| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  *  linux/arch/arm/mm/fault.c | 
 |  * | 
 |  *  Copyright (C) 1995  Linus Torvalds | 
 |  *  Modifications for ARM processor (c) 1995-2004 Russell King | 
 |  */ | 
 | #include <linux/extable.h> | 
 | #include <linux/signal.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/hardirq.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/page-flags.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/sched/debug.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/perf_event.h> | 
 | #include <linux/kfence.h> | 
 |  | 
 | #include <asm/system_misc.h> | 
 | #include <asm/system_info.h> | 
 | #include <asm/tlbflush.h> | 
 |  | 
 | #include "fault.h" | 
 |  | 
 | #ifdef CONFIG_MMU | 
 |  | 
 | bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size) | 
 | { | 
 | 	unsigned long addr = (unsigned long)unsafe_src; | 
 |  | 
 | 	return addr >= TASK_SIZE && ULONG_MAX - addr >= size; | 
 | } | 
 |  | 
 | /* | 
 |  * This is useful to dump out the page tables associated with | 
 |  * 'addr' in mm 'mm'. | 
 |  */ | 
 | void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) | 
 | { | 
 | 	pgd_t *pgd; | 
 |  | 
 | 	if (!mm) | 
 | 		mm = &init_mm; | 
 |  | 
 | 	pgd = pgd_offset(mm, addr); | 
 | 	printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd)); | 
 |  | 
 | 	do { | 
 | 		p4d_t *p4d; | 
 | 		pud_t *pud; | 
 | 		pmd_t *pmd; | 
 | 		pte_t *pte; | 
 |  | 
 | 		p4d = p4d_offset(pgd, addr); | 
 | 		if (p4d_none(*p4d)) | 
 | 			break; | 
 |  | 
 | 		if (p4d_bad(*p4d)) { | 
 | 			pr_cont("(bad)"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		pud = pud_offset(p4d, addr); | 
 | 		if (PTRS_PER_PUD != 1) | 
 | 			pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); | 
 |  | 
 | 		if (pud_none(*pud)) | 
 | 			break; | 
 |  | 
 | 		if (pud_bad(*pud)) { | 
 | 			pr_cont("(bad)"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		pmd = pmd_offset(pud, addr); | 
 | 		if (PTRS_PER_PMD != 1) | 
 | 			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); | 
 |  | 
 | 		if (pmd_none(*pmd)) | 
 | 			break; | 
 |  | 
 | 		if (pmd_bad(*pmd)) { | 
 | 			pr_cont("(bad)"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* We must not map this if we have highmem enabled */ | 
 | 		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) | 
 | 			break; | 
 |  | 
 | 		pte = pte_offset_map(pmd, addr); | 
 | 		if (!pte) | 
 | 			break; | 
 |  | 
 | 		pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); | 
 | #ifndef CONFIG_ARM_LPAE | 
 | 		pr_cont(", *ppte=%08llx", | 
 | 		       (long long)pte_val(pte[PTE_HWTABLE_PTRS])); | 
 | #endif | 
 | 		pte_unmap(pte); | 
 | 	} while(0); | 
 |  | 
 | 	pr_cont("\n"); | 
 | } | 
 | #else					/* CONFIG_MMU */ | 
 | void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) | 
 | { } | 
 | #endif					/* CONFIG_MMU */ | 
 |  | 
 | static inline bool is_write_fault(unsigned int fsr) | 
 | { | 
 | 	return (fsr & FSR_WRITE) && !(fsr & FSR_CM); | 
 | } | 
 |  | 
 | static inline bool is_translation_fault(unsigned int fsr) | 
 | { | 
 | 	int fs = fsr_fs(fsr); | 
 | #ifdef CONFIG_ARM_LPAE | 
 | 	if ((fs & FS_MMU_NOLL_MASK) == FS_TRANS_NOLL) | 
 | 		return true; | 
 | #else | 
 | 	if (fs == FS_L1_TRANS || fs == FS_L2_TRANS) | 
 | 		return true; | 
 | #endif | 
 | 	return false; | 
 | } | 
 |  | 
 | static void die_kernel_fault(const char *msg, struct mm_struct *mm, | 
 | 			     unsigned long addr, unsigned int fsr, | 
 | 			     struct pt_regs *regs) | 
 | { | 
 | 	bust_spinlocks(1); | 
 | 	pr_alert("8<--- cut here ---\n"); | 
 | 	pr_alert("Unable to handle kernel %s at virtual address %08lx when %s\n", | 
 | 		 msg, addr, fsr & FSR_LNX_PF ? "execute" : str_write_read(fsr & FSR_WRITE)); | 
 |  | 
 | 	show_pte(KERN_ALERT, mm, addr); | 
 | 	die("Oops", regs, fsr); | 
 | 	bust_spinlocks(0); | 
 | 	make_task_dead(SIGKILL); | 
 | } | 
 |  | 
 | /* | 
 |  * Oops.  The kernel tried to access some page that wasn't present. | 
 |  */ | 
 | static void | 
 | __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, | 
 | 		  struct pt_regs *regs) | 
 | { | 
 | 	const char *msg; | 
 | 	/* | 
 | 	 * Are we prepared to handle this kernel fault? | 
 | 	 */ | 
 | 	if (fixup_exception(regs)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * No handler, we'll have to terminate things with extreme prejudice. | 
 | 	 */ | 
 | 	if (addr < PAGE_SIZE) { | 
 | 		msg = "NULL pointer dereference"; | 
 | 	} else { | 
 | 		if (is_translation_fault(fsr) && | 
 | 		    kfence_handle_page_fault(addr, is_write_fault(fsr), regs)) | 
 | 			return; | 
 |  | 
 | 		msg = "paging request"; | 
 | 	} | 
 |  | 
 | 	die_kernel_fault(msg, mm, addr, fsr, regs); | 
 | } | 
 |  | 
 | /* | 
 |  * Something tried to access memory that isn't in our memory map.. | 
 |  * User mode accesses just cause a SIGSEGV | 
 |  */ | 
 | static void | 
 | __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig, | 
 | 		int code, struct pt_regs *regs) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 |  | 
 | 	if (addr > TASK_SIZE) | 
 | 		harden_branch_predictor(); | 
 |  | 
 | #ifdef CONFIG_DEBUG_USER | 
 | 	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || | 
 | 	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) { | 
 | 		pr_err("8<--- cut here ---\n"); | 
 | 		pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", | 
 | 		       tsk->comm, sig, addr, fsr); | 
 | 		show_pte(KERN_ERR, tsk->mm, addr); | 
 | 		show_regs(regs); | 
 | 	} | 
 | #endif | 
 | #ifndef CONFIG_KUSER_HELPERS | 
 | 	if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000)) | 
 | 		printk_ratelimited(KERN_DEBUG | 
 | 				   "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n", | 
 | 				   tsk->comm, addr); | 
 | #endif | 
 |  | 
 | 	tsk->thread.address = addr; | 
 | 	tsk->thread.error_code = fsr; | 
 | 	tsk->thread.trap_no = 14; | 
 | 	force_sig_fault(sig, code, (void __user *)addr); | 
 | } | 
 |  | 
 | void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 | 	struct mm_struct *mm = tsk->active_mm; | 
 |  | 
 | 	/* | 
 | 	 * If we are in kernel mode at this point, we | 
 | 	 * have no context to handle this fault with. | 
 | 	 */ | 
 | 	if (user_mode(regs)) | 
 | 		__do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs); | 
 | 	else | 
 | 		__do_kernel_fault(mm, addr, fsr, regs); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | static inline bool is_permission_fault(unsigned int fsr) | 
 | { | 
 | 	int fs = fsr_fs(fsr); | 
 | #ifdef CONFIG_ARM_LPAE | 
 | 	if ((fs & FS_MMU_NOLL_MASK) == FS_PERM_NOLL) | 
 | 		return true; | 
 | #else | 
 | 	if (fs == FS_L1_PERM || fs == FS_L2_PERM) | 
 | 		return true; | 
 | #endif | 
 | 	return false; | 
 | } | 
 |  | 
 | #ifdef CONFIG_CPU_TTBR0_PAN | 
 | static inline bool ttbr0_usermode_access_allowed(struct pt_regs *regs) | 
 | { | 
 | 	struct svc_pt_regs *svcregs; | 
 |  | 
 | 	/* If we are in user mode: permission granted */ | 
 | 	if (user_mode(regs)) | 
 | 		return true; | 
 |  | 
 | 	/* uaccess state saved above pt_regs on SVC exception entry */ | 
 | 	svcregs = to_svc_pt_regs(regs); | 
 |  | 
 | 	return !(svcregs->ttbcr & TTBCR_EPD0); | 
 | } | 
 | #else | 
 | static inline bool ttbr0_usermode_access_allowed(struct pt_regs *regs) | 
 | { | 
 | 	return true; | 
 | } | 
 | #endif | 
 |  | 
 | static int __kprobes | 
 | do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	struct vm_area_struct *vma; | 
 | 	int sig, code; | 
 | 	vm_fault_t fault; | 
 | 	unsigned int flags = FAULT_FLAG_DEFAULT; | 
 | 	vm_flags_t vm_flags = VM_ACCESS_FLAGS; | 
 |  | 
 | 	if (kprobe_page_fault(regs, fsr)) | 
 | 		return 0; | 
 |  | 
 |  | 
 | 	/* Enable interrupts if they were enabled in the parent context. */ | 
 | 	if (interrupts_enabled(regs)) | 
 | 		local_irq_enable(); | 
 |  | 
 | 	/* | 
 | 	 * If we're in an interrupt or have no user | 
 | 	 * context, we must not take the fault.. | 
 | 	 */ | 
 | 	if (faulthandler_disabled() || !mm) | 
 | 		goto no_context; | 
 |  | 
 | 	if (user_mode(regs)) | 
 | 		flags |= FAULT_FLAG_USER; | 
 |  | 
 | 	if (is_write_fault(fsr)) { | 
 | 		flags |= FAULT_FLAG_WRITE; | 
 | 		vm_flags = VM_WRITE; | 
 | 	} | 
 |  | 
 | 	if (fsr & FSR_LNX_PF) { | 
 | 		vm_flags = VM_EXEC; | 
 |  | 
 | 		if (is_permission_fault(fsr) && !user_mode(regs)) | 
 | 			die_kernel_fault("execution of memory", | 
 | 					 mm, addr, fsr, regs); | 
 | 	} | 
 |  | 
 | 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); | 
 |  | 
 | 	/* | 
 | 	 * Privileged access aborts with CONFIG_CPU_TTBR0_PAN enabled are | 
 | 	 * routed via the translation fault mechanism. Check whether uaccess | 
 | 	 * is disabled while in kernel mode. | 
 | 	 */ | 
 | 	if (!ttbr0_usermode_access_allowed(regs)) | 
 | 		goto no_context; | 
 |  | 
 | 	if (!(flags & FAULT_FLAG_USER)) | 
 | 		goto lock_mmap; | 
 |  | 
 | 	vma = lock_vma_under_rcu(mm, addr); | 
 | 	if (!vma) | 
 | 		goto lock_mmap; | 
 |  | 
 | 	if (!(vma->vm_flags & vm_flags)) { | 
 | 		vma_end_read(vma); | 
 | 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS); | 
 | 		fault = 0; | 
 | 		code = SEGV_ACCERR; | 
 | 		goto bad_area; | 
 | 	} | 
 | 	fault = handle_mm_fault(vma, addr, flags | FAULT_FLAG_VMA_LOCK, regs); | 
 | 	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED))) | 
 | 		vma_end_read(vma); | 
 |  | 
 | 	if (!(fault & VM_FAULT_RETRY)) { | 
 | 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS); | 
 | 		goto done; | 
 | 	} | 
 | 	count_vm_vma_lock_event(VMA_LOCK_RETRY); | 
 | 	if (fault & VM_FAULT_MAJOR) | 
 | 		flags |= FAULT_FLAG_TRIED; | 
 |  | 
 | 	/* Quick path to respond to signals */ | 
 | 	if (fault_signal_pending(fault, regs)) { | 
 | 		if (!user_mode(regs)) | 
 | 			goto no_context; | 
 | 		return 0; | 
 | 	} | 
 | lock_mmap: | 
 |  | 
 | retry: | 
 | 	vma = lock_mm_and_find_vma(mm, addr, regs); | 
 | 	if (unlikely(!vma)) { | 
 | 		fault = 0; | 
 | 		code = SEGV_MAPERR; | 
 | 		goto bad_area; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * ok, we have a good vm_area for this memory access, check the | 
 | 	 * permissions on the VMA allow for the fault which occurred. | 
 | 	 */ | 
 | 	if (!(vma->vm_flags & vm_flags)) { | 
 | 		mmap_read_unlock(mm); | 
 | 		fault = 0; | 
 | 		code = SEGV_ACCERR; | 
 | 		goto bad_area; | 
 | 	} | 
 |  | 
 | 	fault = handle_mm_fault(vma, addr & PAGE_MASK, flags, regs); | 
 |  | 
 | 	/* If we need to retry but a fatal signal is pending, handle the | 
 | 	 * signal first. We do not need to release the mmap_lock because | 
 | 	 * it would already be released in __lock_page_or_retry in | 
 | 	 * mm/filemap.c. */ | 
 | 	if (fault_signal_pending(fault, regs)) { | 
 | 		if (!user_mode(regs)) | 
 | 			goto no_context; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* The fault is fully completed (including releasing mmap lock) */ | 
 | 	if (fault & VM_FAULT_COMPLETED) | 
 | 		return 0; | 
 |  | 
 | 	if (!(fault & VM_FAULT_ERROR)) { | 
 | 		if (fault & VM_FAULT_RETRY) { | 
 | 			flags |= FAULT_FLAG_TRIED; | 
 | 			goto retry; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mmap_read_unlock(mm); | 
 | done: | 
 |  | 
 | 	/* Handle the "normal" case first */ | 
 | 	if (likely(!(fault & VM_FAULT_ERROR))) | 
 | 		return 0; | 
 |  | 
 | 	code = SEGV_MAPERR; | 
 | bad_area: | 
 | 	/* | 
 | 	 * If we are in kernel mode at this point, we | 
 | 	 * have no context to handle this fault with. | 
 | 	 */ | 
 | 	if (!user_mode(regs)) | 
 | 		goto no_context; | 
 |  | 
 | 	if (fault & VM_FAULT_OOM) { | 
 | 		/* | 
 | 		 * We ran out of memory, call the OOM killer, and return to | 
 | 		 * userspace (which will retry the fault, or kill us if we | 
 | 		 * got oom-killed) | 
 | 		 */ | 
 | 		pagefault_out_of_memory(); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (fault & VM_FAULT_SIGBUS) { | 
 | 		/* | 
 | 		 * We had some memory, but were unable to | 
 | 		 * successfully fix up this page fault. | 
 | 		 */ | 
 | 		sig = SIGBUS; | 
 | 		code = BUS_ADRERR; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Something tried to access memory that | 
 | 		 * isn't in our memory map.. | 
 | 		 */ | 
 | 		sig = SIGSEGV; | 
 | 	} | 
 |  | 
 | 	__do_user_fault(addr, fsr, sig, code, regs); | 
 | 	return 0; | 
 |  | 
 | no_context: | 
 | 	__do_kernel_fault(mm, addr, fsr, regs); | 
 | 	return 0; | 
 | } | 
 | #else					/* CONFIG_MMU */ | 
 | static int | 
 | do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif					/* CONFIG_MMU */ | 
 |  | 
 | /* | 
 |  * First Level Translation Fault Handler | 
 |  * | 
 |  * We enter here because the first level page table doesn't contain | 
 |  * a valid entry for the address. | 
 |  * | 
 |  * If the address is in kernel space (>= TASK_SIZE), then we are | 
 |  * probably faulting in the vmalloc() area. | 
 |  * | 
 |  * If the init_task's first level page tables contains the relevant | 
 |  * entry, we copy the it to this task.  If not, we send the process | 
 |  * a signal, fixup the exception, or oops the kernel. | 
 |  * | 
 |  * NOTE! We MUST NOT take any locks for this case. We may be in an | 
 |  * interrupt or a critical region, and should only copy the information | 
 |  * from the master page table, nothing more. | 
 |  */ | 
 | #ifdef CONFIG_MMU | 
 | static int __kprobes | 
 | do_translation_fault(unsigned long addr, unsigned int fsr, | 
 | 		     struct pt_regs *regs) | 
 | { | 
 | 	unsigned int index; | 
 | 	pgd_t *pgd, *pgd_k; | 
 | 	p4d_t *p4d, *p4d_k; | 
 | 	pud_t *pud, *pud_k; | 
 | 	pmd_t *pmd, *pmd_k; | 
 |  | 
 | 	if (addr < TASK_SIZE) | 
 | 		return do_page_fault(addr, fsr, regs); | 
 |  | 
 | 	if (user_mode(regs)) | 
 | 		goto bad_area; | 
 |  | 
 | 	index = pgd_index(addr); | 
 |  | 
 | 	pgd = cpu_get_pgd() + index; | 
 | 	pgd_k = init_mm.pgd + index; | 
 |  | 
 | 	p4d = p4d_offset(pgd, addr); | 
 | 	p4d_k = p4d_offset(pgd_k, addr); | 
 |  | 
 | 	if (p4d_none(*p4d_k)) | 
 | 		goto bad_area; | 
 | 	if (!p4d_present(*p4d)) | 
 | 		set_p4d(p4d, *p4d_k); | 
 |  | 
 | 	pud = pud_offset(p4d, addr); | 
 | 	pud_k = pud_offset(p4d_k, addr); | 
 |  | 
 | 	if (pud_none(*pud_k)) | 
 | 		goto bad_area; | 
 | 	if (!pud_present(*pud)) | 
 | 		set_pud(pud, *pud_k); | 
 |  | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	pmd_k = pmd_offset(pud_k, addr); | 
 |  | 
 | #ifdef CONFIG_ARM_LPAE | 
 | 	/* | 
 | 	 * Only one hardware entry per PMD with LPAE. | 
 | 	 */ | 
 | 	index = 0; | 
 | #else | 
 | 	/* | 
 | 	 * On ARM one Linux PGD entry contains two hardware entries (see page | 
 | 	 * tables layout in pgtable.h). We normally guarantee that we always | 
 | 	 * fill both L1 entries. But create_mapping() doesn't follow the rule. | 
 | 	 * It can create inidividual L1 entries, so here we have to call | 
 | 	 * pmd_none() check for the entry really corresponded to address, not | 
 | 	 * for the first of pair. | 
 | 	 */ | 
 | 	index = (addr >> SECTION_SHIFT) & 1; | 
 | #endif | 
 | 	if (pmd_none(pmd_k[index])) | 
 | 		goto bad_area; | 
 |  | 
 | 	copy_pmd(pmd, pmd_k); | 
 | 	return 0; | 
 |  | 
 | bad_area: | 
 | 	do_bad_area(addr, fsr, regs); | 
 | 	return 0; | 
 | } | 
 | #else					/* CONFIG_MMU */ | 
 | static int | 
 | do_translation_fault(unsigned long addr, unsigned int fsr, | 
 | 		     struct pt_regs *regs) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif					/* CONFIG_MMU */ | 
 |  | 
 | /* | 
 |  * Some section permission faults need to be handled gracefully. | 
 |  * They can happen due to a __{get,put}_user during an oops. | 
 |  */ | 
 | #ifndef CONFIG_ARM_LPAE | 
 | static int | 
 | do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) | 
 | { | 
 | 	do_bad_area(addr, fsr, regs); | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_ARM_LPAE */ | 
 |  | 
 | /* | 
 |  * This abort handler always returns "fault". | 
 |  */ | 
 | static int | 
 | do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | struct fsr_info { | 
 | 	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); | 
 | 	int	sig; | 
 | 	int	code; | 
 | 	const char *name; | 
 | }; | 
 |  | 
 | /* FSR definition */ | 
 | #ifdef CONFIG_ARM_LPAE | 
 | #include "fsr-3level.c" | 
 | #else | 
 | #include "fsr-2level.c" | 
 | #endif | 
 |  | 
 | void __init | 
 | hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), | 
 | 		int sig, int code, const char *name) | 
 | { | 
 | 	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) | 
 | 		BUG(); | 
 |  | 
 | 	fsr_info[nr].fn   = fn; | 
 | 	fsr_info[nr].sig  = sig; | 
 | 	fsr_info[nr].code = code; | 
 | 	fsr_info[nr].name = name; | 
 | } | 
 |  | 
 | /* | 
 |  * Dispatch a data abort to the relevant handler. | 
 |  */ | 
 | asmlinkage void | 
 | do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) | 
 | { | 
 | 	const struct fsr_info *inf = fsr_info + fsr_fs(fsr); | 
 |  | 
 | 	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) | 
 | 		return; | 
 |  | 
 | 	pr_alert("8<--- cut here ---\n"); | 
 | 	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", | 
 | 		inf->name, fsr, addr); | 
 | 	show_pte(KERN_ALERT, current->mm, addr); | 
 |  | 
 | 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, | 
 | 		       fsr, 0); | 
 | } | 
 |  | 
 | void __init | 
 | hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), | 
 | 		 int sig, int code, const char *name) | 
 | { | 
 | 	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) | 
 | 		BUG(); | 
 |  | 
 | 	ifsr_info[nr].fn   = fn; | 
 | 	ifsr_info[nr].sig  = sig; | 
 | 	ifsr_info[nr].code = code; | 
 | 	ifsr_info[nr].name = name; | 
 | } | 
 |  | 
 | asmlinkage void | 
 | do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) | 
 | { | 
 | 	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); | 
 |  | 
 | 	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) | 
 | 		return; | 
 |  | 
 | 	pr_alert("8<--- cut here ---\n"); | 
 | 	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", | 
 | 		inf->name, ifsr, addr); | 
 |  | 
 | 	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, | 
 | 		       ifsr, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Abort handler to be used only during first unmasking of asynchronous aborts | 
 |  * on the boot CPU. This makes sure that the machine will not die if the | 
 |  * firmware/bootloader left an imprecise abort pending for us to trip over. | 
 |  */ | 
 | static int __init early_abort_handler(unsigned long addr, unsigned int fsr, | 
 | 				      struct pt_regs *regs) | 
 | { | 
 | 	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " | 
 | 		"first unmask, this is most likely caused by a " | 
 | 		"firmware/bootloader bug.\n", fsr); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __init early_abt_enable(void) | 
 | { | 
 | 	fsr_info[FSR_FS_AEA].fn = early_abort_handler; | 
 | 	local_abt_enable(); | 
 | 	fsr_info[FSR_FS_AEA].fn = do_bad; | 
 | } | 
 |  | 
 | #ifndef CONFIG_ARM_LPAE | 
 | static int __init exceptions_init(void) | 
 | { | 
 | 	if (cpu_architecture() >= CPU_ARCH_ARMv6) { | 
 | 		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, | 
 | 				"I-cache maintenance fault"); | 
 | 	} | 
 |  | 
 | 	if (cpu_architecture() >= CPU_ARCH_ARMv7) { | 
 | 		/* | 
 | 		 * TODO: Access flag faults introduced in ARMv6K. | 
 | 		 * Runtime check for 'K' extension is needed | 
 | 		 */ | 
 | 		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, | 
 | 				"section access flag fault"); | 
 | 		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, | 
 | 				"section access flag fault"); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | arch_initcall(exceptions_init); | 
 | #endif |