| /* SPDX-License-Identifier: GPL-2.0 */ | 
 | /* | 
 |  * Copyright (C) 2007 Oracle.  All rights reserved. | 
 |  */ | 
 |  | 
 | #ifndef BTRFS_CTREE_H | 
 | #define BTRFS_CTREE_H | 
 |  | 
 | #include <linux/cleanup.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/wait.h> | 
 | #include <linux/list.h> | 
 | #include <linux/atomic.h> | 
 | #include <linux/xarray.h> | 
 | #include <linux/refcount.h> | 
 | #include <uapi/linux/btrfs_tree.h> | 
 | #include "locking.h" | 
 | #include "fs.h" | 
 | #include "accessors.h" | 
 | #include "extent-io-tree.h" | 
 |  | 
 | struct extent_buffer; | 
 | struct btrfs_block_rsv; | 
 | struct btrfs_trans_handle; | 
 | struct btrfs_block_group; | 
 |  | 
 | /* Read ahead values for struct btrfs_path.reada */ | 
 | enum { | 
 | 	READA_NONE, | 
 | 	READA_BACK, | 
 | 	READA_FORWARD, | 
 | 	/* | 
 | 	 * Similar to READA_FORWARD but unlike it: | 
 | 	 * | 
 | 	 * 1) It will trigger readahead even for leaves that are not close to | 
 | 	 *    each other on disk; | 
 | 	 * 2) It also triggers readahead for nodes; | 
 | 	 * 3) During a search, even when a node or leaf is already in memory, it | 
 | 	 *    will still trigger readahead for other nodes and leaves that follow | 
 | 	 *    it. | 
 | 	 * | 
 | 	 * This is meant to be used only when we know we are iterating over the | 
 | 	 * entire tree or a very large part of it. | 
 | 	 */ | 
 | 	READA_FORWARD_ALWAYS, | 
 | }; | 
 |  | 
 | /* | 
 |  * btrfs_paths remember the path taken from the root down to the leaf. | 
 |  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point | 
 |  * to any other levels that are present. | 
 |  * | 
 |  * The slots array records the index of the item or block pointer | 
 |  * used while walking the tree. | 
 |  */ | 
 | struct btrfs_path { | 
 | 	struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; | 
 | 	int slots[BTRFS_MAX_LEVEL]; | 
 | 	/* if there is real range locking, this locks field will change */ | 
 | 	u8 locks[BTRFS_MAX_LEVEL]; | 
 | 	u8 reada; | 
 | 	u8 lowest_level; | 
 |  | 
 | 	/* | 
 | 	 * set by btrfs_split_item, tells search_slot to keep all locks | 
 | 	 * and to force calls to keep space in the nodes | 
 | 	 */ | 
 | 	unsigned int search_for_split:1; | 
 | 	/* Keep some upper locks as we walk down. */ | 
 | 	unsigned int keep_locks:1; | 
 | 	unsigned int skip_locking:1; | 
 | 	unsigned int search_commit_root:1; | 
 | 	unsigned int need_commit_sem:1; | 
 | 	unsigned int skip_release_on_error:1; | 
 | 	/* | 
 | 	 * Indicate that new item (btrfs_search_slot) is extending already | 
 | 	 * existing item and ins_len contains only the data size and not item | 
 | 	 * header (ie. sizeof(struct btrfs_item) is not included). | 
 | 	 */ | 
 | 	unsigned int search_for_extension:1; | 
 | 	/* Stop search if any locks need to be taken (for read) */ | 
 | 	unsigned int nowait:1; | 
 | }; | 
 |  | 
 | #define BTRFS_PATH_AUTO_FREE(path_name)					\ | 
 | 	struct btrfs_path *path_name __free(btrfs_free_path) = NULL | 
 |  | 
 | /* | 
 |  * The state of btrfs root | 
 |  */ | 
 | enum { | 
 | 	/* | 
 | 	 * btrfs_record_root_in_trans is a multi-step process, and it can race | 
 | 	 * with the balancing code.   But the race is very small, and only the | 
 | 	 * first time the root is added to each transaction.  So IN_TRANS_SETUP | 
 | 	 * is used to tell us when more checks are required | 
 | 	 */ | 
 | 	BTRFS_ROOT_IN_TRANS_SETUP, | 
 |  | 
 | 	/* | 
 | 	 * Set if tree blocks of this root can be shared by other roots. | 
 | 	 * Only subvolume trees and their reloc trees have this bit set. | 
 | 	 * Conflicts with TRACK_DIRTY bit. | 
 | 	 * | 
 | 	 * This affects two things: | 
 | 	 * | 
 | 	 * - How balance works | 
 | 	 *   For shareable roots, we need to use reloc tree and do path | 
 | 	 *   replacement for balance, and need various pre/post hooks for | 
 | 	 *   snapshot creation to handle them. | 
 | 	 * | 
 | 	 *   While for non-shareable trees, we just simply do a tree search | 
 | 	 *   with COW. | 
 | 	 * | 
 | 	 * - How dirty roots are tracked | 
 | 	 *   For shareable roots, btrfs_record_root_in_trans() is needed to | 
 | 	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they | 
 | 	 *   don't need to set this manually. | 
 | 	 */ | 
 | 	BTRFS_ROOT_SHAREABLE, | 
 | 	BTRFS_ROOT_TRACK_DIRTY, | 
 | 	BTRFS_ROOT_IN_RADIX, | 
 | 	BTRFS_ROOT_ORPHAN_ITEM_INSERTED, | 
 | 	BTRFS_ROOT_DEFRAG_RUNNING, | 
 | 	BTRFS_ROOT_FORCE_COW, | 
 | 	BTRFS_ROOT_MULTI_LOG_TASKS, | 
 | 	BTRFS_ROOT_DIRTY, | 
 | 	BTRFS_ROOT_DELETING, | 
 |  | 
 | 	/* | 
 | 	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan | 
 | 	 * | 
 | 	 * Set for the subvolume tree owning the reloc tree. | 
 | 	 */ | 
 | 	BTRFS_ROOT_DEAD_RELOC_TREE, | 
 | 	/* Mark dead root stored on device whose cleanup needs to be resumed */ | 
 | 	BTRFS_ROOT_DEAD_TREE, | 
 | 	/* The root has a log tree. Used for subvolume roots and the tree root. */ | 
 | 	BTRFS_ROOT_HAS_LOG_TREE, | 
 | 	/* Qgroup flushing is in progress */ | 
 | 	BTRFS_ROOT_QGROUP_FLUSHING, | 
 | 	/* We started the orphan cleanup for this root. */ | 
 | 	BTRFS_ROOT_ORPHAN_CLEANUP, | 
 | 	/* This root has a drop operation that was started previously. */ | 
 | 	BTRFS_ROOT_UNFINISHED_DROP, | 
 | 	/* This reloc root needs to have its buffers lockdep class reset. */ | 
 | 	BTRFS_ROOT_RESET_LOCKDEP_CLASS, | 
 | }; | 
 |  | 
 | /* | 
 |  * Record swapped tree blocks of a subvolume tree for delayed subtree trace | 
 |  * code. For detail check comment in fs/btrfs/qgroup.c. | 
 |  */ | 
 | struct btrfs_qgroup_swapped_blocks { | 
 | 	spinlock_t lock; | 
 | 	/* RM_EMPTY_ROOT() of above blocks[] */ | 
 | 	bool swapped; | 
 | 	struct rb_root blocks[BTRFS_MAX_LEVEL]; | 
 | }; | 
 |  | 
 | /* | 
 |  * in ram representation of the tree.  extent_root is used for all allocations | 
 |  * and for the extent tree extent_root root. | 
 |  */ | 
 | struct btrfs_root { | 
 | 	struct rb_node rb_node; | 
 |  | 
 | 	struct extent_buffer *node; | 
 |  | 
 | 	struct extent_buffer *commit_root; | 
 | 	struct btrfs_root *log_root; | 
 | 	struct btrfs_root *reloc_root; | 
 |  | 
 | 	unsigned long state; | 
 | 	struct btrfs_root_item root_item; | 
 | 	struct btrfs_key root_key; | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	struct extent_io_tree dirty_log_pages; | 
 |  | 
 | 	struct mutex objectid_mutex; | 
 |  | 
 | 	spinlock_t accounting_lock; | 
 | 	struct btrfs_block_rsv *block_rsv; | 
 |  | 
 | 	struct mutex log_mutex; | 
 | 	wait_queue_head_t log_writer_wait; | 
 | 	wait_queue_head_t log_commit_wait[2]; | 
 | 	struct list_head log_ctxs[2]; | 
 | 	/* Used only for log trees of subvolumes, not for the log root tree */ | 
 | 	atomic_t log_writers; | 
 | 	atomic_t log_commit[2]; | 
 | 	/* Used only for log trees of subvolumes, not for the log root tree */ | 
 | 	atomic_t log_batch; | 
 | 	/* | 
 | 	 * Protected by the 'log_mutex' lock but can be read without holding | 
 | 	 * that lock to avoid unnecessary lock contention, in which case it | 
 | 	 * should be read using btrfs_get_root_log_transid() except if it's a | 
 | 	 * log tree in which case it can be directly accessed. Updates to this | 
 | 	 * field should always use btrfs_set_root_log_transid(), except for log | 
 | 	 * trees where the field can be updated directly. | 
 | 	 */ | 
 | 	int log_transid; | 
 | 	/* No matter the commit succeeds or not*/ | 
 | 	int log_transid_committed; | 
 | 	/* | 
 | 	 * Just be updated when the commit succeeds. Use | 
 | 	 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit() | 
 | 	 * to access this field. | 
 | 	 */ | 
 | 	int last_log_commit; | 
 | 	pid_t log_start_pid; | 
 |  | 
 | 	u64 last_trans; | 
 |  | 
 | 	u64 free_objectid; | 
 |  | 
 | 	struct btrfs_key defrag_progress; | 
 | 	struct btrfs_key defrag_max; | 
 |  | 
 | 	/* The dirty list is only used by non-shareable roots */ | 
 | 	struct list_head dirty_list; | 
 |  | 
 | 	struct list_head root_list; | 
 |  | 
 | 	/* Xarray that keeps track of in-memory inodes. */ | 
 | 	struct xarray inodes; | 
 |  | 
 | 	/* Xarray that keeps track of delayed nodes of every inode. */ | 
 | 	struct xarray delayed_nodes; | 
 | 	/* | 
 | 	 * right now this just gets used so that a root has its own devid | 
 | 	 * for stat.  It may be used for more later | 
 | 	 */ | 
 | 	dev_t anon_dev; | 
 |  | 
 | 	spinlock_t root_item_lock; | 
 | 	refcount_t refs; | 
 |  | 
 | 	struct mutex delalloc_mutex; | 
 | 	spinlock_t delalloc_lock; | 
 | 	/* | 
 | 	 * all of the inodes that have delalloc bytes.  It is possible for | 
 | 	 * this list to be empty even when there is still dirty data=ordered | 
 | 	 * extents waiting to finish IO. | 
 | 	 */ | 
 | 	struct list_head delalloc_inodes; | 
 | 	struct list_head delalloc_root; | 
 | 	u64 nr_delalloc_inodes; | 
 |  | 
 | 	struct mutex ordered_extent_mutex; | 
 | 	/* | 
 | 	 * this is used by the balancing code to wait for all the pending | 
 | 	 * ordered extents | 
 | 	 */ | 
 | 	spinlock_t ordered_extent_lock; | 
 |  | 
 | 	/* | 
 | 	 * all of the data=ordered extents pending writeback | 
 | 	 * these can span multiple transactions and basically include | 
 | 	 * every dirty data page that isn't from nodatacow | 
 | 	 */ | 
 | 	struct list_head ordered_extents; | 
 | 	struct list_head ordered_root; | 
 | 	u64 nr_ordered_extents; | 
 |  | 
 | 	/* | 
 | 	 * Not empty if this subvolume root has gone through tree block swap | 
 | 	 * (relocation) | 
 | 	 * | 
 | 	 * Will be used by reloc_control::dirty_subvol_roots. | 
 | 	 */ | 
 | 	struct list_head reloc_dirty_list; | 
 |  | 
 | 	/* | 
 | 	 * Number of currently running SEND ioctls to prevent | 
 | 	 * manipulation with the read-only status via SUBVOL_SETFLAGS | 
 | 	 */ | 
 | 	int send_in_progress; | 
 | 	/* | 
 | 	 * Number of currently running deduplication operations that have a | 
 | 	 * destination inode belonging to this root. Protected by the lock | 
 | 	 * root_item_lock. | 
 | 	 */ | 
 | 	int dedupe_in_progress; | 
 | 	/* For exclusion of snapshot creation and nocow writes */ | 
 | 	struct btrfs_drew_lock snapshot_lock; | 
 |  | 
 | 	atomic_t snapshot_force_cow; | 
 |  | 
 | 	/* For qgroup metadata reserved space */ | 
 | 	spinlock_t qgroup_meta_rsv_lock; | 
 | 	u64 qgroup_meta_rsv_pertrans; | 
 | 	u64 qgroup_meta_rsv_prealloc; | 
 | 	wait_queue_head_t qgroup_flush_wait; | 
 |  | 
 | 	/* Number of active swapfiles */ | 
 | 	atomic_t nr_swapfiles; | 
 |  | 
 | 	/* Record pairs of swapped blocks for qgroup */ | 
 | 	struct btrfs_qgroup_swapped_blocks swapped_blocks; | 
 |  | 
 | 	/* Used only by log trees, when logging csum items */ | 
 | 	struct extent_io_tree log_csum_range; | 
 |  | 
 | 	/* Used in simple quotas, track root during relocation. */ | 
 | 	u64 relocation_src_root; | 
 |  | 
 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
 | 	u64 alloc_bytenr; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_BTRFS_DEBUG | 
 | 	struct list_head leak_list; | 
 | #endif | 
 | }; | 
 |  | 
 | static inline bool btrfs_root_readonly(const struct btrfs_root *root) | 
 | { | 
 | 	/* Byte-swap the constant at compile time, root_item::flags is LE */ | 
 | 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; | 
 | } | 
 |  | 
 | static inline bool btrfs_root_dead(const struct btrfs_root *root) | 
 | { | 
 | 	/* Byte-swap the constant at compile time, root_item::flags is LE */ | 
 | 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; | 
 | } | 
 |  | 
 | static inline u64 btrfs_root_id(const struct btrfs_root *root) | 
 | { | 
 | 	return root->root_key.objectid; | 
 | } | 
 |  | 
 | static inline int btrfs_get_root_log_transid(const struct btrfs_root *root) | 
 | { | 
 | 	return READ_ONCE(root->log_transid); | 
 | } | 
 |  | 
 | static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid) | 
 | { | 
 | 	WRITE_ONCE(root->log_transid, log_transid); | 
 | } | 
 |  | 
 | static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root) | 
 | { | 
 | 	return READ_ONCE(root->last_log_commit); | 
 | } | 
 |  | 
 | static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id) | 
 | { | 
 | 	WRITE_ONCE(root->last_log_commit, commit_id); | 
 | } | 
 |  | 
 | static inline u64 btrfs_get_root_last_trans(const struct btrfs_root *root) | 
 | { | 
 | 	return READ_ONCE(root->last_trans); | 
 | } | 
 |  | 
 | static inline void btrfs_set_root_last_trans(struct btrfs_root *root, u64 transid) | 
 | { | 
 | 	WRITE_ONCE(root->last_trans, transid); | 
 | } | 
 |  | 
 | /* | 
 |  * Return the generation this root started with. | 
 |  * | 
 |  * Every normal root that is created with root->root_key.offset set to it's | 
 |  * originating generation.  If it is a snapshot it is the generation when the | 
 |  * snapshot was created. | 
 |  * | 
 |  * However for TREE_RELOC roots root_key.offset is the objectid of the owning | 
 |  * tree root.  Thankfully we copy the root item of the owning tree root, which | 
 |  * has it's last_snapshot set to what we would have root_key.offset set to, so | 
 |  * return that if this is a TREE_RELOC root. | 
 |  */ | 
 | static inline u64 btrfs_root_origin_generation(const struct btrfs_root *root) | 
 | { | 
 | 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) | 
 | 		return btrfs_root_last_snapshot(&root->root_item); | 
 | 	return root->root_key.offset; | 
 | } | 
 |  | 
 | /* | 
 |  * Structure that conveys information about an extent that is going to replace | 
 |  * all the extents in a file range. | 
 |  */ | 
 | struct btrfs_replace_extent_info { | 
 | 	u64 disk_offset; | 
 | 	u64 disk_len; | 
 | 	u64 data_offset; | 
 | 	u64 data_len; | 
 | 	u64 file_offset; | 
 | 	/* Pointer to a file extent item of type regular or prealloc. */ | 
 | 	char *extent_buf; | 
 | 	/* | 
 | 	 * Set to true when attempting to replace a file range with a new extent | 
 | 	 * described by this structure, set to false when attempting to clone an | 
 | 	 * existing extent into a file range. | 
 | 	 */ | 
 | 	bool is_new_extent; | 
 | 	/* Indicate if we should update the inode's mtime and ctime. */ | 
 | 	bool update_times; | 
 | 	/* Meaningful only if is_new_extent is true. */ | 
 | 	int qgroup_reserved; | 
 | 	/* | 
 | 	 * Meaningful only if is_new_extent is true. | 
 | 	 * Used to track how many extent items we have already inserted in a | 
 | 	 * subvolume tree that refer to the extent described by this structure, | 
 | 	 * so that we know when to create a new delayed ref or update an existing | 
 | 	 * one. | 
 | 	 */ | 
 | 	int insertions; | 
 | }; | 
 |  | 
 | /* Arguments for btrfs_drop_extents() */ | 
 | struct btrfs_drop_extents_args { | 
 | 	/* Input parameters */ | 
 |  | 
 | 	/* | 
 | 	 * If NULL, btrfs_drop_extents() will allocate and free its own path. | 
 | 	 * If 'replace_extent' is true, this must not be NULL. Also the path | 
 | 	 * is always released except if 'replace_extent' is true and | 
 | 	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case | 
 | 	 * the path is kept locked. | 
 | 	 */ | 
 | 	struct btrfs_path *path; | 
 | 	/* Start offset of the range to drop extents from */ | 
 | 	u64 start; | 
 | 	/* End (exclusive, last byte + 1) of the range to drop extents from */ | 
 | 	u64 end; | 
 | 	/* If true drop all the extent maps in the range */ | 
 | 	bool drop_cache; | 
 | 	/* | 
 | 	 * If true it means we want to insert a new extent after dropping all | 
 | 	 * the extents in the range. If this is true, the 'extent_item_size' | 
 | 	 * parameter must be set as well and the 'extent_inserted' field will | 
 | 	 * be set to true by btrfs_drop_extents() if it could insert the new | 
 | 	 * extent. | 
 | 	 * Note: when this is set to true the path must not be NULL. | 
 | 	 */ | 
 | 	bool replace_extent; | 
 | 	/* | 
 | 	 * Used if 'replace_extent' is true. Size of the file extent item to | 
 | 	 * insert after dropping all existing extents in the range | 
 | 	 */ | 
 | 	u32 extent_item_size; | 
 |  | 
 | 	/* Output parameters */ | 
 |  | 
 | 	/* | 
 | 	 * Set to the minimum between the input parameter 'end' and the end | 
 | 	 * (exclusive, last byte + 1) of the last dropped extent. This is always | 
 | 	 * set even if btrfs_drop_extents() returns an error. | 
 | 	 */ | 
 | 	u64 drop_end; | 
 | 	/* | 
 | 	 * The number of allocated bytes found in the range. This can be smaller | 
 | 	 * than the range's length when there are holes in the range. | 
 | 	 */ | 
 | 	u64 bytes_found; | 
 | 	/* | 
 | 	 * Only set if 'replace_extent' is true. Set to true if we were able | 
 | 	 * to insert a replacement extent after dropping all extents in the | 
 | 	 * range, otherwise set to false by btrfs_drop_extents(). | 
 | 	 * Also, if btrfs_drop_extents() has set this to true it means it | 
 | 	 * returned with the path locked, otherwise if it has set this to | 
 | 	 * false it has returned with the path released. | 
 | 	 */ | 
 | 	bool extent_inserted; | 
 | }; | 
 |  | 
 | struct btrfs_file_private { | 
 | 	void *filldir_buf; | 
 | 	u64 last_index; | 
 | 	struct extent_state *llseek_cached_state; | 
 | 	/* Task that allocated this structure. */ | 
 | 	struct task_struct *owner_task; | 
 | }; | 
 |  | 
 | static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) | 
 | { | 
 | 	return info->nodesize - sizeof(struct btrfs_header); | 
 | } | 
 |  | 
 | static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) | 
 | { | 
 | 	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); | 
 | } | 
 |  | 
 | static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) | 
 | { | 
 | 	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); | 
 | } | 
 |  | 
 | static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) | 
 | { | 
 | 	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); | 
 | } | 
 |  | 
 | int __init btrfs_ctree_init(void); | 
 | void __cold btrfs_ctree_exit(void); | 
 |  | 
 | int btrfs_bin_search(const struct extent_buffer *eb, int first_slot, | 
 | 		     const struct btrfs_key *key, int *slot); | 
 |  | 
 | int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); | 
 |  | 
 | #ifdef __LITTLE_ENDIAN | 
 |  | 
 | /* | 
 |  * Compare two keys, on little-endian the disk order is same as CPU order and | 
 |  * we can avoid the conversion. | 
 |  */ | 
 | static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key, | 
 | 				  const struct btrfs_key *k2) | 
 | { | 
 | 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; | 
 |  | 
 | 	return btrfs_comp_cpu_keys(k1, k2); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | /* Compare two keys in a memcmp fashion. */ | 
 | static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk, | 
 | 				  const struct btrfs_key *k2) | 
 | { | 
 | 	struct btrfs_key k1; | 
 |  | 
 | 	btrfs_disk_key_to_cpu(&k1, disk); | 
 |  | 
 | 	return btrfs_comp_cpu_keys(&k1, k2); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | int btrfs_previous_item(struct btrfs_root *root, | 
 | 			struct btrfs_path *path, u64 min_objectid, | 
 | 			int type); | 
 | int btrfs_previous_extent_item(struct btrfs_root *root, | 
 | 			struct btrfs_path *path, u64 min_objectid); | 
 | void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, | 
 | 			     const struct btrfs_path *path, | 
 | 			     const struct btrfs_key *new_key); | 
 | struct extent_buffer *btrfs_root_node(struct btrfs_root *root); | 
 | int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, | 
 | 			struct btrfs_key *key, int lowest_level, | 
 | 			u64 min_trans); | 
 | int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, | 
 | 			 struct btrfs_path *path, | 
 | 			 u64 min_trans); | 
 | struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, | 
 | 					   int slot); | 
 |  | 
 | int btrfs_cow_block(struct btrfs_trans_handle *trans, | 
 | 		    struct btrfs_root *root, struct extent_buffer *buf, | 
 | 		    struct extent_buffer *parent, int parent_slot, | 
 | 		    struct extent_buffer **cow_ret, | 
 | 		    enum btrfs_lock_nesting nest); | 
 | int btrfs_force_cow_block(struct btrfs_trans_handle *trans, | 
 | 			  struct btrfs_root *root, | 
 | 			  struct extent_buffer *buf, | 
 | 			  struct extent_buffer *parent, int parent_slot, | 
 | 			  struct extent_buffer **cow_ret, | 
 | 			  u64 search_start, u64 empty_size, | 
 | 			  enum btrfs_lock_nesting nest); | 
 | int btrfs_copy_root(struct btrfs_trans_handle *trans, | 
 | 		      struct btrfs_root *root, | 
 | 		      struct extent_buffer *buf, | 
 | 		      struct extent_buffer **cow_ret, u64 new_root_objectid); | 
 | bool btrfs_block_can_be_shared(const struct btrfs_trans_handle *trans, | 
 | 			       const struct btrfs_root *root, | 
 | 			       const struct extent_buffer *buf); | 
 | int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
 | 		  struct btrfs_path *path, int level, int slot); | 
 | void btrfs_extend_item(struct btrfs_trans_handle *trans, | 
 | 		       const struct btrfs_path *path, u32 data_size); | 
 | void btrfs_truncate_item(struct btrfs_trans_handle *trans, | 
 | 			 const struct btrfs_path *path, u32 new_size, int from_end); | 
 | int btrfs_split_item(struct btrfs_trans_handle *trans, | 
 | 		     struct btrfs_root *root, | 
 | 		     struct btrfs_path *path, | 
 | 		     const struct btrfs_key *new_key, | 
 | 		     unsigned long split_offset); | 
 | int btrfs_duplicate_item(struct btrfs_trans_handle *trans, | 
 | 			 struct btrfs_root *root, | 
 | 			 struct btrfs_path *path, | 
 | 			 const struct btrfs_key *new_key); | 
 | int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, | 
 | 		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); | 
 | int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
 | 		      const struct btrfs_key *key, struct btrfs_path *p, | 
 | 		      int ins_len, int cow); | 
 | int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, | 
 | 			  struct btrfs_path *p, u64 time_seq); | 
 | int btrfs_search_slot_for_read(struct btrfs_root *root, | 
 | 			       const struct btrfs_key *key, | 
 | 			       struct btrfs_path *p, int find_higher, | 
 | 			       int return_any); | 
 | void btrfs_release_path(struct btrfs_path *p); | 
 | struct btrfs_path *btrfs_alloc_path(void); | 
 | void btrfs_free_path(struct btrfs_path *p); | 
 | DEFINE_FREE(btrfs_free_path, struct btrfs_path *, btrfs_free_path(_T)) | 
 |  | 
 | int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
 | 		   struct btrfs_path *path, int slot, int nr); | 
 | static inline int btrfs_del_item(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_path *path) | 
 | { | 
 | 	return btrfs_del_items(trans, root, path, path->slots[0], 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Describes a batch of items to insert in a btree. This is used by | 
 |  * btrfs_insert_empty_items(). | 
 |  */ | 
 | struct btrfs_item_batch { | 
 | 	/* | 
 | 	 * Pointer to an array containing the keys of the items to insert (in | 
 | 	 * sorted order). | 
 | 	 */ | 
 | 	const struct btrfs_key *keys; | 
 | 	/* Pointer to an array containing the data size for each item to insert. */ | 
 | 	const u32 *data_sizes; | 
 | 	/* | 
 | 	 * The sum of data sizes for all items. The caller can compute this while | 
 | 	 * setting up the data_sizes array, so it ends up being more efficient | 
 | 	 * than having btrfs_insert_empty_items() or setup_item_for_insert() | 
 | 	 * doing it, as it would avoid an extra loop over a potentially large | 
 | 	 * array, and in the case of setup_item_for_insert(), we would be doing | 
 | 	 * it while holding a write lock on a leaf and often on upper level nodes | 
 | 	 * too, unnecessarily increasing the size of a critical section. | 
 | 	 */ | 
 | 	u32 total_data_size; | 
 | 	/* Size of the keys and data_sizes arrays (number of items in the batch). */ | 
 | 	int nr; | 
 | }; | 
 |  | 
 | void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans, | 
 | 				 struct btrfs_root *root, | 
 | 				 struct btrfs_path *path, | 
 | 				 const struct btrfs_key *key, | 
 | 				 u32 data_size); | 
 | int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
 | 		      const struct btrfs_key *key, void *data, u32 data_size); | 
 | int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_root *root, | 
 | 			     struct btrfs_path *path, | 
 | 			     const struct btrfs_item_batch *batch); | 
 |  | 
 | static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, | 
 | 					  struct btrfs_root *root, | 
 | 					  struct btrfs_path *path, | 
 | 					  const struct btrfs_key *key, | 
 | 					  u32 data_size) | 
 | { | 
 | 	struct btrfs_item_batch batch; | 
 |  | 
 | 	batch.keys = key; | 
 | 	batch.data_sizes = &data_size; | 
 | 	batch.total_data_size = data_size; | 
 | 	batch.nr = 1; | 
 |  | 
 | 	return btrfs_insert_empty_items(trans, root, path, &batch); | 
 | } | 
 |  | 
 | int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, | 
 | 			u64 time_seq); | 
 |  | 
 | int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, | 
 | 			   struct btrfs_path *path); | 
 |  | 
 | int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, | 
 | 			      struct btrfs_path *path); | 
 |  | 
 | /* | 
 |  * Search in @root for a given @key, and store the slot found in @found_key. | 
 |  * | 
 |  * @root:	The root node of the tree. | 
 |  * @key:	The key we are looking for. | 
 |  * @found_key:	Will hold the found item. | 
 |  * @path:	Holds the current slot/leaf. | 
 |  * @iter_ret:	Contains the value returned from btrfs_search_slot or | 
 |  * 		btrfs_get_next_valid_item, whichever was executed last. | 
 |  * | 
 |  * The @iter_ret is an output variable that will contain the return value of | 
 |  * btrfs_search_slot, if it encountered an error, or the value returned from | 
 |  * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid | 
 |  * slot was found, 1 if there were no more leaves, and <0 if there was an error. | 
 |  * | 
 |  * It's recommended to use a separate variable for iter_ret and then use it to | 
 |  * set the function return value so there's no confusion of the 0/1/errno | 
 |  * values stemming from btrfs_search_slot. | 
 |  */ | 
 | #define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\ | 
 | 	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\ | 
 | 		(iter_ret) >= 0 &&						\ | 
 | 		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \ | 
 | 		(path)->slots[0]++						\ | 
 | 	) | 
 |  | 
 | int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq); | 
 |  | 
 | /* | 
 |  * Search the tree again to find a leaf with greater keys. | 
 |  * | 
 |  * Returns 0 if it found something or 1 if there are no greater leaves. | 
 |  * Returns < 0 on error. | 
 |  */ | 
 | static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) | 
 | { | 
 | 	return btrfs_next_old_leaf(root, path, 0); | 
 | } | 
 |  | 
 | static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) | 
 | { | 
 | 	return btrfs_next_old_item(root, p, 0); | 
 | } | 
 | int btrfs_leaf_free_space(const struct extent_buffer *leaf); | 
 |  | 
 | static inline bool btrfs_is_fstree(u64 rootid) | 
 | { | 
 | 	if (rootid == BTRFS_FS_TREE_OBJECTID) | 
 | 		return true; | 
 |  | 
 | 	if ((s64)rootid < (s64)BTRFS_FIRST_FREE_OBJECTID) | 
 | 		return false; | 
 |  | 
 | 	if (btrfs_qgroup_level(rootid) != 0) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) | 
 | { | 
 | 	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; | 
 | } | 
 |  | 
 | #endif |