|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2012 Fusion-io  All rights reserved. | 
|  | * Copyright (C) 2012 Intel Corp. All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/raid/pq.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/list_sort.h> | 
|  | #include <linux/raid/xor.h> | 
|  | #include <linux/mm.h> | 
|  | #include "messages.h" | 
|  | #include "ctree.h" | 
|  | #include "disk-io.h" | 
|  | #include "volumes.h" | 
|  | #include "raid56.h" | 
|  | #include "async-thread.h" | 
|  | #include "file-item.h" | 
|  | #include "btrfs_inode.h" | 
|  |  | 
|  | /* set when additional merges to this rbio are not allowed */ | 
|  | #define RBIO_RMW_LOCKED_BIT	1 | 
|  |  | 
|  | /* | 
|  | * set when this rbio is sitting in the hash, but it is just a cache | 
|  | * of past RMW | 
|  | */ | 
|  | #define RBIO_CACHE_BIT		2 | 
|  |  | 
|  | /* | 
|  | * set when it is safe to trust the stripe_pages for caching | 
|  | */ | 
|  | #define RBIO_CACHE_READY_BIT	3 | 
|  |  | 
|  | #define RBIO_CACHE_SIZE 1024 | 
|  |  | 
|  | #define BTRFS_STRIPE_HASH_TABLE_BITS				11 | 
|  |  | 
|  | static void dump_bioc(const struct btrfs_fs_info *fs_info, const struct btrfs_io_context *bioc) | 
|  | { | 
|  | if (unlikely(!bioc)) { | 
|  | btrfs_crit(fs_info, "bioc=NULL"); | 
|  | return; | 
|  | } | 
|  | btrfs_crit(fs_info, | 
|  | "bioc logical=%llu full_stripe=%llu size=%llu map_type=0x%llx mirror=%u replace_nr_stripes=%u replace_stripe_src=%d num_stripes=%u", | 
|  | bioc->logical, bioc->full_stripe_logical, bioc->size, | 
|  | bioc->map_type, bioc->mirror_num, bioc->replace_nr_stripes, | 
|  | bioc->replace_stripe_src, bioc->num_stripes); | 
|  | for (int i = 0; i < bioc->num_stripes; i++) { | 
|  | btrfs_crit(fs_info, "    nr=%d devid=%llu physical=%llu", | 
|  | i, bioc->stripes[i].dev->devid, | 
|  | bioc->stripes[i].physical); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void btrfs_dump_rbio(const struct btrfs_fs_info *fs_info, | 
|  | const struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) | 
|  | return; | 
|  |  | 
|  | dump_bioc(fs_info, rbio->bioc); | 
|  | btrfs_crit(fs_info, | 
|  | "rbio flags=0x%lx nr_sectors=%u nr_data=%u real_stripes=%u stripe_nsectors=%u scrubp=%u dbitmap=0x%lx", | 
|  | rbio->flags, rbio->nr_sectors, rbio->nr_data, | 
|  | rbio->real_stripes, rbio->stripe_nsectors, | 
|  | rbio->scrubp, rbio->dbitmap); | 
|  | } | 
|  |  | 
|  | #define ASSERT_RBIO(expr, rbio)						\ | 
|  | ({									\ | 
|  | if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\ | 
|  | const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\ | 
|  | (rbio)->bioc->fs_info : NULL;	\ | 
|  | \ | 
|  | btrfs_dump_rbio(__fs_info, (rbio));			\ | 
|  | }								\ | 
|  | ASSERT((expr));							\ | 
|  | }) | 
|  |  | 
|  | #define ASSERT_RBIO_STRIPE(expr, rbio, stripe_nr)			\ | 
|  | ({									\ | 
|  | if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\ | 
|  | const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\ | 
|  | (rbio)->bioc->fs_info : NULL;	\ | 
|  | \ | 
|  | btrfs_dump_rbio(__fs_info, (rbio));			\ | 
|  | btrfs_crit(__fs_info, "stripe_nr=%d", (stripe_nr));	\ | 
|  | }								\ | 
|  | ASSERT((expr));							\ | 
|  | }) | 
|  |  | 
|  | #define ASSERT_RBIO_SECTOR(expr, rbio, sector_nr)			\ | 
|  | ({									\ | 
|  | if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\ | 
|  | const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\ | 
|  | (rbio)->bioc->fs_info : NULL;	\ | 
|  | \ | 
|  | btrfs_dump_rbio(__fs_info, (rbio));			\ | 
|  | btrfs_crit(__fs_info, "sector_nr=%d", (sector_nr));	\ | 
|  | }								\ | 
|  | ASSERT((expr));							\ | 
|  | }) | 
|  |  | 
|  | #define ASSERT_RBIO_LOGICAL(expr, rbio, logical)			\ | 
|  | ({									\ | 
|  | if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) {	\ | 
|  | const struct btrfs_fs_info *__fs_info = (rbio)->bioc ?	\ | 
|  | (rbio)->bioc->fs_info : NULL;	\ | 
|  | \ | 
|  | btrfs_dump_rbio(__fs_info, (rbio));			\ | 
|  | btrfs_crit(__fs_info, "logical=%llu", (logical));		\ | 
|  | }								\ | 
|  | ASSERT((expr));							\ | 
|  | }) | 
|  |  | 
|  | /* Used by the raid56 code to lock stripes for read/modify/write */ | 
|  | struct btrfs_stripe_hash { | 
|  | struct list_head hash_list; | 
|  | spinlock_t lock; | 
|  | }; | 
|  |  | 
|  | /* Used by the raid56 code to lock stripes for read/modify/write */ | 
|  | struct btrfs_stripe_hash_table { | 
|  | struct list_head stripe_cache; | 
|  | spinlock_t cache_lock; | 
|  | int cache_size; | 
|  | struct btrfs_stripe_hash table[]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * A structure to present a sector inside a page, the length is fixed to | 
|  | * sectorsize; | 
|  | */ | 
|  | struct sector_ptr { | 
|  | /* | 
|  | * Blocks from the bio list can still be highmem. | 
|  | * So here we use physical address to present a page and the offset inside it. | 
|  | */ | 
|  | phys_addr_t paddr; | 
|  | bool has_paddr; | 
|  | bool uptodate; | 
|  | }; | 
|  |  | 
|  | static void rmw_rbio_work(struct work_struct *work); | 
|  | static void rmw_rbio_work_locked(struct work_struct *work); | 
|  | static void index_rbio_pages(struct btrfs_raid_bio *rbio); | 
|  | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); | 
|  |  | 
|  | static int finish_parity_scrub(struct btrfs_raid_bio *rbio); | 
|  | static void scrub_rbio_work_locked(struct work_struct *work); | 
|  |  | 
|  | static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | bitmap_free(rbio->error_bitmap); | 
|  | kfree(rbio->stripe_pages); | 
|  | kfree(rbio->bio_sectors); | 
|  | kfree(rbio->stripe_sectors); | 
|  | kfree(rbio->finish_pointers); | 
|  | } | 
|  |  | 
|  | static void free_raid_bio(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!refcount_dec_and_test(&rbio->refs)) | 
|  | return; | 
|  |  | 
|  | WARN_ON(!list_empty(&rbio->stripe_cache)); | 
|  | WARN_ON(!list_empty(&rbio->hash_list)); | 
|  | WARN_ON(!bio_list_empty(&rbio->bio_list)); | 
|  |  | 
|  | for (i = 0; i < rbio->nr_pages; i++) { | 
|  | if (rbio->stripe_pages[i]) { | 
|  | __free_page(rbio->stripe_pages[i]); | 
|  | rbio->stripe_pages[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_put_bioc(rbio->bioc); | 
|  | free_raid_bio_pointers(rbio); | 
|  | kfree(rbio); | 
|  | } | 
|  |  | 
|  | static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func) | 
|  | { | 
|  | INIT_WORK(&rbio->work, work_func); | 
|  | queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the stripe hash table is used for locking, and to collect | 
|  | * bios in hopes of making a full stripe | 
|  | */ | 
|  | int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct btrfs_stripe_hash_table *table; | 
|  | struct btrfs_stripe_hash_table *x; | 
|  | struct btrfs_stripe_hash *cur; | 
|  | struct btrfs_stripe_hash *h; | 
|  | unsigned int num_entries = 1U << BTRFS_STRIPE_HASH_TABLE_BITS; | 
|  |  | 
|  | if (info->stripe_hash_table) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * The table is large, starting with order 4 and can go as high as | 
|  | * order 7 in case lock debugging is turned on. | 
|  | * | 
|  | * Try harder to allocate and fallback to vmalloc to lower the chance | 
|  | * of a failing mount. | 
|  | */ | 
|  | table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL); | 
|  | if (!table) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock_init(&table->cache_lock); | 
|  | INIT_LIST_HEAD(&table->stripe_cache); | 
|  |  | 
|  | h = table->table; | 
|  |  | 
|  | for (unsigned int i = 0; i < num_entries; i++) { | 
|  | cur = h + i; | 
|  | INIT_LIST_HEAD(&cur->hash_list); | 
|  | spin_lock_init(&cur->lock); | 
|  | } | 
|  |  | 
|  | x = cmpxchg(&info->stripe_hash_table, NULL, table); | 
|  | kvfree(x); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void memcpy_sectors(const struct sector_ptr *dst, | 
|  | const struct sector_ptr *src, u32 blocksize) | 
|  | { | 
|  | memcpy_page(phys_to_page(dst->paddr), offset_in_page(dst->paddr), | 
|  | phys_to_page(src->paddr), offset_in_page(src->paddr), | 
|  | blocksize); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * caching an rbio means to copy anything from the | 
|  | * bio_sectors array into the stripe_pages array.  We | 
|  | * use the page uptodate bit in the stripe cache array | 
|  | * to indicate if it has valid data | 
|  | * | 
|  | * once the caching is done, we set the cache ready | 
|  | * bit. | 
|  | */ | 
|  | static void cache_rbio_pages(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | ret = alloc_rbio_pages(rbio); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < rbio->nr_sectors; i++) { | 
|  | /* Some range not covered by bio (partial write), skip it */ | 
|  | if (!rbio->bio_sectors[i].has_paddr) { | 
|  | /* | 
|  | * Even if the sector is not covered by bio, if it is | 
|  | * a data sector it should still be uptodate as it is | 
|  | * read from disk. | 
|  | */ | 
|  | if (i < rbio->nr_data * rbio->stripe_nsectors) | 
|  | ASSERT(rbio->stripe_sectors[i].uptodate); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | memcpy_sectors(&rbio->stripe_sectors[i], &rbio->bio_sectors[i], | 
|  | rbio->bioc->fs_info->sectorsize); | 
|  | rbio->stripe_sectors[i].uptodate = 1; | 
|  | } | 
|  | set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we hash on the first logical address of the stripe | 
|  | */ | 
|  | static int rbio_bucket(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | u64 num = rbio->bioc->full_stripe_logical; | 
|  |  | 
|  | /* | 
|  | * we shift down quite a bit.  We're using byte | 
|  | * addressing, and most of the lower bits are zeros. | 
|  | * This tends to upset hash_64, and it consistently | 
|  | * returns just one or two different values. | 
|  | * | 
|  | * shifting off the lower bits fixes things. | 
|  | */ | 
|  | return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); | 
|  | } | 
|  |  | 
|  | static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio, | 
|  | unsigned int page_nr) | 
|  | { | 
|  | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
|  | const u32 sectors_per_page = PAGE_SIZE / sectorsize; | 
|  | int i; | 
|  |  | 
|  | ASSERT(page_nr < rbio->nr_pages); | 
|  |  | 
|  | for (i = sectors_per_page * page_nr; | 
|  | i < sectors_per_page * page_nr + sectors_per_page; | 
|  | i++) { | 
|  | if (!rbio->stripe_sectors[i].uptodate) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the stripe_sectors[] array to use correct page and pgoff | 
|  | * | 
|  | * Should be called every time any page pointer in stripes_pages[] got modified. | 
|  | */ | 
|  | static void index_stripe_sectors(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
|  | u32 offset; | 
|  | int i; | 
|  |  | 
|  | for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) { | 
|  | int page_index = offset >> PAGE_SHIFT; | 
|  |  | 
|  | ASSERT(page_index < rbio->nr_pages); | 
|  | if (!rbio->stripe_pages[page_index]) | 
|  | continue; | 
|  |  | 
|  | rbio->stripe_sectors[i].has_paddr = true; | 
|  | rbio->stripe_sectors[i].paddr = | 
|  | page_to_phys(rbio->stripe_pages[page_index]) + | 
|  | offset_in_page(offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void steal_rbio_page(struct btrfs_raid_bio *src, | 
|  | struct btrfs_raid_bio *dest, int page_nr) | 
|  | { | 
|  | const u32 sectorsize = src->bioc->fs_info->sectorsize; | 
|  | const u32 sectors_per_page = PAGE_SIZE / sectorsize; | 
|  | int i; | 
|  |  | 
|  | if (dest->stripe_pages[page_nr]) | 
|  | __free_page(dest->stripe_pages[page_nr]); | 
|  | dest->stripe_pages[page_nr] = src->stripe_pages[page_nr]; | 
|  | src->stripe_pages[page_nr] = NULL; | 
|  |  | 
|  | /* Also update the sector->uptodate bits. */ | 
|  | for (i = sectors_per_page * page_nr; | 
|  | i < sectors_per_page * page_nr + sectors_per_page; i++) | 
|  | dest->stripe_sectors[i].uptodate = true; | 
|  | } | 
|  |  | 
|  | static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr) | 
|  | { | 
|  | const int sector_nr = (page_nr << PAGE_SHIFT) >> | 
|  | rbio->bioc->fs_info->sectorsize_bits; | 
|  |  | 
|  | /* | 
|  | * We have ensured PAGE_SIZE is aligned with sectorsize, thus | 
|  | * we won't have a page which is half data half parity. | 
|  | * | 
|  | * Thus if the first sector of the page belongs to data stripes, then | 
|  | * the full page belongs to data stripes. | 
|  | */ | 
|  | return (sector_nr < rbio->nr_data * rbio->stripe_nsectors); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stealing an rbio means taking all the uptodate pages from the stripe array | 
|  | * in the source rbio and putting them into the destination rbio. | 
|  | * | 
|  | * This will also update the involved stripe_sectors[] which are referring to | 
|  | * the old pages. | 
|  | */ | 
|  | static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < dest->nr_pages; i++) { | 
|  | struct page *p = src->stripe_pages[i]; | 
|  |  | 
|  | /* | 
|  | * We don't need to steal P/Q pages as they will always be | 
|  | * regenerated for RMW or full write anyway. | 
|  | */ | 
|  | if (!is_data_stripe_page(src, i)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * If @src already has RBIO_CACHE_READY_BIT, it should have | 
|  | * all data stripe pages present and uptodate. | 
|  | */ | 
|  | ASSERT(p); | 
|  | ASSERT(full_page_sectors_uptodate(src, i)); | 
|  | steal_rbio_page(src, dest, i); | 
|  | } | 
|  | index_stripe_sectors(dest); | 
|  | index_stripe_sectors(src); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * merging means we take the bio_list from the victim and | 
|  | * splice it into the destination.  The victim should | 
|  | * be discarded afterwards. | 
|  | * | 
|  | * must be called with dest->rbio_list_lock held | 
|  | */ | 
|  | static void merge_rbio(struct btrfs_raid_bio *dest, | 
|  | struct btrfs_raid_bio *victim) | 
|  | { | 
|  | bio_list_merge_init(&dest->bio_list, &victim->bio_list); | 
|  | dest->bio_list_bytes += victim->bio_list_bytes; | 
|  | /* Also inherit the bitmaps from @victim. */ | 
|  | bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap, | 
|  | dest->stripe_nsectors); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * used to prune items that are in the cache.  The caller | 
|  | * must hold the hash table lock. | 
|  | */ | 
|  | static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int bucket = rbio_bucket(rbio); | 
|  | struct btrfs_stripe_hash_table *table; | 
|  | struct btrfs_stripe_hash *h; | 
|  | int freeit = 0; | 
|  |  | 
|  | /* | 
|  | * check the bit again under the hash table lock. | 
|  | */ | 
|  | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
|  | return; | 
|  |  | 
|  | table = rbio->bioc->fs_info->stripe_hash_table; | 
|  | h = table->table + bucket; | 
|  |  | 
|  | /* hold the lock for the bucket because we may be | 
|  | * removing it from the hash table | 
|  | */ | 
|  | spin_lock(&h->lock); | 
|  |  | 
|  | /* | 
|  | * hold the lock for the bio list because we need | 
|  | * to make sure the bio list is empty | 
|  | */ | 
|  | spin_lock(&rbio->bio_list_lock); | 
|  |  | 
|  | if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { | 
|  | list_del_init(&rbio->stripe_cache); | 
|  | table->cache_size -= 1; | 
|  | freeit = 1; | 
|  |  | 
|  | /* if the bio list isn't empty, this rbio is | 
|  | * still involved in an IO.  We take it out | 
|  | * of the cache list, and drop the ref that | 
|  | * was held for the list. | 
|  | * | 
|  | * If the bio_list was empty, we also remove | 
|  | * the rbio from the hash_table, and drop | 
|  | * the corresponding ref | 
|  | */ | 
|  | if (bio_list_empty(&rbio->bio_list)) { | 
|  | if (!list_empty(&rbio->hash_list)) { | 
|  | list_del_init(&rbio->hash_list); | 
|  | refcount_dec(&rbio->refs); | 
|  | BUG_ON(!list_empty(&rbio->plug_list)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  | spin_unlock(&h->lock); | 
|  |  | 
|  | if (freeit) | 
|  | free_raid_bio(rbio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * prune a given rbio from the cache | 
|  | */ | 
|  | static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct btrfs_stripe_hash_table *table; | 
|  |  | 
|  | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
|  | return; | 
|  |  | 
|  | table = rbio->bioc->fs_info->stripe_hash_table; | 
|  |  | 
|  | spin_lock(&table->cache_lock); | 
|  | __remove_rbio_from_cache(rbio); | 
|  | spin_unlock(&table->cache_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove everything in the cache | 
|  | */ | 
|  | static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct btrfs_stripe_hash_table *table; | 
|  | struct btrfs_raid_bio *rbio; | 
|  |  | 
|  | table = info->stripe_hash_table; | 
|  |  | 
|  | spin_lock(&table->cache_lock); | 
|  | while (!list_empty(&table->stripe_cache)) { | 
|  | rbio = list_first_entry(&table->stripe_cache, | 
|  | struct btrfs_raid_bio, stripe_cache); | 
|  | __remove_rbio_from_cache(rbio); | 
|  | } | 
|  | spin_unlock(&table->cache_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove all cached entries and free the hash table | 
|  | * used by unmount | 
|  | */ | 
|  | void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) | 
|  | { | 
|  | if (!info->stripe_hash_table) | 
|  | return; | 
|  | btrfs_clear_rbio_cache(info); | 
|  | kvfree(info->stripe_hash_table); | 
|  | info->stripe_hash_table = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * insert an rbio into the stripe cache.  It | 
|  | * must have already been prepared by calling | 
|  | * cache_rbio_pages | 
|  | * | 
|  | * If this rbio was already cached, it gets | 
|  | * moved to the front of the lru. | 
|  | * | 
|  | * If the size of the rbio cache is too big, we | 
|  | * prune an item. | 
|  | */ | 
|  | static void cache_rbio(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct btrfs_stripe_hash_table *table; | 
|  |  | 
|  | if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) | 
|  | return; | 
|  |  | 
|  | table = rbio->bioc->fs_info->stripe_hash_table; | 
|  |  | 
|  | spin_lock(&table->cache_lock); | 
|  | spin_lock(&rbio->bio_list_lock); | 
|  |  | 
|  | /* bump our ref if we were not in the list before */ | 
|  | if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
|  | refcount_inc(&rbio->refs); | 
|  |  | 
|  | if (!list_empty(&rbio->stripe_cache)){ | 
|  | list_move(&rbio->stripe_cache, &table->stripe_cache); | 
|  | } else { | 
|  | list_add(&rbio->stripe_cache, &table->stripe_cache); | 
|  | table->cache_size += 1; | 
|  | } | 
|  |  | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  |  | 
|  | if (table->cache_size > RBIO_CACHE_SIZE) { | 
|  | struct btrfs_raid_bio *found; | 
|  |  | 
|  | found = list_last_entry(&table->stripe_cache, | 
|  | struct btrfs_raid_bio, | 
|  | stripe_cache); | 
|  |  | 
|  | if (found != rbio) | 
|  | __remove_rbio_from_cache(found); | 
|  | } | 
|  |  | 
|  | spin_unlock(&table->cache_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to run the xor_blocks api.  It is only | 
|  | * able to do MAX_XOR_BLOCKS at a time, so we need to | 
|  | * loop through. | 
|  | */ | 
|  | static void run_xor(void **pages, int src_cnt, ssize_t len) | 
|  | { | 
|  | int src_off = 0; | 
|  | int xor_src_cnt = 0; | 
|  | void *dest = pages[src_cnt]; | 
|  |  | 
|  | while(src_cnt > 0) { | 
|  | xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); | 
|  | xor_blocks(xor_src_cnt, len, dest, pages + src_off); | 
|  |  | 
|  | src_cnt -= xor_src_cnt; | 
|  | src_off += xor_src_cnt; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true if the bio list inside this rbio covers an entire stripe (no | 
|  | * rmw required). | 
|  | */ | 
|  | static int rbio_is_full(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | unsigned long size = rbio->bio_list_bytes; | 
|  | int ret = 1; | 
|  |  | 
|  | spin_lock(&rbio->bio_list_lock); | 
|  | if (size != rbio->nr_data * BTRFS_STRIPE_LEN) | 
|  | ret = 0; | 
|  | BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN); | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns 1 if it is safe to merge two rbios together. | 
|  | * The merging is safe if the two rbios correspond to | 
|  | * the same stripe and if they are both going in the same | 
|  | * direction (read vs write), and if neither one is | 
|  | * locked for final IO | 
|  | * | 
|  | * The caller is responsible for locking such that | 
|  | * rmw_locked is safe to test | 
|  | */ | 
|  | static int rbio_can_merge(struct btrfs_raid_bio *last, | 
|  | struct btrfs_raid_bio *cur) | 
|  | { | 
|  | if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || | 
|  | test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * we can't merge with cached rbios, since the | 
|  | * idea is that when we merge the destination | 
|  | * rbio is going to run our IO for us.  We can | 
|  | * steal from cached rbios though, other functions | 
|  | * handle that. | 
|  | */ | 
|  | if (test_bit(RBIO_CACHE_BIT, &last->flags) || | 
|  | test_bit(RBIO_CACHE_BIT, &cur->flags)) | 
|  | return 0; | 
|  |  | 
|  | if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical) | 
|  | return 0; | 
|  |  | 
|  | /* we can't merge with different operations */ | 
|  | if (last->operation != cur->operation) | 
|  | return 0; | 
|  | /* | 
|  | * We've need read the full stripe from the drive. | 
|  | * check and repair the parity and write the new results. | 
|  | * | 
|  | * We're not allowed to add any new bios to the | 
|  | * bio list here, anyone else that wants to | 
|  | * change this stripe needs to do their own rmw. | 
|  | */ | 
|  | if (last->operation == BTRFS_RBIO_PARITY_SCRUB) | 
|  | return 0; | 
|  |  | 
|  | if (last->operation == BTRFS_RBIO_READ_REBUILD) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio, | 
|  | unsigned int stripe_nr, | 
|  | unsigned int sector_nr) | 
|  | { | 
|  | ASSERT_RBIO_STRIPE(stripe_nr < rbio->real_stripes, rbio, stripe_nr); | 
|  | ASSERT_RBIO_SECTOR(sector_nr < rbio->stripe_nsectors, rbio, sector_nr); | 
|  |  | 
|  | return stripe_nr * rbio->stripe_nsectors + sector_nr; | 
|  | } | 
|  |  | 
|  | /* Return a sector from rbio->stripe_sectors, not from the bio list */ | 
|  | static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio, | 
|  | unsigned int stripe_nr, | 
|  | unsigned int sector_nr) | 
|  | { | 
|  | return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr, | 
|  | sector_nr)]; | 
|  | } | 
|  |  | 
|  | /* Grab a sector inside P stripe */ | 
|  | static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio, | 
|  | unsigned int sector_nr) | 
|  | { | 
|  | return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr); | 
|  | } | 
|  |  | 
|  | /* Grab a sector inside Q stripe, return NULL if not RAID6 */ | 
|  | static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio, | 
|  | unsigned int sector_nr) | 
|  | { | 
|  | if (rbio->nr_data + 1 == rbio->real_stripes) | 
|  | return NULL; | 
|  | return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The first stripe in the table for a logical address | 
|  | * has the lock.  rbios are added in one of three ways: | 
|  | * | 
|  | * 1) Nobody has the stripe locked yet.  The rbio is given | 
|  | * the lock and 0 is returned.  The caller must start the IO | 
|  | * themselves. | 
|  | * | 
|  | * 2) Someone has the stripe locked, but we're able to merge | 
|  | * with the lock owner.  The rbio is freed and the IO will | 
|  | * start automatically along with the existing rbio.  1 is returned. | 
|  | * | 
|  | * 3) Someone has the stripe locked, but we're not able to merge. | 
|  | * The rbio is added to the lock owner's plug list, or merged into | 
|  | * an rbio already on the plug list.  When the lock owner unlocks, | 
|  | * the next rbio on the list is run and the IO is started automatically. | 
|  | * 1 is returned | 
|  | * | 
|  | * If we return 0, the caller still owns the rbio and must continue with | 
|  | * IO submission.  If we return 1, the caller must assume the rbio has | 
|  | * already been freed. | 
|  | */ | 
|  | static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct btrfs_stripe_hash *h; | 
|  | struct btrfs_raid_bio *cur; | 
|  | struct btrfs_raid_bio *pending; | 
|  | struct btrfs_raid_bio *freeit = NULL; | 
|  | struct btrfs_raid_bio *cache_drop = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio); | 
|  |  | 
|  | spin_lock(&h->lock); | 
|  | list_for_each_entry(cur, &h->hash_list, hash_list) { | 
|  | if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical) | 
|  | continue; | 
|  |  | 
|  | spin_lock(&cur->bio_list_lock); | 
|  |  | 
|  | /* Can we steal this cached rbio's pages? */ | 
|  | if (bio_list_empty(&cur->bio_list) && | 
|  | list_empty(&cur->plug_list) && | 
|  | test_bit(RBIO_CACHE_BIT, &cur->flags) && | 
|  | !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { | 
|  | list_del_init(&cur->hash_list); | 
|  | refcount_dec(&cur->refs); | 
|  |  | 
|  | steal_rbio(cur, rbio); | 
|  | cache_drop = cur; | 
|  | spin_unlock(&cur->bio_list_lock); | 
|  |  | 
|  | goto lockit; | 
|  | } | 
|  |  | 
|  | /* Can we merge into the lock owner? */ | 
|  | if (rbio_can_merge(cur, rbio)) { | 
|  | merge_rbio(cur, rbio); | 
|  | spin_unlock(&cur->bio_list_lock); | 
|  | freeit = rbio; | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * We couldn't merge with the running rbio, see if we can merge | 
|  | * with the pending ones.  We don't have to check for rmw_locked | 
|  | * because there is no way they are inside finish_rmw right now | 
|  | */ | 
|  | list_for_each_entry(pending, &cur->plug_list, plug_list) { | 
|  | if (rbio_can_merge(pending, rbio)) { | 
|  | merge_rbio(pending, rbio); | 
|  | spin_unlock(&cur->bio_list_lock); | 
|  | freeit = rbio; | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No merging, put us on the tail of the plug list, our rbio | 
|  | * will be started with the currently running rbio unlocks | 
|  | */ | 
|  | list_add_tail(&rbio->plug_list, &cur->plug_list); | 
|  | spin_unlock(&cur->bio_list_lock); | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | lockit: | 
|  | refcount_inc(&rbio->refs); | 
|  | list_add(&rbio->hash_list, &h->hash_list); | 
|  | out: | 
|  | spin_unlock(&h->lock); | 
|  | if (cache_drop) | 
|  | remove_rbio_from_cache(cache_drop); | 
|  | if (freeit) | 
|  | free_raid_bio(freeit); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void recover_rbio_work_locked(struct work_struct *work); | 
|  |  | 
|  | /* | 
|  | * called as rmw or parity rebuild is completed.  If the plug list has more | 
|  | * rbios waiting for this stripe, the next one on the list will be started | 
|  | */ | 
|  | static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int bucket; | 
|  | struct btrfs_stripe_hash *h; | 
|  | int keep_cache = 0; | 
|  |  | 
|  | bucket = rbio_bucket(rbio); | 
|  | h = rbio->bioc->fs_info->stripe_hash_table->table + bucket; | 
|  |  | 
|  | if (list_empty(&rbio->plug_list)) | 
|  | cache_rbio(rbio); | 
|  |  | 
|  | spin_lock(&h->lock); | 
|  | spin_lock(&rbio->bio_list_lock); | 
|  |  | 
|  | if (!list_empty(&rbio->hash_list)) { | 
|  | /* | 
|  | * if we're still cached and there is no other IO | 
|  | * to perform, just leave this rbio here for others | 
|  | * to steal from later | 
|  | */ | 
|  | if (list_empty(&rbio->plug_list) && | 
|  | test_bit(RBIO_CACHE_BIT, &rbio->flags)) { | 
|  | keep_cache = 1; | 
|  | clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
|  | BUG_ON(!bio_list_empty(&rbio->bio_list)); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | list_del_init(&rbio->hash_list); | 
|  | refcount_dec(&rbio->refs); | 
|  |  | 
|  | /* | 
|  | * we use the plug list to hold all the rbios | 
|  | * waiting for the chance to lock this stripe. | 
|  | * hand the lock over to one of them. | 
|  | */ | 
|  | if (!list_empty(&rbio->plug_list)) { | 
|  | struct btrfs_raid_bio *next; | 
|  | struct list_head *head = rbio->plug_list.next; | 
|  |  | 
|  | next = list_entry(head, struct btrfs_raid_bio, | 
|  | plug_list); | 
|  |  | 
|  | list_del_init(&rbio->plug_list); | 
|  |  | 
|  | list_add(&next->hash_list, &h->hash_list); | 
|  | refcount_inc(&next->refs); | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  | spin_unlock(&h->lock); | 
|  |  | 
|  | if (next->operation == BTRFS_RBIO_READ_REBUILD) { | 
|  | start_async_work(next, recover_rbio_work_locked); | 
|  | } else if (next->operation == BTRFS_RBIO_WRITE) { | 
|  | steal_rbio(rbio, next); | 
|  | start_async_work(next, rmw_rbio_work_locked); | 
|  | } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { | 
|  | steal_rbio(rbio, next); | 
|  | start_async_work(next, scrub_rbio_work_locked); | 
|  | } | 
|  |  | 
|  | goto done_nolock; | 
|  | } | 
|  | } | 
|  | done: | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  | spin_unlock(&h->lock); | 
|  |  | 
|  | done_nolock: | 
|  | if (!keep_cache) | 
|  | remove_rbio_from_cache(rbio); | 
|  | } | 
|  |  | 
|  | static void rbio_endio_bio_list(struct bio *cur, blk_status_t status) | 
|  | { | 
|  | struct bio *next; | 
|  |  | 
|  | while (cur) { | 
|  | next = cur->bi_next; | 
|  | cur->bi_next = NULL; | 
|  | cur->bi_status = status; | 
|  | bio_endio(cur); | 
|  | cur = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this frees the rbio and runs through all the bios in the | 
|  | * bio_list and calls end_io on them | 
|  | */ | 
|  | static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t status) | 
|  | { | 
|  | struct bio *cur = bio_list_get(&rbio->bio_list); | 
|  | struct bio *extra; | 
|  |  | 
|  | kfree(rbio->csum_buf); | 
|  | bitmap_free(rbio->csum_bitmap); | 
|  | rbio->csum_buf = NULL; | 
|  | rbio->csum_bitmap = NULL; | 
|  |  | 
|  | /* | 
|  | * Clear the data bitmap, as the rbio may be cached for later usage. | 
|  | * do this before before unlock_stripe() so there will be no new bio | 
|  | * for this bio. | 
|  | */ | 
|  | bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors); | 
|  |  | 
|  | /* | 
|  | * At this moment, rbio->bio_list is empty, however since rbio does not | 
|  | * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the | 
|  | * hash list, rbio may be merged with others so that rbio->bio_list | 
|  | * becomes non-empty. | 
|  | * Once unlock_stripe() is done, rbio->bio_list will not be updated any | 
|  | * more and we can call bio_endio() on all queued bios. | 
|  | */ | 
|  | unlock_stripe(rbio); | 
|  | extra = bio_list_get(&rbio->bio_list); | 
|  | free_raid_bio(rbio); | 
|  |  | 
|  | rbio_endio_bio_list(cur, status); | 
|  | if (extra) | 
|  | rbio_endio_bio_list(extra, status); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get a sector pointer specified by its @stripe_nr and @sector_nr. | 
|  | * | 
|  | * @rbio:               The raid bio | 
|  | * @stripe_nr:          Stripe number, valid range [0, real_stripe) | 
|  | * @sector_nr:		Sector number inside the stripe, | 
|  | *			valid range [0, stripe_nsectors) | 
|  | * @bio_list_only:      Whether to use sectors inside the bio list only. | 
|  | * | 
|  | * The read/modify/write code wants to reuse the original bio page as much | 
|  | * as possible, and only use stripe_sectors as fallback. | 
|  | */ | 
|  | static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio, | 
|  | int stripe_nr, int sector_nr, | 
|  | bool bio_list_only) | 
|  | { | 
|  | struct sector_ptr *sector; | 
|  | int index; | 
|  |  | 
|  | ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->real_stripes, | 
|  | rbio, stripe_nr); | 
|  | ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors, | 
|  | rbio, sector_nr); | 
|  |  | 
|  | index = stripe_nr * rbio->stripe_nsectors + sector_nr; | 
|  | ASSERT(index >= 0 && index < rbio->nr_sectors); | 
|  |  | 
|  | spin_lock(&rbio->bio_list_lock); | 
|  | sector = &rbio->bio_sectors[index]; | 
|  | if (sector->has_paddr || bio_list_only) { | 
|  | /* Don't return sector without a valid page pointer */ | 
|  | if (!sector->has_paddr) | 
|  | sector = NULL; | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  | return sector; | 
|  | } | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  |  | 
|  | return &rbio->stripe_sectors[index]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * allocation and initial setup for the btrfs_raid_bio.  Not | 
|  | * this does not allocate any pages for rbio->pages. | 
|  | */ | 
|  | static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_io_context *bioc) | 
|  | { | 
|  | const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes; | 
|  | const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT; | 
|  | const unsigned int num_pages = stripe_npages * real_stripes; | 
|  | const unsigned int stripe_nsectors = | 
|  | BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; | 
|  | const unsigned int num_sectors = stripe_nsectors * real_stripes; | 
|  | struct btrfs_raid_bio *rbio; | 
|  |  | 
|  | /* PAGE_SIZE must also be aligned to sectorsize for subpage support */ | 
|  | ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize)); | 
|  | /* | 
|  | * Our current stripe len should be fixed to 64k thus stripe_nsectors | 
|  | * (at most 16) should be no larger than BITS_PER_LONG. | 
|  | */ | 
|  | ASSERT(stripe_nsectors <= BITS_PER_LONG); | 
|  |  | 
|  | /* | 
|  | * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256 | 
|  | * (limited by u8). | 
|  | */ | 
|  | ASSERT(real_stripes >= 2); | 
|  | ASSERT(real_stripes <= U8_MAX); | 
|  |  | 
|  | rbio = kzalloc(sizeof(*rbio), GFP_NOFS); | 
|  | if (!rbio) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *), | 
|  | GFP_NOFS); | 
|  | rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), | 
|  | GFP_NOFS); | 
|  | rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), | 
|  | GFP_NOFS); | 
|  | rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS); | 
|  | rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS); | 
|  |  | 
|  | if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors || | 
|  | !rbio->finish_pointers || !rbio->error_bitmap) { | 
|  | free_raid_bio_pointers(rbio); | 
|  | kfree(rbio); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | bio_list_init(&rbio->bio_list); | 
|  | init_waitqueue_head(&rbio->io_wait); | 
|  | INIT_LIST_HEAD(&rbio->plug_list); | 
|  | spin_lock_init(&rbio->bio_list_lock); | 
|  | INIT_LIST_HEAD(&rbio->stripe_cache); | 
|  | INIT_LIST_HEAD(&rbio->hash_list); | 
|  | btrfs_get_bioc(bioc); | 
|  | rbio->bioc = bioc; | 
|  | rbio->nr_pages = num_pages; | 
|  | rbio->nr_sectors = num_sectors; | 
|  | rbio->real_stripes = real_stripes; | 
|  | rbio->stripe_npages = stripe_npages; | 
|  | rbio->stripe_nsectors = stripe_nsectors; | 
|  | refcount_set(&rbio->refs, 1); | 
|  | atomic_set(&rbio->stripes_pending, 0); | 
|  |  | 
|  | ASSERT(btrfs_nr_parity_stripes(bioc->map_type)); | 
|  | rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type); | 
|  | ASSERT(rbio->nr_data > 0); | 
|  |  | 
|  | return rbio; | 
|  | } | 
|  |  | 
|  | /* allocate pages for all the stripes in the bio, including parity */ | 
|  | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, false); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | /* Mapping all sectors */ | 
|  | index_stripe_sectors(rbio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* only allocate pages for p/q stripes */ | 
|  | static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | const int data_pages = rbio->nr_data * rbio->stripe_npages; | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages, | 
|  | rbio->stripe_pages + data_pages, false); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | index_stripe_sectors(rbio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the total number of errors found in the vertical stripe of @sector_nr. | 
|  | * | 
|  | * @faila and @failb will also be updated to the first and second stripe | 
|  | * number of the errors. | 
|  | */ | 
|  | static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr, | 
|  | int *faila, int *failb) | 
|  | { | 
|  | int stripe_nr; | 
|  | int found_errors = 0; | 
|  |  | 
|  | if (faila || failb) { | 
|  | /* | 
|  | * Both @faila and @failb should be valid pointers if any of | 
|  | * them is specified. | 
|  | */ | 
|  | ASSERT(faila && failb); | 
|  | *faila = -1; | 
|  | *failb = -1; | 
|  | } | 
|  |  | 
|  | for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { | 
|  | int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr; | 
|  |  | 
|  | if (test_bit(total_sector_nr, rbio->error_bitmap)) { | 
|  | found_errors++; | 
|  | if (faila) { | 
|  | /* Update faila and failb. */ | 
|  | if (*faila < 0) | 
|  | *faila = stripe_nr; | 
|  | else if (*failb < 0) | 
|  | *failb = stripe_nr; | 
|  | } | 
|  | } | 
|  | } | 
|  | return found_errors; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a single sector @sector into our list of bios for IO. | 
|  | * | 
|  | * Return 0 if everything went well. | 
|  | * Return <0 for error. | 
|  | */ | 
|  | static int rbio_add_io_sector(struct btrfs_raid_bio *rbio, | 
|  | struct bio_list *bio_list, | 
|  | struct sector_ptr *sector, | 
|  | unsigned int stripe_nr, | 
|  | unsigned int sector_nr, | 
|  | enum req_op op) | 
|  | { | 
|  | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
|  | struct bio *last = bio_list->tail; | 
|  | int ret; | 
|  | struct bio *bio; | 
|  | struct btrfs_io_stripe *stripe; | 
|  | u64 disk_start; | 
|  |  | 
|  | /* | 
|  | * Note: here stripe_nr has taken device replace into consideration, | 
|  | * thus it can be larger than rbio->real_stripe. | 
|  | * So here we check against bioc->num_stripes, not rbio->real_stripes. | 
|  | */ | 
|  | ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes, | 
|  | rbio, stripe_nr); | 
|  | ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors, | 
|  | rbio, sector_nr); | 
|  | ASSERT(sector->has_paddr); | 
|  |  | 
|  | stripe = &rbio->bioc->stripes[stripe_nr]; | 
|  | disk_start = stripe->physical + sector_nr * sectorsize; | 
|  |  | 
|  | /* if the device is missing, just fail this stripe */ | 
|  | if (!stripe->dev->bdev) { | 
|  | int found_errors; | 
|  |  | 
|  | set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr, | 
|  | rbio->error_bitmap); | 
|  |  | 
|  | /* Check if we have reached tolerance early. */ | 
|  | found_errors = get_rbio_veritical_errors(rbio, sector_nr, | 
|  | NULL, NULL); | 
|  | if (unlikely(found_errors > rbio->bioc->max_errors)) | 
|  | return -EIO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* see if we can add this page onto our existing bio */ | 
|  | if (last) { | 
|  | u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT; | 
|  | last_end += last->bi_iter.bi_size; | 
|  |  | 
|  | /* | 
|  | * we can't merge these if they are from different | 
|  | * devices or if they are not contiguous | 
|  | */ | 
|  | if (last_end == disk_start && !last->bi_status && | 
|  | last->bi_bdev == stripe->dev->bdev) { | 
|  | ret = bio_add_page(last, phys_to_page(sector->paddr), | 
|  | sectorsize, offset_in_page(sector->paddr)); | 
|  | if (ret == sectorsize) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* put a new bio on the list */ | 
|  | bio = bio_alloc(stripe->dev->bdev, | 
|  | max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1), | 
|  | op, GFP_NOFS); | 
|  | bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT; | 
|  | bio->bi_private = rbio; | 
|  |  | 
|  | __bio_add_page(bio, phys_to_page(sector->paddr), sectorsize, | 
|  | offset_in_page(sector->paddr)); | 
|  | bio_list_add(bio_list, bio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio) | 
|  | { | 
|  | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
|  | const u32 sectorsize_bits = rbio->bioc->fs_info->sectorsize_bits; | 
|  | struct bvec_iter iter = bio->bi_iter; | 
|  | phys_addr_t paddr; | 
|  | u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - | 
|  | rbio->bioc->full_stripe_logical; | 
|  |  | 
|  | btrfs_bio_for_each_block(paddr, bio, &iter, sectorsize) { | 
|  | unsigned int index = (offset >> sectorsize_bits); | 
|  | struct sector_ptr *sector = &rbio->bio_sectors[index]; | 
|  |  | 
|  | sector->has_paddr = true; | 
|  | sector->paddr = paddr; | 
|  | offset += sectorsize; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to walk our bio list and populate the bio_pages array with | 
|  | * the result.  This seems expensive, but it is faster than constantly | 
|  | * searching through the bio list as we setup the IO in finish_rmw or stripe | 
|  | * reconstruction. | 
|  | * | 
|  | * This must be called before you trust the answers from page_in_rbio | 
|  | */ | 
|  | static void index_rbio_pages(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct bio *bio; | 
|  |  | 
|  | spin_lock(&rbio->bio_list_lock); | 
|  | bio_list_for_each(bio, &rbio->bio_list) | 
|  | index_one_bio(rbio, bio); | 
|  |  | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  | } | 
|  |  | 
|  | static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio, | 
|  | struct raid56_bio_trace_info *trace_info) | 
|  | { | 
|  | const struct btrfs_io_context *bioc = rbio->bioc; | 
|  | int i; | 
|  |  | 
|  | ASSERT(bioc); | 
|  |  | 
|  | /* We rely on bio->bi_bdev to find the stripe number. */ | 
|  | if (!bio->bi_bdev) | 
|  | goto not_found; | 
|  |  | 
|  | for (i = 0; i < bioc->num_stripes; i++) { | 
|  | if (bio->bi_bdev != bioc->stripes[i].dev->bdev) | 
|  | continue; | 
|  | trace_info->stripe_nr = i; | 
|  | trace_info->devid = bioc->stripes[i].dev->devid; | 
|  | trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - | 
|  | bioc->stripes[i].physical; | 
|  | return; | 
|  | } | 
|  |  | 
|  | not_found: | 
|  | trace_info->devid = -1; | 
|  | trace_info->offset = -1; | 
|  | trace_info->stripe_nr = -1; | 
|  | } | 
|  |  | 
|  | static inline void bio_list_put(struct bio_list *bio_list) | 
|  | { | 
|  | struct bio *bio; | 
|  |  | 
|  | while ((bio = bio_list_pop(bio_list))) | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | static void assert_rbio(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * At least two stripes (2 disks RAID5), and since real_stripes is U8, | 
|  | * we won't go beyond 256 disks anyway. | 
|  | */ | 
|  | ASSERT_RBIO(rbio->real_stripes >= 2, rbio); | 
|  | ASSERT_RBIO(rbio->nr_data > 0, rbio); | 
|  |  | 
|  | /* | 
|  | * This is another check to make sure nr data stripes is smaller | 
|  | * than total stripes. | 
|  | */ | 
|  | ASSERT_RBIO(rbio->nr_data < rbio->real_stripes, rbio); | 
|  | } | 
|  |  | 
|  | static inline void *kmap_local_sector(const struct sector_ptr *sector) | 
|  | { | 
|  | /* The sector pointer must have a page mapped to it. */ | 
|  | ASSERT(sector->has_paddr); | 
|  |  | 
|  | return kmap_local_page(phys_to_page(sector->paddr)) + | 
|  | offset_in_page(sector->paddr); | 
|  | } | 
|  |  | 
|  | /* Generate PQ for one vertical stripe. */ | 
|  | static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr) | 
|  | { | 
|  | void **pointers = rbio->finish_pointers; | 
|  | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
|  | struct sector_ptr *sector; | 
|  | int stripe; | 
|  | const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6; | 
|  |  | 
|  | /* First collect one sector from each data stripe */ | 
|  | for (stripe = 0; stripe < rbio->nr_data; stripe++) { | 
|  | sector = sector_in_rbio(rbio, stripe, sectornr, 0); | 
|  | pointers[stripe] = kmap_local_sector(sector); | 
|  | } | 
|  |  | 
|  | /* Then add the parity stripe */ | 
|  | sector = rbio_pstripe_sector(rbio, sectornr); | 
|  | sector->uptodate = 1; | 
|  | pointers[stripe++] = kmap_local_sector(sector); | 
|  |  | 
|  | if (has_qstripe) { | 
|  | /* | 
|  | * RAID6, add the qstripe and call the library function | 
|  | * to fill in our p/q | 
|  | */ | 
|  | sector = rbio_qstripe_sector(rbio, sectornr); | 
|  | sector->uptodate = 1; | 
|  | pointers[stripe++] = kmap_local_sector(sector); | 
|  |  | 
|  | assert_rbio(rbio); | 
|  | raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, | 
|  | pointers); | 
|  | } else { | 
|  | /* raid5 */ | 
|  | memcpy(pointers[rbio->nr_data], pointers[0], sectorsize); | 
|  | run_xor(pointers + 1, rbio->nr_data - 1, sectorsize); | 
|  | } | 
|  | for (stripe = stripe - 1; stripe >= 0; stripe--) | 
|  | kunmap_local(pointers[stripe]); | 
|  | } | 
|  |  | 
|  | static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio, | 
|  | struct bio_list *bio_list) | 
|  | { | 
|  | /* The total sector number inside the full stripe. */ | 
|  | int total_sector_nr; | 
|  | int sectornr; | 
|  | int stripe; | 
|  | int ret; | 
|  |  | 
|  | ASSERT(bio_list_size(bio_list) == 0); | 
|  |  | 
|  | /* We should have at least one data sector. */ | 
|  | ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors)); | 
|  |  | 
|  | /* | 
|  | * Reset errors, as we may have errors inherited from from degraded | 
|  | * write. | 
|  | */ | 
|  | bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); | 
|  |  | 
|  | /* | 
|  | * Start assembly.  Make bios for everything from the higher layers (the | 
|  | * bio_list in our rbio) and our P/Q.  Ignore everything else. | 
|  | */ | 
|  | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | 
|  | total_sector_nr++) { | 
|  | struct sector_ptr *sector; | 
|  |  | 
|  | stripe = total_sector_nr / rbio->stripe_nsectors; | 
|  | sectornr = total_sector_nr % rbio->stripe_nsectors; | 
|  |  | 
|  | /* This vertical stripe has no data, skip it. */ | 
|  | if (!test_bit(sectornr, &rbio->dbitmap)) | 
|  | continue; | 
|  |  | 
|  | if (stripe < rbio->nr_data) { | 
|  | sector = sector_in_rbio(rbio, stripe, sectornr, 1); | 
|  | if (!sector) | 
|  | continue; | 
|  | } else { | 
|  | sector = rbio_stripe_sector(rbio, stripe, sectornr); | 
|  | } | 
|  |  | 
|  | ret = rbio_add_io_sector(rbio, bio_list, sector, stripe, | 
|  | sectornr, REQ_OP_WRITE); | 
|  | if (ret) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (likely(!rbio->bioc->replace_nr_stripes)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Make a copy for the replace target device. | 
|  | * | 
|  | * Thus the source stripe number (in replace_stripe_src) should be valid. | 
|  | */ | 
|  | ASSERT(rbio->bioc->replace_stripe_src >= 0); | 
|  |  | 
|  | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | 
|  | total_sector_nr++) { | 
|  | struct sector_ptr *sector; | 
|  |  | 
|  | stripe = total_sector_nr / rbio->stripe_nsectors; | 
|  | sectornr = total_sector_nr % rbio->stripe_nsectors; | 
|  |  | 
|  | /* | 
|  | * For RAID56, there is only one device that can be replaced, | 
|  | * and replace_stripe_src[0] indicates the stripe number we | 
|  | * need to copy from. | 
|  | */ | 
|  | if (stripe != rbio->bioc->replace_stripe_src) { | 
|  | /* | 
|  | * We can skip the whole stripe completely, note | 
|  | * total_sector_nr will be increased by one anyway. | 
|  | */ | 
|  | ASSERT(sectornr == 0); | 
|  | total_sector_nr += rbio->stripe_nsectors - 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* This vertical stripe has no data, skip it. */ | 
|  | if (!test_bit(sectornr, &rbio->dbitmap)) | 
|  | continue; | 
|  |  | 
|  | if (stripe < rbio->nr_data) { | 
|  | sector = sector_in_rbio(rbio, stripe, sectornr, 1); | 
|  | if (!sector) | 
|  | continue; | 
|  | } else { | 
|  | sector = rbio_stripe_sector(rbio, stripe, sectornr); | 
|  | } | 
|  |  | 
|  | ret = rbio_add_io_sector(rbio, bio_list, sector, | 
|  | rbio->real_stripes, | 
|  | sectornr, REQ_OP_WRITE); | 
|  | if (ret) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | error: | 
|  | bio_list_put(bio_list); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | 
|  | u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - | 
|  | rbio->bioc->full_stripe_logical; | 
|  | int total_nr_sector = offset >> fs_info->sectorsize_bits; | 
|  |  | 
|  | ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors); | 
|  |  | 
|  | bitmap_set(rbio->error_bitmap, total_nr_sector, | 
|  | bio->bi_iter.bi_size >> fs_info->sectorsize_bits); | 
|  |  | 
|  | /* | 
|  | * Special handling for raid56_alloc_missing_rbio() used by | 
|  | * scrub/replace.  Unlike call path in raid56_parity_recover(), they | 
|  | * pass an empty bio here.  Thus we have to find out the missing device | 
|  | * and mark the stripe error instead. | 
|  | */ | 
|  | if (bio->bi_iter.bi_size == 0) { | 
|  | bool found_missing = false; | 
|  | int stripe_nr; | 
|  |  | 
|  | for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { | 
|  | if (!rbio->bioc->stripes[stripe_nr].dev->bdev) { | 
|  | found_missing = true; | 
|  | bitmap_set(rbio->error_bitmap, | 
|  | stripe_nr * rbio->stripe_nsectors, | 
|  | rbio->stripe_nsectors); | 
|  | } | 
|  | } | 
|  | ASSERT(found_missing); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For subpage case, we can no longer set page Up-to-date directly for | 
|  | * stripe_pages[], thus we need to locate the sector. | 
|  | */ | 
|  | static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio, | 
|  | phys_addr_t paddr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < rbio->nr_sectors; i++) { | 
|  | struct sector_ptr *sector = &rbio->stripe_sectors[i]; | 
|  |  | 
|  | if (sector->has_paddr && sector->paddr == paddr) | 
|  | return sector; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this sets each page in the bio uptodate.  It should only be used on private | 
|  | * rbio pages, nothing that comes in from the higher layers | 
|  | */ | 
|  | static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio) | 
|  | { | 
|  | const u32 blocksize = rbio->bioc->fs_info->sectorsize; | 
|  | phys_addr_t paddr; | 
|  |  | 
|  | ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
|  |  | 
|  | btrfs_bio_for_each_block_all(paddr, bio, blocksize) { | 
|  | struct sector_ptr *sector = find_stripe_sector(rbio, paddr); | 
|  |  | 
|  | ASSERT(sector); | 
|  | if (sector) | 
|  | sector->uptodate = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio) | 
|  | { | 
|  | phys_addr_t bvec_paddr = bvec_phys(bio_first_bvec_all(bio)); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < rbio->nr_sectors; i++) { | 
|  | if (rbio->stripe_sectors[i].paddr == bvec_paddr) | 
|  | break; | 
|  | if (rbio->bio_sectors[i].has_paddr && | 
|  | rbio->bio_sectors[i].paddr == bvec_paddr) | 
|  | break; | 
|  | } | 
|  | ASSERT(i < rbio->nr_sectors); | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio) | 
|  | { | 
|  | int total_sector_nr = get_bio_sector_nr(rbio, bio); | 
|  | u32 bio_size = 0; | 
|  | struct bio_vec *bvec; | 
|  | int i; | 
|  |  | 
|  | bio_for_each_bvec_all(bvec, bio, i) | 
|  | bio_size += bvec->bv_len; | 
|  |  | 
|  | /* | 
|  | * Since we can have multiple bios touching the error_bitmap, we cannot | 
|  | * call bitmap_set() without protection. | 
|  | * | 
|  | * Instead use set_bit() for each bit, as set_bit() itself is atomic. | 
|  | */ | 
|  | for (i = total_sector_nr; i < total_sector_nr + | 
|  | (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++) | 
|  | set_bit(i, rbio->error_bitmap); | 
|  | } | 
|  |  | 
|  | /* Verify the data sectors at read time. */ | 
|  | static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio, | 
|  | struct bio *bio) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | 
|  | int total_sector_nr = get_bio_sector_nr(rbio, bio); | 
|  | phys_addr_t paddr; | 
|  |  | 
|  | /* No data csum for the whole stripe, no need to verify. */ | 
|  | if (!rbio->csum_bitmap || !rbio->csum_buf) | 
|  | return; | 
|  |  | 
|  | /* P/Q stripes, they have no data csum to verify against. */ | 
|  | if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors) | 
|  | return; | 
|  |  | 
|  | btrfs_bio_for_each_block_all(paddr, bio, fs_info->sectorsize) { | 
|  | u8 csum_buf[BTRFS_CSUM_SIZE]; | 
|  | u8 *expected_csum = rbio->csum_buf + total_sector_nr * fs_info->csum_size; | 
|  | int ret; | 
|  |  | 
|  | /* No csum for this sector, skip to the next sector. */ | 
|  | if (!test_bit(total_sector_nr, rbio->csum_bitmap)) | 
|  | continue; | 
|  |  | 
|  | ret = btrfs_check_block_csum(fs_info, paddr, | 
|  | csum_buf, expected_csum); | 
|  | if (ret < 0) | 
|  | set_bit(total_sector_nr, rbio->error_bitmap); | 
|  | total_sector_nr++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void raid_wait_read_end_io(struct bio *bio) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio = bio->bi_private; | 
|  |  | 
|  | if (bio->bi_status) { | 
|  | rbio_update_error_bitmap(rbio, bio); | 
|  | } else { | 
|  | set_bio_pages_uptodate(rbio, bio); | 
|  | verify_bio_data_sectors(rbio, bio); | 
|  | } | 
|  |  | 
|  | bio_put(bio); | 
|  | if (atomic_dec_and_test(&rbio->stripes_pending)) | 
|  | wake_up(&rbio->io_wait); | 
|  | } | 
|  |  | 
|  | static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio, | 
|  | struct bio_list *bio_list) | 
|  | { | 
|  | struct bio *bio; | 
|  |  | 
|  | atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); | 
|  | while ((bio = bio_list_pop(bio_list))) { | 
|  | bio->bi_end_io = raid_wait_read_end_io; | 
|  |  | 
|  | if (trace_raid56_read_enabled()) { | 
|  | struct raid56_bio_trace_info trace_info = { 0 }; | 
|  |  | 
|  | bio_get_trace_info(rbio, bio, &trace_info); | 
|  | trace_raid56_read(rbio, bio, &trace_info); | 
|  | } | 
|  | submit_bio(bio); | 
|  | } | 
|  |  | 
|  | wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); | 
|  | } | 
|  |  | 
|  | static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | const int data_pages = rbio->nr_data * rbio->stripe_npages; | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, false); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | index_stripe_sectors(rbio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We use plugging call backs to collect full stripes. | 
|  | * Any time we get a partial stripe write while plugged | 
|  | * we collect it into a list.  When the unplug comes down, | 
|  | * we sort the list by logical block number and merge | 
|  | * everything we can into the same rbios | 
|  | */ | 
|  | struct btrfs_plug_cb { | 
|  | struct blk_plug_cb cb; | 
|  | struct btrfs_fs_info *info; | 
|  | struct list_head rbio_list; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * rbios on the plug list are sorted for easier merging. | 
|  | */ | 
|  | static int plug_cmp(void *priv, const struct list_head *a, | 
|  | const struct list_head *b) | 
|  | { | 
|  | const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, | 
|  | plug_list); | 
|  | const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, | 
|  | plug_list); | 
|  | u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; | 
|  | u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; | 
|  |  | 
|  | if (a_sector < b_sector) | 
|  | return -1; | 
|  | if (a_sector > b_sector) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule) | 
|  | { | 
|  | struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb); | 
|  | struct btrfs_raid_bio *cur; | 
|  | struct btrfs_raid_bio *last = NULL; | 
|  |  | 
|  | list_sort(NULL, &plug->rbio_list, plug_cmp); | 
|  |  | 
|  | while (!list_empty(&plug->rbio_list)) { | 
|  | cur = list_first_entry(&plug->rbio_list, | 
|  | struct btrfs_raid_bio, plug_list); | 
|  | list_del_init(&cur->plug_list); | 
|  |  | 
|  | if (rbio_is_full(cur)) { | 
|  | /* We have a full stripe, queue it down. */ | 
|  | start_async_work(cur, rmw_rbio_work); | 
|  | continue; | 
|  | } | 
|  | if (last) { | 
|  | if (rbio_can_merge(last, cur)) { | 
|  | merge_rbio(last, cur); | 
|  | free_raid_bio(cur); | 
|  | continue; | 
|  | } | 
|  | start_async_work(last, rmw_rbio_work); | 
|  | } | 
|  | last = cur; | 
|  | } | 
|  | if (last) | 
|  | start_async_work(last, rmw_rbio_work); | 
|  | kfree(plug); | 
|  | } | 
|  |  | 
|  | /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */ | 
|  | static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio) | 
|  | { | 
|  | const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | 
|  | const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT; | 
|  | const u64 full_stripe_start = rbio->bioc->full_stripe_logical; | 
|  | const u32 orig_len = orig_bio->bi_iter.bi_size; | 
|  | const u32 sectorsize = fs_info->sectorsize; | 
|  | u64 cur_logical; | 
|  |  | 
|  | ASSERT_RBIO_LOGICAL(orig_logical >= full_stripe_start && | 
|  | orig_logical + orig_len <= full_stripe_start + | 
|  | rbio->nr_data * BTRFS_STRIPE_LEN, | 
|  | rbio, orig_logical); | 
|  |  | 
|  | bio_list_add(&rbio->bio_list, orig_bio); | 
|  | rbio->bio_list_bytes += orig_bio->bi_iter.bi_size; | 
|  |  | 
|  | /* Update the dbitmap. */ | 
|  | for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len; | 
|  | cur_logical += sectorsize) { | 
|  | int bit = ((u32)(cur_logical - full_stripe_start) >> | 
|  | fs_info->sectorsize_bits) % rbio->stripe_nsectors; | 
|  |  | 
|  | set_bit(bit, &rbio->dbitmap); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * our main entry point for writes from the rest of the FS. | 
|  | */ | 
|  | void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = bioc->fs_info; | 
|  | struct btrfs_raid_bio *rbio; | 
|  | struct btrfs_plug_cb *plug = NULL; | 
|  | struct blk_plug_cb *cb; | 
|  |  | 
|  | rbio = alloc_rbio(fs_info, bioc); | 
|  | if (IS_ERR(rbio)) { | 
|  | bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); | 
|  | bio_endio(bio); | 
|  | return; | 
|  | } | 
|  | rbio->operation = BTRFS_RBIO_WRITE; | 
|  | rbio_add_bio(rbio, bio); | 
|  |  | 
|  | /* | 
|  | * Don't plug on full rbios, just get them out the door | 
|  | * as quickly as we can | 
|  | */ | 
|  | if (!rbio_is_full(rbio)) { | 
|  | cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug)); | 
|  | if (cb) { | 
|  | plug = container_of(cb, struct btrfs_plug_cb, cb); | 
|  | if (!plug->info) { | 
|  | plug->info = fs_info; | 
|  | INIT_LIST_HEAD(&plug->rbio_list); | 
|  | } | 
|  | list_add_tail(&rbio->plug_list, &plug->rbio_list); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Either we don't have any existing plug, or we're doing a full stripe, | 
|  | * queue the rmw work now. | 
|  | */ | 
|  | start_async_work(rbio, rmw_rbio_work); | 
|  | } | 
|  |  | 
|  | static int verify_one_sector(struct btrfs_raid_bio *rbio, | 
|  | int stripe_nr, int sector_nr) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | 
|  | struct sector_ptr *sector; | 
|  | u8 csum_buf[BTRFS_CSUM_SIZE]; | 
|  | u8 *csum_expected; | 
|  | int ret; | 
|  |  | 
|  | if (!rbio->csum_bitmap || !rbio->csum_buf) | 
|  | return 0; | 
|  |  | 
|  | /* No way to verify P/Q as they are not covered by data csum. */ | 
|  | if (stripe_nr >= rbio->nr_data) | 
|  | return 0; | 
|  | /* | 
|  | * If we're rebuilding a read, we have to use pages from the | 
|  | * bio list if possible. | 
|  | */ | 
|  | if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { | 
|  | sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); | 
|  | } else { | 
|  | sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); | 
|  | } | 
|  |  | 
|  | csum_expected = rbio->csum_buf + | 
|  | (stripe_nr * rbio->stripe_nsectors + sector_nr) * | 
|  | fs_info->csum_size; | 
|  | ret = btrfs_check_block_csum(fs_info, sector->paddr, csum_buf, csum_expected); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Recover a vertical stripe specified by @sector_nr. | 
|  | * @*pointers are the pre-allocated pointers by the caller, so we don't | 
|  | * need to allocate/free the pointers again and again. | 
|  | */ | 
|  | static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr, | 
|  | void **pointers, void **unmap_array) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | 
|  | struct sector_ptr *sector; | 
|  | const u32 sectorsize = fs_info->sectorsize; | 
|  | int found_errors; | 
|  | int faila; | 
|  | int failb; | 
|  | int stripe_nr; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Now we just use bitmap to mark the horizontal stripes in | 
|  | * which we have data when doing parity scrub. | 
|  | */ | 
|  | if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && | 
|  | !test_bit(sector_nr, &rbio->dbitmap)) | 
|  | return 0; | 
|  |  | 
|  | found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila, | 
|  | &failb); | 
|  | /* | 
|  | * No errors in the vertical stripe, skip it.  Can happen for recovery | 
|  | * which only part of a stripe failed csum check. | 
|  | */ | 
|  | if (!found_errors) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(found_errors > rbio->bioc->max_errors)) | 
|  | return -EIO; | 
|  |  | 
|  | /* | 
|  | * Setup our array of pointers with sectors from each stripe | 
|  | * | 
|  | * NOTE: store a duplicate array of pointers to preserve the | 
|  | * pointer order. | 
|  | */ | 
|  | for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { | 
|  | /* | 
|  | * If we're rebuilding a read, we have to use pages from the | 
|  | * bio list if possible. | 
|  | */ | 
|  | if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { | 
|  | sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); | 
|  | } else { | 
|  | sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); | 
|  | } | 
|  | pointers[stripe_nr] = kmap_local_sector(sector); | 
|  | unmap_array[stripe_nr] = pointers[stripe_nr]; | 
|  | } | 
|  |  | 
|  | /* All raid6 handling here */ | 
|  | if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) { | 
|  | /* Single failure, rebuild from parity raid5 style */ | 
|  | if (failb < 0) { | 
|  | if (faila == rbio->nr_data) | 
|  | /* | 
|  | * Just the P stripe has failed, without | 
|  | * a bad data or Q stripe. | 
|  | * We have nothing to do, just skip the | 
|  | * recovery for this stripe. | 
|  | */ | 
|  | goto cleanup; | 
|  | /* | 
|  | * a single failure in raid6 is rebuilt | 
|  | * in the pstripe code below | 
|  | */ | 
|  | goto pstripe; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the q stripe is failed, do a pstripe reconstruction from | 
|  | * the xors. | 
|  | * If both the q stripe and the P stripe are failed, we're | 
|  | * here due to a crc mismatch and we can't give them the | 
|  | * data they want. | 
|  | */ | 
|  | if (failb == rbio->real_stripes - 1) { | 
|  | if (faila == rbio->real_stripes - 2) | 
|  | /* | 
|  | * Only P and Q are corrupted. | 
|  | * We only care about data stripes recovery, | 
|  | * can skip this vertical stripe. | 
|  | */ | 
|  | goto cleanup; | 
|  | /* | 
|  | * Otherwise we have one bad data stripe and | 
|  | * a good P stripe.  raid5! | 
|  | */ | 
|  | goto pstripe; | 
|  | } | 
|  |  | 
|  | if (failb == rbio->real_stripes - 2) { | 
|  | raid6_datap_recov(rbio->real_stripes, sectorsize, | 
|  | faila, pointers); | 
|  | } else { | 
|  | raid6_2data_recov(rbio->real_stripes, sectorsize, | 
|  | faila, failb, pointers); | 
|  | } | 
|  | } else { | 
|  | void *p; | 
|  |  | 
|  | /* Rebuild from P stripe here (raid5 or raid6). */ | 
|  | ASSERT(failb == -1); | 
|  | pstripe: | 
|  | /* Copy parity block into failed block to start with */ | 
|  | memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize); | 
|  |  | 
|  | /* Rearrange the pointer array */ | 
|  | p = pointers[faila]; | 
|  | for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1; | 
|  | stripe_nr++) | 
|  | pointers[stripe_nr] = pointers[stripe_nr + 1]; | 
|  | pointers[rbio->nr_data - 1] = p; | 
|  |  | 
|  | /* Xor in the rest */ | 
|  | run_xor(pointers, rbio->nr_data - 1, sectorsize); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No matter if this is a RMW or recovery, we should have all | 
|  | * failed sectors repaired in the vertical stripe, thus they are now | 
|  | * uptodate. | 
|  | * Especially if we determine to cache the rbio, we need to | 
|  | * have at least all data sectors uptodate. | 
|  | * | 
|  | * If possible, also check if the repaired sector matches its data | 
|  | * checksum. | 
|  | */ | 
|  | if (faila >= 0) { | 
|  | ret = verify_one_sector(rbio, faila, sector_nr); | 
|  | if (ret < 0) | 
|  | goto cleanup; | 
|  |  | 
|  | sector = rbio_stripe_sector(rbio, faila, sector_nr); | 
|  | sector->uptodate = 1; | 
|  | } | 
|  | if (failb >= 0) { | 
|  | ret = verify_one_sector(rbio, failb, sector_nr); | 
|  | if (ret < 0) | 
|  | goto cleanup; | 
|  |  | 
|  | sector = rbio_stripe_sector(rbio, failb, sector_nr); | 
|  | sector->uptodate = 1; | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  | for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--) | 
|  | kunmap_local(unmap_array[stripe_nr]); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int recover_sectors(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | void **pointers = NULL; | 
|  | void **unmap_array = NULL; | 
|  | int sectornr; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * @pointers array stores the pointer for each sector. | 
|  | * | 
|  | * @unmap_array stores copy of pointers that does not get reordered | 
|  | * during reconstruction so that kunmap_local works. | 
|  | */ | 
|  | pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); | 
|  | unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); | 
|  | if (!pointers || !unmap_array) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { | 
|  | spin_lock(&rbio->bio_list_lock); | 
|  | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  | } | 
|  |  | 
|  | index_rbio_pages(rbio); | 
|  |  | 
|  | for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { | 
|  | ret = recover_vertical(rbio, sectornr, pointers, unmap_array); | 
|  | if (ret < 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | out: | 
|  | kfree(pointers); | 
|  | kfree(unmap_array); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void recover_rbio(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct bio_list bio_list = BIO_EMPTY_LIST; | 
|  | int total_sector_nr; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Either we're doing recover for a read failure or degraded write, | 
|  | * caller should have set error bitmap correctly. | 
|  | */ | 
|  | ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors)); | 
|  |  | 
|  | /* For recovery, we need to read all sectors including P/Q. */ | 
|  | ret = alloc_rbio_pages(rbio); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | index_rbio_pages(rbio); | 
|  |  | 
|  | /* | 
|  | * Read everything that hasn't failed. However this time we will | 
|  | * not trust any cached sector. | 
|  | * As we may read out some stale data but higher layer is not reading | 
|  | * that stale part. | 
|  | * | 
|  | * So here we always re-read everything in recovery path. | 
|  | */ | 
|  | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | 
|  | total_sector_nr++) { | 
|  | int stripe = total_sector_nr / rbio->stripe_nsectors; | 
|  | int sectornr = total_sector_nr % rbio->stripe_nsectors; | 
|  | struct sector_ptr *sector; | 
|  |  | 
|  | /* | 
|  | * Skip the range which has error.  It can be a range which is | 
|  | * marked error (for csum mismatch), or it can be a missing | 
|  | * device. | 
|  | */ | 
|  | if (!rbio->bioc->stripes[stripe].dev->bdev || | 
|  | test_bit(total_sector_nr, rbio->error_bitmap)) { | 
|  | /* | 
|  | * Also set the error bit for missing device, which | 
|  | * may not yet have its error bit set. | 
|  | */ | 
|  | set_bit(total_sector_nr, rbio->error_bitmap); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | sector = rbio_stripe_sector(rbio, stripe, sectornr); | 
|  | ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, | 
|  | sectornr, REQ_OP_READ); | 
|  | if (ret < 0) { | 
|  | bio_list_put(&bio_list); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | submit_read_wait_bio_list(rbio, &bio_list); | 
|  | ret = recover_sectors(rbio); | 
|  | out: | 
|  | rbio_orig_end_io(rbio, errno_to_blk_status(ret)); | 
|  | } | 
|  |  | 
|  | static void recover_rbio_work(struct work_struct *work) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio; | 
|  |  | 
|  | rbio = container_of(work, struct btrfs_raid_bio, work); | 
|  | if (!lock_stripe_add(rbio)) | 
|  | recover_rbio(rbio); | 
|  | } | 
|  |  | 
|  | static void recover_rbio_work_locked(struct work_struct *work) | 
|  | { | 
|  | recover_rbio(container_of(work, struct btrfs_raid_bio, work)); | 
|  | } | 
|  |  | 
|  | static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num) | 
|  | { | 
|  | bool found = false; | 
|  | int sector_nr; | 
|  |  | 
|  | /* | 
|  | * This is for RAID6 extra recovery tries, thus mirror number should | 
|  | * be large than 2. | 
|  | * Mirror 1 means read from data stripes. Mirror 2 means rebuild using | 
|  | * RAID5 methods. | 
|  | */ | 
|  | ASSERT(mirror_num > 2); | 
|  | for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { | 
|  | int found_errors; | 
|  | int faila; | 
|  | int failb; | 
|  |  | 
|  | found_errors = get_rbio_veritical_errors(rbio, sector_nr, | 
|  | &faila, &failb); | 
|  | /* This vertical stripe doesn't have errors. */ | 
|  | if (!found_errors) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * If we found errors, there should be only one error marked | 
|  | * by previous set_rbio_range_error(). | 
|  | */ | 
|  | ASSERT(found_errors == 1); | 
|  | found = true; | 
|  |  | 
|  | /* Now select another stripe to mark as error. */ | 
|  | failb = rbio->real_stripes - (mirror_num - 1); | 
|  | if (failb <= faila) | 
|  | failb--; | 
|  |  | 
|  | /* Set the extra bit in error bitmap. */ | 
|  | if (failb >= 0) | 
|  | set_bit(failb * rbio->stripe_nsectors + sector_nr, | 
|  | rbio->error_bitmap); | 
|  | } | 
|  |  | 
|  | /* We should found at least one vertical stripe with error.*/ | 
|  | ASSERT(found); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the main entry point for reads from the higher layers.  This | 
|  | * is really only called when the normal read path had a failure, | 
|  | * so we assume the bio they send down corresponds to a failed part | 
|  | * of the drive. | 
|  | */ | 
|  | void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc, | 
|  | int mirror_num) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = bioc->fs_info; | 
|  | struct btrfs_raid_bio *rbio; | 
|  |  | 
|  | rbio = alloc_rbio(fs_info, bioc); | 
|  | if (IS_ERR(rbio)) { | 
|  | bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); | 
|  | bio_endio(bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rbio->operation = BTRFS_RBIO_READ_REBUILD; | 
|  | rbio_add_bio(rbio, bio); | 
|  |  | 
|  | set_rbio_range_error(rbio, bio); | 
|  |  | 
|  | /* | 
|  | * Loop retry: | 
|  | * for 'mirror == 2', reconstruct from all other stripes. | 
|  | * for 'mirror_num > 2', select a stripe to fail on every retry. | 
|  | */ | 
|  | if (mirror_num > 2) | 
|  | set_rbio_raid6_extra_error(rbio, mirror_num); | 
|  |  | 
|  | start_async_work(rbio, recover_rbio_work); | 
|  | } | 
|  |  | 
|  | static void fill_data_csums(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | 
|  | struct btrfs_root *csum_root = btrfs_csum_root(fs_info, | 
|  | rbio->bioc->full_stripe_logical); | 
|  | const u64 start = rbio->bioc->full_stripe_logical; | 
|  | const u32 len = (rbio->nr_data * rbio->stripe_nsectors) << | 
|  | fs_info->sectorsize_bits; | 
|  | int ret; | 
|  |  | 
|  | /* The rbio should not have its csum buffer initialized. */ | 
|  | ASSERT(!rbio->csum_buf && !rbio->csum_bitmap); | 
|  |  | 
|  | /* | 
|  | * Skip the csum search if: | 
|  | * | 
|  | * - The rbio doesn't belong to data block groups | 
|  | *   Then we are doing IO for tree blocks, no need to search csums. | 
|  | * | 
|  | * - The rbio belongs to mixed block groups | 
|  | *   This is to avoid deadlock, as we're already holding the full | 
|  | *   stripe lock, if we trigger a metadata read, and it needs to do | 
|  | *   raid56 recovery, we will deadlock. | 
|  | */ | 
|  | if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) || | 
|  | rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA) | 
|  | return; | 
|  |  | 
|  | rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors * | 
|  | fs_info->csum_size, GFP_NOFS); | 
|  | rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors, | 
|  | GFP_NOFS); | 
|  | if (!rbio->csum_buf || !rbio->csum_bitmap) { | 
|  | ret = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1, | 
|  | rbio->csum_buf, rbio->csum_bitmap); | 
|  | if (ret < 0) | 
|  | goto error; | 
|  | if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits)) | 
|  | goto no_csum; | 
|  | return; | 
|  |  | 
|  | error: | 
|  | /* | 
|  | * We failed to allocate memory or grab the csum, but it's not fatal, | 
|  | * we can still continue.  But better to warn users that RMW is no | 
|  | * longer safe for this particular sub-stripe write. | 
|  | */ | 
|  | btrfs_warn_rl(fs_info, | 
|  | "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d", | 
|  | rbio->bioc->full_stripe_logical, ret); | 
|  | no_csum: | 
|  | kfree(rbio->csum_buf); | 
|  | bitmap_free(rbio->csum_bitmap); | 
|  | rbio->csum_buf = NULL; | 
|  | rbio->csum_bitmap = NULL; | 
|  | } | 
|  |  | 
|  | static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct bio_list bio_list = BIO_EMPTY_LIST; | 
|  | int total_sector_nr; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Fill the data csums we need for data verification.  We need to fill | 
|  | * the csum_bitmap/csum_buf first, as our endio function will try to | 
|  | * verify the data sectors. | 
|  | */ | 
|  | fill_data_csums(rbio); | 
|  |  | 
|  | /* | 
|  | * Build a list of bios to read all sectors (including data and P/Q). | 
|  | * | 
|  | * This behavior is to compensate the later csum verification and recovery. | 
|  | */ | 
|  | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | 
|  | total_sector_nr++) { | 
|  | struct sector_ptr *sector; | 
|  | int stripe = total_sector_nr / rbio->stripe_nsectors; | 
|  | int sectornr = total_sector_nr % rbio->stripe_nsectors; | 
|  |  | 
|  | sector = rbio_stripe_sector(rbio, stripe, sectornr); | 
|  | ret = rbio_add_io_sector(rbio, &bio_list, sector, | 
|  | stripe, sectornr, REQ_OP_READ); | 
|  | if (ret) { | 
|  | bio_list_put(&bio_list); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We may or may not have any corrupted sectors (including missing dev | 
|  | * and csum mismatch), just let recover_sectors() to handle them all. | 
|  | */ | 
|  | submit_read_wait_bio_list(rbio, &bio_list); | 
|  | return recover_sectors(rbio); | 
|  | } | 
|  |  | 
|  | static void raid_wait_write_end_io(struct bio *bio) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio = bio->bi_private; | 
|  |  | 
|  | if (bio->bi_status) | 
|  | rbio_update_error_bitmap(rbio, bio); | 
|  | bio_put(bio); | 
|  | if (atomic_dec_and_test(&rbio->stripes_pending)) | 
|  | wake_up(&rbio->io_wait); | 
|  | } | 
|  |  | 
|  | static void submit_write_bios(struct btrfs_raid_bio *rbio, | 
|  | struct bio_list *bio_list) | 
|  | { | 
|  | struct bio *bio; | 
|  |  | 
|  | atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); | 
|  | while ((bio = bio_list_pop(bio_list))) { | 
|  | bio->bi_end_io = raid_wait_write_end_io; | 
|  |  | 
|  | if (trace_raid56_write_enabled()) { | 
|  | struct raid56_bio_trace_info trace_info = { 0 }; | 
|  |  | 
|  | bio_get_trace_info(rbio, bio, &trace_info); | 
|  | trace_raid56_write(rbio, bio, &trace_info); | 
|  | } | 
|  | submit_bio(bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To determine if we need to read any sector from the disk. | 
|  | * Should only be utilized in RMW path, to skip cached rbio. | 
|  | */ | 
|  | static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) { | 
|  | struct sector_ptr *sector = &rbio->stripe_sectors[i]; | 
|  |  | 
|  | /* | 
|  | * We have a sector which doesn't have page nor uptodate, | 
|  | * thus this rbio can not be cached one, as cached one must | 
|  | * have all its data sectors present and uptodate. | 
|  | */ | 
|  | if (!sector->has_paddr || !sector->uptodate) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void rmw_rbio(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct bio_list bio_list; | 
|  | int sectornr; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Allocate the pages for parity first, as P/Q pages will always be | 
|  | * needed for both full-stripe and sub-stripe writes. | 
|  | */ | 
|  | ret = alloc_rbio_parity_pages(rbio); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Either full stripe write, or we have every data sector already | 
|  | * cached, can go to write path immediately. | 
|  | */ | 
|  | if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) { | 
|  | /* | 
|  | * Now we're doing sub-stripe write, also need all data stripes | 
|  | * to do the full RMW. | 
|  | */ | 
|  | ret = alloc_rbio_data_pages(rbio); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | index_rbio_pages(rbio); | 
|  |  | 
|  | ret = rmw_read_wait_recover(rbio); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At this stage we're not allowed to add any new bios to the | 
|  | * bio list any more, anyone else that wants to change this stripe | 
|  | * needs to do their own rmw. | 
|  | */ | 
|  | spin_lock(&rbio->bio_list_lock); | 
|  | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
|  | spin_unlock(&rbio->bio_list_lock); | 
|  |  | 
|  | bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); | 
|  |  | 
|  | index_rbio_pages(rbio); | 
|  |  | 
|  | /* | 
|  | * We don't cache full rbios because we're assuming | 
|  | * the higher layers are unlikely to use this area of | 
|  | * the disk again soon.  If they do use it again, | 
|  | * hopefully they will send another full bio. | 
|  | */ | 
|  | if (!rbio_is_full(rbio)) | 
|  | cache_rbio_pages(rbio); | 
|  | else | 
|  | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
|  |  | 
|  | for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) | 
|  | generate_pq_vertical(rbio, sectornr); | 
|  |  | 
|  | bio_list_init(&bio_list); | 
|  | ret = rmw_assemble_write_bios(rbio, &bio_list); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* We should have at least one bio assembled. */ | 
|  | ASSERT(bio_list_size(&bio_list)); | 
|  | submit_write_bios(rbio, &bio_list); | 
|  | wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); | 
|  |  | 
|  | /* We may have more errors than our tolerance during the read. */ | 
|  | for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { | 
|  | int found_errors; | 
|  |  | 
|  | found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL); | 
|  | if (unlikely(found_errors > rbio->bioc->max_errors)) { | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  | } | 
|  | out: | 
|  | rbio_orig_end_io(rbio, errno_to_blk_status(ret)); | 
|  | } | 
|  |  | 
|  | static void rmw_rbio_work(struct work_struct *work) | 
|  | { | 
|  | struct btrfs_raid_bio *rbio; | 
|  |  | 
|  | rbio = container_of(work, struct btrfs_raid_bio, work); | 
|  | if (lock_stripe_add(rbio) == 0) | 
|  | rmw_rbio(rbio); | 
|  | } | 
|  |  | 
|  | static void rmw_rbio_work_locked(struct work_struct *work) | 
|  | { | 
|  | rmw_rbio(container_of(work, struct btrfs_raid_bio, work)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following code is used to scrub/replace the parity stripe | 
|  | * | 
|  | * Caller must have already increased bio_counter for getting @bioc. | 
|  | * | 
|  | * Note: We need make sure all the pages that add into the scrub/replace | 
|  | * raid bio are correct and not be changed during the scrub/replace. That | 
|  | * is those pages just hold metadata or file data with checksum. | 
|  | */ | 
|  |  | 
|  | struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio, | 
|  | struct btrfs_io_context *bioc, | 
|  | struct btrfs_device *scrub_dev, | 
|  | unsigned long *dbitmap, int stripe_nsectors) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = bioc->fs_info; | 
|  | struct btrfs_raid_bio *rbio; | 
|  | int i; | 
|  |  | 
|  | rbio = alloc_rbio(fs_info, bioc); | 
|  | if (IS_ERR(rbio)) | 
|  | return NULL; | 
|  | bio_list_add(&rbio->bio_list, bio); | 
|  | /* | 
|  | * This is a special bio which is used to hold the completion handler | 
|  | * and make the scrub rbio is similar to the other types | 
|  | */ | 
|  | ASSERT(!bio->bi_iter.bi_size); | 
|  | rbio->operation = BTRFS_RBIO_PARITY_SCRUB; | 
|  |  | 
|  | /* | 
|  | * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted | 
|  | * to the end position, so this search can start from the first parity | 
|  | * stripe. | 
|  | */ | 
|  | for (i = rbio->nr_data; i < rbio->real_stripes; i++) { | 
|  | if (bioc->stripes[i].dev == scrub_dev) { | 
|  | rbio->scrubp = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | ASSERT_RBIO_STRIPE(i < rbio->real_stripes, rbio, i); | 
|  |  | 
|  | bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors); | 
|  | return rbio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We just scrub the parity that we have correct data on the same horizontal, | 
|  | * so we needn't allocate all pages for all the stripes. | 
|  | */ | 
|  | static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | 
|  | int total_sector_nr; | 
|  |  | 
|  | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | 
|  | total_sector_nr++) { | 
|  | struct page *page; | 
|  | int sectornr = total_sector_nr % rbio->stripe_nsectors; | 
|  | int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT; | 
|  |  | 
|  | if (!test_bit(sectornr, &rbio->dbitmap)) | 
|  | continue; | 
|  | if (rbio->stripe_pages[index]) | 
|  | continue; | 
|  | page = alloc_page(GFP_NOFS); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | rbio->stripe_pages[index] = page; | 
|  | } | 
|  | index_stripe_sectors(rbio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int finish_parity_scrub(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct btrfs_io_context *bioc = rbio->bioc; | 
|  | const u32 sectorsize = bioc->fs_info->sectorsize; | 
|  | void **pointers = rbio->finish_pointers; | 
|  | unsigned long *pbitmap = &rbio->finish_pbitmap; | 
|  | int nr_data = rbio->nr_data; | 
|  | int stripe; | 
|  | int sectornr; | 
|  | bool has_qstripe; | 
|  | struct page *page; | 
|  | struct sector_ptr p_sector = { 0 }; | 
|  | struct sector_ptr q_sector = { 0 }; | 
|  | struct bio_list bio_list; | 
|  | int is_replace = 0; | 
|  | int ret; | 
|  |  | 
|  | bio_list_init(&bio_list); | 
|  |  | 
|  | if (rbio->real_stripes - rbio->nr_data == 1) | 
|  | has_qstripe = false; | 
|  | else if (rbio->real_stripes - rbio->nr_data == 2) | 
|  | has_qstripe = true; | 
|  | else | 
|  | BUG(); | 
|  |  | 
|  | /* | 
|  | * Replace is running and our P/Q stripe is being replaced, then we | 
|  | * need to duplicate the final write to replace target. | 
|  | */ | 
|  | if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) { | 
|  | is_replace = 1; | 
|  | bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Because the higher layers(scrubber) are unlikely to | 
|  | * use this area of the disk again soon, so don't cache | 
|  | * it. | 
|  | */ | 
|  | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
|  |  | 
|  | page = alloc_page(GFP_NOFS); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | p_sector.has_paddr = true; | 
|  | p_sector.paddr = page_to_phys(page); | 
|  | p_sector.uptodate = 1; | 
|  | page = NULL; | 
|  |  | 
|  | if (has_qstripe) { | 
|  | /* RAID6, allocate and map temp space for the Q stripe */ | 
|  | page = alloc_page(GFP_NOFS); | 
|  | if (!page) { | 
|  | __free_page(phys_to_page(p_sector.paddr)); | 
|  | p_sector.has_paddr = false; | 
|  | return -ENOMEM; | 
|  | } | 
|  | q_sector.has_paddr = true; | 
|  | q_sector.paddr = page_to_phys(page); | 
|  | q_sector.uptodate = 1; | 
|  | page = NULL; | 
|  | pointers[rbio->real_stripes - 1] = kmap_local_sector(&q_sector); | 
|  | } | 
|  |  | 
|  | bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); | 
|  |  | 
|  | /* Map the parity stripe just once */ | 
|  | pointers[nr_data] = kmap_local_sector(&p_sector); | 
|  |  | 
|  | for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { | 
|  | struct sector_ptr *sector; | 
|  | void *parity; | 
|  |  | 
|  | /* first collect one page from each data stripe */ | 
|  | for (stripe = 0; stripe < nr_data; stripe++) { | 
|  | sector = sector_in_rbio(rbio, stripe, sectornr, 0); | 
|  | pointers[stripe] = kmap_local_sector(sector); | 
|  | } | 
|  |  | 
|  | if (has_qstripe) { | 
|  | assert_rbio(rbio); | 
|  | /* RAID6, call the library function to fill in our P/Q */ | 
|  | raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, | 
|  | pointers); | 
|  | } else { | 
|  | /* raid5 */ | 
|  | memcpy(pointers[nr_data], pointers[0], sectorsize); | 
|  | run_xor(pointers + 1, nr_data - 1, sectorsize); | 
|  | } | 
|  |  | 
|  | /* Check scrubbing parity and repair it */ | 
|  | sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); | 
|  | parity = kmap_local_sector(sector); | 
|  | if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0) | 
|  | memcpy(parity, pointers[rbio->scrubp], sectorsize); | 
|  | else | 
|  | /* Parity is right, needn't writeback */ | 
|  | bitmap_clear(&rbio->dbitmap, sectornr, 1); | 
|  | kunmap_local(parity); | 
|  |  | 
|  | for (stripe = nr_data - 1; stripe >= 0; stripe--) | 
|  | kunmap_local(pointers[stripe]); | 
|  | } | 
|  |  | 
|  | kunmap_local(pointers[nr_data]); | 
|  | __free_page(phys_to_page(p_sector.paddr)); | 
|  | p_sector.has_paddr = false; | 
|  | if (q_sector.has_paddr) { | 
|  | __free_page(phys_to_page(q_sector.paddr)); | 
|  | q_sector.has_paddr = false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * time to start writing.  Make bios for everything from the | 
|  | * higher layers (the bio_list in our rbio) and our p/q.  Ignore | 
|  | * everything else. | 
|  | */ | 
|  | for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { | 
|  | struct sector_ptr *sector; | 
|  |  | 
|  | sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); | 
|  | ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp, | 
|  | sectornr, REQ_OP_WRITE); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (!is_replace) | 
|  | goto submit_write; | 
|  |  | 
|  | /* | 
|  | * Replace is running and our parity stripe needs to be duplicated to | 
|  | * the target device.  Check we have a valid source stripe number. | 
|  | */ | 
|  | ASSERT_RBIO(rbio->bioc->replace_stripe_src >= 0, rbio); | 
|  | for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) { | 
|  | struct sector_ptr *sector; | 
|  |  | 
|  | sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); | 
|  | ret = rbio_add_io_sector(rbio, &bio_list, sector, | 
|  | rbio->real_stripes, | 
|  | sectornr, REQ_OP_WRITE); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | submit_write: | 
|  | submit_write_bios(rbio, &bio_list); | 
|  | return 0; | 
|  |  | 
|  | cleanup: | 
|  | bio_list_put(&bio_list); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) | 
|  | { | 
|  | if (stripe >= 0 && stripe < rbio->nr_data) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int recover_scrub_rbio(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | void **pointers = NULL; | 
|  | void **unmap_array = NULL; | 
|  | int sector_nr; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * @pointers array stores the pointer for each sector. | 
|  | * | 
|  | * @unmap_array stores copy of pointers that does not get reordered | 
|  | * during reconstruction so that kunmap_local works. | 
|  | */ | 
|  | pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); | 
|  | unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); | 
|  | if (!pointers || !unmap_array) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { | 
|  | int dfail = 0, failp = -1; | 
|  | int faila; | 
|  | int failb; | 
|  | int found_errors; | 
|  |  | 
|  | found_errors = get_rbio_veritical_errors(rbio, sector_nr, | 
|  | &faila, &failb); | 
|  | if (unlikely(found_errors > rbio->bioc->max_errors)) { | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  | if (found_errors == 0) | 
|  | continue; | 
|  |  | 
|  | /* We should have at least one error here. */ | 
|  | ASSERT(faila >= 0 || failb >= 0); | 
|  |  | 
|  | if (is_data_stripe(rbio, faila)) | 
|  | dfail++; | 
|  | else if (is_parity_stripe(faila)) | 
|  | failp = faila; | 
|  |  | 
|  | if (is_data_stripe(rbio, failb)) | 
|  | dfail++; | 
|  | else if (is_parity_stripe(failb)) | 
|  | failp = failb; | 
|  | /* | 
|  | * Because we can not use a scrubbing parity to repair the | 
|  | * data, so the capability of the repair is declined.  (In the | 
|  | * case of RAID5, we can not repair anything.) | 
|  | */ | 
|  | if (unlikely(dfail > rbio->bioc->max_errors - 1)) { | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * If all data is good, only parity is correctly, just repair | 
|  | * the parity, no need to recover data stripes. | 
|  | */ | 
|  | if (dfail == 0) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Here means we got one corrupted data stripe and one | 
|  | * corrupted parity on RAID6, if the corrupted parity is | 
|  | * scrubbing parity, luckily, use the other one to repair the | 
|  | * data, or we can not repair the data stripe. | 
|  | */ | 
|  | if (unlikely(failp != rbio->scrubp)) { | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = recover_vertical(rbio, sector_nr, pointers, unmap_array); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | out: | 
|  | kfree(pointers); | 
|  | kfree(unmap_array); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | struct bio_list bio_list = BIO_EMPTY_LIST; | 
|  | int total_sector_nr; | 
|  | int ret = 0; | 
|  |  | 
|  | /* Build a list of bios to read all the missing parts. */ | 
|  | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | 
|  | total_sector_nr++) { | 
|  | int sectornr = total_sector_nr % rbio->stripe_nsectors; | 
|  | int stripe = total_sector_nr / rbio->stripe_nsectors; | 
|  | struct sector_ptr *sector; | 
|  |  | 
|  | /* No data in the vertical stripe, no need to read. */ | 
|  | if (!test_bit(sectornr, &rbio->dbitmap)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * We want to find all the sectors missing from the rbio and | 
|  | * read them from the disk. If sector_in_rbio() finds a sector | 
|  | * in the bio list we don't need to read it off the stripe. | 
|  | */ | 
|  | sector = sector_in_rbio(rbio, stripe, sectornr, 1); | 
|  | if (sector) | 
|  | continue; | 
|  |  | 
|  | sector = rbio_stripe_sector(rbio, stripe, sectornr); | 
|  | /* | 
|  | * The bio cache may have handed us an uptodate sector.  If so, | 
|  | * use it. | 
|  | */ | 
|  | if (sector->uptodate) | 
|  | continue; | 
|  |  | 
|  | ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, | 
|  | sectornr, REQ_OP_READ); | 
|  | if (ret) { | 
|  | bio_list_put(&bio_list); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | submit_read_wait_bio_list(rbio, &bio_list); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void scrub_rbio(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | int sector_nr; | 
|  | int ret; | 
|  |  | 
|  | ret = alloc_rbio_essential_pages(rbio); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); | 
|  |  | 
|  | ret = scrub_assemble_read_bios(rbio); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* We may have some failures, recover the failed sectors first. */ | 
|  | ret = recover_scrub_rbio(rbio); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We have every sector properly prepared. Can finish the scrub | 
|  | * and writeback the good content. | 
|  | */ | 
|  | ret = finish_parity_scrub(rbio); | 
|  | wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); | 
|  | for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { | 
|  | int found_errors; | 
|  |  | 
|  | found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL); | 
|  | if (unlikely(found_errors > rbio->bioc->max_errors)) { | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  | } | 
|  | out: | 
|  | rbio_orig_end_io(rbio, errno_to_blk_status(ret)); | 
|  | } | 
|  |  | 
|  | static void scrub_rbio_work_locked(struct work_struct *work) | 
|  | { | 
|  | scrub_rbio(container_of(work, struct btrfs_raid_bio, work)); | 
|  | } | 
|  |  | 
|  | void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) | 
|  | { | 
|  | if (!lock_stripe_add(rbio)) | 
|  | start_async_work(rbio, scrub_rbio_work_locked); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is for scrub call sites where we already have correct data contents. | 
|  | * This allows us to avoid reading data stripes again. | 
|  | * | 
|  | * Unfortunately here we have to do folio copy, other than reusing the pages. | 
|  | * This is due to the fact rbio has its own page management for its cache. | 
|  | */ | 
|  | void raid56_parity_cache_data_folios(struct btrfs_raid_bio *rbio, | 
|  | struct folio **data_folios, u64 data_logical) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | 
|  | const u64 offset_in_full_stripe = data_logical - | 
|  | rbio->bioc->full_stripe_logical; | 
|  | unsigned int findex = 0; | 
|  | unsigned int foffset = 0; | 
|  | int ret; | 
|  |  | 
|  | /* We shouldn't hit RAID56 for bs > ps cases for now. */ | 
|  | ASSERT(fs_info->sectorsize <= PAGE_SIZE); | 
|  |  | 
|  | /* | 
|  | * If we hit ENOMEM temporarily, but later at | 
|  | * raid56_parity_submit_scrub_rbio() time it succeeded, we just do | 
|  | * the extra read, not a big deal. | 
|  | * | 
|  | * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time, | 
|  | * the bio would got proper error number set. | 
|  | */ | 
|  | ret = alloc_rbio_data_pages(rbio); | 
|  | if (ret < 0) | 
|  | return; | 
|  |  | 
|  | /* data_logical must be at stripe boundary and inside the full stripe. */ | 
|  | ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN)); | 
|  | ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT)); | 
|  |  | 
|  | for (unsigned int cur_off = offset_in_full_stripe; | 
|  | cur_off < offset_in_full_stripe + BTRFS_STRIPE_LEN; | 
|  | cur_off += PAGE_SIZE) { | 
|  | const unsigned int pindex = cur_off >> PAGE_SHIFT; | 
|  | void *kaddr; | 
|  |  | 
|  | kaddr = kmap_local_page(rbio->stripe_pages[pindex]); | 
|  | memcpy_from_folio(kaddr, data_folios[findex], foffset, PAGE_SIZE); | 
|  | kunmap_local(kaddr); | 
|  |  | 
|  | foffset += PAGE_SIZE; | 
|  | ASSERT(foffset <= folio_size(data_folios[findex])); | 
|  | if (foffset == folio_size(data_folios[findex])) { | 
|  | findex++; | 
|  | foffset = 0; | 
|  | } | 
|  | } | 
|  | for (unsigned int sector_nr = offset_in_full_stripe >> fs_info->sectorsize_bits; | 
|  | sector_nr < (offset_in_full_stripe + BTRFS_STRIPE_LEN) >> fs_info->sectorsize_bits; | 
|  | sector_nr++) | 
|  | rbio->stripe_sectors[sector_nr].uptodate = true; | 
|  | } |