | 			base_reg = umc_base_reg + (cs * 4); | 
 | 			base_reg_sec = umc_base_reg_sec + (cs * 4); | 
 |  | 
 | 			if (!amd_smn_read(pvt->mc_node_id, base_reg, &tmp)) { | 
 | 				*base = tmp; | 
 | 				edac_dbg(0, "  DCSB%d[%d]=0x%08x reg: 0x%x\n", | 
 | 					 umc, cs, *base, base_reg); | 
 | 			} | 
 |  | 
 | 			if (!amd_smn_read(pvt->mc_node_id, base_reg_sec, &tmp)) { | 
 | 				*base_sec = tmp; | 
 | 				edac_dbg(0, "    DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n", | 
 | 					 umc, cs, *base_sec, base_reg_sec); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK; | 
 | 		umc_mask_reg_sec = get_umc_base(umc) + get_umc_reg(pvt, UMCCH_ADDR_MASK_SEC); | 
 |  | 
 | 		for_each_chip_select_mask(cs, umc, pvt) { | 
 | 			mask = &pvt->csels[umc].csmasks[cs]; | 
 | 			mask_sec = &pvt->csels[umc].csmasks_sec[cs]; | 
 |  | 
 | 			mask_reg = umc_mask_reg + (cs * 4); | 
 | 			mask_reg_sec = umc_mask_reg_sec + (cs * 4); | 
 |  | 
 | 			if (!amd_smn_read(pvt->mc_node_id, mask_reg, &tmp)) { | 
 | 				*mask = tmp; | 
 | 				edac_dbg(0, "  DCSM%d[%d]=0x%08x reg: 0x%x\n", | 
 | 					 umc, cs, *mask, mask_reg); | 
 | 			} | 
 |  | 
 | 			if (!amd_smn_read(pvt->mc_node_id, mask_reg_sec, &tmp)) { | 
 | 				*mask_sec = tmp; | 
 | 				edac_dbg(0, "    DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n", | 
 | 					 umc, cs, *mask_sec, mask_reg_sec); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers | 
 |  */ | 
 | static void dct_read_base_mask(struct amd64_pvt *pvt) | 
 | { | 
 | 	int cs; | 
 |  | 
 | 	for_each_chip_select(cs, 0, pvt) { | 
 | 		int reg0   = DCSB0 + (cs * 4); | 
 | 		int reg1   = DCSB1 + (cs * 4); | 
 | 		u32 *base0 = &pvt->csels[0].csbases[cs]; | 
 | 		u32 *base1 = &pvt->csels[1].csbases[cs]; | 
 |  | 
 | 		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0)) | 
 | 			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n", | 
 | 				 cs, *base0, reg0); | 
 |  | 
 | 		if (pvt->fam == 0xf) | 
 | 			continue; | 
 |  | 
 | 		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1)) | 
 | 			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n", | 
 | 				 cs, *base1, (pvt->fam == 0x10) ? reg1 | 
 | 							: reg0); | 
 | 	} | 
 |  | 
 | 	for_each_chip_select_mask(cs, 0, pvt) { | 
 | 		int reg0   = DCSM0 + (cs * 4); | 
 | 		int reg1   = DCSM1 + (cs * 4); | 
 | 		u32 *mask0 = &pvt->csels[0].csmasks[cs]; | 
 | 		u32 *mask1 = &pvt->csels[1].csmasks[cs]; | 
 |  | 
 | 		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0)) | 
 | 			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n", | 
 | 				 cs, *mask0, reg0); | 
 |  | 
 | 		if (pvt->fam == 0xf) | 
 | 			continue; | 
 |  | 
 | 		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1)) | 
 | 			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n", | 
 | 				 cs, *mask1, (pvt->fam == 0x10) ? reg1 | 
 | 							: reg0); | 
 | 	} | 
 | } | 
 |  | 
 | static void umc_determine_memory_type(struct amd64_pvt *pvt) | 
 | { | 
 | 	struct amd64_umc *umc; | 
 | 	u32 i; | 
 |  | 
 | 	for_each_umc(i) { | 
 | 		umc = &pvt->umc[i]; | 
 |  | 
 | 		if (!(umc->sdp_ctrl & UMC_SDP_INIT)) { | 
 | 			umc->dram_type = MEM_EMPTY; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Check if the system supports the "DDR Type" field in UMC Config | 
 | 		 * and has DDR5 DIMMs in use. | 
 | 		 */ | 
 | 		if (pvt->flags.zn_regs_v2 && ((umc->umc_cfg & GENMASK(2, 0)) == 0x1)) { | 
 | 			if (umc->dimm_cfg & BIT(5)) | 
 | 				umc->dram_type = MEM_LRDDR5; | 
 | 			else if (umc->dimm_cfg & BIT(4)) | 
 | 				umc->dram_type = MEM_RDDR5; | 
 | 			else | 
 | 				umc->dram_type = MEM_DDR5; | 
 | 		} else { | 
 | 			if (umc->dimm_cfg & BIT(5)) | 
 | 				umc->dram_type = MEM_LRDDR4; | 
 | 			else if (umc->dimm_cfg & BIT(4)) | 
 | 				umc->dram_type = MEM_RDDR4; | 
 | 			else | 
 | 				umc->dram_type = MEM_DDR4; | 
 | 		} | 
 |  | 
 | 		edac_dbg(1, "  UMC%d DIMM type: %s\n", i, edac_mem_types[umc->dram_type]); | 
 | 	} | 
 | } | 
 |  | 
 | static void dct_determine_memory_type(struct amd64_pvt *pvt) | 
 | { | 
 | 	u32 dram_ctrl, dcsm; | 
 |  | 
 | 	switch (pvt->fam) { | 
 | 	case 0xf: | 
 | 		if (pvt->ext_model >= K8_REV_F) | 
 | 			goto ddr3; | 
 |  | 
 | 		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; | 
 | 		return; | 
 |  | 
 | 	case 0x10: | 
 | 		if (pvt->dchr0 & DDR3_MODE) | 
 | 			goto ddr3; | 
 |  | 
 | 		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; | 
 | 		return; | 
 |  | 
 | 	case 0x15: | 
 | 		if (pvt->model < 0x60) | 
 | 			goto ddr3; | 
 |  | 
 | 		/* | 
 | 		 * Model 0x60h needs special handling: | 
 | 		 * | 
 | 		 * We use a Chip Select value of '0' to obtain dcsm. | 
 | 		 * Theoretically, it is possible to populate LRDIMMs of different | 
 | 		 * 'Rank' value on a DCT. But this is not the common case. So, | 
 | 		 * it's reasonable to assume all DIMMs are going to be of same | 
 | 		 * 'type' until proven otherwise. | 
 | 		 */ | 
 | 		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl); | 
 | 		dcsm = pvt->csels[0].csmasks[0]; | 
 |  | 
 | 		if (((dram_ctrl >> 8) & 0x7) == 0x2) | 
 | 			pvt->dram_type = MEM_DDR4; | 
 | 		else if (pvt->dclr0 & BIT(16)) | 
 | 			pvt->dram_type = MEM_DDR3; | 
 | 		else if (dcsm & 0x3) | 
 | 			pvt->dram_type = MEM_LRDDR3; | 
 | 		else | 
 | 			pvt->dram_type = MEM_RDDR3; | 
 |  | 
 | 		return; | 
 |  | 
 | 	case 0x16: | 
 | 		goto ddr3; | 
 |  | 
 | 	default: | 
 | 		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam); | 
 | 		pvt->dram_type = MEM_EMPTY; | 
 | 	} | 
 |  | 
 | 	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]); | 
 | 	return; | 
 |  | 
 | ddr3: | 
 | 	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3; | 
 | } | 
 |  | 
 | /* On F10h and later ErrAddr is MC4_ADDR[47:1] */ | 
 | static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m) | 
 | { | 
 | 	u16 mce_nid = topology_amd_node_id(m->extcpu); | 
 | 	struct mem_ctl_info *mci; | 
 | 	u8 start_bit = 1; | 
 | 	u8 end_bit   = 47; | 
 | 	u64 addr; | 
 |  | 
 | 	mci = edac_mc_find(mce_nid); | 
 | 	if (!mci) | 
 | 		return 0; | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	if (pvt->fam == 0xf) { | 
 | 		start_bit = 3; | 
 | 		end_bit   = 39; | 
 | 	} | 
 |  | 
 | 	addr = m->addr & GENMASK_ULL(end_bit, start_bit); | 
 |  | 
 | 	/* | 
 | 	 * Erratum 637 workaround | 
 | 	 */ | 
 | 	if (pvt->fam == 0x15) { | 
 | 		u64 cc6_base, tmp_addr; | 
 | 		u32 tmp; | 
 | 		u8 intlv_en; | 
 |  | 
 | 		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7) | 
 | 			return addr; | 
 |  | 
 |  | 
 | 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp); | 
 | 		intlv_en = tmp >> 21 & 0x7; | 
 |  | 
 | 		/* add [47:27] + 3 trailing bits */ | 
 | 		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3; | 
 |  | 
 | 		/* reverse and add DramIntlvEn */ | 
 | 		cc6_base |= intlv_en ^ 0x7; | 
 |  | 
 | 		/* pin at [47:24] */ | 
 | 		cc6_base <<= 24; | 
 |  | 
 | 		if (!intlv_en) | 
 | 			return cc6_base | (addr & GENMASK_ULL(23, 0)); | 
 |  | 
 | 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp); | 
 |  | 
 | 							/* faster log2 */ | 
 | 		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1); | 
 |  | 
 | 		/* OR DramIntlvSel into bits [14:12] */ | 
 | 		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9; | 
 |  | 
 | 		/* add remaining [11:0] bits from original MC4_ADDR */ | 
 | 		tmp_addr |= addr & GENMASK_ULL(11, 0); | 
 |  | 
 | 		return cc6_base | tmp_addr; | 
 | 	} | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | static struct pci_dev *pci_get_related_function(unsigned int vendor, | 
 | 						unsigned int device, | 
 | 						struct pci_dev *related) | 
 | { | 
 | 	struct pci_dev *dev = NULL; | 
 |  | 
 | 	while ((dev = pci_get_device(vendor, device, dev))) { | 
 | 		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) && | 
 | 		    (dev->bus->number == related->bus->number) && | 
 | 		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn))) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return dev; | 
 | } | 
 |  | 
 | static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range) | 
 | { | 
 | 	struct amd_northbridge *nb; | 
 | 	struct pci_dev *f1 = NULL; | 
 | 	unsigned int pci_func; | 
 | 	int off = range << 3; | 
 | 	u32 llim; | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo); | 
 | 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo); | 
 |  | 
 | 	if (pvt->fam == 0xf) | 
 | 		return; | 
 |  | 
 | 	if (!dram_rw(pvt, range)) | 
 | 		return; | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi); | 
 | 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi); | 
 |  | 
 | 	/* F15h: factor in CC6 save area by reading dst node's limit reg */ | 
 | 	if (pvt->fam != 0x15) | 
 | 		return; | 
 |  | 
 | 	nb = node_to_amd_nb(dram_dst_node(pvt, range)); | 
 | 	if (WARN_ON(!nb)) | 
 | 		return; | 
 |  | 
 | 	if (pvt->model == 0x60) | 
 | 		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1; | 
 | 	else if (pvt->model == 0x30) | 
 | 		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1; | 
 | 	else | 
 | 		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1; | 
 |  | 
 | 	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc); | 
 | 	if (WARN_ON(!f1)) | 
 | 		return; | 
 |  | 
 | 	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim); | 
 |  | 
 | 	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0); | 
 |  | 
 | 				    /* {[39:27],111b} */ | 
 | 	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16; | 
 |  | 
 | 	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0); | 
 |  | 
 | 				    /* [47:40] */ | 
 | 	pvt->ranges[range].lim.hi |= llim >> 13; | 
 |  | 
 | 	pci_dev_put(f1); | 
 | } | 
 |  | 
 | static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, | 
 | 				    struct err_info *err) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 |  | 
 | 	error_address_to_page_and_offset(sys_addr, err); | 
 |  | 
 | 	/* | 
 | 	 * Find out which node the error address belongs to. This may be | 
 | 	 * different from the node that detected the error. | 
 | 	 */ | 
 | 	err->src_mci = find_mc_by_sys_addr(mci, sys_addr); | 
 | 	if (!err->src_mci) { | 
 | 		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n", | 
 | 			     (unsigned long)sys_addr); | 
 | 		err->err_code = ERR_NODE; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Now map the sys_addr to a CSROW */ | 
 | 	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr); | 
 | 	if (err->csrow < 0) { | 
 | 		err->err_code = ERR_CSROW; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* CHIPKILL enabled */ | 
 | 	if (pvt->nbcfg & NBCFG_CHIPKILL) { | 
 | 		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); | 
 | 		if (err->channel < 0) { | 
 | 			/* | 
 | 			 * Syndrome didn't map, so we don't know which of the | 
 | 			 * 2 DIMMs is in error. So we need to ID 'both' of them | 
 | 			 * as suspect. | 
 | 			 */ | 
 | 			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - " | 
 | 				      "possible error reporting race\n", | 
 | 				      err->syndrome); | 
 | 			err->err_code = ERR_CHANNEL; | 
 | 			return; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * non-chipkill ecc mode | 
 | 		 * | 
 | 		 * The k8 documentation is unclear about how to determine the | 
 | 		 * channel number when using non-chipkill memory.  This method | 
 | 		 * was obtained from email communication with someone at AMD. | 
 | 		 * (Wish the email was placed in this comment - norsk) | 
 | 		 */ | 
 | 		err->channel = ((sys_addr & BIT(3)) != 0); | 
 | 	} | 
 | } | 
 |  | 
 | static int ddr2_cs_size(unsigned i, bool dct_width) | 
 | { | 
 | 	unsigned shift = 0; | 
 |  | 
 | 	if (i <= 2) | 
 | 		shift = i; | 
 | 	else if (!(i & 0x1)) | 
 | 		shift = i >> 1; | 
 | 	else | 
 | 		shift = (i + 1) >> 1; | 
 |  | 
 | 	return 128 << (shift + !!dct_width); | 
 | } | 
 |  | 
 | static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, | 
 | 				  unsigned cs_mode, int cs_mask_nr) | 
 | { | 
 | 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; | 
 |  | 
 | 	if (pvt->ext_model >= K8_REV_F) { | 
 | 		WARN_ON(cs_mode > 11); | 
 | 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128); | 
 | 	} | 
 | 	else if (pvt->ext_model >= K8_REV_D) { | 
 | 		unsigned diff; | 
 | 		WARN_ON(cs_mode > 10); | 
 |  | 
 | 		/* | 
 | 		 * the below calculation, besides trying to win an obfuscated C | 
 | 		 * contest, maps cs_mode values to DIMM chip select sizes. The | 
 | 		 * mappings are: | 
 | 		 * | 
 | 		 * cs_mode	CS size (mb) | 
 | 		 * =======	============ | 
 | 		 * 0		32 | 
 | 		 * 1		64 | 
 | 		 * 2		128 | 
 | 		 * 3		128 | 
 | 		 * 4		256 | 
 | 		 * 5		512 | 
 | 		 * 6		256 | 
 | 		 * 7		512 | 
 | 		 * 8		1024 | 
 | 		 * 9		1024 | 
 | 		 * 10		2048 | 
 | 		 * | 
 | 		 * Basically, it calculates a value with which to shift the | 
 | 		 * smallest CS size of 32MB. | 
 | 		 * | 
 | 		 * ddr[23]_cs_size have a similar purpose. | 
 | 		 */ | 
 | 		diff = cs_mode/3 + (unsigned)(cs_mode > 5); | 
 |  | 
 | 		return 32 << (cs_mode - diff); | 
 | 	} | 
 | 	else { | 
 | 		WARN_ON(cs_mode > 6); | 
 | 		return 32 << cs_mode; | 
 | 	} | 
 | } | 
 |  | 
 | static int ddr3_cs_size(unsigned i, bool dct_width) | 
 | { | 
 | 	unsigned shift = 0; | 
 | 	int cs_size = 0; | 
 |  | 
 | 	if (i == 0 || i == 3 || i == 4) | 
 | 		cs_size = -1; | 
 | 	else if (i <= 2) | 
 | 		shift = i; | 
 | 	else if (i == 12) | 
 | 		shift = 7; | 
 | 	else if (!(i & 0x1)) | 
 | 		shift = i >> 1; | 
 | 	else | 
 | 		shift = (i + 1) >> 1; | 
 |  | 
 | 	if (cs_size != -1) | 
 | 		cs_size = (128 * (1 << !!dct_width)) << shift; | 
 |  | 
 | 	return cs_size; | 
 | } | 
 |  | 
 | static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply) | 
 | { | 
 | 	unsigned shift = 0; | 
 | 	int cs_size = 0; | 
 |  | 
 | 	if (i < 4 || i == 6) | 
 | 		cs_size = -1; | 
 | 	else if (i == 12) | 
 | 		shift = 7; | 
 | 	else if (!(i & 0x1)) | 
 | 		shift = i >> 1; | 
 | 	else | 
 | 		shift = (i + 1) >> 1; | 
 |  | 
 | 	if (cs_size != -1) | 
 | 		cs_size = rank_multiply * (128 << shift); | 
 |  | 
 | 	return cs_size; | 
 | } | 
 |  | 
 | static int ddr4_cs_size(unsigned i) | 
 | { | 
 | 	int cs_size = 0; | 
 |  | 
 | 	if (i == 0) | 
 | 		cs_size = -1; | 
 | 	else if (i == 1) | 
 | 		cs_size = 1024; | 
 | 	else | 
 | 		/* Min cs_size = 1G */ | 
 | 		cs_size = 1024 * (1 << (i >> 1)); | 
 |  | 
 | 	return cs_size; | 
 | } | 
 |  | 
 | static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, | 
 | 				   unsigned cs_mode, int cs_mask_nr) | 
 | { | 
 | 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0; | 
 |  | 
 | 	WARN_ON(cs_mode > 11); | 
 |  | 
 | 	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE) | 
 | 		return ddr3_cs_size(cs_mode, dclr & WIDTH_128); | 
 | 	else | 
 | 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128); | 
 | } | 
 |  | 
 | /* | 
 |  * F15h supports only 64bit DCT interfaces | 
 |  */ | 
 | static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, | 
 | 				   unsigned cs_mode, int cs_mask_nr) | 
 | { | 
 | 	WARN_ON(cs_mode > 12); | 
 |  | 
 | 	return ddr3_cs_size(cs_mode, false); | 
 | } | 
 |  | 
 | /* F15h M60h supports DDR4 mapping as well.. */ | 
 | static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, | 
 | 					unsigned cs_mode, int cs_mask_nr) | 
 | { | 
 | 	int cs_size; | 
 | 	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr]; | 
 |  | 
 | 	WARN_ON(cs_mode > 12); | 
 |  | 
 | 	if (pvt->dram_type == MEM_DDR4) { | 
 | 		if (cs_mode > 9) | 
 | 			return -1; | 
 |  | 
 | 		cs_size = ddr4_cs_size(cs_mode); | 
 | 	} else if (pvt->dram_type == MEM_LRDDR3) { | 
 | 		unsigned rank_multiply = dcsm & 0xf; | 
 |  | 
 | 		if (rank_multiply == 3) | 
 | 			rank_multiply = 4; | 
 | 		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply); | 
 | 	} else { | 
 | 		/* Minimum cs size is 512mb for F15hM60h*/ | 
 | 		if (cs_mode == 0x1) | 
 | 			return -1; | 
 |  | 
 | 		cs_size = ddr3_cs_size(cs_mode, false); | 
 | 	} | 
 |  | 
 | 	return cs_size; | 
 | } | 
 |  | 
 | /* | 
 |  * F16h and F15h model 30h have only limited cs_modes. | 
 |  */ | 
 | static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct, | 
 | 				unsigned cs_mode, int cs_mask_nr) | 
 | { | 
 | 	WARN_ON(cs_mode > 12); | 
 |  | 
 | 	if (cs_mode == 6 || cs_mode == 8 || | 
 | 	    cs_mode == 9 || cs_mode == 12) | 
 | 		return -1; | 
 | 	else | 
 | 		return ddr3_cs_size(cs_mode, false); | 
 | } | 
 |  | 
 | static void read_dram_ctl_register(struct amd64_pvt *pvt) | 
 | { | 
 |  | 
 | 	if (pvt->fam == 0xf) | 
 | 		return; | 
 |  | 
 | 	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) { | 
 | 		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n", | 
 | 			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt)); | 
 |  | 
 | 		edac_dbg(0, "  DCTs operate in %s mode\n", | 
 | 			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged")); | 
 |  | 
 | 		if (!dct_ganging_enabled(pvt)) | 
 | 			edac_dbg(0, "  Address range split per DCT: %s\n", | 
 | 				 str_yes_no(dct_high_range_enabled(pvt))); | 
 |  | 
 | 		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n", | 
 | 			 str_enabled_disabled(dct_data_intlv_enabled(pvt)), | 
 | 			 str_yes_no(dct_memory_cleared(pvt))); | 
 |  | 
 | 		edac_dbg(0, "  channel interleave: %s, " | 
 | 			 "interleave bits selector: 0x%x\n", | 
 | 			 str_enabled_disabled(dct_interleave_enabled(pvt)), | 
 | 			 dct_sel_interleave_addr(pvt)); | 
 | 	} | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi); | 
 | } | 
 |  | 
 | /* | 
 |  * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG, | 
 |  * 2.10.12 Memory Interleaving Modes). | 
 |  */ | 
 | static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, | 
 | 				     u8 intlv_en, int num_dcts_intlv, | 
 | 				     u32 dct_sel) | 
 | { | 
 | 	u8 channel = 0; | 
 | 	u8 select; | 
 |  | 
 | 	if (!(intlv_en)) | 
 | 		return (u8)(dct_sel); | 
 |  | 
 | 	if (num_dcts_intlv == 2) { | 
 | 		select = (sys_addr >> 8) & 0x3; | 
 | 		channel = select ? 0x3 : 0; | 
 | 	} else if (num_dcts_intlv == 4) { | 
 | 		u8 intlv_addr = dct_sel_interleave_addr(pvt); | 
 | 		switch (intlv_addr) { | 
 | 		case 0x4: | 
 | 			channel = (sys_addr >> 8) & 0x3; | 
 | 			break; | 
 | 		case 0x5: | 
 | 			channel = (sys_addr >> 9) & 0x3; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return channel; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory | 
 |  * Interleaving Modes. | 
 |  */ | 
 | static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr, | 
 | 				bool hi_range_sel, u8 intlv_en) | 
 | { | 
 | 	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1; | 
 |  | 
 | 	if (dct_ganging_enabled(pvt)) | 
 | 		return 0; | 
 |  | 
 | 	if (hi_range_sel) | 
 | 		return dct_sel_high; | 
 |  | 
 | 	/* | 
 | 	 * see F2x110[DctSelIntLvAddr] - channel interleave mode | 
 | 	 */ | 
 | 	if (dct_interleave_enabled(pvt)) { | 
 | 		u8 intlv_addr = dct_sel_interleave_addr(pvt); | 
 |  | 
 | 		/* return DCT select function: 0=DCT0, 1=DCT1 */ | 
 | 		if (!intlv_addr) | 
 | 			return sys_addr >> 6 & 1; | 
 |  | 
 | 		if (intlv_addr & 0x2) { | 
 | 			u8 shift = intlv_addr & 0x1 ? 9 : 6; | 
 | 			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1; | 
 |  | 
 | 			return ((sys_addr >> shift) & 1) ^ temp; | 
 | 		} | 
 |  | 
 | 		if (intlv_addr & 0x4) { | 
 | 			u8 shift = intlv_addr & 0x1 ? 9 : 8; | 
 |  | 
 | 			return (sys_addr >> shift) & 1; | 
 | 		} | 
 |  | 
 | 		return (sys_addr >> (12 + hweight8(intlv_en))) & 1; | 
 | 	} | 
 |  | 
 | 	if (dct_high_range_enabled(pvt)) | 
 | 		return ~dct_sel_high & 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Convert the sys_addr to the normalized DCT address */ | 
 | static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range, | 
 | 				 u64 sys_addr, bool hi_rng, | 
 | 				 u32 dct_sel_base_addr) | 
 | { | 
 | 	u64 chan_off; | 
 | 	u64 dram_base		= get_dram_base(pvt, range); | 
 | 	u64 hole_off		= f10_dhar_offset(pvt); | 
 | 	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16; | 
 |  | 
 | 	if (hi_rng) { | 
 | 		/* | 
 | 		 * if | 
 | 		 * base address of high range is below 4Gb | 
 | 		 * (bits [47:27] at [31:11]) | 
 | 		 * DRAM address space on this DCT is hoisted above 4Gb	&& | 
 | 		 * sys_addr > 4Gb | 
 | 		 * | 
 | 		 *	remove hole offset from sys_addr | 
 | 		 * else | 
 | 		 *	remove high range offset from sys_addr | 
 | 		 */ | 
 | 		if ((!(dct_sel_base_addr >> 16) || | 
 | 		     dct_sel_base_addr < dhar_base(pvt)) && | 
 | 		    dhar_valid(pvt) && | 
 | 		    (sys_addr >= BIT_64(32))) | 
 | 			chan_off = hole_off; | 
 | 		else | 
 | 			chan_off = dct_sel_base_off; | 
 | 	} else { | 
 | 		/* | 
 | 		 * if | 
 | 		 * we have a valid hole		&& | 
 | 		 * sys_addr > 4Gb | 
 | 		 * | 
 | 		 *	remove hole | 
 | 		 * else | 
 | 		 *	remove dram base to normalize to DCT address | 
 | 		 */ | 
 | 		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32))) | 
 | 			chan_off = hole_off; | 
 | 		else | 
 | 			chan_off = dram_base; | 
 | 	} | 
 |  | 
 | 	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23)); | 
 | } | 
 |  | 
 | /* | 
 |  * checks if the csrow passed in is marked as SPARED, if so returns the new | 
 |  * spare row | 
 |  */ | 
 | static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow) | 
 | { | 
 | 	int tmp_cs; | 
 |  | 
 | 	if (online_spare_swap_done(pvt, dct) && | 
 | 	    csrow == online_spare_bad_dramcs(pvt, dct)) { | 
 |  | 
 | 		for_each_chip_select(tmp_cs, dct, pvt) { | 
 | 			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) { | 
 | 				csrow = tmp_cs; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return csrow; | 
 | } | 
 |  | 
 | /* | 
 |  * Iterate over the DRAM DCT "base" and "mask" registers looking for a | 
 |  * SystemAddr match on the specified 'ChannelSelect' and 'NodeID' | 
 |  * | 
 |  * Return: | 
 |  *	-EINVAL:  NOT FOUND | 
 |  *	0..csrow = Chip-Select Row | 
 |  */ | 
 | static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct) | 
 | { | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct amd64_pvt *pvt; | 
 | 	u64 cs_base, cs_mask; | 
 | 	int cs_found = -EINVAL; | 
 | 	int csrow; | 
 |  | 
 | 	mci = edac_mc_find(nid); | 
 | 	if (!mci) | 
 | 		return cs_found; | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct); | 
 |  | 
 | 	for_each_chip_select(csrow, dct, pvt) { | 
 | 		if (!csrow_enabled(csrow, dct, pvt)) | 
 | 			continue; | 
 |  | 
 | 		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask); | 
 |  | 
 | 		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n", | 
 | 			 csrow, cs_base, cs_mask); | 
 |  | 
 | 		cs_mask = ~cs_mask; | 
 |  | 
 | 		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n", | 
 | 			 (in_addr & cs_mask), (cs_base & cs_mask)); | 
 |  | 
 | 		if ((in_addr & cs_mask) == (cs_base & cs_mask)) { | 
 | 			if (pvt->fam == 0x15 && pvt->model >= 0x30) { | 
 | 				cs_found =  csrow; | 
 | 				break; | 
 | 			} | 
 | 			cs_found = f10_process_possible_spare(pvt, dct, csrow); | 
 |  | 
 | 			edac_dbg(1, " MATCH csrow=%d\n", cs_found); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return cs_found; | 
 | } | 
 |  | 
 | /* | 
 |  * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is | 
 |  * swapped with a region located at the bottom of memory so that the GPU can use | 
 |  * the interleaved region and thus two channels. | 
 |  */ | 
 | static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr) | 
 | { | 
 | 	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr; | 
 |  | 
 | 	if (pvt->fam == 0x10) { | 
 | 		/* only revC3 and revE have that feature */ | 
 | 		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3)) | 
 | 			return sys_addr; | 
 | 	} | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg); | 
 |  | 
 | 	if (!(swap_reg & 0x1)) | 
 | 		return sys_addr; | 
 |  | 
 | 	swap_base	= (swap_reg >> 3) & 0x7f; | 
 | 	swap_limit	= (swap_reg >> 11) & 0x7f; | 
 | 	rgn_size	= (swap_reg >> 20) & 0x7f; | 
 | 	tmp_addr	= sys_addr >> 27; | 
 |  | 
 | 	if (!(sys_addr >> 34) && | 
 | 	    (((tmp_addr >= swap_base) && | 
 | 	     (tmp_addr <= swap_limit)) || | 
 | 	     (tmp_addr < rgn_size))) | 
 | 		return sys_addr ^ (u64)swap_base << 27; | 
 |  | 
 | 	return sys_addr; | 
 | } | 
 |  | 
 | /* For a given @dram_range, check if @sys_addr falls within it. */ | 
 | static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range, | 
 | 				  u64 sys_addr, int *chan_sel) | 
 | { | 
 | 	int cs_found = -EINVAL; | 
 | 	u64 chan_addr; | 
 | 	u32 dct_sel_base; | 
 | 	u8 channel; | 
 | 	bool high_range = false; | 
 |  | 
 | 	u8 node_id    = dram_dst_node(pvt, range); | 
 | 	u8 intlv_en   = dram_intlv_en(pvt, range); | 
 | 	u32 intlv_sel = dram_intlv_sel(pvt, range); | 
 |  | 
 | 	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", | 
 | 		 range, sys_addr, get_dram_limit(pvt, range)); | 
 |  | 
 | 	if (dhar_valid(pvt) && | 
 | 	    dhar_base(pvt) <= sys_addr && | 
 | 	    sys_addr < BIT_64(32)) { | 
 | 		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", | 
 | 			    sys_addr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr); | 
 |  | 
 | 	dct_sel_base = dct_sel_baseaddr(pvt); | 
 |  | 
 | 	/* | 
 | 	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to | 
 | 	 * select between DCT0 and DCT1. | 
 | 	 */ | 
 | 	if (dct_high_range_enabled(pvt) && | 
 | 	   !dct_ganging_enabled(pvt) && | 
 | 	   ((sys_addr >> 27) >= (dct_sel_base >> 11))) | 
 | 		high_range = true; | 
 |  | 
 | 	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en); | 
 |  | 
 | 	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr, | 
 | 					  high_range, dct_sel_base); | 
 |  | 
 | 	/* Remove node interleaving, see F1x120 */ | 
 | 	if (intlv_en) | 
 | 		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) | | 
 | 			    (chan_addr & 0xfff); | 
 |  | 
 | 	/* remove channel interleave */ | 
 | 	if (dct_interleave_enabled(pvt) && | 
 | 	   !dct_high_range_enabled(pvt) && | 
 | 	   !dct_ganging_enabled(pvt)) { | 
 |  | 
 | 		if (dct_sel_interleave_addr(pvt) != 1) { | 
 | 			if (dct_sel_interleave_addr(pvt) == 0x3) | 
 | 				/* hash 9 */ | 
 | 				chan_addr = ((chan_addr >> 10) << 9) | | 
 | 					     (chan_addr & 0x1ff); | 
 | 			else | 
 | 				/* A[6] or hash 6 */ | 
 | 				chan_addr = ((chan_addr >> 7) << 6) | | 
 | 					     (chan_addr & 0x3f); | 
 | 		} else | 
 | 			/* A[12] */ | 
 | 			chan_addr = ((chan_addr >> 13) << 12) | | 
 | 				     (chan_addr & 0xfff); | 
 | 	} | 
 |  | 
 | 	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr); | 
 |  | 
 | 	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel); | 
 |  | 
 | 	if (cs_found >= 0) | 
 | 		*chan_sel = channel; | 
 |  | 
 | 	return cs_found; | 
 | } | 
 |  | 
 | static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range, | 
 | 					u64 sys_addr, int *chan_sel) | 
 | { | 
 | 	int cs_found = -EINVAL; | 
 | 	int num_dcts_intlv = 0; | 
 | 	u64 chan_addr, chan_offset; | 
 | 	u64 dct_base, dct_limit; | 
 | 	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp; | 
 | 	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en; | 
 |  | 
 | 	u64 dhar_offset		= f10_dhar_offset(pvt); | 
 | 	u8 intlv_addr		= dct_sel_interleave_addr(pvt); | 
 | 	u8 node_id		= dram_dst_node(pvt, range); | 
 | 	u8 intlv_en		= dram_intlv_en(pvt, range); | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg); | 
 | 	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg); | 
 |  | 
 | 	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0)); | 
 | 	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7); | 
 |  | 
 | 	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n", | 
 | 		 range, sys_addr, get_dram_limit(pvt, range)); | 
 |  | 
 | 	if (!(get_dram_base(pvt, range)  <= sys_addr) && | 
 | 	    !(get_dram_limit(pvt, range) >= sys_addr)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (dhar_valid(pvt) && | 
 | 	    dhar_base(pvt) <= sys_addr && | 
 | 	    sys_addr < BIT_64(32)) { | 
 | 		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n", | 
 | 			    sys_addr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Verify sys_addr is within DCT Range. */ | 
 | 	dct_base = (u64) dct_sel_baseaddr(pvt); | 
 | 	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF; | 
 |  | 
 | 	if (!(dct_cont_base_reg & BIT(0)) && | 
 | 	    !(dct_base <= (sys_addr >> 27) && | 
 | 	      dct_limit >= (sys_addr >> 27))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Verify number of dct's that participate in channel interleaving. */ | 
 | 	num_dcts_intlv = (int) hweight8(intlv_en); | 
 |  | 
 | 	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (pvt->model >= 0x60) | 
 | 		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en); | 
 | 	else | 
 | 		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en, | 
 | 						     num_dcts_intlv, dct_sel); | 
 |  | 
 | 	/* Verify we stay within the MAX number of channels allowed */ | 
 | 	if (channel > 3) | 
 | 		return -EINVAL; | 
 |  | 
 | 	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0)); | 
 |  | 
 | 	/* Get normalized DCT addr */ | 
 | 	if (leg_mmio_hole && (sys_addr >= BIT_64(32))) | 
 | 		chan_offset = dhar_offset; | 
 | 	else | 
 | 		chan_offset = dct_base << 27; | 
 |  | 
 | 	chan_addr = sys_addr - chan_offset; | 
 |  | 
 | 	/* remove channel interleave */ | 
 | 	if (num_dcts_intlv == 2) { | 
 | 		if (intlv_addr == 0x4) | 
 | 			chan_addr = ((chan_addr >> 9) << 8) | | 
 | 						(chan_addr & 0xff); | 
 | 		else if (intlv_addr == 0x5) | 
 | 			chan_addr = ((chan_addr >> 10) << 9) | | 
 | 						(chan_addr & 0x1ff); | 
 | 		else | 
 | 			return -EINVAL; | 
 |  | 
 | 	} else if (num_dcts_intlv == 4) { | 
 | 		if (intlv_addr == 0x4) | 
 | 			chan_addr = ((chan_addr >> 10) << 8) | | 
 | 							(chan_addr & 0xff); | 
 | 		else if (intlv_addr == 0x5) | 
 | 			chan_addr = ((chan_addr >> 11) << 9) | | 
 | 							(chan_addr & 0x1ff); | 
 | 		else | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (dct_offset_en) { | 
 | 		amd64_read_pci_cfg(pvt->F1, | 
 | 				   DRAM_CONT_HIGH_OFF + (int) channel * 4, | 
 | 				   &tmp); | 
 | 		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27; | 
 | 	} | 
 |  | 
 | 	f15h_select_dct(pvt, channel); | 
 |  | 
 | 	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr); | 
 |  | 
 | 	/* | 
 | 	 * Find Chip select: | 
 | 	 * if channel = 3, then alias it to 1. This is because, in F15 M30h, | 
 | 	 * there is support for 4 DCT's, but only 2 are currently functional. | 
 | 	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into | 
 | 	 * pvt->csels[1]. So we need to use '1' here to get correct info. | 
 | 	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications. | 
 | 	 */ | 
 | 	alias_channel =  (channel == 3) ? 1 : channel; | 
 |  | 
 | 	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel); | 
 |  | 
 | 	if (cs_found >= 0) | 
 | 		*chan_sel = alias_channel; | 
 |  | 
 | 	return cs_found; | 
 | } | 
 |  | 
 | static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, | 
 | 					u64 sys_addr, | 
 | 					int *chan_sel) | 
 | { | 
 | 	int cs_found = -EINVAL; | 
 | 	unsigned range; | 
 |  | 
 | 	for (range = 0; range < DRAM_RANGES; range++) { | 
 | 		if (!dram_rw(pvt, range)) | 
 | 			continue; | 
 |  | 
 | 		if (pvt->fam == 0x15 && pvt->model >= 0x30) | 
 | 			cs_found = f15_m30h_match_to_this_node(pvt, range, | 
 | 							       sys_addr, | 
 | 							       chan_sel); | 
 |  | 
 | 		else if ((get_dram_base(pvt, range)  <= sys_addr) && | 
 | 			 (get_dram_limit(pvt, range) >= sys_addr)) { | 
 | 			cs_found = f1x_match_to_this_node(pvt, range, | 
 | 							  sys_addr, chan_sel); | 
 | 			if (cs_found >= 0) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	return cs_found; | 
 | } | 
 |  | 
 | /* | 
 |  * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps | 
 |  * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW). | 
 |  * | 
 |  * The @sys_addr is usually an error address received from the hardware | 
 |  * (MCX_ADDR). | 
 |  */ | 
 | static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr, | 
 | 				     struct err_info *err) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 |  | 
 | 	error_address_to_page_and_offset(sys_addr, err); | 
 |  | 
 | 	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel); | 
 | 	if (err->csrow < 0) { | 
 | 		err->err_code = ERR_CSROW; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We need the syndromes for channel detection only when we're | 
 | 	 * ganged. Otherwise @chan should already contain the channel at | 
 | 	 * this point. | 
 | 	 */ | 
 | 	if (dct_ganging_enabled(pvt)) | 
 | 		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome); | 
 | } | 
 |  | 
 | /* | 
 |  * These are tables of eigenvectors (one per line) which can be used for the | 
 |  * construction of the syndrome tables. The modified syndrome search algorithm | 
 |  * uses those to find the symbol in error and thus the DIMM. | 
 |  * | 
 |  * Algorithm courtesy of Ross LaFetra from AMD. | 
 |  */ | 
 | static const u16 x4_vectors[] = { | 
 | 	0x2f57, 0x1afe, 0x66cc, 0xdd88, | 
 | 	0x11eb, 0x3396, 0x7f4c, 0xeac8, | 
 | 	0x0001, 0x0002, 0x0004, 0x0008, | 
 | 	0x1013, 0x3032, 0x4044, 0x8088, | 
 | 	0x106b, 0x30d6, 0x70fc, 0xe0a8, | 
 | 	0x4857, 0xc4fe, 0x13cc, 0x3288, | 
 | 	0x1ac5, 0x2f4a, 0x5394, 0xa1e8, | 
 | 	0x1f39, 0x251e, 0xbd6c, 0x6bd8, | 
 | 	0x15c1, 0x2a42, 0x89ac, 0x4758, | 
 | 	0x2b03, 0x1602, 0x4f0c, 0xca08, | 
 | 	0x1f07, 0x3a0e, 0x6b04, 0xbd08, | 
 | 	0x8ba7, 0x465e, 0x244c, 0x1cc8, | 
 | 	0x2b87, 0x164e, 0x642c, 0xdc18, | 
 | 	0x40b9, 0x80de, 0x1094, 0x20e8, | 
 | 	0x27db, 0x1eb6, 0x9dac, 0x7b58, | 
 | 	0x11c1, 0x2242, 0x84ac, 0x4c58, | 
 | 	0x1be5, 0x2d7a, 0x5e34, 0xa718, | 
 | 	0x4b39, 0x8d1e, 0x14b4, 0x28d8, | 
 | 	0x4c97, 0xc87e, 0x11fc, 0x33a8, | 
 | 	0x8e97, 0x497e, 0x2ffc, 0x1aa8, | 
 | 	0x16b3, 0x3d62, 0x4f34, 0x8518, | 
 | 	0x1e2f, 0x391a, 0x5cac, 0xf858, | 
 | 	0x1d9f, 0x3b7a, 0x572c, 0xfe18, | 
 | 	0x15f5, 0x2a5a, 0x5264, 0xa3b8, | 
 | 	0x1dbb, 0x3b66, 0x715c, 0xe3f8, | 
 | 	0x4397, 0xc27e, 0x17fc, 0x3ea8, | 
 | 	0x1617, 0x3d3e, 0x6464, 0xb8b8, | 
 | 	0x23ff, 0x12aa, 0xab6c, 0x56d8, | 
 | 	0x2dfb, 0x1ba6, 0x913c, 0x7328, | 
 | 	0x185d, 0x2ca6, 0x7914, 0x9e28, | 
 | 	0x171b, 0x3e36, 0x7d7c, 0xebe8, | 
 | 	0x4199, 0x82ee, 0x19f4, 0x2e58, | 
 | 	0x4807, 0xc40e, 0x130c, 0x3208, | 
 | 	0x1905, 0x2e0a, 0x5804, 0xac08, | 
 | 	0x213f, 0x132a, 0xadfc, 0x5ba8, | 
 | 	0x19a9, 0x2efe, 0xb5cc, 0x6f88, | 
 | }; | 
 |  | 
 | static const u16 x8_vectors[] = { | 
 | 	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480, | 
 | 	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80, | 
 | 	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80, | 
 | 	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80, | 
 | 	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780, | 
 | 	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080, | 
 | 	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080, | 
 | 	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080, | 
 | 	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80, | 
 | 	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580, | 
 | 	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880, | 
 | 	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280, | 
 | 	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180, | 
 | 	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580, | 
 | 	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280, | 
 | 	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180, | 
 | 	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080, | 
 | 	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, | 
 | 	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000, | 
 | }; | 
 |  | 
 | static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs, | 
 | 			   unsigned v_dim) | 
 | { | 
 | 	unsigned int i, err_sym; | 
 |  | 
 | 	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) { | 
 | 		u16 s = syndrome; | 
 | 		unsigned v_idx =  err_sym * v_dim; | 
 | 		unsigned v_end = (err_sym + 1) * v_dim; | 
 |  | 
 | 		/* walk over all 16 bits of the syndrome */ | 
 | 		for (i = 1; i < (1U << 16); i <<= 1) { | 
 |  | 
 | 			/* if bit is set in that eigenvector... */ | 
 | 			if (v_idx < v_end && vectors[v_idx] & i) { | 
 | 				u16 ev_comp = vectors[v_idx++]; | 
 |  | 
 | 				/* ... and bit set in the modified syndrome, */ | 
 | 				if (s & i) { | 
 | 					/* remove it. */ | 
 | 					s ^= ev_comp; | 
 |  | 
 | 					if (!s) | 
 | 						return err_sym; | 
 | 				} | 
 |  | 
 | 			} else if (s & i) | 
 | 				/* can't get to zero, move to next symbol */ | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	edac_dbg(0, "syndrome(%x) not found\n", syndrome); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static int map_err_sym_to_channel(int err_sym, int sym_size) | 
 | { | 
 | 	if (sym_size == 4) | 
 | 		switch (err_sym) { | 
 | 		case 0x20: | 
 | 		case 0x21: | 
 | 			return 0; | 
 | 		case 0x22: | 
 | 		case 0x23: | 
 | 			return 1; | 
 | 		default: | 
 | 			return err_sym >> 4; | 
 | 		} | 
 | 	/* x8 symbols */ | 
 | 	else | 
 | 		switch (err_sym) { | 
 | 		/* imaginary bits not in a DIMM */ | 
 | 		case 0x10: | 
 | 			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n", | 
 | 					  err_sym); | 
 | 			return -1; | 
 | 		case 0x11: | 
 | 			return 0; | 
 | 		case 0x12: | 
 | 			return 1; | 
 | 		default: | 
 | 			return err_sym >> 3; | 
 | 		} | 
 | 	return -1; | 
 | } | 
 |  | 
 | static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	int err_sym = -1; | 
 |  | 
 | 	if (pvt->ecc_sym_sz == 8) | 
 | 		err_sym = decode_syndrome(syndrome, x8_vectors, | 
 | 					  ARRAY_SIZE(x8_vectors), | 
 | 					  pvt->ecc_sym_sz); | 
 | 	else if (pvt->ecc_sym_sz == 4) | 
 | 		err_sym = decode_syndrome(syndrome, x4_vectors, | 
 | 					  ARRAY_SIZE(x4_vectors), | 
 | 					  pvt->ecc_sym_sz); | 
 | 	else { | 
 | 		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz); | 
 | 		return err_sym; | 
 | 	} | 
 |  | 
 | 	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz); | 
 | } | 
 |  | 
 | static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err, | 
 | 			    u8 ecc_type) | 
 | { | 
 | 	enum hw_event_mc_err_type err_type; | 
 | 	const char *string; | 
 |  | 
 | 	if (ecc_type == 2) | 
 | 		err_type = HW_EVENT_ERR_CORRECTED; | 
 | 	else if (ecc_type == 1) | 
 | 		err_type = HW_EVENT_ERR_UNCORRECTED; | 
 | 	else if (ecc_type == 3) | 
 | 		err_type = HW_EVENT_ERR_DEFERRED; | 
 | 	else { | 
 | 		WARN(1, "Something is rotten in the state of Denmark.\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	switch (err->err_code) { | 
 | 	case DECODE_OK: | 
 | 		string = ""; | 
 | 		break; | 
 | 	case ERR_NODE: | 
 | 		string = "Failed to map error addr to a node"; | 
 | 		break; | 
 | 	case ERR_CSROW: | 
 | 		string = "Failed to map error addr to a csrow"; | 
 | 		break; | 
 | 	case ERR_CHANNEL: | 
 | 		string = "Unknown syndrome - possible error reporting race"; | 
 | 		break; | 
 | 	case ERR_SYND: | 
 | 		string = "MCA_SYND not valid - unknown syndrome and csrow"; | 
 | 		break; | 
 | 	case ERR_NORM_ADDR: | 
 | 		string = "Cannot decode normalized address"; | 
 | 		break; | 
 | 	default: | 
 | 		string = "WTF error"; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	edac_mc_handle_error(err_type, mci, 1, | 
 | 			     err->page, err->offset, err->syndrome, | 
 | 			     err->csrow, err->channel, -1, | 
 | 			     string, ""); | 
 | } | 
 |  | 
 | static inline void decode_bus_error(int node_id, struct mce *m) | 
 | { | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct amd64_pvt *pvt; | 
 | 	u8 ecc_type = (m->status >> 45) & 0x3; | 
 | 	u8 xec = XEC(m->status, 0x1f); | 
 | 	u16 ec = EC(m->status); | 
 | 	u64 sys_addr; | 
 | 	struct err_info err; | 
 |  | 
 | 	mci = edac_mc_find(node_id); | 
 | 	if (!mci) | 
 | 		return; | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	/* Bail out early if this was an 'observed' error */ | 
 | 	if (PP(ec) == NBSL_PP_OBS) | 
 | 		return; | 
 |  | 
 | 	/* Do only ECC errors */ | 
 | 	if (xec && xec != F10_NBSL_EXT_ERR_ECC) | 
 | 		return; | 
 |  | 
 | 	memset(&err, 0, sizeof(err)); | 
 |  | 
 | 	sys_addr = get_error_address(pvt, m); | 
 |  | 
 | 	if (ecc_type == 2) | 
 | 		err.syndrome = extract_syndrome(m->status); | 
 |  | 
 | 	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err); | 
 |  | 
 | 	__log_ecc_error(mci, &err, ecc_type); | 
 | } | 
 |  | 
 | /* | 
 |  * To find the UMC channel represented by this bank we need to match on its | 
 |  * instance_id. The instance_id of a bank is held in the lower 32 bits of its | 
 |  * IPID. | 
 |  * | 
 |  * Currently, we can derive the channel number by looking at the 6th nibble in | 
 |  * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel | 
 |  * number. | 
 |  * | 
 |  * For DRAM ECC errors, the Chip Select number is given in bits [2:0] of | 
 |  * the MCA_SYND[ErrorInformation] field. | 
 |  */ | 
 | static void umc_get_err_info(struct mce *m, struct err_info *err) | 
 | { | 
 | 	err->channel = (m->ipid & GENMASK(31, 0)) >> 20; | 
 | 	err->csrow = m->synd & 0x7; | 
 | } | 
 |  | 
 | static void decode_umc_error(int node_id, struct mce *m) | 
 | { | 
 | 	u8 ecc_type = (m->status >> 45) & 0x3; | 
 | 	struct mem_ctl_info *mci; | 
 | 	unsigned long sys_addr; | 
 | 	struct amd64_pvt *pvt; | 
 | 	struct atl_err a_err; | 
 | 	struct err_info err; | 
 |  | 
 | 	node_id = fixup_node_id(node_id, m); | 
 |  | 
 | 	mci = edac_mc_find(node_id); | 
 | 	if (!mci) | 
 | 		return; | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	memset(&err, 0, sizeof(err)); | 
 |  | 
 | 	if (m->status & MCI_STATUS_DEFERRED) | 
 | 		ecc_type = 3; | 
 |  | 
 | 	if (!(m->status & MCI_STATUS_SYNDV)) { | 
 | 		err.err_code = ERR_SYND; | 
 | 		goto log_error; | 
 | 	} | 
 |  | 
 | 	if (ecc_type == 2) { | 
 | 		u8 length = (m->synd >> 18) & 0x3f; | 
 |  | 
 | 		if (length) | 
 | 			err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0); | 
 | 		else | 
 | 			err.err_code = ERR_CHANNEL; | 
 | 	} | 
 |  | 
 | 	pvt->ops->get_err_info(m, &err); | 
 |  | 
 | 	a_err.addr = m->addr; | 
 | 	a_err.ipid = m->ipid; | 
 | 	a_err.cpu  = m->extcpu; | 
 |  | 
 | 	sys_addr = amd_convert_umc_mca_addr_to_sys_addr(&a_err); | 
 | 	if (IS_ERR_VALUE(sys_addr)) { | 
 | 		err.err_code = ERR_NORM_ADDR; | 
 | 		goto log_error; | 
 | 	} | 
 |  | 
 | 	error_address_to_page_and_offset(sys_addr, &err); | 
 |  | 
 | log_error: | 
 | 	__log_ecc_error(mci, &err, ecc_type); | 
 | } | 
 |  | 
 | /* | 
 |  * Use pvt->F3 which contains the F3 CPU PCI device to get the related | 
 |  * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error. | 
 |  */ | 
 | static int | 
 | reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2) | 
 | { | 
 | 	/* Reserve the ADDRESS MAP Device */ | 
 | 	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3); | 
 | 	if (!pvt->F1) { | 
 | 		edac_dbg(1, "F1 not found: device 0x%x\n", pci_id1); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* Reserve the DCT Device */ | 
 | 	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3); | 
 | 	if (!pvt->F2) { | 
 | 		pci_dev_put(pvt->F1); | 
 | 		pvt->F1 = NULL; | 
 |  | 
 | 		edac_dbg(1, "F2 not found: device 0x%x\n", pci_id2); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	if (!pci_ctl_dev) | 
 | 		pci_ctl_dev = &pvt->F2->dev; | 
 |  | 
 | 	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1)); | 
 | 	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2)); | 
 | 	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void determine_ecc_sym_sz(struct amd64_pvt *pvt) | 
 | { | 
 | 	pvt->ecc_sym_sz = 4; | 
 |  | 
 | 	if (pvt->fam >= 0x10) { | 
 | 		u32 tmp; | 
 |  | 
 | 		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp); | 
 | 		/* F16h has only DCT0, so no need to read dbam1. */ | 
 | 		if (pvt->fam != 0x16) | 
 | 			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1); | 
 |  | 
 | 		/* F10h, revD and later can do x8 ECC too. */ | 
 | 		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25)) | 
 | 			pvt->ecc_sym_sz = 8; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Retrieve the hardware registers of the memory controller. | 
 |  */ | 
 | static void umc_read_mc_regs(struct amd64_pvt *pvt) | 
 | { | 
 | 	u8 nid = pvt->mc_node_id; | 
 | 	struct amd64_umc *umc; | 
 | 	u32 i, tmp, umc_base; | 
 |  | 
 | 	/* Read registers from each UMC */ | 
 | 	for_each_umc(i) { | 
 |  | 
 | 		umc_base = get_umc_base(i); | 
 | 		umc = &pvt->umc[i]; | 
 |  | 
 | 		if (!amd_smn_read(nid, umc_base + get_umc_reg(pvt, UMCCH_DIMM_CFG), &tmp)) | 
 | 			umc->dimm_cfg = tmp; | 
 |  | 
 | 		if (!amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &tmp)) | 
 | 			umc->umc_cfg = tmp; | 
 |  | 
 | 		if (!amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &tmp)) | 
 | 			umc->sdp_ctrl = tmp; | 
 |  | 
 | 		if (!amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &tmp)) | 
 | 			umc->ecc_ctrl = tmp; | 
 |  | 
 | 		if (!amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &tmp)) | 
 | 			umc->umc_cap_hi = tmp; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Retrieve the hardware registers of the memory controller (this includes the | 
 |  * 'Address Map' and 'Misc' device regs) | 
 |  */ | 
 | static void dct_read_mc_regs(struct amd64_pvt *pvt) | 
 | { | 
 | 	unsigned int range; | 
 | 	u64 msr_val; | 
 |  | 
 | 	/* | 
 | 	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since | 
 | 	 * those are Read-As-Zero. | 
 | 	 */ | 
 | 	rdmsrq(MSR_K8_TOP_MEM1, pvt->top_mem); | 
 | 	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem); | 
 |  | 
 | 	/* Check first whether TOP_MEM2 is enabled: */ | 
 | 	rdmsrq(MSR_AMD64_SYSCFG, msr_val); | 
 | 	if (msr_val & BIT(21)) { | 
 | 		rdmsrq(MSR_K8_TOP_MEM2, pvt->top_mem2); | 
 | 		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2); | 
 | 	} else { | 
 | 		edac_dbg(0, "  TOP_MEM2 disabled\n"); | 
 | 	} | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap); | 
 |  | 
 | 	read_dram_ctl_register(pvt); | 
 |  | 
 | 	for (range = 0; range < DRAM_RANGES; range++) { | 
 | 		u8 rw; | 
 |  | 
 | 		/* read settings for this DRAM range */ | 
 | 		read_dram_base_limit_regs(pvt, range); | 
 |  | 
 | 		rw = dram_rw(pvt, range); | 
 | 		if (!rw) | 
 | 			continue; | 
 |  | 
 | 		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n", | 
 | 			 range, | 
 | 			 get_dram_base(pvt, range), | 
 | 			 get_dram_limit(pvt, range)); | 
 |  | 
 | 		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n", | 
 | 			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled", | 
 | 			 (rw & 0x1) ? "R" : "-", | 
 | 			 (rw & 0x2) ? "W" : "-", | 
 | 			 dram_intlv_sel(pvt, range), | 
 | 			 dram_dst_node(pvt, range)); | 
 | 	} | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar); | 
 | 	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0); | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare); | 
 |  | 
 | 	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0); | 
 | 	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0); | 
 |  | 
 | 	if (!dct_ganging_enabled(pvt)) { | 
 | 		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1); | 
 | 		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1); | 
 | 	} | 
 |  | 
 | 	determine_ecc_sym_sz(pvt); | 
 | } | 
 |  | 
 | /* | 
 |  * NOTE: CPU Revision Dependent code | 
 |  * | 
 |  * Input: | 
 |  *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1) | 
 |  *	k8 private pointer to --> | 
 |  *			DRAM Bank Address mapping register | 
 |  *			node_id | 
 |  *			DCL register where dual_channel_active is | 
 |  * | 
 |  * The DBAM register consists of 4 sets of 4 bits each definitions: | 
 |  * | 
 |  * Bits:	CSROWs | 
 |  * 0-3		CSROWs 0 and 1 | 
 |  * 4-7		CSROWs 2 and 3 | 
 |  * 8-11		CSROWs 4 and 5 | 
 |  * 12-15	CSROWs 6 and 7 | 
 |  * | 
 |  * Values range from: 0 to 15 | 
 |  * The meaning of the values depends on CPU revision and dual-channel state, | 
 |  * see relevant BKDG more info. | 
 |  * | 
 |  * The memory controller provides for total of only 8 CSROWs in its current | 
 |  * architecture. Each "pair" of CSROWs normally represents just one DIMM in | 
 |  * single channel or two (2) DIMMs in dual channel mode. | 
 |  * | 
 |  * The following code logic collapses the various tables for CSROW based on CPU | 
 |  * revision. | 
 |  * | 
 |  * Returns: | 
 |  *	The number of PAGE_SIZE pages on the specified CSROW number it | 
 |  *	encompasses | 
 |  * | 
 |  */ | 
 | static u32 dct_get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr) | 
 | { | 
 | 	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0; | 
 | 	u32 cs_mode, nr_pages; | 
 |  | 
 | 	csrow_nr >>= 1; | 
 | 	cs_mode = DBAM_DIMM(csrow_nr, dbam); | 
 |  | 
 | 	nr_pages   = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr); | 
 | 	nr_pages <<= 20 - PAGE_SHIFT; | 
 |  | 
 | 	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n", | 
 | 		    csrow_nr, dct,  cs_mode); | 
 | 	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages); | 
 |  | 
 | 	return nr_pages; | 
 | } | 
 |  | 
 | static u32 umc_get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig) | 
 | { | 
 | 	int csrow_nr = csrow_nr_orig; | 
 | 	u32 cs_mode, nr_pages; | 
 |  | 
 | 	cs_mode = umc_get_cs_mode(csrow_nr >> 1, dct, pvt); | 
 |  | 
 | 	nr_pages   = umc_addr_mask_to_cs_size(pvt, dct, cs_mode, csrow_nr); | 
 | 	nr_pages <<= 20 - PAGE_SHIFT; | 
 |  | 
 | 	edac_dbg(0, "csrow: %d, channel: %d, cs_mode %d\n", | 
 | 		 csrow_nr_orig, dct,  cs_mode); | 
 | 	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages); | 
 |  | 
 | 	return nr_pages; | 
 | } | 
 |  | 
 | static void umc_init_csrows(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	enum edac_type edac_mode = EDAC_NONE; | 
 | 	enum dev_type dev_type = DEV_UNKNOWN; | 
 | 	struct dimm_info *dimm; | 
 | 	u8 umc, cs; | 
 |  | 
 | 	if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) { | 
 | 		edac_mode = EDAC_S16ECD16ED; | 
 | 		dev_type = DEV_X16; | 
 | 	} else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) { | 
 | 		edac_mode = EDAC_S8ECD8ED; | 
 | 		dev_type = DEV_X8; | 
 | 	} else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) { | 
 | 		edac_mode = EDAC_S4ECD4ED; | 
 | 		dev_type = DEV_X4; | 
 | 	} else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) { | 
 | 		edac_mode = EDAC_SECDED; | 
 | 	} | 
 |  | 
 | 	for_each_umc(umc) { | 
 | 		for_each_chip_select(cs, umc, pvt) { | 
 | 			if (!csrow_enabled(cs, umc, pvt)) | 
 | 				continue; | 
 |  | 
 | 			dimm = mci->csrows[cs]->channels[umc]->dimm; | 
 |  | 
 | 			edac_dbg(1, "MC node: %d, csrow: %d\n", | 
 | 					pvt->mc_node_id, cs); | 
 |  | 
 | 			dimm->nr_pages = umc_get_csrow_nr_pages(pvt, umc, cs); | 
 | 			dimm->mtype = pvt->umc[umc].dram_type; | 
 | 			dimm->edac_mode = edac_mode; | 
 | 			dimm->dtype = dev_type; | 
 | 			dimm->grain = 64; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the array of csrow attribute instances, based on the values | 
 |  * from pci config hardware registers. | 
 |  */ | 
 | static void dct_init_csrows(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	enum edac_type edac_mode = EDAC_NONE; | 
 | 	struct csrow_info *csrow; | 
 | 	struct dimm_info *dimm; | 
 | 	int nr_pages = 0; | 
 | 	int i, j; | 
 | 	u32 val; | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F3, NBCFG, &val); | 
 |  | 
 | 	pvt->nbcfg = val; | 
 |  | 
 | 	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n", | 
 | 		 pvt->mc_node_id, val, | 
 | 		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE)); | 
 |  | 
 | 	/* | 
 | 	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed. | 
 | 	 */ | 
 | 	for_each_chip_select(i, 0, pvt) { | 
 | 		bool row_dct0 = !!csrow_enabled(i, 0, pvt); | 
 | 		bool row_dct1 = false; | 
 |  | 
 | 		if (pvt->fam != 0xf) | 
 | 			row_dct1 = !!csrow_enabled(i, 1, pvt); | 
 |  | 
 | 		if (!row_dct0 && !row_dct1) | 
 | 			continue; | 
 |  | 
 | 		csrow = mci->csrows[i]; | 
 |  | 
 | 		edac_dbg(1, "MC node: %d, csrow: %d\n", | 
 | 			    pvt->mc_node_id, i); | 
 |  | 
 | 		if (row_dct0) { | 
 | 			nr_pages = dct_get_csrow_nr_pages(pvt, 0, i); | 
 | 			csrow->channels[0]->dimm->nr_pages = nr_pages; | 
 | 		} | 
 |  | 
 | 		/* K8 has only one DCT */ | 
 | 		if (pvt->fam != 0xf && row_dct1) { | 
 | 			int row_dct1_pages = dct_get_csrow_nr_pages(pvt, 1, i); | 
 |  | 
 | 			csrow->channels[1]->dimm->nr_pages = row_dct1_pages; | 
 | 			nr_pages += row_dct1_pages; | 
 | 		} | 
 |  | 
 | 		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages); | 
 |  | 
 | 		/* Determine DIMM ECC mode: */ | 
 | 		if (pvt->nbcfg & NBCFG_ECC_ENABLE) { | 
 | 			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) | 
 | 					? EDAC_S4ECD4ED | 
 | 					: EDAC_SECDED; | 
 | 		} | 
 |  | 
 | 		for (j = 0; j < pvt->max_mcs; j++) { | 
 | 			dimm = csrow->channels[j]->dimm; | 
 | 			dimm->mtype = pvt->dram_type; | 
 | 			dimm->edac_mode = edac_mode; | 
 | 			dimm->grain = 64; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* get all cores on this DCT */ | 
 | static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_online_cpu(cpu) | 
 | 		if (topology_amd_node_id(cpu) == nid) | 
 | 			cpumask_set_cpu(cpu, mask); | 
 | } | 
 |  | 
 | /* check MCG_CTL on all the cpus on this node */ | 
 | static bool nb_mce_bank_enabled_on_node(u16 nid) | 
 | { | 
 | 	cpumask_var_t mask; | 
 | 	int cpu, nbe; | 
 | 	bool ret = false; | 
 |  | 
 | 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { | 
 | 		amd64_warn("%s: Error allocating mask\n", __func__); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	get_cpus_on_this_dct_cpumask(mask, nid); | 
 |  | 
 | 	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs); | 
 |  | 
 | 	for_each_cpu(cpu, mask) { | 
 | 		struct msr *reg = per_cpu_ptr(msrs, cpu); | 
 | 		nbe = reg->l & MSR_MCGCTL_NBE; | 
 |  | 
 | 		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n", | 
 | 			 cpu, reg->q, str_enabled_disabled(nbe)); | 
 |  | 
 | 		if (!nbe) | 
 | 			goto out; | 
 | 	} | 
 | 	ret = true; | 
 |  | 
 | out: | 
 | 	free_cpumask_var(mask); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on) | 
 | { | 
 | 	cpumask_var_t cmask; | 
 | 	int cpu; | 
 |  | 
 | 	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) { | 
 | 		amd64_warn("%s: error allocating mask\n", __func__); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	get_cpus_on_this_dct_cpumask(cmask, nid); | 
 |  | 
 | 	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); | 
 |  | 
 | 	for_each_cpu(cpu, cmask) { | 
 |  | 
 | 		struct msr *reg = per_cpu_ptr(msrs, cpu); | 
 |  | 
 | 		if (on) { | 
 | 			if (reg->l & MSR_MCGCTL_NBE) | 
 | 				s->flags.nb_mce_enable = 1; | 
 |  | 
 | 			reg->l |= MSR_MCGCTL_NBE; | 
 | 		} else { | 
 | 			/* | 
 | 			 * Turn off NB MCE reporting only when it was off before | 
 | 			 */ | 
 | 			if (!s->flags.nb_mce_enable) | 
 | 				reg->l &= ~MSR_MCGCTL_NBE; | 
 | 		} | 
 | 	} | 
 | 	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs); | 
 |  | 
 | 	free_cpumask_var(cmask); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid, | 
 | 				       struct pci_dev *F3) | 
 | { | 
 | 	bool ret = true; | 
 | 	u32 value, mask = 0x3;		/* UECC/CECC enable */ | 
 |  | 
 | 	if (toggle_ecc_err_reporting(s, nid, ON)) { | 
 | 		amd64_warn("Error enabling ECC reporting over MCGCTL!\n"); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	amd64_read_pci_cfg(F3, NBCTL, &value); | 
 |  | 
 | 	s->old_nbctl   = value & mask; | 
 | 	s->nbctl_valid = true; | 
 |  | 
 | 	value |= mask; | 
 | 	amd64_write_pci_cfg(F3, NBCTL, value); | 
 |  | 
 | 	amd64_read_pci_cfg(F3, NBCFG, &value); | 
 |  | 
 | 	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", | 
 | 		 nid, value, !!(value & NBCFG_ECC_ENABLE)); | 
 |  | 
 | 	if (!(value & NBCFG_ECC_ENABLE)) { | 
 | 		amd64_warn("DRAM ECC disabled on this node, enabling...\n"); | 
 |  | 
 | 		s->flags.nb_ecc_prev = 0; | 
 |  | 
 | 		/* Attempt to turn on DRAM ECC Enable */ | 
 | 		value |= NBCFG_ECC_ENABLE; | 
 | 		amd64_write_pci_cfg(F3, NBCFG, value); | 
 |  | 
 | 		amd64_read_pci_cfg(F3, NBCFG, &value); | 
 |  | 
 | 		if (!(value & NBCFG_ECC_ENABLE)) { | 
 | 			amd64_warn("Hardware rejected DRAM ECC enable," | 
 | 				   "check memory DIMM configuration.\n"); | 
 | 			ret = false; | 
 | 		} else { | 
 | 			amd64_info("Hardware accepted DRAM ECC Enable\n"); | 
 | 		} | 
 | 	} else { | 
 | 		s->flags.nb_ecc_prev = 1; | 
 | 	} | 
 |  | 
 | 	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n", | 
 | 		 nid, value, !!(value & NBCFG_ECC_ENABLE)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid, | 
 | 					struct pci_dev *F3) | 
 | { | 
 | 	u32 value, mask = 0x3;		/* UECC/CECC enable */ | 
 |  | 
 | 	if (!s->nbctl_valid) | 
 | 		return; | 
 |  | 
 | 	amd64_read_pci_cfg(F3, NBCTL, &value); | 
 | 	value &= ~mask; | 
 | 	value |= s->old_nbctl; | 
 |  | 
 | 	amd64_write_pci_cfg(F3, NBCTL, value); | 
 |  | 
 | 	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */ | 
 | 	if (!s->flags.nb_ecc_prev) { | 
 | 		amd64_read_pci_cfg(F3, NBCFG, &value); | 
 | 		value &= ~NBCFG_ECC_ENABLE; | 
 | 		amd64_write_pci_cfg(F3, NBCFG, value); | 
 | 	} | 
 |  | 
 | 	/* restore the NB Enable MCGCTL bit */ | 
 | 	if (toggle_ecc_err_reporting(s, nid, OFF)) | 
 | 		amd64_warn("Error restoring NB MCGCTL settings!\n"); | 
 | } | 
 |  | 
 | static bool dct_ecc_enabled(struct amd64_pvt *pvt) | 
 | { | 
 | 	u16 nid = pvt->mc_node_id; | 
 | 	bool nb_mce_en = false; | 
 | 	u8 ecc_en = 0; | 
 | 	u32 value; | 
 |  | 
 | 	amd64_read_pci_cfg(pvt->F3, NBCFG, &value); | 
 |  | 
 | 	ecc_en = !!(value & NBCFG_ECC_ENABLE); | 
 |  | 
 | 	nb_mce_en = nb_mce_bank_enabled_on_node(nid); | 
 | 	if (!nb_mce_en) | 
 | 		edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n", | 
 | 			 MSR_IA32_MCG_CTL, nid); | 
 |  | 
 | 	edac_dbg(3, "Node %d: DRAM ECC %s.\n", nid, str_enabled_disabled(ecc_en)); | 
 |  | 
 | 	return ecc_en && nb_mce_en; | 
 | } | 
 |  | 
 | static bool umc_ecc_enabled(struct amd64_pvt *pvt) | 
 | { | 
 | 	struct amd64_umc *umc; | 
 | 	bool ecc_en = false; | 
 | 	int i; | 
 |  | 
 | 	/* Check whether at least one UMC is enabled: */ | 
 | 	for_each_umc(i) { | 
 | 		umc = &pvt->umc[i]; | 
 |  | 
 | 		if (umc->sdp_ctrl & UMC_SDP_INIT && | 
 | 		    umc->umc_cap_hi & UMC_ECC_ENABLED) { | 
 | 			ecc_en = true; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	edac_dbg(3, "Node %d: DRAM ECC %s.\n", pvt->mc_node_id, str_enabled_disabled(ecc_en)); | 
 |  | 
 | 	return ecc_en; | 
 | } | 
 |  | 
 | static inline void | 
 | umc_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt) | 
 | { | 
 | 	u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1; | 
 |  | 
 | 	for_each_umc(i) { | 
 | 		if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) { | 
 | 			ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED); | 
 | 			cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP); | 
 |  | 
 | 			dev_x4  &= !!(pvt->umc[i].dimm_cfg & BIT(6)); | 
 | 			dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Set chipkill only if ECC is enabled: */ | 
 | 	if (ecc_en) { | 
 | 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED; | 
 |  | 
 | 		if (!cpk_en) | 
 | 			return; | 
 |  | 
 | 		if (dev_x4) | 
 | 			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; | 
 | 		else if (dev_x16) | 
 | 			mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED; | 
 | 		else | 
 | 			mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED; | 
 | 	} | 
 | } | 
 |  | 
 | static void dct_setup_mci_misc_attrs(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 |  | 
 | 	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2; | 
 | 	mci->edac_ctl_cap	= EDAC_FLAG_NONE; | 
 |  | 
 | 	if (pvt->nbcap & NBCAP_SECDED) | 
 | 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED; | 
 |  | 
 | 	if (pvt->nbcap & NBCAP_CHIPKILL) | 
 | 		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED; | 
 |  | 
 | 	mci->edac_cap		= dct_determine_edac_cap(pvt); | 
 | 	mci->mod_name		= EDAC_MOD_STR; | 
 | 	mci->ctl_name		= pvt->ctl_name; | 
 | 	mci->dev_name		= pci_name(pvt->F3); | 
 | 	mci->ctl_page_to_phys	= NULL; | 
 |  | 
 | 	/* memory scrubber interface */ | 
 | 	mci->set_sdram_scrub_rate = set_scrub_rate; | 
 | 	mci->get_sdram_scrub_rate = get_scrub_rate; | 
 |  | 
 | 	dct_init_csrows(mci); | 
 | } | 
 |  | 
 | static void umc_setup_mci_misc_attrs(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 |  | 
 | 	mci->mtype_cap		= MEM_FLAG_DDR4 | MEM_FLAG_RDDR4; | 
 | 	mci->edac_ctl_cap	= EDAC_FLAG_NONE; | 
 |  | 
 | 	umc_determine_edac_ctl_cap(mci, pvt); | 
 |  | 
 | 	mci->edac_cap		= umc_determine_edac_cap(pvt); | 
 | 	mci->mod_name		= EDAC_MOD_STR; | 
 | 	mci->ctl_name		= pvt->ctl_name; | 
 | 	mci->dev_name		= pci_name(pvt->F3); | 
 | 	mci->ctl_page_to_phys	= NULL; | 
 |  | 
 | 	umc_init_csrows(mci); | 
 | } | 
 |  | 
 | static int dct_hw_info_get(struct amd64_pvt *pvt) | 
 | { | 
 | 	int ret = reserve_mc_sibling_devs(pvt, pvt->f1_id, pvt->f2_id); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	dct_prep_chip_selects(pvt); | 
 | 	dct_read_base_mask(pvt); | 
 | 	dct_read_mc_regs(pvt); | 
 | 	dct_determine_memory_type(pvt); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int umc_hw_info_get(struct amd64_pvt *pvt) | 
 | { | 
 | 	pvt->umc = kcalloc(pvt->max_mcs, sizeof(struct amd64_umc), GFP_KERNEL); | 
 | 	if (!pvt->umc) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	umc_prep_chip_selects(pvt); | 
 | 	umc_read_base_mask(pvt); | 
 | 	umc_read_mc_regs(pvt); | 
 | 	umc_determine_memory_type(pvt); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The CPUs have one channel per UMC, so UMC number is equivalent to a | 
 |  * channel number. The GPUs have 8 channels per UMC, so the UMC number no | 
 |  * longer works as a channel number. | 
 |  * | 
 |  * The channel number within a GPU UMC is given in MCA_IPID[15:12]. | 
 |  * However, the IDs are split such that two UMC values go to one UMC, and | 
 |  * the channel numbers are split in two groups of four. | 
 |  * | 
 |  * Refer to comment on gpu_get_umc_base(). | 
 |  * | 
 |  * For example, | 
 |  * UMC0 CH[3:0] = 0x0005[3:0]000 | 
 |  * UMC0 CH[7:4] = 0x0015[3:0]000 | 
 |  * UMC1 CH[3:0] = 0x0025[3:0]000 | 
 |  * UMC1 CH[7:4] = 0x0035[3:0]000 | 
 |  */ | 
 | static void gpu_get_err_info(struct mce *m, struct err_info *err) | 
 | { | 
 | 	u8 ch = (m->ipid & GENMASK(31, 0)) >> 20; | 
 | 	u8 phy = ((m->ipid >> 12) & 0xf); | 
 |  | 
 | 	err->channel = ch % 2 ? phy + 4 : phy; | 
 | 	err->csrow = phy; | 
 | } | 
 |  | 
 | static int gpu_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc, | 
 | 				    unsigned int cs_mode, int csrow_nr) | 
 | { | 
 | 	u32 addr_mask		= pvt->csels[umc].csmasks[csrow_nr]; | 
 | 	u32 addr_mask_sec	= pvt->csels[umc].csmasks_sec[csrow_nr]; | 
 |  | 
 | 	return __addr_mask_to_cs_size(addr_mask, addr_mask_sec, cs_mode, csrow_nr, csrow_nr >> 1); | 
 | } | 
 |  | 
 | static void gpu_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl) | 
 | { | 
 | 	int size, cs_mode, cs = 0; | 
 |  | 
 | 	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl); | 
 |  | 
 | 	cs_mode = CS_EVEN_PRIMARY | CS_ODD_PRIMARY; | 
 |  | 
 | 	for_each_chip_select(cs, ctrl, pvt) { | 
 | 		size = gpu_addr_mask_to_cs_size(pvt, ctrl, cs_mode, cs); | 
 | 		amd64_info(EDAC_MC ": %d: %5dMB\n", cs, size); | 
 | 	} | 
 | } | 
 |  | 
 | static void gpu_dump_misc_regs(struct amd64_pvt *pvt) | 
 | { | 
 | 	struct amd64_umc *umc; | 
 | 	u32 i; | 
 |  | 
 | 	for_each_umc(i) { | 
 | 		umc = &pvt->umc[i]; | 
 |  | 
 | 		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg); | 
 | 		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl); | 
 | 		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl); | 
 | 		edac_dbg(1, "UMC%d All HBMs support ECC: yes\n", i); | 
 |  | 
 | 		gpu_debug_display_dimm_sizes(pvt, i); | 
 | 	} | 
 | } | 
 |  | 
 | static u32 gpu_get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr) | 
 | { | 
 | 	u32 nr_pages; | 
 | 	int cs_mode = CS_EVEN_PRIMARY | CS_ODD_PRIMARY; | 
 |  | 
 | 	nr_pages   = gpu_addr_mask_to_cs_size(pvt, dct, cs_mode, csrow_nr); | 
 | 	nr_pages <<= 20 - PAGE_SHIFT; | 
 |  | 
 | 	edac_dbg(0, "csrow: %d, channel: %d\n", csrow_nr, dct); | 
 | 	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages); | 
 |  | 
 | 	return nr_pages; | 
 | } | 
 |  | 
 | static void gpu_init_csrows(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 | 	struct dimm_info *dimm; | 
 | 	u8 umc, cs; | 
 |  | 
 | 	for_each_umc(umc) { | 
 | 		for_each_chip_select(cs, umc, pvt) { | 
 | 			if (!csrow_enabled(cs, umc, pvt)) | 
 | 				continue; | 
 |  | 
 | 			dimm = mci->csrows[umc]->channels[cs]->dimm; | 
 |  | 
 | 			edac_dbg(1, "MC node: %d, csrow: %d\n", | 
 | 				 pvt->mc_node_id, cs); | 
 |  | 
 | 			dimm->nr_pages = gpu_get_csrow_nr_pages(pvt, umc, cs); | 
 | 			dimm->edac_mode = EDAC_SECDED; | 
 | 			dimm->mtype = pvt->dram_type; | 
 | 			dimm->dtype = DEV_X16; | 
 | 			dimm->grain = 64; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void gpu_setup_mci_misc_attrs(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct amd64_pvt *pvt = mci->pvt_info; | 
 |  | 
 | 	mci->mtype_cap		= MEM_FLAG_HBM2; | 
 | 	mci->edac_ctl_cap	= EDAC_FLAG_SECDED; | 
 |  | 
 | 	mci->edac_cap		= EDAC_FLAG_EC; | 
 | 	mci->mod_name		= EDAC_MOD_STR; | 
 | 	mci->ctl_name		= pvt->ctl_name; | 
 | 	mci->dev_name		= pci_name(pvt->F3); | 
 | 	mci->ctl_page_to_phys	= NULL; | 
 |  | 
 | 	gpu_init_csrows(mci); | 
 | } | 
 |  | 
 | /* ECC is enabled by default on GPU nodes */ | 
 | static bool gpu_ecc_enabled(struct amd64_pvt *pvt) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline u32 gpu_get_umc_base(struct amd64_pvt *pvt, u8 umc, u8 channel) | 
 | { | 
 | 	/* | 
 | 	 * On CPUs, there is one channel per UMC, so UMC numbering equals | 
 | 	 * channel numbering. On GPUs, there are eight channels per UMC, | 
 | 	 * so the channel numbering is different from UMC numbering. | 
 | 	 * | 
 | 	 * On CPU nodes channels are selected in 6th nibble | 
 | 	 * UMC chY[3:0]= [(chY*2 + 1) : (chY*2)]50000; | 
 | 	 * | 
 | 	 * On GPU nodes channels are selected in 3rd nibble | 
 | 	 * HBM chX[3:0]= [Y  ]5X[3:0]000; | 
 | 	 * HBM chX[7:4]= [Y+1]5X[3:0]000 | 
 | 	 * | 
 | 	 * On MI300 APU nodes, same as GPU nodes but channels are selected | 
 | 	 * in the base address of 0x90000 | 
 | 	 */ | 
 | 	umc *= 2; | 
 |  | 
 | 	if (channel >= 4) | 
 | 		umc++; | 
 |  | 
 | 	return pvt->gpu_umc_base + (umc << 20) + ((channel % 4) << 12); | 
 | } | 
 |  | 
 | static void gpu_read_mc_regs(struct amd64_pvt *pvt) | 
 | { | 
 | 	u8 nid = pvt->mc_node_id; | 
 | 	struct amd64_umc *umc; | 
 | 	u32 i, tmp, umc_base; | 
 |  | 
 | 	/* Read registers from each UMC */ | 
 | 	for_each_umc(i) { | 
 | 		umc_base = gpu_get_umc_base(pvt, i, 0); | 
 | 		umc = &pvt->umc[i]; | 
 |  | 
 | 		if (!amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &tmp)) | 
 | 			umc->umc_cfg = tmp; | 
 |  | 
 | 		if (!amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &tmp)) | 
 | 			umc->sdp_ctrl = tmp; | 
 |  | 
 | 		if (!amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &tmp)) | 
 | 			umc->ecc_ctrl = tmp; | 
 | 	} | 
 | } | 
 |  | 
 | static void gpu_read_base_mask(struct amd64_pvt *pvt) | 
 | { | 
 | 	u32 base_reg, mask_reg; | 
 | 	u32 *base, *mask; | 
 | 	int umc, cs; | 
 |  | 
 | 	for_each_umc(umc) { | 
 | 		for_each_chip_select(cs, umc, pvt) { | 
 | 			base_reg = gpu_get_umc_base(pvt, umc, cs) + UMCCH_BASE_ADDR; | 
 | 			base = &pvt->csels[umc].csbases[cs]; | 
 |  | 
 | 			if (!amd_smn_read(pvt->mc_node_id, base_reg, base)) { | 
 | 				edac_dbg(0, "  DCSB%d[%d]=0x%08x reg: 0x%x\n", | 
 | 					 umc, cs, *base, base_reg); | 
 | 			} | 
 |  | 
 | 			mask_reg = gpu_get_umc_base(pvt, umc, cs) + UMCCH_ADDR_MASK; | 
 | 			mask = &pvt->csels[umc].csmasks[cs]; | 
 |  | 
 | 			if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask)) { | 
 | 				edac_dbg(0, "  DCSM%d[%d]=0x%08x reg: 0x%x\n", | 
 | 					 umc, cs, *mask, mask_reg); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void gpu_prep_chip_selects(struct amd64_pvt *pvt) | 
 | { | 
 | 	int umc; | 
 |  | 
 | 	for_each_umc(umc) { | 
 | 		pvt->csels[umc].b_cnt = 8; | 
 | 		pvt->csels[umc].m_cnt = 8; | 
 | 	} | 
 | } | 
 |  | 
 | static int gpu_hw_info_get(struct amd64_pvt *pvt) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = gpu_get_node_map(pvt); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	pvt->umc = kcalloc(pvt->max_mcs, sizeof(struct amd64_umc), GFP_KERNEL); | 
 | 	if (!pvt->umc) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	gpu_prep_chip_selects(pvt); | 
 | 	gpu_read_base_mask(pvt); | 
 | 	gpu_read_mc_regs(pvt); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void hw_info_put(struct amd64_pvt *pvt) | 
 | { | 
 | 	pci_dev_put(pvt->F1); | 
 | 	pci_dev_put(pvt->F2); | 
 | 	kfree(pvt->umc); | 
 | } | 
 |  | 
 | static struct low_ops umc_ops = { | 
 | 	.hw_info_get			= umc_hw_info_get, | 
 | 	.ecc_enabled			= umc_ecc_enabled, | 
 | 	.setup_mci_misc_attrs		= umc_setup_mci_misc_attrs, | 
 | 	.dump_misc_regs			= umc_dump_misc_regs, | 
 | 	.get_err_info			= umc_get_err_info, | 
 | }; | 
 |  | 
 | static struct low_ops gpu_ops = { | 
 | 	.hw_info_get			= gpu_hw_info_get, | 
 | 	.ecc_enabled			= gpu_ecc_enabled, | 
 | 	.setup_mci_misc_attrs		= gpu_setup_mci_misc_attrs, | 
 | 	.dump_misc_regs			= gpu_dump_misc_regs, | 
 | 	.get_err_info			= gpu_get_err_info, | 
 | }; | 
 |  | 
 | /* Use Family 16h versions for defaults and adjust as needed below. */ | 
 | static struct low_ops dct_ops = { | 
 | 	.map_sysaddr_to_csrow		= f1x_map_sysaddr_to_csrow, | 
 | 	.dbam_to_cs			= f16_dbam_to_chip_select, | 
 | 	.hw_info_get			= dct_hw_info_get, | 
 | 	.ecc_enabled			= dct_ecc_enabled, | 
 | 	.setup_mci_misc_attrs		= dct_setup_mci_misc_attrs, | 
 | 	.dump_misc_regs			= dct_dump_misc_regs, | 
 | }; | 
 |  | 
 | static int per_family_init(struct amd64_pvt *pvt) | 
 | { | 
 | 	pvt->ext_model  = boot_cpu_data.x86_model >> 4; | 
 | 	pvt->stepping	= boot_cpu_data.x86_stepping; | 
 | 	pvt->model	= boot_cpu_data.x86_model; | 
 | 	pvt->fam	= boot_cpu_data.x86; | 
 | 	pvt->max_mcs	= 2; | 
 |  | 
 | 	/* | 
 | 	 * Decide on which ops group to use here and do any family/model | 
 | 	 * overrides below. | 
 | 	 */ | 
 | 	if (pvt->fam >= 0x17) | 
 | 		pvt->ops = &umc_ops; | 
 | 	else | 
 | 		pvt->ops = &dct_ops; | 
 |  | 
 | 	switch (pvt->fam) { | 
 | 	case 0xf: | 
 | 		pvt->ctl_name				= (pvt->ext_model >= K8_REV_F) ? | 
 | 							  "K8 revF or later" : "K8 revE or earlier"; | 
 | 		pvt->f1_id				= PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP; | 
 | 		pvt->f2_id				= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL; | 
 | 		pvt->ops->map_sysaddr_to_csrow		= k8_map_sysaddr_to_csrow; | 
 | 		pvt->ops->dbam_to_cs			= k8_dbam_to_chip_select; | 
 | 		break; | 
 |  | 
 | 	case 0x10: | 
 | 		pvt->ctl_name				= "F10h"; | 
 | 		pvt->f1_id				= PCI_DEVICE_ID_AMD_10H_NB_MAP; | 
 | 		pvt->f2_id				= PCI_DEVICE_ID_AMD_10H_NB_DRAM; | 
 | 		pvt->ops->dbam_to_cs			= f10_dbam_to_chip_select; | 
 | 		break; | 
 |  | 
 | 	case 0x15: | 
 | 		switch (pvt->model) { | 
 | 		case 0x30: | 
 | 			pvt->ctl_name			= "F15h_M30h"; | 
 | 			pvt->f1_id			= PCI_DEVICE_ID_AMD_15H_M30H_NB_F1; | 
 | 			pvt->f2_id			= PCI_DEVICE_ID_AMD_15H_M30H_NB_F2; | 
 | 			break; | 
 | 		case 0x60: | 
 | 			pvt->ctl_name			= "F15h_M60h"; | 
 | 			pvt->f1_id			= PCI_DEVICE_ID_AMD_15H_M60H_NB_F1; | 
 | 			pvt->f2_id			= PCI_DEVICE_ID_AMD_15H_M60H_NB_F2; | 
 | 			pvt->ops->dbam_to_cs		= f15_m60h_dbam_to_chip_select; | 
 | 			break; | 
 | 		case 0x13: | 
 | 			/* Richland is only client */ | 
 | 			return -ENODEV; | 
 | 		default: | 
 | 			pvt->ctl_name			= "F15h"; | 
 | 			pvt->f1_id			= PCI_DEVICE_ID_AMD_15H_NB_F1; | 
 | 			pvt->f2_id			= PCI_DEVICE_ID_AMD_15H_NB_F2; | 
 | 			pvt->ops->dbam_to_cs		= f15_dbam_to_chip_select; | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case 0x16: | 
 | 		switch (pvt->model) { | 
 | 		case 0x30: | 
 | 			pvt->ctl_name			= "F16h_M30h"; | 
 | 			pvt->f1_id			= PCI_DEVICE_ID_AMD_16H_M30H_NB_F1; | 
 | 			pvt->f2_id			= PCI_DEVICE_ID_AMD_16H_M30H_NB_F2; | 
 | 			break; | 
 | 		default: | 
 | 			pvt->ctl_name			= "F16h"; | 
 | 			pvt->f1_id			= PCI_DEVICE_ID_AMD_16H_NB_F1; | 
 | 			pvt->f2_id			= PCI_DEVICE_ID_AMD_16H_NB_F2; | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case 0x17: | 
 | 		switch (pvt->model) { | 
 | 		case 0x10 ... 0x2f: | 
 | 			pvt->ctl_name			= "F17h_M10h"; | 
 | 			break; | 
 | 		case 0x30 ... 0x3f: | 
 | 			pvt->ctl_name			= "F17h_M30h"; | 
 | 			pvt->max_mcs			= 8; | 
 | 			break; | 
 | 		case 0x60 ... 0x6f: | 
 | 			pvt->ctl_name			= "F17h_M60h"; | 
 | 			break; | 
 | 		case 0x70 ... 0x7f: | 
 | 			pvt->ctl_name			= "F17h_M70h"; | 
 | 			break; | 
 | 		default: | 
 | 			pvt->ctl_name			= "F17h"; | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case 0x18: | 
 | 		pvt->ctl_name				= "F18h"; | 
 | 		break; | 
 |  | 
 | 	case 0x19: | 
 | 		switch (pvt->model) { | 
 | 		case 0x00 ... 0x0f: | 
 | 			pvt->ctl_name			= "F19h"; | 
 | 			pvt->max_mcs			= 8; | 
 | 			break; | 
 | 		case 0x10 ... 0x1f: | 
 | 			pvt->ctl_name			= "F19h_M10h"; | 
 | 			pvt->max_mcs			= 12; | 
 | 			pvt->flags.zn_regs_v2		= 1; | 
 | 			break; | 
 | 		case 0x20 ... 0x2f: | 
 | 			pvt->ctl_name			= "F19h_M20h"; | 
 | 			break; | 
 | 		case 0x30 ... 0x3f: | 
 | 			if (pvt->F3->device == PCI_DEVICE_ID_AMD_MI200_DF_F3) { | 
 | 				pvt->ctl_name		= "MI200"; | 
 | 				pvt->max_mcs		= 4; | 
 | 				pvt->dram_type		= MEM_HBM2; | 
 | 				pvt->gpu_umc_base	= 0x50000; | 
 | 				pvt->ops		= &gpu_ops; | 
 | 			} else { | 
 | 				pvt->ctl_name		= "F19h_M30h"; | 
 | 				pvt->max_mcs		= 8; | 
 | 			} | 
 | 			break; | 
 | 		case 0x50 ... 0x5f: | 
 | 			pvt->ctl_name			= "F19h_M50h"; | 
 | 			break; | 
 | 		case 0x60 ... 0x6f: | 
 | 			pvt->ctl_name			= "F19h_M60h"; | 
 | 			pvt->flags.zn_regs_v2		= 1; | 
 | 			break; | 
 | 		case 0x70 ... 0x7f: | 
 | 			pvt->ctl_name			= "F19h_M70h"; | 
 | 			pvt->max_mcs			= 4; | 
 | 			pvt->flags.zn_regs_v2		= 1; | 
 | 			break; | 
 | 		case 0x90 ... 0x9f: | 
 | 			pvt->ctl_name			= "F19h_M90h"; | 
 | 			pvt->max_mcs			= 4; | 
 | 			pvt->dram_type			= MEM_HBM3; | 
 | 			pvt->gpu_umc_base		= 0x90000; | 
 | 			pvt->ops			= &gpu_ops; | 
 | 			break; | 
 | 		case 0xa0 ... 0xaf: | 
 | 			pvt->ctl_name			= "F19h_MA0h"; | 
 | 			pvt->max_mcs			= 12; | 
 | 			pvt->flags.zn_regs_v2		= 1; | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case 0x1A: | 
 | 		switch (pvt->model) { | 
 | 		case 0x00 ... 0x1f: | 
 | 			pvt->ctl_name           = "F1Ah"; | 
 | 			pvt->max_mcs            = 12; | 
 | 			pvt->flags.zn_regs_v2   = 1; | 
 | 			break; | 
 | 		case 0x40 ... 0x4f: | 
 | 			pvt->ctl_name           = "F1Ah_M40h"; | 
 | 			pvt->flags.zn_regs_v2   = 1; | 
 | 			break; | 
 | 		case 0x50 ... 0x57: | 
 | 			pvt->ctl_name           = "F1Ah_M50h"; | 
 | 			pvt->max_mcs            = 16; | 
 | 			pvt->flags.zn_regs_v2   = 1; | 
 | 			break; | 
 | 		case 0x90 ... 0x9f: | 
 | 			pvt->ctl_name           = "F1Ah_M90h"; | 
 | 			pvt->max_mcs            = 8; | 
 | 			pvt->flags.zn_regs_v2   = 1; | 
 | 			break; | 
 | 		case 0xa0 ... 0xaf: | 
 | 			pvt->ctl_name           = "F1Ah_MA0h"; | 
 | 			pvt->max_mcs            = 8; | 
 | 			pvt->flags.zn_regs_v2   = 1; | 
 | 			break; | 
 | 		case 0xc0 ... 0xc7: | 
 | 			pvt->ctl_name           = "F1Ah_MC0h"; | 
 | 			pvt->max_mcs            = 16; | 
 | 			pvt->flags.zn_regs_v2   = 1; | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		amd64_err("Unsupported family!\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct attribute_group *amd64_edac_attr_groups[] = { | 
 | #ifdef CONFIG_EDAC_DEBUG | 
 | 	&dbg_group, | 
 | 	&inj_group, | 
 | #endif | 
 | 	NULL | 
 | }; | 
 |  | 
 | /* | 
 |  * For heterogeneous and APU models EDAC CHIP_SELECT and CHANNEL layers | 
 |  * should be swapped to fit into the layers. | 
 |  */ | 
 | static unsigned int get_layer_size(struct amd64_pvt *pvt, u8 layer) | 
 | { | 
 | 	bool is_gpu = (pvt->ops == &gpu_ops); | 
 |  | 
 | 	if (!layer) | 
 | 		return is_gpu ? pvt->max_mcs | 
 | 			      : pvt->csels[0].b_cnt; | 
 | 	else | 
 | 		return is_gpu ? pvt->csels[0].b_cnt | 
 | 			      : pvt->max_mcs; | 
 | } | 
 |  | 
 | static int init_one_instance(struct amd64_pvt *pvt) | 
 | { | 
 | 	struct mem_ctl_info *mci = NULL; | 
 | 	struct edac_mc_layer layers[2]; | 
 | 	int ret = -ENOMEM; | 
 |  | 
 | 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; | 
 | 	layers[0].size = get_layer_size(pvt, 0); | 
 | 	layers[0].is_virt_csrow = true; | 
 | 	layers[1].type = EDAC_MC_LAYER_CHANNEL; | 
 | 	layers[1].size = get_layer_size(pvt, 1); | 
 | 	layers[1].is_virt_csrow = false; | 
 |  | 
 | 	mci = edac_mc_alloc(pvt->mc_node_id, ARRAY_SIZE(layers), layers, 0); | 
 | 	if (!mci) | 
 | 		return ret; | 
 |  | 
 | 	mci->pvt_info = pvt; | 
 | 	mci->pdev = &pvt->F3->dev; | 
 |  | 
 | 	pvt->ops->setup_mci_misc_attrs(mci); | 
 |  | 
 | 	ret = -ENODEV; | 
 | 	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) { | 
 | 		edac_dbg(1, "failed edac_mc_add_mc()\n"); | 
 | 		edac_mc_free(mci); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool instance_has_memory(struct amd64_pvt *pvt) | 
 | { | 
 | 	bool cs_enabled = false; | 
 | 	int cs = 0, dct = 0; | 
 |  | 
 | 	for (dct = 0; dct < pvt->max_mcs; dct++) { | 
 | 		for_each_chip_select(cs, dct, pvt) | 
 | 			cs_enabled |= csrow_enabled(cs, dct, pvt); | 
 | 	} | 
 |  | 
 | 	return cs_enabled; | 
 | } | 
 |  | 
 | static int probe_one_instance(unsigned int nid) | 
 | { | 
 | 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc; | 
 | 	struct amd64_pvt *pvt = NULL; | 
 | 	struct ecc_settings *s; | 
 | 	int ret; | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL); | 
 | 	if (!s) | 
 | 		goto err_out; | 
 |  | 
 | 	ecc_stngs[nid] = s; | 
 |  | 
 | 	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL); | 
 | 	if (!pvt) | 
 | 		goto err_settings; | 
 |  | 
 | 	pvt->mc_node_id	= nid; | 
 | 	pvt->F3 = F3; | 
 |  | 
 | 	ret = per_family_init(pvt); | 
 | 	if (ret < 0) | 
 | 		goto err_enable; | 
 |  | 
 | 	ret = pvt->ops->hw_info_get(pvt); | 
 | 	if (ret < 0) | 
 | 		goto err_enable; | 
 |  | 
 | 	ret = 0; | 
 | 	if (!instance_has_memory(pvt)) { | 
 | 		amd64_info("Node %d: No DIMMs detected.\n", nid); | 
 | 		goto err_enable; | 
 | 	} | 
 |  | 
 | 	if (!pvt->ops->ecc_enabled(pvt)) { | 
 | 		ret = -ENODEV; | 
 |  | 
 | 		if (!ecc_enable_override) | 
 | 			goto err_enable; | 
 |  | 
 | 		if (boot_cpu_data.x86 >= 0x17) { | 
 | 			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS."); | 
 | 			goto err_enable; | 
 | 		} else | 
 | 			amd64_warn("Forcing ECC on!\n"); | 
 |  | 
 | 		if (!enable_ecc_error_reporting(s, nid, F3)) | 
 | 			goto err_enable; | 
 | 	} | 
 |  | 
 | 	ret = init_one_instance(pvt); | 
 | 	if (ret < 0) { | 
 | 		amd64_err("Error probing instance: %d\n", nid); | 
 |  | 
 | 		if (boot_cpu_data.x86 < 0x17) | 
 | 			restore_ecc_error_reporting(s, nid, F3); | 
 |  | 
 | 		goto err_enable; | 
 | 	} | 
 |  | 
 | 	amd64_info("%s detected (node %d).\n", pvt->ctl_name, pvt->mc_node_id); | 
 |  | 
 | 	/* Display and decode various registers for debug purposes. */ | 
 | 	pvt->ops->dump_misc_regs(pvt); | 
 |  | 
 | 	return ret; | 
 |  | 
 | err_enable: | 
 | 	hw_info_put(pvt); | 
 | 	kfree(pvt); | 
 |  | 
 | err_settings: | 
 | 	kfree(s); | 
 | 	ecc_stngs[nid] = NULL; | 
 |  | 
 | err_out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void remove_one_instance(unsigned int nid) | 
 | { | 
 | 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc; | 
 | 	struct ecc_settings *s = ecc_stngs[nid]; | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct amd64_pvt *pvt; | 
 |  | 
 | 	/* Remove from EDAC CORE tracking list */ | 
 | 	mci = edac_mc_del_mc(&F3->dev); | 
 | 	if (!mci) | 
 | 		return; | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 |  | 
 | 	restore_ecc_error_reporting(s, nid, F3); | 
 |  | 
 | 	kfree(ecc_stngs[nid]); | 
 | 	ecc_stngs[nid] = NULL; | 
 |  | 
 | 	/* Free the EDAC CORE resources */ | 
 | 	mci->pvt_info = NULL; | 
 |  | 
 | 	hw_info_put(pvt); | 
 | 	kfree(pvt); | 
 | 	edac_mc_free(mci); | 
 | } | 
 |  | 
 | static void setup_pci_device(void) | 
 | { | 
 | 	if (pci_ctl) | 
 | 		return; | 
 |  | 
 | 	pci_ctl = edac_pci_create_generic_ctl(pci_ctl_dev, EDAC_MOD_STR); | 
 | 	if (!pci_ctl) { | 
 | 		pr_warn("%s(): Unable to create PCI control\n", __func__); | 
 | 		pr_warn("%s(): PCI error report via EDAC not set\n", __func__); | 
 | 	} | 
 | } | 
 |  | 
 | static const struct x86_cpu_id amd64_cpuids[] = { | 
 | 	X86_MATCH_VENDOR_FAM(AMD,	0x0F, NULL), | 
 | 	X86_MATCH_VENDOR_FAM(AMD,	0x10, NULL), | 
 | 	X86_MATCH_VENDOR_FAM(AMD,	0x15, NULL), | 
 | 	X86_MATCH_VENDOR_FAM(AMD,	0x16, NULL), | 
 | 	X86_MATCH_VENDOR_FAM(AMD,	0x17, NULL), | 
 | 	X86_MATCH_VENDOR_FAM(HYGON,	0x18, NULL), | 
 | 	X86_MATCH_VENDOR_FAM(AMD,	0x19, NULL), | 
 | 	X86_MATCH_VENDOR_FAM(AMD,	0x1A, NULL), | 
 | 	{ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids); | 
 |  | 
 | static int __init amd64_edac_init(void) | 
 | { | 
 | 	const char *owner; | 
 | 	int err = -ENODEV; | 
 | 	int i; | 
 |  | 
 | 	if (ghes_get_devices()) | 
 | 		return -EBUSY; | 
 |  | 
 | 	owner = edac_get_owner(); | 
 | 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (!x86_match_cpu(amd64_cpuids)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (!amd_nb_num()) | 
 | 		return -ENODEV; | 
 |  | 
 | 	opstate_init(); | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL); | 
 | 	if (!ecc_stngs) | 
 | 		goto err_free; | 
 |  | 
 | 	msrs = msrs_alloc(); | 
 | 	if (!msrs) | 
 | 		goto err_free; | 
 |  | 
 | 	for (i = 0; i < amd_nb_num(); i++) { | 
 | 		err = probe_one_instance(i); | 
 | 		if (err) { | 
 | 			/* unwind properly */ | 
 | 			while (--i >= 0) | 
 | 				remove_one_instance(i); | 
 |  | 
 | 			goto err_pci; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!edac_has_mcs()) { | 
 | 		err = -ENODEV; | 
 | 		goto err_pci; | 
 | 	} | 
 |  | 
 | 	/* register stuff with EDAC MCE */ | 
 | 	if (boot_cpu_data.x86 >= 0x17) { | 
 | 		amd_register_ecc_decoder(decode_umc_error); | 
 | 	} else { | 
 | 		amd_register_ecc_decoder(decode_bus_error); | 
 | 		setup_pci_device(); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | 	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR); | 
 | #endif | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_pci: | 
 | 	pci_ctl_dev = NULL; | 
 |  | 
 | 	msrs_free(msrs); | 
 | 	msrs = NULL; | 
 |  | 
 | err_free: | 
 | 	kfree(ecc_stngs); | 
 | 	ecc_stngs = NULL; | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void __exit amd64_edac_exit(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (pci_ctl) | 
 | 		edac_pci_release_generic_ctl(pci_ctl); | 
 |  | 
 | 	/* unregister from EDAC MCE */ | 
 | 	if (boot_cpu_data.x86 >= 0x17) | 
 | 		amd_unregister_ecc_decoder(decode_umc_error); | 
 | 	else | 
 | 		amd_unregister_ecc_decoder(decode_bus_error); | 
 |  | 
 | 	for (i = 0; i < amd_nb_num(); i++) | 
 | 		remove_one_instance(i); | 
 |  | 
 | 	kfree(ecc_stngs); | 
 | 	ecc_stngs = NULL; | 
 |  | 
 | 	pci_ctl_dev = NULL; | 
 |  | 
 | 	msrs_free(msrs); | 
 | 	msrs = NULL; | 
 | } | 
 |  | 
 | module_init(amd64_edac_init); | 
 | module_exit(amd64_edac_exit); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, Dave Peterson, Thayne Harbaugh; AMD"); | 
 | MODULE_DESCRIPTION("MC support for AMD64 memory controllers"); | 
 |  | 
 | module_param(edac_op_state, int, 0444); | 
 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); |