|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * Copyright 2013 Red Hat Inc. | 
|  | * | 
|  | * Authors: Jérôme Glisse <jglisse@redhat.com> | 
|  | */ | 
|  | /* | 
|  | * Refer to include/linux/hmm.h for information about heterogeneous memory | 
|  | * management or HMM for short. | 
|  | */ | 
|  | #include <linux/pagewalk.h> | 
|  | #include <linux/hmm.h> | 
|  | #include <linux/hmm-dma.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/memremap.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/jump_label.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/pci-p2pdma.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/memory_hotplug.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | struct hmm_vma_walk { | 
|  | struct hmm_range	*range; | 
|  | unsigned long		last; | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | HMM_NEED_FAULT = 1 << 0, | 
|  | HMM_NEED_WRITE_FAULT = 1 << 1, | 
|  | HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT, | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | /* These flags are carried from input-to-output */ | 
|  | HMM_PFN_INOUT_FLAGS = HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA | | 
|  | HMM_PFN_P2PDMA_BUS, | 
|  | }; | 
|  |  | 
|  | static int hmm_pfns_fill(unsigned long addr, unsigned long end, | 
|  | struct hmm_range *range, unsigned long cpu_flags) | 
|  | { | 
|  | unsigned long i = (addr - range->start) >> PAGE_SHIFT; | 
|  |  | 
|  | for (; addr < end; addr += PAGE_SIZE, i++) { | 
|  | range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; | 
|  | range->hmm_pfns[i] |= cpu_flags; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s) | 
|  | * @addr: range virtual start address (inclusive) | 
|  | * @end: range virtual end address (exclusive) | 
|  | * @required_fault: HMM_NEED_* flags | 
|  | * @walk: mm_walk structure | 
|  | * Return: -EBUSY after page fault, or page fault error | 
|  | * | 
|  | * This function will be called whenever pmd_none() or pte_none() returns true, | 
|  | * or whenever there is no page directory covering the virtual address range. | 
|  | */ | 
|  | static int hmm_vma_fault(unsigned long addr, unsigned long end, | 
|  | unsigned int required_fault, struct mm_walk *walk) | 
|  | { | 
|  | struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | unsigned int fault_flags = FAULT_FLAG_REMOTE; | 
|  |  | 
|  | WARN_ON_ONCE(!required_fault); | 
|  | hmm_vma_walk->last = addr; | 
|  |  | 
|  | if (required_fault & HMM_NEED_WRITE_FAULT) { | 
|  | if (!(vma->vm_flags & VM_WRITE)) | 
|  | return -EPERM; | 
|  | fault_flags |= FAULT_FLAG_WRITE; | 
|  | } | 
|  |  | 
|  | for (; addr < end; addr += PAGE_SIZE) | 
|  | if (handle_mm_fault(vma, addr, fault_flags, NULL) & | 
|  | VM_FAULT_ERROR) | 
|  | return -EFAULT; | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk, | 
|  | unsigned long pfn_req_flags, | 
|  | unsigned long cpu_flags) | 
|  | { | 
|  | struct hmm_range *range = hmm_vma_walk->range; | 
|  |  | 
|  | /* | 
|  | * So we not only consider the individual per page request we also | 
|  | * consider the default flags requested for the range. The API can | 
|  | * be used 2 ways. The first one where the HMM user coalesces | 
|  | * multiple page faults into one request and sets flags per pfn for | 
|  | * those faults. The second one where the HMM user wants to pre- | 
|  | * fault a range with specific flags. For the latter one it is a | 
|  | * waste to have the user pre-fill the pfn arrays with a default | 
|  | * flags value. | 
|  | */ | 
|  | pfn_req_flags &= range->pfn_flags_mask; | 
|  | pfn_req_flags |= range->default_flags; | 
|  |  | 
|  | /* We aren't ask to do anything ... */ | 
|  | if (!(pfn_req_flags & HMM_PFN_REQ_FAULT)) | 
|  | return 0; | 
|  |  | 
|  | /* Need to write fault ? */ | 
|  | if ((pfn_req_flags & HMM_PFN_REQ_WRITE) && | 
|  | !(cpu_flags & HMM_PFN_WRITE)) | 
|  | return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT; | 
|  |  | 
|  | /* If CPU page table is not valid then we need to fault */ | 
|  | if (!(cpu_flags & HMM_PFN_VALID)) | 
|  | return HMM_NEED_FAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned int | 
|  | hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk, | 
|  | const unsigned long hmm_pfns[], unsigned long npages, | 
|  | unsigned long cpu_flags) | 
|  | { | 
|  | struct hmm_range *range = hmm_vma_walk->range; | 
|  | unsigned int required_fault = 0; | 
|  | unsigned long i; | 
|  |  | 
|  | /* | 
|  | * If the default flags do not request to fault pages, and the mask does | 
|  | * not allow for individual pages to be faulted, then | 
|  | * hmm_pte_need_fault() will always return 0. | 
|  | */ | 
|  | if (!((range->default_flags | range->pfn_flags_mask) & | 
|  | HMM_PFN_REQ_FAULT)) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < npages; ++i) { | 
|  | required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i], | 
|  | cpu_flags); | 
|  | if (required_fault == HMM_NEED_ALL_BITS) | 
|  | return required_fault; | 
|  | } | 
|  | return required_fault; | 
|  | } | 
|  |  | 
|  | static int hmm_vma_walk_hole(unsigned long addr, unsigned long end, | 
|  | __always_unused int depth, struct mm_walk *walk) | 
|  | { | 
|  | struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
|  | struct hmm_range *range = hmm_vma_walk->range; | 
|  | unsigned int required_fault; | 
|  | unsigned long i, npages; | 
|  | unsigned long *hmm_pfns; | 
|  |  | 
|  | i = (addr - range->start) >> PAGE_SHIFT; | 
|  | npages = (end - addr) >> PAGE_SHIFT; | 
|  | hmm_pfns = &range->hmm_pfns[i]; | 
|  | required_fault = | 
|  | hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0); | 
|  | if (!walk->vma) { | 
|  | if (required_fault) | 
|  | return -EFAULT; | 
|  | return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR); | 
|  | } | 
|  | if (required_fault) | 
|  | return hmm_vma_fault(addr, end, required_fault, walk); | 
|  | return hmm_pfns_fill(addr, end, range, 0); | 
|  | } | 
|  |  | 
|  | static inline unsigned long hmm_pfn_flags_order(unsigned long order) | 
|  | { | 
|  | return order << HMM_PFN_ORDER_SHIFT; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range, | 
|  | pmd_t pmd) | 
|  | { | 
|  | if (pmd_protnone(pmd)) | 
|  | return 0; | 
|  | return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : | 
|  | HMM_PFN_VALID) | | 
|  | hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, | 
|  | unsigned long end, unsigned long hmm_pfns[], | 
|  | pmd_t pmd) | 
|  | { | 
|  | struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
|  | struct hmm_range *range = hmm_vma_walk->range; | 
|  | unsigned long pfn, npages, i; | 
|  | unsigned int required_fault; | 
|  | unsigned long cpu_flags; | 
|  |  | 
|  | npages = (end - addr) >> PAGE_SHIFT; | 
|  | cpu_flags = pmd_to_hmm_pfn_flags(range, pmd); | 
|  | required_fault = | 
|  | hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags); | 
|  | if (required_fault) | 
|  | return hmm_vma_fault(addr, end, required_fault, walk); | 
|  |  | 
|  | pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | 
|  | for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) { | 
|  | hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; | 
|  | hmm_pfns[i] |= pfn | cpu_flags; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #else /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  | /* stub to allow the code below to compile */ | 
|  | int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, | 
|  | unsigned long end, unsigned long hmm_pfns[], pmd_t pmd); | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  |  | 
|  | static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range, | 
|  | pte_t pte) | 
|  | { | 
|  | if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte)) | 
|  | return 0; | 
|  | return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID; | 
|  | } | 
|  |  | 
|  | static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr, | 
|  | unsigned long end, pmd_t *pmdp, pte_t *ptep, | 
|  | unsigned long *hmm_pfn) | 
|  | { | 
|  | struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
|  | struct hmm_range *range = hmm_vma_walk->range; | 
|  | unsigned int required_fault; | 
|  | unsigned long cpu_flags; | 
|  | pte_t pte = ptep_get(ptep); | 
|  | uint64_t pfn_req_flags = *hmm_pfn; | 
|  | uint64_t new_pfn_flags = 0; | 
|  |  | 
|  | if (pte_none_mostly(pte)) { | 
|  | required_fault = | 
|  | hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); | 
|  | if (required_fault) | 
|  | goto fault; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!pte_present(pte)) { | 
|  | swp_entry_t entry = pte_to_swp_entry(pte); | 
|  |  | 
|  | /* | 
|  | * Don't fault in device private pages owned by the caller, | 
|  | * just report the PFN. | 
|  | */ | 
|  | if (is_device_private_entry(entry) && | 
|  | page_pgmap(pfn_swap_entry_to_page(entry))->owner == | 
|  | range->dev_private_owner) { | 
|  | cpu_flags = HMM_PFN_VALID; | 
|  | if (is_writable_device_private_entry(entry)) | 
|  | cpu_flags |= HMM_PFN_WRITE; | 
|  | new_pfn_flags = swp_offset_pfn(entry) | cpu_flags; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | required_fault = | 
|  | hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); | 
|  | if (!required_fault) | 
|  | goto out; | 
|  |  | 
|  | if (!non_swap_entry(entry)) | 
|  | goto fault; | 
|  |  | 
|  | if (is_device_private_entry(entry)) | 
|  | goto fault; | 
|  |  | 
|  | if (is_device_exclusive_entry(entry)) | 
|  | goto fault; | 
|  |  | 
|  | if (is_migration_entry(entry)) { | 
|  | pte_unmap(ptep); | 
|  | hmm_vma_walk->last = addr; | 
|  | migration_entry_wait(walk->mm, pmdp, addr); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* Report error for everything else */ | 
|  | pte_unmap(ptep); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | cpu_flags = pte_to_hmm_pfn_flags(range, pte); | 
|  | required_fault = | 
|  | hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); | 
|  | if (required_fault) | 
|  | goto fault; | 
|  |  | 
|  | /* | 
|  | * Since each architecture defines a struct page for the zero page, just | 
|  | * fall through and treat it like a normal page. | 
|  | */ | 
|  | if (!vm_normal_page(walk->vma, addr, pte) && | 
|  | !is_zero_pfn(pte_pfn(pte))) { | 
|  | if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) { | 
|  | pte_unmap(ptep); | 
|  | return -EFAULT; | 
|  | } | 
|  | new_pfn_flags = HMM_PFN_ERROR; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | new_pfn_flags = pte_pfn(pte) | cpu_flags; | 
|  | out: | 
|  | *hmm_pfn = (*hmm_pfn & HMM_PFN_INOUT_FLAGS) | new_pfn_flags; | 
|  | return 0; | 
|  |  | 
|  | fault: | 
|  | pte_unmap(ptep); | 
|  | /* Fault any virtual address we were asked to fault */ | 
|  | return hmm_vma_fault(addr, end, required_fault, walk); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | 
|  | static int hmm_vma_handle_absent_pmd(struct mm_walk *walk, unsigned long start, | 
|  | unsigned long end, unsigned long *hmm_pfns, | 
|  | pmd_t pmd) | 
|  | { | 
|  | struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
|  | struct hmm_range *range = hmm_vma_walk->range; | 
|  | unsigned long npages = (end - start) >> PAGE_SHIFT; | 
|  | unsigned long addr = start; | 
|  | swp_entry_t entry = pmd_to_swp_entry(pmd); | 
|  | unsigned int required_fault; | 
|  |  | 
|  | if (is_device_private_entry(entry) && | 
|  | pfn_swap_entry_folio(entry)->pgmap->owner == | 
|  | range->dev_private_owner) { | 
|  | unsigned long cpu_flags = HMM_PFN_VALID | | 
|  | hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT); | 
|  | unsigned long pfn = swp_offset_pfn(entry); | 
|  | unsigned long i; | 
|  |  | 
|  | if (is_writable_device_private_entry(entry)) | 
|  | cpu_flags |= HMM_PFN_WRITE; | 
|  |  | 
|  | /* | 
|  | * Fully populate the PFN list though subsequent PFNs could be | 
|  | * inferred, because drivers which are not yet aware of large | 
|  | * folios probably do not support sparsely populated PFN lists. | 
|  | */ | 
|  | for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) { | 
|  | hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; | 
|  | hmm_pfns[i] |= pfn | cpu_flags; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns, | 
|  | npages, 0); | 
|  | if (required_fault) { | 
|  | if (is_device_private_entry(entry)) | 
|  | return hmm_vma_fault(addr, end, required_fault, walk); | 
|  | else | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); | 
|  | } | 
|  | #else | 
|  | static int hmm_vma_handle_absent_pmd(struct mm_walk *walk, unsigned long start, | 
|  | unsigned long end, unsigned long *hmm_pfns, | 
|  | pmd_t pmd) | 
|  | { | 
|  | struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
|  | struct hmm_range *range = hmm_vma_walk->range; | 
|  | unsigned long npages = (end - start) >> PAGE_SHIFT; | 
|  |  | 
|  | if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) | 
|  | return -EFAULT; | 
|  | return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); | 
|  | } | 
|  | #endif  /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ | 
|  |  | 
|  | static int hmm_vma_walk_pmd(pmd_t *pmdp, | 
|  | unsigned long start, | 
|  | unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
|  | struct hmm_range *range = hmm_vma_walk->range; | 
|  | unsigned long *hmm_pfns = | 
|  | &range->hmm_pfns[(start - range->start) >> PAGE_SHIFT]; | 
|  | unsigned long npages = (end - start) >> PAGE_SHIFT; | 
|  | unsigned long addr = start; | 
|  | pte_t *ptep; | 
|  | pmd_t pmd; | 
|  |  | 
|  | again: | 
|  | pmd = pmdp_get_lockless(pmdp); | 
|  | if (pmd_none(pmd)) | 
|  | return hmm_vma_walk_hole(start, end, -1, walk); | 
|  |  | 
|  | if (thp_migration_supported() && is_pmd_migration_entry(pmd)) { | 
|  | if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) { | 
|  | hmm_vma_walk->last = addr; | 
|  | pmd_migration_entry_wait(walk->mm, pmdp); | 
|  | return -EBUSY; | 
|  | } | 
|  | return hmm_pfns_fill(start, end, range, 0); | 
|  | } | 
|  |  | 
|  | if (!pmd_present(pmd)) | 
|  | return hmm_vma_handle_absent_pmd(walk, start, end, hmm_pfns, | 
|  | pmd); | 
|  |  | 
|  | if (pmd_trans_huge(pmd)) { | 
|  | /* | 
|  | * No need to take pmd_lock here, even if some other thread | 
|  | * is splitting the huge pmd we will get that event through | 
|  | * mmu_notifier callback. | 
|  | * | 
|  | * So just read pmd value and check again it's a transparent | 
|  | * huge or device mapping one and compute corresponding pfn | 
|  | * values. | 
|  | */ | 
|  | pmd = pmdp_get_lockless(pmdp); | 
|  | if (!pmd_trans_huge(pmd)) | 
|  | goto again; | 
|  |  | 
|  | return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have handled all the valid cases above ie either none, migration, | 
|  | * huge or transparent huge. At this point either it is a valid pmd | 
|  | * entry pointing to pte directory or it is a bad pmd that will not | 
|  | * recover. | 
|  | */ | 
|  | if (pmd_bad(pmd)) { | 
|  | if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) | 
|  | return -EFAULT; | 
|  | return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); | 
|  | } | 
|  |  | 
|  | ptep = pte_offset_map(pmdp, addr); | 
|  | if (!ptep) | 
|  | goto again; | 
|  | for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) { | 
|  | int r; | 
|  |  | 
|  | r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns); | 
|  | if (r) { | 
|  | /* hmm_vma_handle_pte() did pte_unmap() */ | 
|  | return r; | 
|  | } | 
|  | } | 
|  | pte_unmap(ptep - 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) | 
|  | static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range, | 
|  | pud_t pud) | 
|  | { | 
|  | if (!pud_present(pud)) | 
|  | return 0; | 
|  | return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : | 
|  | HMM_PFN_VALID) | | 
|  | hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
|  | struct hmm_range *range = hmm_vma_walk->range; | 
|  | unsigned long addr = start; | 
|  | pud_t pud; | 
|  | spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma); | 
|  |  | 
|  | if (!ptl) | 
|  | return 0; | 
|  |  | 
|  | /* Normally we don't want to split the huge page */ | 
|  | walk->action = ACTION_CONTINUE; | 
|  |  | 
|  | pud = READ_ONCE(*pudp); | 
|  | if (!pud_present(pud)) { | 
|  | spin_unlock(ptl); | 
|  | return hmm_vma_walk_hole(start, end, -1, walk); | 
|  | } | 
|  |  | 
|  | if (pud_leaf(pud)) { | 
|  | unsigned long i, npages, pfn; | 
|  | unsigned int required_fault; | 
|  | unsigned long *hmm_pfns; | 
|  | unsigned long cpu_flags; | 
|  |  | 
|  | i = (addr - range->start) >> PAGE_SHIFT; | 
|  | npages = (end - addr) >> PAGE_SHIFT; | 
|  | hmm_pfns = &range->hmm_pfns[i]; | 
|  |  | 
|  | cpu_flags = pud_to_hmm_pfn_flags(range, pud); | 
|  | required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns, | 
|  | npages, cpu_flags); | 
|  | if (required_fault) { | 
|  | spin_unlock(ptl); | 
|  | return hmm_vma_fault(addr, end, required_fault, walk); | 
|  | } | 
|  |  | 
|  | pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | 
|  | for (i = 0; i < npages; ++i, ++pfn) { | 
|  | hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; | 
|  | hmm_pfns[i] |= pfn | cpu_flags; | 
|  | } | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* Ask for the PUD to be split */ | 
|  | walk->action = ACTION_SUBTREE; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(ptl); | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | #define hmm_vma_walk_pud	NULL | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask, | 
|  | unsigned long start, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | unsigned long addr = start, i, pfn; | 
|  | struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
|  | struct hmm_range *range = hmm_vma_walk->range; | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  | unsigned int required_fault; | 
|  | unsigned long pfn_req_flags; | 
|  | unsigned long cpu_flags; | 
|  | spinlock_t *ptl; | 
|  | pte_t entry; | 
|  |  | 
|  | ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte); | 
|  | entry = huge_ptep_get(walk->mm, addr, pte); | 
|  |  | 
|  | i = (start - range->start) >> PAGE_SHIFT; | 
|  | pfn_req_flags = range->hmm_pfns[i]; | 
|  | cpu_flags = pte_to_hmm_pfn_flags(range, entry) | | 
|  | hmm_pfn_flags_order(huge_page_order(hstate_vma(vma))); | 
|  | required_fault = | 
|  | hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); | 
|  | if (required_fault) { | 
|  | int ret; | 
|  |  | 
|  | spin_unlock(ptl); | 
|  | hugetlb_vma_unlock_read(vma); | 
|  | /* | 
|  | * Avoid deadlock: drop the vma lock before calling | 
|  | * hmm_vma_fault(), which will itself potentially take and | 
|  | * drop the vma lock. This is also correct from a | 
|  | * protection point of view, because there is no further | 
|  | * use here of either pte or ptl after dropping the vma | 
|  | * lock. | 
|  | */ | 
|  | ret = hmm_vma_fault(addr, end, required_fault, walk); | 
|  | hugetlb_vma_lock_read(vma); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT); | 
|  | for (; addr < end; addr += PAGE_SIZE, i++, pfn++) { | 
|  | range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; | 
|  | range->hmm_pfns[i] |= pfn | cpu_flags; | 
|  | } | 
|  |  | 
|  | spin_unlock(ptl); | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | #define hmm_vma_walk_hugetlb_entry NULL | 
|  | #endif /* CONFIG_HUGETLB_PAGE */ | 
|  |  | 
|  | static int hmm_vma_walk_test(unsigned long start, unsigned long end, | 
|  | struct mm_walk *walk) | 
|  | { | 
|  | struct hmm_vma_walk *hmm_vma_walk = walk->private; | 
|  | struct hmm_range *range = hmm_vma_walk->range; | 
|  | struct vm_area_struct *vma = walk->vma; | 
|  |  | 
|  | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)) && | 
|  | vma->vm_flags & VM_READ) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * vma ranges that don't have struct page backing them or map I/O | 
|  | * devices directly cannot be handled by hmm_range_fault(). | 
|  | * | 
|  | * If the vma does not allow read access, then assume that it does not | 
|  | * allow write access either. HMM does not support architectures that | 
|  | * allow write without read. | 
|  | * | 
|  | * If a fault is requested for an unsupported range then it is a hard | 
|  | * failure. | 
|  | */ | 
|  | if (hmm_range_need_fault(hmm_vma_walk, | 
|  | range->hmm_pfns + | 
|  | ((start - range->start) >> PAGE_SHIFT), | 
|  | (end - start) >> PAGE_SHIFT, 0)) | 
|  | return -EFAULT; | 
|  |  | 
|  | hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); | 
|  |  | 
|  | /* Skip this vma and continue processing the next vma. */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const struct mm_walk_ops hmm_walk_ops = { | 
|  | .pud_entry	= hmm_vma_walk_pud, | 
|  | .pmd_entry	= hmm_vma_walk_pmd, | 
|  | .pte_hole	= hmm_vma_walk_hole, | 
|  | .hugetlb_entry	= hmm_vma_walk_hugetlb_entry, | 
|  | .test_walk	= hmm_vma_walk_test, | 
|  | .walk_lock	= PGWALK_RDLOCK, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * hmm_range_fault - try to fault some address in a virtual address range | 
|  | * @range:	argument structure | 
|  | * | 
|  | * Returns 0 on success or one of the following error codes: | 
|  | * | 
|  | * -EINVAL:	Invalid arguments or mm or virtual address is in an invalid vma | 
|  | *		(e.g., device file vma). | 
|  | * -ENOMEM:	Out of memory. | 
|  | * -EPERM:	Invalid permission (e.g., asking for write and range is read | 
|  | *		only). | 
|  | * -EBUSY:	The range has been invalidated and the caller needs to wait for | 
|  | *		the invalidation to finish. | 
|  | * -EFAULT:     A page was requested to be valid and could not be made valid | 
|  | *              ie it has no backing VMA or it is illegal to access | 
|  | * | 
|  | * This is similar to get_user_pages(), except that it can read the page tables | 
|  | * without mutating them (ie causing faults). | 
|  | */ | 
|  | int hmm_range_fault(struct hmm_range *range) | 
|  | { | 
|  | struct hmm_vma_walk hmm_vma_walk = { | 
|  | .range = range, | 
|  | .last = range->start, | 
|  | }; | 
|  | struct mm_struct *mm = range->notifier->mm; | 
|  | int ret; | 
|  |  | 
|  | mmap_assert_locked(mm); | 
|  |  | 
|  | do { | 
|  | /* If range is no longer valid force retry. */ | 
|  | if (mmu_interval_check_retry(range->notifier, | 
|  | range->notifier_seq)) | 
|  | return -EBUSY; | 
|  | ret = walk_page_range(mm, hmm_vma_walk.last, range->end, | 
|  | &hmm_walk_ops, &hmm_vma_walk); | 
|  | /* | 
|  | * When -EBUSY is returned the loop restarts with | 
|  | * hmm_vma_walk.last set to an address that has not been stored | 
|  | * in pfns. All entries < last in the pfn array are set to their | 
|  | * output, and all >= are still at their input values. | 
|  | */ | 
|  | } while (ret == -EBUSY); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(hmm_range_fault); | 
|  |  | 
|  | /** | 
|  | * hmm_dma_map_alloc - Allocate HMM map structure | 
|  | * @dev: device to allocate structure for | 
|  | * @map: HMM map to allocate | 
|  | * @nr_entries: number of entries in the map | 
|  | * @dma_entry_size: size of the DMA entry in the map | 
|  | * | 
|  | * Allocate the HMM map structure and all the lists it contains. | 
|  | * Return 0 on success, -ENOMEM on failure. | 
|  | */ | 
|  | int hmm_dma_map_alloc(struct device *dev, struct hmm_dma_map *map, | 
|  | size_t nr_entries, size_t dma_entry_size) | 
|  | { | 
|  | bool dma_need_sync = false; | 
|  | bool use_iova; | 
|  |  | 
|  | WARN_ON_ONCE(!(nr_entries * PAGE_SIZE / dma_entry_size)); | 
|  |  | 
|  | /* | 
|  | * The HMM API violates our normal DMA buffer ownership rules and can't | 
|  | * transfer buffer ownership.  The dma_addressing_limited() check is a | 
|  | * best approximation to ensure no swiotlb buffering happens. | 
|  | */ | 
|  | #ifdef CONFIG_DMA_NEED_SYNC | 
|  | dma_need_sync = !dev->dma_skip_sync; | 
|  | #endif /* CONFIG_DMA_NEED_SYNC */ | 
|  | if (dma_need_sync || dma_addressing_limited(dev)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | map->dma_entry_size = dma_entry_size; | 
|  | map->pfn_list = kvcalloc(nr_entries, sizeof(*map->pfn_list), | 
|  | GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!map->pfn_list) | 
|  | return -ENOMEM; | 
|  |  | 
|  | use_iova = dma_iova_try_alloc(dev, &map->state, 0, | 
|  | nr_entries * PAGE_SIZE); | 
|  | if (!use_iova && dma_need_unmap(dev)) { | 
|  | map->dma_list = kvcalloc(nr_entries, sizeof(*map->dma_list), | 
|  | GFP_KERNEL | __GFP_NOWARN); | 
|  | if (!map->dma_list) | 
|  | goto err_dma; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | err_dma: | 
|  | kvfree(map->pfn_list); | 
|  | return -ENOMEM; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmm_dma_map_alloc); | 
|  |  | 
|  | /** | 
|  | * hmm_dma_map_free - iFree HMM map structure | 
|  | * @dev: device to free structure from | 
|  | * @map: HMM map containing the various lists and state | 
|  | * | 
|  | * Free the HMM map structure and all the lists it contains. | 
|  | */ | 
|  | void hmm_dma_map_free(struct device *dev, struct hmm_dma_map *map) | 
|  | { | 
|  | if (dma_use_iova(&map->state)) | 
|  | dma_iova_free(dev, &map->state); | 
|  | kvfree(map->pfn_list); | 
|  | kvfree(map->dma_list); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmm_dma_map_free); | 
|  |  | 
|  | /** | 
|  | * hmm_dma_map_pfn - Map a physical HMM page to DMA address | 
|  | * @dev: Device to map the page for | 
|  | * @map: HMM map | 
|  | * @idx: Index into the PFN and dma address arrays | 
|  | * @p2pdma_state: PCI P2P state. | 
|  | * | 
|  | * dma_alloc_iova() allocates IOVA based on the size specified by their use in | 
|  | * iova->size. Call this function after IOVA allocation to link whole @page | 
|  | * to get the DMA address. Note that very first call to this function | 
|  | * will have @offset set to 0 in the IOVA space allocated from | 
|  | * dma_alloc_iova(). For subsequent calls to this function on same @iova, | 
|  | * @offset needs to be advanced by the caller with the size of previous | 
|  | * page that was linked + DMA address returned for the previous page that was | 
|  | * linked by this function. | 
|  | */ | 
|  | dma_addr_t hmm_dma_map_pfn(struct device *dev, struct hmm_dma_map *map, | 
|  | size_t idx, | 
|  | struct pci_p2pdma_map_state *p2pdma_state) | 
|  | { | 
|  | struct dma_iova_state *state = &map->state; | 
|  | dma_addr_t *dma_addrs = map->dma_list; | 
|  | unsigned long *pfns = map->pfn_list; | 
|  | struct page *page = hmm_pfn_to_page(pfns[idx]); | 
|  | phys_addr_t paddr = hmm_pfn_to_phys(pfns[idx]); | 
|  | size_t offset = idx * map->dma_entry_size; | 
|  | unsigned long attrs = 0; | 
|  | dma_addr_t dma_addr; | 
|  | int ret; | 
|  |  | 
|  | if ((pfns[idx] & HMM_PFN_DMA_MAPPED) && | 
|  | !(pfns[idx] & HMM_PFN_P2PDMA_BUS)) { | 
|  | /* | 
|  | * We are in this flow when there is a need to resync flags, | 
|  | * for example when page was already linked in prefetch call | 
|  | * with READ flag and now we need to add WRITE flag | 
|  | * | 
|  | * This page was already programmed to HW and we don't want/need | 
|  | * to unlink and link it again just to resync flags. | 
|  | */ | 
|  | if (dma_use_iova(state)) | 
|  | return state->addr + offset; | 
|  |  | 
|  | /* | 
|  | * Without dma_need_unmap, the dma_addrs array is NULL, thus we | 
|  | * need to regenerate the address below even if there already | 
|  | * was a mapping. But !dma_need_unmap implies that the | 
|  | * mapping stateless, so this is fine. | 
|  | */ | 
|  | if (dma_need_unmap(dev)) | 
|  | return dma_addrs[idx]; | 
|  |  | 
|  | /* Continue to remapping */ | 
|  | } | 
|  |  | 
|  | switch (pci_p2pdma_state(p2pdma_state, dev, page)) { | 
|  | case PCI_P2PDMA_MAP_NONE: | 
|  | break; | 
|  | case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: | 
|  | attrs |= DMA_ATTR_MMIO; | 
|  | pfns[idx] |= HMM_PFN_P2PDMA; | 
|  | break; | 
|  | case PCI_P2PDMA_MAP_BUS_ADDR: | 
|  | pfns[idx] |= HMM_PFN_P2PDMA_BUS | HMM_PFN_DMA_MAPPED; | 
|  | return pci_p2pdma_bus_addr_map(p2pdma_state, paddr); | 
|  | default: | 
|  | return DMA_MAPPING_ERROR; | 
|  | } | 
|  |  | 
|  | if (dma_use_iova(state)) { | 
|  | ret = dma_iova_link(dev, state, paddr, offset, | 
|  | map->dma_entry_size, DMA_BIDIRECTIONAL, | 
|  | attrs); | 
|  | if (ret) | 
|  | goto error; | 
|  |  | 
|  | ret = dma_iova_sync(dev, state, offset, map->dma_entry_size); | 
|  | if (ret) { | 
|  | dma_iova_unlink(dev, state, offset, map->dma_entry_size, | 
|  | DMA_BIDIRECTIONAL, attrs); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | dma_addr = state->addr + offset; | 
|  | } else { | 
|  | if (WARN_ON_ONCE(dma_need_unmap(dev) && !dma_addrs)) | 
|  | goto error; | 
|  |  | 
|  | dma_addr = dma_map_phys(dev, paddr, map->dma_entry_size, | 
|  | DMA_BIDIRECTIONAL, attrs); | 
|  | if (dma_mapping_error(dev, dma_addr)) | 
|  | goto error; | 
|  |  | 
|  | if (dma_need_unmap(dev)) | 
|  | dma_addrs[idx] = dma_addr; | 
|  | } | 
|  | pfns[idx] |= HMM_PFN_DMA_MAPPED; | 
|  | return dma_addr; | 
|  | error: | 
|  | pfns[idx] &= ~HMM_PFN_P2PDMA; | 
|  | return DMA_MAPPING_ERROR; | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmm_dma_map_pfn); | 
|  |  | 
|  | /** | 
|  | * hmm_dma_unmap_pfn - Unmap a physical HMM page from DMA address | 
|  | * @dev: Device to unmap the page from | 
|  | * @map: HMM map | 
|  | * @idx: Index of the PFN to unmap | 
|  | * | 
|  | * Returns true if the PFN was mapped and has been unmapped, false otherwise. | 
|  | */ | 
|  | bool hmm_dma_unmap_pfn(struct device *dev, struct hmm_dma_map *map, size_t idx) | 
|  | { | 
|  | const unsigned long valid_dma = HMM_PFN_VALID | HMM_PFN_DMA_MAPPED; | 
|  | struct dma_iova_state *state = &map->state; | 
|  | dma_addr_t *dma_addrs = map->dma_list; | 
|  | unsigned long *pfns = map->pfn_list; | 
|  | unsigned long attrs = 0; | 
|  |  | 
|  | if ((pfns[idx] & valid_dma) != valid_dma) | 
|  | return false; | 
|  |  | 
|  | if (pfns[idx] & HMM_PFN_P2PDMA) | 
|  | attrs |= DMA_ATTR_MMIO; | 
|  |  | 
|  | if (pfns[idx] & HMM_PFN_P2PDMA_BUS) | 
|  | ; /* no need to unmap bus address P2P mappings */ | 
|  | else if (dma_use_iova(state)) | 
|  | dma_iova_unlink(dev, state, idx * map->dma_entry_size, | 
|  | map->dma_entry_size, DMA_BIDIRECTIONAL, attrs); | 
|  | else if (dma_need_unmap(dev)) | 
|  | dma_unmap_phys(dev, dma_addrs[idx], map->dma_entry_size, | 
|  | DMA_BIDIRECTIONAL, attrs); | 
|  |  | 
|  | pfns[idx] &= | 
|  | ~(HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA | HMM_PFN_P2PDMA_BUS); | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hmm_dma_unmap_pfn); |