| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Driver for Pondicherry2 memory controller. | 
 |  * | 
 |  * Copyright (c) 2016, Intel Corporation. | 
 |  * | 
 |  * [Derived from sb_edac.c] | 
 |  * | 
 |  * Translation of system physical addresses to DIMM addresses | 
 |  * is a two stage process: | 
 |  * | 
 |  * First the Pondicherry 2 memory controller handles slice and channel interleaving | 
 |  * in "sys2pmi()". This is (almost) completley common between platforms. | 
 |  * | 
 |  * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM, | 
 |  * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters. | 
 |  */ | 
 |  | 
 | #include <linux/bitmap.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/edac.h> | 
 | #include <linux/init.h> | 
 | #include <linux/math64.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/mod_devicetable.h> | 
 | #include <linux/module.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/pci_ids.h> | 
 | #include <linux/sizes.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/smp.h> | 
 |  | 
 | #include <linux/platform_data/x86/p2sb.h> | 
 |  | 
 | #include <asm/cpu_device_id.h> | 
 | #include <asm/intel-family.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/mce.h> | 
 |  | 
 | #include "edac_mc.h" | 
 | #include "edac_module.h" | 
 | #include "pnd2_edac.h" | 
 |  | 
 | #define EDAC_MOD_STR		"pnd2_edac" | 
 |  | 
 | #define APL_NUM_CHANNELS	4 | 
 | #define DNV_NUM_CHANNELS	2 | 
 | #define DNV_MAX_DIMMS		2 /* Max DIMMs per channel */ | 
 |  | 
 | enum type { | 
 | 	APL, | 
 | 	DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */ | 
 | }; | 
 |  | 
 | struct dram_addr { | 
 | 	int chan; | 
 | 	int dimm; | 
 | 	int rank; | 
 | 	int bank; | 
 | 	int row; | 
 | 	int col; | 
 | }; | 
 |  | 
 | struct pnd2_pvt { | 
 | 	int dimm_geom[APL_NUM_CHANNELS]; | 
 | 	u64 tolm, tohm; | 
 | }; | 
 |  | 
 | /* | 
 |  * System address space is divided into multiple regions with | 
 |  * different interleave rules in each. The as0/as1 regions | 
 |  * have no interleaving at all. The as2 region is interleaved | 
 |  * between two channels. The mot region is magic and may overlap | 
 |  * other regions, with its interleave rules taking precedence. | 
 |  * Addresses not in any of these regions are interleaved across | 
 |  * all four channels. | 
 |  */ | 
 | static struct region { | 
 | 	u64	base; | 
 | 	u64	limit; | 
 | 	u8	enabled; | 
 | } mot, as0, as1, as2; | 
 |  | 
 | static struct dunit_ops { | 
 | 	char *name; | 
 | 	enum type type; | 
 | 	int pmiaddr_shift; | 
 | 	int pmiidx_shift; | 
 | 	int channels; | 
 | 	int dimms_per_channel; | 
 | 	int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name); | 
 | 	int (*get_registers)(void); | 
 | 	int (*check_ecc)(void); | 
 | 	void (*mk_region)(char *name, struct region *rp, void *asym); | 
 | 	void (*get_dimm_config)(struct mem_ctl_info *mci); | 
 | 	int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, | 
 | 				   struct dram_addr *daddr, char *msg); | 
 | } *ops; | 
 |  | 
 | static struct mem_ctl_info *pnd2_mci; | 
 |  | 
 | #define PND2_MSG_SIZE	256 | 
 |  | 
 | /* Debug macros */ | 
 | #define pnd2_printk(level, fmt, arg...)			\ | 
 | 	edac_printk(level, "pnd2", fmt, ##arg) | 
 |  | 
 | #define pnd2_mc_printk(mci, level, fmt, arg...)	\ | 
 | 	edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg) | 
 |  | 
 | #define MOT_CHAN_INTLV_BIT_1SLC_2CH 12 | 
 | #define MOT_CHAN_INTLV_BIT_2SLC_2CH 13 | 
 | #define SELECTOR_DISABLED (-1) | 
 |  | 
 | #define PMI_ADDRESS_WIDTH	31 | 
 | #define PND_MAX_PHYS_BIT	39 | 
 |  | 
 | #define APL_ASYMSHIFT		28 | 
 | #define DNV_ASYMSHIFT		31 | 
 | #define CH_HASH_MASK_LSB	6 | 
 | #define SLICE_HASH_MASK_LSB	6 | 
 | #define MOT_SLC_INTLV_BIT	12 | 
 | #define LOG2_PMI_ADDR_GRANULARITY	5 | 
 | #define MOT_SHIFT	24 | 
 |  | 
 | #define GET_BITFIELD(v, lo, hi)	(((v) & GENMASK_ULL(hi, lo)) >> (lo)) | 
 | #define U64_LSHIFT(val, s)	((u64)(val) << (s)) | 
 |  | 
 | /* | 
 |  * On Apollo Lake we access memory controller registers via a | 
 |  * side-band mailbox style interface in a hidden PCI device | 
 |  * configuration space. | 
 |  */ | 
 | static struct pci_bus	*p2sb_bus; | 
 | #define P2SB_DEVFN	PCI_DEVFN(0xd, 0) | 
 | #define P2SB_ADDR_OFF	0xd0 | 
 | #define P2SB_DATA_OFF	0xd4 | 
 | #define P2SB_STAT_OFF	0xd8 | 
 | #define P2SB_ROUT_OFF	0xda | 
 | #define P2SB_EADD_OFF	0xdc | 
 | #define P2SB_HIDE_OFF	0xe1 | 
 |  | 
 | #define P2SB_BUSY	1 | 
 |  | 
 | #define P2SB_READ(size, off, ptr) \ | 
 | 	pci_bus_read_config_##size(p2sb_bus, P2SB_DEVFN, off, ptr) | 
 | #define P2SB_WRITE(size, off, val) \ | 
 | 	pci_bus_write_config_##size(p2sb_bus, P2SB_DEVFN, off, val) | 
 |  | 
 | static bool p2sb_is_busy(u16 *status) | 
 | { | 
 | 	P2SB_READ(word, P2SB_STAT_OFF, status); | 
 |  | 
 | 	return !!(*status & P2SB_BUSY); | 
 | } | 
 |  | 
 | static int _apl_rd_reg(int port, int off, int op, u32 *data) | 
 | { | 
 | 	int retries = 0xff, ret; | 
 | 	u16 status; | 
 | 	u8 hidden; | 
 |  | 
 | 	/* Unhide the P2SB device, if it's hidden */ | 
 | 	P2SB_READ(byte, P2SB_HIDE_OFF, &hidden); | 
 | 	if (hidden) | 
 | 		P2SB_WRITE(byte, P2SB_HIDE_OFF, 0); | 
 |  | 
 | 	if (p2sb_is_busy(&status)) { | 
 | 		ret = -EAGAIN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	P2SB_WRITE(dword, P2SB_ADDR_OFF, (port << 24) | off); | 
 | 	P2SB_WRITE(dword, P2SB_DATA_OFF, 0); | 
 | 	P2SB_WRITE(dword, P2SB_EADD_OFF, 0); | 
 | 	P2SB_WRITE(word, P2SB_ROUT_OFF, 0); | 
 | 	P2SB_WRITE(word, P2SB_STAT_OFF, (op << 8) | P2SB_BUSY); | 
 |  | 
 | 	while (p2sb_is_busy(&status)) { | 
 | 		if (retries-- == 0) { | 
 | 			ret = -EBUSY; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	P2SB_READ(dword, P2SB_DATA_OFF, data); | 
 | 	ret = (status >> 1) & GENMASK(1, 0); | 
 | out: | 
 | 	/* Hide the P2SB device, if it was hidden before */ | 
 | 	if (hidden) | 
 | 		P2SB_WRITE(byte, P2SB_HIDE_OFF, hidden); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op); | 
 | 	switch (sz) { | 
 | 	case 8: | 
 | 		ret = _apl_rd_reg(port, off + 4, op, (u32 *)(data + 4)); | 
 | 		fallthrough; | 
 | 	case 4: | 
 | 		ret |= _apl_rd_reg(port, off, op, (u32 *)data); | 
 | 		pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name, | 
 | 					sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static u64 get_mem_ctrl_hub_base_addr(void) | 
 | { | 
 | 	struct b_cr_mchbar_lo_pci lo; | 
 | 	struct b_cr_mchbar_hi_pci hi; | 
 | 	struct pci_dev *pdev; | 
 |  | 
 | 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); | 
 | 	if (pdev) { | 
 | 		pci_read_config_dword(pdev, 0x48, (u32 *)&lo); | 
 | 		pci_read_config_dword(pdev, 0x4c, (u32 *)&hi); | 
 | 		pci_dev_put(pdev); | 
 | 	} else { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!lo.enable) { | 
 | 		edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15); | 
 | } | 
 |  | 
 | #define DNV_MCHBAR_SIZE  0x8000 | 
 | #define DNV_SB_PORT_SIZE 0x10000 | 
 | static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) | 
 | { | 
 | 	struct pci_dev *pdev; | 
 | 	void __iomem *base; | 
 | 	struct resource r; | 
 | 	int ret; | 
 |  | 
 | 	if (op == 4) { | 
 | 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); | 
 | 		if (!pdev) | 
 | 			return -ENODEV; | 
 |  | 
 | 		pci_read_config_dword(pdev, off, data); | 
 | 		pci_dev_put(pdev); | 
 | 	} else { | 
 | 		/* MMIO via memory controller hub base address */ | 
 | 		if (op == 0 && port == 0x4c) { | 
 | 			memset(&r, 0, sizeof(r)); | 
 |  | 
 | 			r.start = get_mem_ctrl_hub_base_addr(); | 
 | 			if (!r.start) | 
 | 				return -ENODEV; | 
 | 			r.end = r.start + DNV_MCHBAR_SIZE - 1; | 
 | 		} else { | 
 | 			/* MMIO via sideband register base address */ | 
 | 			ret = p2sb_bar(NULL, 0, &r); | 
 | 			if (ret) | 
 | 				return ret; | 
 |  | 
 | 			r.start += (port << 16); | 
 | 			r.end = r.start + DNV_SB_PORT_SIZE - 1; | 
 | 		} | 
 |  | 
 | 		base = ioremap(r.start, resource_size(&r)); | 
 | 		if (!base) | 
 | 			return -ENODEV; | 
 |  | 
 | 		if (sz == 8) | 
 | 			*(u64 *)data = readq(base + off); | 
 | 		else | 
 | 			*(u32 *)data = readl(base + off); | 
 |  | 
 | 		iounmap(base); | 
 | 	} | 
 |  | 
 | 	edac_dbg(2, "Read %s=%.8x_%.8x\n", name, | 
 | 			(sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define RD_REGP(regp, regname, port)	\ | 
 | 	ops->rd_reg(port,					\ | 
 | 		regname##_offset,				\ | 
 | 		regname##_r_opcode,				\ | 
 | 		regp, sizeof(struct regname),	\ | 
 | 		#regname) | 
 |  | 
 | #define RD_REG(regp, regname)			\ | 
 | 	ops->rd_reg(regname ## _port,		\ | 
 | 		regname##_offset,				\ | 
 | 		regname##_r_opcode,				\ | 
 | 		regp, sizeof(struct regname),	\ | 
 | 		#regname) | 
 |  | 
 | static u64 top_lm, top_hm; | 
 | static bool two_slices; | 
 | static bool two_channels; /* Both PMI channels in one slice enabled */ | 
 |  | 
 | static u8 sym_chan_mask; | 
 | static u8 asym_chan_mask; | 
 | static unsigned long chan_mask; | 
 |  | 
 | static int slice_selector = -1; | 
 | static int chan_selector = -1; | 
 | static u64 slice_hash_mask; | 
 | static u64 chan_hash_mask; | 
 |  | 
 | static void mk_region(char *name, struct region *rp, u64 base, u64 limit) | 
 | { | 
 | 	rp->enabled = 1; | 
 | 	rp->base = base; | 
 | 	rp->limit = limit; | 
 | 	edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit); | 
 | } | 
 |  | 
 | static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask) | 
 | { | 
 | 	if (mask == 0) { | 
 | 		pr_info(FW_BUG "MOT mask cannot be zero\n"); | 
 | 		return; | 
 | 	} | 
 | 	if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) { | 
 | 		pr_info(FW_BUG "MOT mask is invalid\n"); | 
 | 		return; | 
 | 	} | 
 | 	if (base & ~mask) { | 
 | 		pr_info(FW_BUG "MOT region base/mask alignment error\n"); | 
 | 		return; | 
 | 	} | 
 | 	rp->base = base; | 
 | 	rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0); | 
 | 	rp->enabled = 1; | 
 | 	edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit); | 
 | } | 
 |  | 
 | static bool in_region(struct region *rp, u64 addr) | 
 | { | 
 | 	if (!rp->enabled) | 
 | 		return false; | 
 |  | 
 | 	return rp->base <= addr && addr <= rp->limit; | 
 | } | 
 |  | 
 | static int gen_sym_mask(struct b_cr_slice_channel_hash *p) | 
 | { | 
 | 	int mask = 0; | 
 |  | 
 | 	if (!p->slice_0_mem_disabled) | 
 | 		mask |= p->sym_slice0_channel_enabled; | 
 |  | 
 | 	if (!p->slice_1_disabled) | 
 | 		mask |= p->sym_slice1_channel_enabled << 2; | 
 |  | 
 | 	if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) | 
 | 		mask &= 0x5; | 
 |  | 
 | 	return mask; | 
 | } | 
 |  | 
 | static int gen_asym_mask(struct b_cr_slice_channel_hash *p, | 
 | 			 struct b_cr_asym_mem_region0_mchbar *as0, | 
 | 			 struct b_cr_asym_mem_region1_mchbar *as1, | 
 | 			 struct b_cr_asym_2way_mem_region_mchbar *as2way) | 
 | { | 
 | 	static const int intlv[] = { 0x5, 0xA, 0x3, 0xC }; | 
 | 	int mask = 0; | 
 |  | 
 | 	if (as2way->asym_2way_interleave_enable) | 
 | 		mask = intlv[as2way->asym_2way_intlv_mode]; | 
 | 	if (as0->slice0_asym_enable) | 
 | 		mask |= (1 << as0->slice0_asym_channel_select); | 
 | 	if (as1->slice1_asym_enable) | 
 | 		mask |= (4 << as1->slice1_asym_channel_select); | 
 | 	if (p->slice_0_mem_disabled) | 
 | 		mask &= 0xc; | 
 | 	if (p->slice_1_disabled) | 
 | 		mask &= 0x3; | 
 | 	if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) | 
 | 		mask &= 0x5; | 
 |  | 
 | 	return mask; | 
 | } | 
 |  | 
 | static struct b_cr_tolud_pci tolud; | 
 | static struct b_cr_touud_lo_pci touud_lo; | 
 | static struct b_cr_touud_hi_pci touud_hi; | 
 | static struct b_cr_asym_mem_region0_mchbar asym0; | 
 | static struct b_cr_asym_mem_region1_mchbar asym1; | 
 | static struct b_cr_asym_2way_mem_region_mchbar asym_2way; | 
 | static struct b_cr_mot_out_base_mchbar mot_base; | 
 | static struct b_cr_mot_out_mask_mchbar mot_mask; | 
 | static struct b_cr_slice_channel_hash chash; | 
 |  | 
 | /* Apollo Lake dunit */ | 
 | /* | 
 |  * Validated on board with just two DIMMs in the [0] and [2] positions | 
 |  * in this array. Other port number matches documentation, but caution | 
 |  * advised. | 
 |  */ | 
 | static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 }; | 
 | static struct d_cr_drp0 drp0[APL_NUM_CHANNELS]; | 
 |  | 
 | /* Denverton dunit */ | 
 | static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 }; | 
 | static struct d_cr_dsch dsch; | 
 | static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS]; | 
 | static struct d_cr_drp drp[DNV_NUM_CHANNELS]; | 
 | static struct d_cr_dmap dmap[DNV_NUM_CHANNELS]; | 
 | static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS]; | 
 | static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS]; | 
 | static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS]; | 
 | static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS]; | 
 | static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS]; | 
 |  | 
 | static void apl_mk_region(char *name, struct region *rp, void *asym) | 
 | { | 
 | 	struct b_cr_asym_mem_region0_mchbar *a = asym; | 
 |  | 
 | 	mk_region(name, rp, | 
 | 			  U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT), | 
 | 			  U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) + | 
 | 			  GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); | 
 | } | 
 |  | 
 | static void dnv_mk_region(char *name, struct region *rp, void *asym) | 
 | { | 
 | 	struct b_cr_asym_mem_region_denverton *a = asym; | 
 |  | 
 | 	mk_region(name, rp, | 
 | 			  U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT), | 
 | 			  U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) + | 
 | 			  GENMASK_ULL(DNV_ASYMSHIFT - 1, 0)); | 
 | } | 
 |  | 
 | static int apl_get_registers(void) | 
 | { | 
 | 	int ret = -ENODEV; | 
 | 	int i; | 
 |  | 
 | 	if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* | 
 | 	 * RD_REGP() will fail for unpopulated or non-existent | 
 | 	 * DIMM slots. Return success if we find at least one DIMM. | 
 | 	 */ | 
 | 	for (i = 0; i < APL_NUM_CHANNELS; i++) | 
 | 		if (!RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i])) | 
 | 			ret = 0; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int dnv_get_registers(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (RD_REG(&dsch, d_cr_dsch)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	for (i = 0; i < DNV_NUM_CHANNELS; i++) | 
 | 		if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) || | 
 | 			RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) || | 
 | 			RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) || | 
 | 			RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) || | 
 | 			RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) || | 
 | 			RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) || | 
 | 			RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) || | 
 | 			RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i])) | 
 | 			return -ENODEV; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Read all the h/w config registers once here (they don't | 
 |  * change at run time. Figure out which address ranges have | 
 |  * which interleave characteristics. | 
 |  */ | 
 | static int get_registers(void) | 
 | { | 
 | 	static const int intlv[] = { 10, 11, 12, 12 }; | 
 |  | 
 | 	if (RD_REG(&tolud, b_cr_tolud_pci) || | 
 | 		RD_REG(&touud_lo, b_cr_touud_lo_pci) || | 
 | 		RD_REG(&touud_hi, b_cr_touud_hi_pci) || | 
 | 		RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) || | 
 | 		RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) || | 
 | 		RD_REG(&mot_base, b_cr_mot_out_base_mchbar) || | 
 | 		RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) || | 
 | 		RD_REG(&chash, b_cr_slice_channel_hash)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (ops->get_registers()) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (ops->type == DNV) { | 
 | 		/* PMI channel idx (always 0) for asymmetric region */ | 
 | 		asym0.slice0_asym_channel_select = 0; | 
 | 		asym1.slice1_asym_channel_select = 0; | 
 | 		/* PMI channel bitmap (always 1) for symmetric region */ | 
 | 		chash.sym_slice0_channel_enabled = 0x1; | 
 | 		chash.sym_slice1_channel_enabled = 0x1; | 
 | 	} | 
 |  | 
 | 	if (asym0.slice0_asym_enable) | 
 | 		ops->mk_region("as0", &as0, &asym0); | 
 |  | 
 | 	if (asym1.slice1_asym_enable) | 
 | 		ops->mk_region("as1", &as1, &asym1); | 
 |  | 
 | 	if (asym_2way.asym_2way_interleave_enable) { | 
 | 		mk_region("as2way", &as2, | 
 | 				  U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT), | 
 | 				  U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) + | 
 | 				  GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); | 
 | 	} | 
 |  | 
 | 	if (mot_base.imr_en) { | 
 | 		mk_region_mask("mot", &mot, | 
 | 					   U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT), | 
 | 					   U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT)); | 
 | 	} | 
 |  | 
 | 	top_lm = U64_LSHIFT(tolud.tolud, 20); | 
 | 	top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20); | 
 |  | 
 | 	two_slices = !chash.slice_1_disabled && | 
 | 				 !chash.slice_0_mem_disabled && | 
 | 				 (chash.sym_slice0_channel_enabled != 0) && | 
 | 				 (chash.sym_slice1_channel_enabled != 0); | 
 | 	two_channels = !chash.ch_1_disabled && | 
 | 				 !chash.enable_pmi_dual_data_mode && | 
 | 				 ((chash.sym_slice0_channel_enabled == 3) || | 
 | 				 (chash.sym_slice1_channel_enabled == 3)); | 
 |  | 
 | 	sym_chan_mask = gen_sym_mask(&chash); | 
 | 	asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way); | 
 | 	chan_mask = sym_chan_mask | asym_chan_mask; | 
 |  | 
 | 	if (two_slices && !two_channels) { | 
 | 		if (chash.hvm_mode) | 
 | 			slice_selector = 29; | 
 | 		else | 
 | 			slice_selector = intlv[chash.interleave_mode]; | 
 | 	} else if (!two_slices && two_channels) { | 
 | 		if (chash.hvm_mode) | 
 | 			chan_selector = 29; | 
 | 		else | 
 | 			chan_selector = intlv[chash.interleave_mode]; | 
 | 	} else if (two_slices && two_channels) { | 
 | 		if (chash.hvm_mode) { | 
 | 			slice_selector = 29; | 
 | 			chan_selector = 30; | 
 | 		} else { | 
 | 			slice_selector = intlv[chash.interleave_mode]; | 
 | 			chan_selector = intlv[chash.interleave_mode] + 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (two_slices) { | 
 | 		if (!chash.hvm_mode) | 
 | 			slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB; | 
 | 		if (!two_channels) | 
 | 			slice_hash_mask |= BIT_ULL(slice_selector); | 
 | 	} | 
 |  | 
 | 	if (two_channels) { | 
 | 		if (!chash.hvm_mode) | 
 | 			chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB; | 
 | 		if (!two_slices) | 
 | 			chan_hash_mask |= BIT_ULL(chan_selector); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Get a contiguous memory address (remove the MMIO gap) */ | 
 | static u64 remove_mmio_gap(u64 sys) | 
 | { | 
 | 	return (sys < SZ_4G) ? sys : sys - (SZ_4G - top_lm); | 
 | } | 
 |  | 
 | /* Squeeze out one address bit, shift upper part down to fill gap */ | 
 | static void remove_addr_bit(u64 *addr, int bitidx) | 
 | { | 
 | 	u64	mask; | 
 |  | 
 | 	if (bitidx == -1) | 
 | 		return; | 
 |  | 
 | 	mask = BIT_ULL(bitidx) - 1; | 
 | 	*addr = ((*addr >> 1) & ~mask) | (*addr & mask); | 
 | } | 
 |  | 
 | /* XOR all the bits from addr specified in mask */ | 
 | static int hash_by_mask(u64 addr, u64 mask) | 
 | { | 
 | 	u64 result = addr & mask; | 
 |  | 
 | 	result = (result >> 32) ^ result; | 
 | 	result = (result >> 16) ^ result; | 
 | 	result = (result >> 8) ^ result; | 
 | 	result = (result >> 4) ^ result; | 
 | 	result = (result >> 2) ^ result; | 
 | 	result = (result >> 1) ^ result; | 
 |  | 
 | 	return (int)result & 1; | 
 | } | 
 |  | 
 | /* | 
 |  * First stage decode. Take the system address and figure out which | 
 |  * second stage will deal with it based on interleave modes. | 
 |  */ | 
 | static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg) | 
 | { | 
 | 	u64 contig_addr, contig_base, contig_offset, contig_base_adj; | 
 | 	int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : | 
 | 						MOT_CHAN_INTLV_BIT_1SLC_2CH; | 
 | 	int slice_intlv_bit_rm = SELECTOR_DISABLED; | 
 | 	int chan_intlv_bit_rm = SELECTOR_DISABLED; | 
 | 	/* Determine if address is in the MOT region. */ | 
 | 	bool mot_hit = in_region(&mot, addr); | 
 | 	/* Calculate the number of symmetric regions enabled. */ | 
 | 	int sym_channels = hweight8(sym_chan_mask); | 
 |  | 
 | 	/* | 
 | 	 * The amount we need to shift the asym base can be determined by the | 
 | 	 * number of enabled symmetric channels. | 
 | 	 * NOTE: This can only work because symmetric memory is not supposed | 
 | 	 * to do a 3-way interleave. | 
 | 	 */ | 
 | 	int sym_chan_shift = sym_channels >> 1; | 
 |  | 
 | 	/* Give up if address is out of range, or in MMIO gap */ | 
 | 	if (addr >= BIT(PND_MAX_PHYS_BIT) || | 
 | 	   (addr >= top_lm && addr < SZ_4G) || addr >= top_hm) { | 
 | 		snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Get a contiguous memory address (remove the MMIO gap) */ | 
 | 	contig_addr = remove_mmio_gap(addr); | 
 |  | 
 | 	if (in_region(&as0, addr)) { | 
 | 		*pmiidx = asym0.slice0_asym_channel_select; | 
 |  | 
 | 		contig_base = remove_mmio_gap(as0.base); | 
 | 		contig_offset = contig_addr - contig_base; | 
 | 		contig_base_adj = (contig_base >> sym_chan_shift) * | 
 | 						  ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1); | 
 | 		contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); | 
 | 	} else if (in_region(&as1, addr)) { | 
 | 		*pmiidx = 2u + asym1.slice1_asym_channel_select; | 
 |  | 
 | 		contig_base = remove_mmio_gap(as1.base); | 
 | 		contig_offset = contig_addr - contig_base; | 
 | 		contig_base_adj = (contig_base >> sym_chan_shift) * | 
 | 						  ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1); | 
 | 		contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); | 
 | 	} else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) { | 
 | 		bool channel1; | 
 |  | 
 | 		mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH; | 
 | 		*pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1; | 
 | 		channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) : | 
 | 			hash_by_mask(contig_addr, chan_hash_mask); | 
 | 		*pmiidx |= (u32)channel1; | 
 |  | 
 | 		contig_base = remove_mmio_gap(as2.base); | 
 | 		chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector; | 
 | 		contig_offset = contig_addr - contig_base; | 
 | 		remove_addr_bit(&contig_offset, chan_intlv_bit_rm); | 
 | 		contig_addr = (contig_base >> sym_chan_shift) + contig_offset; | 
 | 	} else { | 
 | 		/* Otherwise we're in normal, boring symmetric mode. */ | 
 | 		*pmiidx = 0u; | 
 |  | 
 | 		if (two_slices) { | 
 | 			bool slice1; | 
 |  | 
 | 			if (mot_hit) { | 
 | 				slice_intlv_bit_rm = MOT_SLC_INTLV_BIT; | 
 | 				slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1; | 
 | 			} else { | 
 | 				slice_intlv_bit_rm = slice_selector; | 
 | 				slice1 = hash_by_mask(addr, slice_hash_mask); | 
 | 			} | 
 |  | 
 | 			*pmiidx = (u32)slice1 << 1; | 
 | 		} | 
 |  | 
 | 		if (two_channels) { | 
 | 			bool channel1; | 
 |  | 
 | 			mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : | 
 | 							MOT_CHAN_INTLV_BIT_1SLC_2CH; | 
 |  | 
 | 			if (mot_hit) { | 
 | 				chan_intlv_bit_rm = mot_intlv_bit; | 
 | 				channel1 = (addr >> mot_intlv_bit) & 1; | 
 | 			} else { | 
 | 				chan_intlv_bit_rm = chan_selector; | 
 | 				channel1 = hash_by_mask(contig_addr, chan_hash_mask); | 
 | 			} | 
 |  | 
 | 			*pmiidx |= (u32)channel1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Remove the chan_selector bit first */ | 
 | 	remove_addr_bit(&contig_addr, chan_intlv_bit_rm); | 
 | 	/* Remove the slice bit (we remove it second because it must be lower */ | 
 | 	remove_addr_bit(&contig_addr, slice_intlv_bit_rm); | 
 | 	*pmiaddr = contig_addr; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Translate PMI address to memory (rank, row, bank, column) */ | 
 | #define C(n) (BIT(4) | (n))	/* column */ | 
 | #define B(n) (BIT(5) | (n))	/* bank */ | 
 | #define R(n) (BIT(6) | (n))	/* row */ | 
 | #define RS   (BIT(7))		/* rank */ | 
 |  | 
 | /* addrdec values */ | 
 | #define AMAP_1KB	0 | 
 | #define AMAP_2KB	1 | 
 | #define AMAP_4KB	2 | 
 | #define AMAP_RSVD	3 | 
 |  | 
 | /* dden values */ | 
 | #define DEN_4Gb		0 | 
 | #define DEN_8Gb		2 | 
 |  | 
 | /* dwid values */ | 
 | #define X8		0 | 
 | #define X16		1 | 
 |  | 
 | static struct dimm_geometry { | 
 | 	u8	addrdec; | 
 | 	u8	dden; | 
 | 	u8	dwid; | 
 | 	u8	rowbits, colbits; | 
 | 	u16	bits[PMI_ADDRESS_WIDTH]; | 
 | } dimms[] = { | 
 | 	{ | 
 | 		.addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16, | 
 | 		.rowbits = 15, .colbits = 10, | 
 | 		.bits = { | 
 | 			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0), | 
 | 			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9), | 
 | 			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14), | 
 | 			0,     0,     0,     0 | 
 | 		} | 
 | 	}, | 
 | 	{ | 
 | 		.addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8, | 
 | 		.rowbits = 16, .colbits = 10, | 
 | 		.bits = { | 
 | 			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0), | 
 | 			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9), | 
 | 			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14), | 
 | 			R(15), 0,     0,     0 | 
 | 		} | 
 | 	}, | 
 | 	{ | 
 | 		.addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16, | 
 | 		.rowbits = 16, .colbits = 10, | 
 | 		.bits = { | 
 | 			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0), | 
 | 			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9), | 
 | 			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14), | 
 | 			R(15), 0,     0,     0 | 
 | 		} | 
 | 	}, | 
 | 	{ | 
 | 		.addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8, | 
 | 		.rowbits = 16, .colbits = 11, | 
 | 		.bits = { | 
 | 			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0), | 
 | 			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9), | 
 | 			R(10), C(7),  C(8),  C(9),  R(11), RS,    C(11), R(12), R(13), | 
 | 			R(14), R(15), 0,     0 | 
 | 		} | 
 | 	}, | 
 | 	{ | 
 | 		.addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16, | 
 | 		.rowbits = 15, .colbits = 10, | 
 | 		.bits = { | 
 | 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2), | 
 | 			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8), | 
 | 			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14), | 
 | 			0,     0,     0,     0 | 
 | 		} | 
 | 	}, | 
 | 	{ | 
 | 		.addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8, | 
 | 		.rowbits = 16, .colbits = 10, | 
 | 		.bits = { | 
 | 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2), | 
 | 			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8), | 
 | 			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14), | 
 | 			R(15), 0,     0,     0 | 
 | 		} | 
 | 	}, | 
 | 	{ | 
 | 		.addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16, | 
 | 		.rowbits = 16, .colbits = 10, | 
 | 		.bits = { | 
 | 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2), | 
 | 			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8), | 
 | 			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14), | 
 | 			R(15), 0,     0,     0 | 
 | 		} | 
 | 	}, | 
 | 	{ | 
 | 		.addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8, | 
 | 		.rowbits = 16, .colbits = 11, | 
 | 		.bits = { | 
 | 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2), | 
 | 			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8), | 
 | 			R(9),  R(10), C(8),  C(9),  R(11), RS,    C(11), R(12), R(13), | 
 | 			R(14), R(15), 0,     0 | 
 | 		} | 
 | 	}, | 
 | 	{ | 
 | 		.addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16, | 
 | 		.rowbits = 15, .colbits = 10, | 
 | 		.bits = { | 
 | 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1), | 
 | 			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7), | 
 | 			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14), | 
 | 			0,     0,     0,     0 | 
 | 		} | 
 | 	}, | 
 | 	{ | 
 | 		.addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8, | 
 | 		.rowbits = 16, .colbits = 10, | 
 | 		.bits = { | 
 | 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1), | 
 | 			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7), | 
 | 			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14), | 
 | 			R(15), 0,     0,     0 | 
 | 		} | 
 | 	}, | 
 | 	{ | 
 | 		.addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16, | 
 | 		.rowbits = 16, .colbits = 10, | 
 | 		.bits = { | 
 | 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1), | 
 | 			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7), | 
 | 			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14), | 
 | 			R(15), 0,     0,     0 | 
 | 		} | 
 | 	}, | 
 | 	{ | 
 | 		.addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8, | 
 | 		.rowbits = 16, .colbits = 11, | 
 | 		.bits = { | 
 | 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1), | 
 | 			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7), | 
 | 			R(8),  R(9),  R(10), C(9),  R(11), RS,    C(11), R(12), R(13), | 
 | 			R(14), R(15), 0,     0 | 
 | 		} | 
 | 	} | 
 | }; | 
 |  | 
 | static int bank_hash(u64 pmiaddr, int idx, int shft) | 
 | { | 
 | 	int bhash = 0; | 
 |  | 
 | 	switch (idx) { | 
 | 	case 0: | 
 | 		bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1; | 
 | 		break; | 
 | 	case 1: | 
 | 		bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1; | 
 | 		bhash ^= ((pmiaddr >> 22) & 1) << 1; | 
 | 		break; | 
 | 	case 2: | 
 | 		bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return bhash; | 
 | } | 
 |  | 
 | static int rank_hash(u64 pmiaddr) | 
 | { | 
 | 	return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1; | 
 | } | 
 |  | 
 | /* Second stage decode. Compute rank, bank, row & column. */ | 
 | static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, | 
 | 		       struct dram_addr *daddr, char *msg) | 
 | { | 
 | 	struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx]; | 
 | 	struct pnd2_pvt *pvt = mci->pvt_info; | 
 | 	int g = pvt->dimm_geom[pmiidx]; | 
 | 	struct dimm_geometry *d = &dimms[g]; | 
 | 	int column = 0, bank = 0, row = 0, rank = 0; | 
 | 	int i, idx, type, skiprs = 0; | 
 |  | 
 | 	for (i = 0; i < PMI_ADDRESS_WIDTH; i++) { | 
 | 		int	bit = (pmiaddr >> i) & 1; | 
 |  | 
 | 		if (i + skiprs >= PMI_ADDRESS_WIDTH) { | 
 | 			snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		type = d->bits[i + skiprs] & ~0xf; | 
 | 		idx = d->bits[i + skiprs] & 0xf; | 
 |  | 
 | 		/* | 
 | 		 * On single rank DIMMs ignore the rank select bit | 
 | 		 * and shift remainder of "bits[]" down one place. | 
 | 		 */ | 
 | 		if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) { | 
 | 			skiprs = 1; | 
 | 			type = d->bits[i + skiprs] & ~0xf; | 
 | 			idx = d->bits[i + skiprs] & 0xf; | 
 | 		} | 
 |  | 
 | 		switch (type) { | 
 | 		case C(0): | 
 | 			column |= (bit << idx); | 
 | 			break; | 
 | 		case B(0): | 
 | 			bank |= (bit << idx); | 
 | 			if (cr_drp0->bahen) | 
 | 				bank ^= bank_hash(pmiaddr, idx, d->addrdec); | 
 | 			break; | 
 | 		case R(0): | 
 | 			row |= (bit << idx); | 
 | 			break; | 
 | 		case RS: | 
 | 			rank = bit; | 
 | 			if (cr_drp0->rsien) | 
 | 				rank ^= rank_hash(pmiaddr); | 
 | 			break; | 
 | 		default: | 
 | 			if (bit) { | 
 | 				snprintf(msg, PND2_MSG_SIZE, "Bad translation\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 |  | 
 | done: | 
 | 	daddr->col = column; | 
 | 	daddr->bank = bank; | 
 | 	daddr->row = row; | 
 | 	daddr->rank = rank; | 
 | 	daddr->dimm = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */ | 
 | #define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out)) | 
 |  | 
 | static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, | 
 | 					   struct dram_addr *daddr, char *msg) | 
 | { | 
 | 	/* Rank 0 or 1 */ | 
 | 	daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0); | 
 | 	/* Rank 2 or 3 */ | 
 | 	daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1); | 
 |  | 
 | 	/* | 
 | 	 * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we | 
 | 	 * flip them if DIMM1 is larger than DIMM0. | 
 | 	 */ | 
 | 	daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip; | 
 |  | 
 | 	daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0); | 
 | 	daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1); | 
 | 	daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2); | 
 | 	if (dsch.ddr4en) | 
 | 		daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3); | 
 | 	if (dmap1[pmiidx].bxor) { | 
 | 		if (dsch.ddr4en) { | 
 | 			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0); | 
 | 			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1); | 
 | 			if (dsch.chan_width == 0) | 
 | 				/* 64/72 bit dram channel width */ | 
 | 				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); | 
 | 			else | 
 | 				/* 32/40 bit dram channel width */ | 
 | 				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); | 
 | 			daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3); | 
 | 		} else { | 
 | 			daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0); | 
 | 			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1); | 
 | 			if (dsch.chan_width == 0) | 
 | 				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); | 
 | 			else | 
 | 				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0); | 
 | 	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1); | 
 | 	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2); | 
 | 	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3); | 
 | 	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4); | 
 | 	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5); | 
 | 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6); | 
 | 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7); | 
 | 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8); | 
 | 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9); | 
 | 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10); | 
 | 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11); | 
 | 	daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12); | 
 | 	daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13); | 
 | 	if (dmap4[pmiidx].row14 != 31) | 
 | 		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14); | 
 | 	if (dmap4[pmiidx].row15 != 31) | 
 | 		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15); | 
 | 	if (dmap4[pmiidx].row16 != 31) | 
 | 		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16); | 
 | 	if (dmap4[pmiidx].row17 != 31) | 
 | 		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17); | 
 |  | 
 | 	daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3); | 
 | 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4); | 
 | 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5); | 
 | 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6); | 
 | 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7); | 
 | 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8); | 
 | 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9); | 
 | 	if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f) | 
 | 		daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_channel(int ch) | 
 | { | 
 | 	if (drp0[ch].dramtype != 0) { | 
 | 		pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch); | 
 | 		return 1; | 
 | 	} else if (drp0[ch].eccen == 0) { | 
 | 		pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int apl_check_ecc_active(void) | 
 | { | 
 | 	int	i, ret = 0; | 
 |  | 
 | 	/* Check dramtype and ECC mode for each present DIMM */ | 
 | 	for_each_set_bit(i, &chan_mask, APL_NUM_CHANNELS) | 
 | 		ret += check_channel(i); | 
 |  | 
 | 	return ret ? -EINVAL : 0; | 
 | } | 
 |  | 
 | #define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3) | 
 |  | 
 | static int check_unit(int ch) | 
 | { | 
 | 	struct d_cr_drp *d = &drp[ch]; | 
 |  | 
 | 	if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) { | 
 | 		pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dnv_check_ecc_active(void) | 
 | { | 
 | 	int	i, ret = 0; | 
 |  | 
 | 	for (i = 0; i < DNV_NUM_CHANNELS; i++) | 
 | 		ret += check_unit(i); | 
 | 	return ret ? -EINVAL : 0; | 
 | } | 
 |  | 
 | static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr, | 
 | 								 struct dram_addr *daddr, char *msg) | 
 | { | 
 | 	u64	pmiaddr; | 
 | 	u32	pmiidx; | 
 | 	int	ret; | 
 |  | 
 | 	ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	pmiaddr >>= ops->pmiaddr_shift; | 
 | 	/* pmi channel idx to dimm channel idx */ | 
 | 	pmiidx >>= ops->pmiidx_shift; | 
 | 	daddr->chan = pmiidx; | 
 |  | 
 | 	ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", | 
 | 			 addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m, | 
 | 				  struct dram_addr *daddr) | 
 | { | 
 | 	enum hw_event_mc_err_type tp_event; | 
 | 	char *optype, msg[PND2_MSG_SIZE]; | 
 | 	bool ripv = m->mcgstatus & MCG_STATUS_RIPV; | 
 | 	bool overflow = m->status & MCI_STATUS_OVER; | 
 | 	bool uc_err = m->status & MCI_STATUS_UC; | 
 | 	bool recov = m->status & MCI_STATUS_S; | 
 | 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); | 
 | 	u32 mscod = GET_BITFIELD(m->status, 16, 31); | 
 | 	u32 errcode = GET_BITFIELD(m->status, 0, 15); | 
 | 	u32 optypenum = GET_BITFIELD(m->status, 4, 6); | 
 | 	int rc; | 
 |  | 
 | 	tp_event = uc_err ? (ripv ? HW_EVENT_ERR_UNCORRECTED : HW_EVENT_ERR_FATAL) : | 
 | 						 HW_EVENT_ERR_CORRECTED; | 
 |  | 
 | 	/* | 
 | 	 * According with Table 15-9 of the Intel Architecture spec vol 3A, | 
 | 	 * memory errors should fit in this mask: | 
 | 	 *	000f 0000 1mmm cccc (binary) | 
 | 	 * where: | 
 | 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors | 
 | 	 *	    won't be shown | 
 | 	 *	mmm = error type | 
 | 	 *	cccc = channel | 
 | 	 * If the mask doesn't match, report an error to the parsing logic | 
 | 	 */ | 
 | 	if (!((errcode & 0xef80) == 0x80)) { | 
 | 		optype = "Can't parse: it is not a mem"; | 
 | 	} else { | 
 | 		switch (optypenum) { | 
 | 		case 0: | 
 | 			optype = "generic undef request error"; | 
 | 			break; | 
 | 		case 1: | 
 | 			optype = "memory read error"; | 
 | 			break; | 
 | 		case 2: | 
 | 			optype = "memory write error"; | 
 | 			break; | 
 | 		case 3: | 
 | 			optype = "addr/cmd error"; | 
 | 			break; | 
 | 		case 4: | 
 | 			optype = "memory scrubbing error"; | 
 | 			break; | 
 | 		default: | 
 | 			optype = "reserved"; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Only decode errors with an valid address (ADDRV) */ | 
 | 	if (!(m->status & MCI_STATUS_ADDRV)) | 
 | 		return; | 
 |  | 
 | 	rc = get_memory_error_data(mci, m->addr, daddr, msg); | 
 | 	if (rc) | 
 | 		goto address_error; | 
 |  | 
 | 	snprintf(msg, sizeof(msg), | 
 | 		 "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d", | 
 | 		 overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod, | 
 | 		 errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col); | 
 |  | 
 | 	edac_dbg(0, "%s\n", msg); | 
 |  | 
 | 	/* Call the helper to output message */ | 
 | 	edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT, | 
 | 						 m->addr & ~PAGE_MASK, 0, daddr->chan, daddr->dimm, -1, optype, msg); | 
 |  | 
 | 	return; | 
 |  | 
 | address_error: | 
 | 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, ""); | 
 | } | 
 |  | 
 | static void apl_get_dimm_config(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct pnd2_pvt	*pvt = mci->pvt_info; | 
 | 	struct dimm_info *dimm; | 
 | 	struct d_cr_drp0 *d; | 
 | 	u64	capacity; | 
 | 	int	i, g; | 
 |  | 
 | 	for_each_set_bit(i, &chan_mask, APL_NUM_CHANNELS) { | 
 | 		dimm = edac_get_dimm(mci, i, 0, 0); | 
 | 		if (!dimm) { | 
 | 			edac_dbg(0, "No allocated DIMM for channel %d\n", i); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		d = &drp0[i]; | 
 | 		for (g = 0; g < ARRAY_SIZE(dimms); g++) | 
 | 			if (dimms[g].addrdec == d->addrdec && | 
 | 			    dimms[g].dden == d->dden && | 
 | 			    dimms[g].dwid == d->dwid) | 
 | 				break; | 
 |  | 
 | 		if (g == ARRAY_SIZE(dimms)) { | 
 | 			edac_dbg(0, "Channel %d: unrecognized DIMM\n", i); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pvt->dimm_geom[i] = g; | 
 | 		capacity = (d->rken0 + d->rken1) * 8 * BIT(dimms[g].rowbits + dimms[g].colbits); | 
 | 		edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3)); | 
 | 		dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); | 
 | 		dimm->grain = 32; | 
 | 		dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16; | 
 | 		dimm->mtype = MEM_DDR3; | 
 | 		dimm->edac_mode = EDAC_SECDED; | 
 | 		snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2); | 
 | 	} | 
 | } | 
 |  | 
 | static const int dnv_dtypes[] = { | 
 | 	DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN | 
 | }; | 
 |  | 
 | static void dnv_get_dimm_config(struct mem_ctl_info *mci) | 
 | { | 
 | 	int	i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype; | 
 | 	struct dimm_info *dimm; | 
 | 	struct d_cr_drp *d; | 
 | 	u64	capacity; | 
 |  | 
 | 	if (dsch.ddr4en) { | 
 | 		memtype = MEM_DDR4; | 
 | 		banks = 16; | 
 | 		colbits = 10; | 
 | 	} else { | 
 | 		memtype = MEM_DDR3; | 
 | 		banks = 8; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < DNV_NUM_CHANNELS; i++) { | 
 | 		if (dmap4[i].row14 == 31) | 
 | 			rowbits = 14; | 
 | 		else if (dmap4[i].row15 == 31) | 
 | 			rowbits = 15; | 
 | 		else if (dmap4[i].row16 == 31) | 
 | 			rowbits = 16; | 
 | 		else if (dmap4[i].row17 == 31) | 
 | 			rowbits = 17; | 
 | 		else | 
 | 			rowbits = 18; | 
 |  | 
 | 		if (memtype == MEM_DDR3) { | 
 | 			if (dmap1[i].ca11 != 0x3f) | 
 | 				colbits = 12; | 
 | 			else | 
 | 				colbits = 10; | 
 | 		} | 
 |  | 
 | 		d = &drp[i]; | 
 | 		/* DIMM0 is present if rank0 and/or rank1 is enabled */ | 
 | 		ranks_of_dimm[0] = d->rken0 + d->rken1; | 
 | 		/* DIMM1 is present if rank2 and/or rank3 is enabled */ | 
 | 		ranks_of_dimm[1] = d->rken2 + d->rken3; | 
 |  | 
 | 		for (j = 0; j < DNV_MAX_DIMMS; j++) { | 
 | 			if (!ranks_of_dimm[j]) | 
 | 				continue; | 
 |  | 
 | 			dimm = edac_get_dimm(mci, i, j, 0); | 
 | 			if (!dimm) { | 
 | 				edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			capacity = ranks_of_dimm[j] * banks * BIT(rowbits + colbits); | 
 | 			edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3)); | 
 | 			dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); | 
 | 			dimm->grain = 32; | 
 | 			dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1]; | 
 | 			dimm->mtype = memtype; | 
 | 			dimm->edac_mode = EDAC_SECDED; | 
 | 			snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int pnd2_register_mci(struct mem_ctl_info **ppmci) | 
 | { | 
 | 	struct edac_mc_layer layers[2]; | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct pnd2_pvt *pvt; | 
 | 	int rc; | 
 |  | 
 | 	rc = ops->check_ecc(); | 
 | 	if (rc < 0) | 
 | 		return rc; | 
 |  | 
 | 	/* Allocate a new MC control structure */ | 
 | 	layers[0].type = EDAC_MC_LAYER_CHANNEL; | 
 | 	layers[0].size = ops->channels; | 
 | 	layers[0].is_virt_csrow = false; | 
 | 	layers[1].type = EDAC_MC_LAYER_SLOT; | 
 | 	layers[1].size = ops->dimms_per_channel; | 
 | 	layers[1].is_virt_csrow = true; | 
 | 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); | 
 | 	if (!mci) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	pvt = mci->pvt_info; | 
 | 	memset(pvt, 0, sizeof(*pvt)); | 
 |  | 
 | 	mci->mod_name = EDAC_MOD_STR; | 
 | 	mci->dev_name = ops->name; | 
 | 	mci->ctl_name = "Pondicherry2"; | 
 |  | 
 | 	/* Get dimm basic config and the memory layout */ | 
 | 	ops->get_dimm_config(mci); | 
 |  | 
 | 	if (edac_mc_add_mc(mci)) { | 
 | 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); | 
 | 		edac_mc_free(mci); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	*ppmci = mci; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void pnd2_unregister_mci(struct mem_ctl_info *mci) | 
 | { | 
 | 	if (unlikely(!mci || !mci->pvt_info)) { | 
 | 		pnd2_printk(KERN_ERR, "Couldn't find mci handler\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Remove MC sysfs nodes */ | 
 | 	edac_mc_del_mc(NULL); | 
 | 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); | 
 | 	edac_mc_free(mci); | 
 | } | 
 |  | 
 | /* | 
 |  * Callback function registered with core kernel mce code. | 
 |  * Called once for each logged error. | 
 |  */ | 
 | static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data) | 
 | { | 
 | 	struct mce *mce = (struct mce *)data; | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct dram_addr daddr; | 
 | 	char *type; | 
 |  | 
 | 	mci = pnd2_mci; | 
 | 	if (!mci || (mce->kflags & MCE_HANDLED_CEC)) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	/* | 
 | 	 * Just let mcelog handle it if the error is | 
 | 	 * outside the memory controller. A memory error | 
 | 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. | 
 | 	 * bit 12 has an special meaning. | 
 | 	 */ | 
 | 	if ((mce->status & 0xefff) >> 7 != 1) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	if (mce->mcgstatus & MCG_STATUS_MCIP) | 
 | 		type = "Exception"; | 
 | 	else | 
 | 		type = "Event"; | 
 |  | 
 | 	pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n"); | 
 | 	pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n", | 
 | 				   mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status); | 
 | 	pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc); | 
 | 	pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr); | 
 | 	pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc); | 
 | 	pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n", | 
 | 				   mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid); | 
 |  | 
 | 	pnd2_mce_output_error(mci, mce, &daddr); | 
 |  | 
 | 	/* Advice mcelog that the error were handled */ | 
 | 	mce->kflags |= MCE_HANDLED_EDAC; | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static struct notifier_block pnd2_mce_dec = { | 
 | 	.notifier_call	= pnd2_mce_check_error, | 
 | 	.priority	= MCE_PRIO_EDAC, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_EDAC_DEBUG | 
 | /* | 
 |  * Write an address to this file to exercise the address decode | 
 |  * logic in this driver. | 
 |  */ | 
 | static u64 pnd2_fake_addr; | 
 | #define PND2_BLOB_SIZE 1024 | 
 | static char pnd2_result[PND2_BLOB_SIZE]; | 
 | static struct dentry *pnd2_test; | 
 | static struct debugfs_blob_wrapper pnd2_blob = { | 
 | 	.data = pnd2_result, | 
 | 	.size = 0 | 
 | }; | 
 |  | 
 | static int debugfs_u64_set(void *data, u64 val) | 
 | { | 
 | 	struct dram_addr daddr; | 
 | 	struct mce m; | 
 |  | 
 | 	*(u64 *)data = val; | 
 | 	m.mcgstatus = 0; | 
 | 	/* ADDRV + MemRd + Unknown channel */ | 
 | 	m.status = MCI_STATUS_ADDRV + 0x9f; | 
 | 	m.addr = val; | 
 | 	pnd2_mce_output_error(pnd2_mci, &m, &daddr); | 
 | 	snprintf(pnd2_blob.data, PND2_BLOB_SIZE, | 
 | 			 "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", | 
 | 			 m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col); | 
 | 	pnd2_blob.size = strlen(pnd2_blob.data); | 
 |  | 
 | 	return 0; | 
 | } | 
 | DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); | 
 |  | 
 | static void setup_pnd2_debug(void) | 
 | { | 
 | 	pnd2_test = edac_debugfs_create_dir("pnd2_test"); | 
 | 	edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test, | 
 | 							 &pnd2_fake_addr, &fops_u64_wo); | 
 | 	debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob); | 
 | } | 
 |  | 
 | static void teardown_pnd2_debug(void) | 
 | { | 
 | 	debugfs_remove_recursive(pnd2_test); | 
 | } | 
 | #else | 
 | static void setup_pnd2_debug(void)	{} | 
 | static void teardown_pnd2_debug(void)	{} | 
 | #endif /* CONFIG_EDAC_DEBUG */ | 
 |  | 
 |  | 
 | static int pnd2_probe(void) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	edac_dbg(2, "\n"); | 
 | 	rc = get_registers(); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	return pnd2_register_mci(&pnd2_mci); | 
 | } | 
 |  | 
 | static void pnd2_remove(void) | 
 | { | 
 | 	edac_dbg(0, "\n"); | 
 | 	pnd2_unregister_mci(pnd2_mci); | 
 | } | 
 |  | 
 | static struct dunit_ops apl_ops = { | 
 | 		.name			= "pnd2/apl", | 
 | 		.type			= APL, | 
 | 		.pmiaddr_shift		= LOG2_PMI_ADDR_GRANULARITY, | 
 | 		.pmiidx_shift		= 0, | 
 | 		.channels		= APL_NUM_CHANNELS, | 
 | 		.dimms_per_channel	= 1, | 
 | 		.rd_reg			= apl_rd_reg, | 
 | 		.get_registers		= apl_get_registers, | 
 | 		.check_ecc		= apl_check_ecc_active, | 
 | 		.mk_region		= apl_mk_region, | 
 | 		.get_dimm_config	= apl_get_dimm_config, | 
 | 		.pmi2mem		= apl_pmi2mem, | 
 | }; | 
 |  | 
 | static struct dunit_ops dnv_ops = { | 
 | 		.name			= "pnd2/dnv", | 
 | 		.type			= DNV, | 
 | 		.pmiaddr_shift		= 0, | 
 | 		.pmiidx_shift		= 1, | 
 | 		.channels		= DNV_NUM_CHANNELS, | 
 | 		.dimms_per_channel	= 2, | 
 | 		.rd_reg			= dnv_rd_reg, | 
 | 		.get_registers		= dnv_get_registers, | 
 | 		.check_ecc		= dnv_check_ecc_active, | 
 | 		.mk_region		= dnv_mk_region, | 
 | 		.get_dimm_config	= dnv_get_dimm_config, | 
 | 		.pmi2mem		= dnv_pmi2mem, | 
 | }; | 
 |  | 
 | static const struct x86_cpu_id pnd2_cpuids[] = { | 
 | 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT,	&apl_ops), | 
 | 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_D,	&dnv_ops), | 
 | 	{ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids); | 
 |  | 
 | static int __init pnd2_init(void) | 
 | { | 
 | 	const struct x86_cpu_id *id; | 
 | 	const char *owner; | 
 | 	int rc; | 
 |  | 
 | 	edac_dbg(2, "\n"); | 
 |  | 
 | 	if (ghes_get_devices()) | 
 | 		return -EBUSY; | 
 |  | 
 | 	owner = edac_get_owner(); | 
 | 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	id = x86_match_cpu(pnd2_cpuids); | 
 | 	if (!id) | 
 | 		return -ENODEV; | 
 |  | 
 | 	ops = (struct dunit_ops *)id->driver_data; | 
 |  | 
 | 	if (ops->type == APL) { | 
 | 		p2sb_bus = pci_find_bus(0, 0); | 
 | 		if (!p2sb_bus) | 
 | 			return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */ | 
 | 	opstate_init(); | 
 |  | 
 | 	rc = pnd2_probe(); | 
 | 	if (rc < 0) { | 
 | 		pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc); | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	if (!pnd2_mci) | 
 | 		return -ENODEV; | 
 |  | 
 | 	mce_register_decode_chain(&pnd2_mce_dec); | 
 | 	setup_pnd2_debug(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __exit pnd2_exit(void) | 
 | { | 
 | 	edac_dbg(2, "\n"); | 
 | 	teardown_pnd2_debug(); | 
 | 	mce_unregister_decode_chain(&pnd2_mce_dec); | 
 | 	pnd2_remove(); | 
 | } | 
 |  | 
 | module_init(pnd2_init); | 
 | module_exit(pnd2_exit); | 
 |  | 
 | module_param(edac_op_state, int, 0444); | 
 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); | 
 |  | 
 | MODULE_LICENSE("GPL v2"); | 
 | MODULE_AUTHOR("Tony Luck"); | 
 | MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller"); |