|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * This file is part of UBIFS. | 
|  | * | 
|  | * Copyright (C) 2006-2008 Nokia Corporation. | 
|  | * Copyright (C) 2006, 2007 University of Szeged, Hungary | 
|  | * | 
|  | * Authors: Artem Bityutskiy (Битюцкий Артём) | 
|  | *          Adrian Hunter | 
|  | *          Zoltan Sogor | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file implements UBIFS I/O subsystem which provides various I/O-related | 
|  | * helper functions (reading/writing/checking/validating nodes) and implements | 
|  | * write-buffering support. Write buffers help to save space which otherwise | 
|  | * would have been wasted for padding to the nearest minimal I/O unit boundary. | 
|  | * Instead, data first goes to the write-buffer and is flushed when the | 
|  | * buffer is full or when it is not used for some time (by timer). This is | 
|  | * similar to the mechanism is used by JFFS2. | 
|  | * | 
|  | * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum | 
|  | * write size (@c->max_write_size). The latter is the maximum amount of bytes | 
|  | * the underlying flash is able to program at a time, and writing in | 
|  | * @c->max_write_size units should presumably be faster. Obviously, | 
|  | * @c->min_io_size <= @c->max_write_size. Write-buffers are of | 
|  | * @c->max_write_size bytes in size for maximum performance. However, when a | 
|  | * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size | 
|  | * boundary) which contains data is written, not the whole write-buffer, | 
|  | * because this is more space-efficient. | 
|  | * | 
|  | * This optimization adds few complications to the code. Indeed, on the one | 
|  | * hand, we want to write in optimal @c->max_write_size bytes chunks, which | 
|  | * also means aligning writes at the @c->max_write_size bytes offsets. On the | 
|  | * other hand, we do not want to waste space when synchronizing the write | 
|  | * buffer, so during synchronization we writes in smaller chunks. And this makes | 
|  | * the next write offset to be not aligned to @c->max_write_size bytes. So the | 
|  | * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned | 
|  | * to @c->max_write_size bytes again. We do this by temporarily shrinking | 
|  | * write-buffer size (@wbuf->size). | 
|  | * | 
|  | * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by | 
|  | * mutexes defined inside these objects. Since sometimes upper-level code | 
|  | * has to lock the write-buffer (e.g. journal space reservation code), many | 
|  | * functions related to write-buffers have "nolock" suffix which means that the | 
|  | * caller has to lock the write-buffer before calling this function. | 
|  | * | 
|  | * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not | 
|  | * aligned, UBIFS starts the next node from the aligned address, and the padded | 
|  | * bytes may contain any rubbish. In other words, UBIFS does not put padding | 
|  | * bytes in those small gaps. Common headers of nodes store real node lengths, | 
|  | * not aligned lengths. Indexing nodes also store real lengths in branches. | 
|  | * | 
|  | * UBIFS uses padding when it pads to the next min. I/O unit. In this case it | 
|  | * uses padding nodes or padding bytes, if the padding node does not fit. | 
|  | * | 
|  | * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when | 
|  | * they are read from the flash media. | 
|  | */ | 
|  |  | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/slab.h> | 
|  | #include "ubifs.h" | 
|  |  | 
|  | /** | 
|  | * ubifs_ro_mode - switch UBIFS to read read-only mode. | 
|  | * @c: UBIFS file-system description object | 
|  | * @err: error code which is the reason of switching to R/O mode | 
|  | */ | 
|  | void ubifs_ro_mode(struct ubifs_info *c, int err) | 
|  | { | 
|  | if (!c->ro_error) { | 
|  | c->ro_error = 1; | 
|  | c->no_chk_data_crc = 0; | 
|  | c->vfs_sb->s_flags |= SB_RDONLY; | 
|  | ubifs_warn(c, "switched to read-only mode, error %d", err); | 
|  | dump_stack(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Below are simple wrappers over UBI I/O functions which include some | 
|  | * additional checks and UBIFS debugging stuff. See corresponding UBI function | 
|  | * for more information. | 
|  | */ | 
|  |  | 
|  | int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, | 
|  | int len, int even_ebadmsg) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = ubi_read(c->ubi, lnum, buf, offs, len); | 
|  | /* | 
|  | * In case of %-EBADMSG print the error message only if the | 
|  | * @even_ebadmsg is true. | 
|  | */ | 
|  | if (err && (err != -EBADMSG || even_ebadmsg)) { | 
|  | ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d", | 
|  | len, lnum, offs, err); | 
|  | dump_stack(); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, | 
|  | int len) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | ubifs_assert(c, !c->ro_media && !c->ro_mount); | 
|  | if (c->ro_error) | 
|  | return -EROFS; | 
|  | if (!dbg_is_tst_rcvry(c)) | 
|  | err = ubi_leb_write(c->ubi, lnum, buf, offs, len); | 
|  | else | 
|  | err = dbg_leb_write(c, lnum, buf, offs, len); | 
|  | if (err) { | 
|  | ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d", | 
|  | len, lnum, offs, err); | 
|  | ubifs_ro_mode(c, err); | 
|  | dump_stack(); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | ubifs_assert(c, !c->ro_media && !c->ro_mount); | 
|  | if (c->ro_error) | 
|  | return -EROFS; | 
|  | if (!dbg_is_tst_rcvry(c)) | 
|  | err = ubi_leb_change(c->ubi, lnum, buf, len); | 
|  | else | 
|  | err = dbg_leb_change(c, lnum, buf, len); | 
|  | if (err) { | 
|  | ubifs_err(c, "changing %d bytes in LEB %d failed, error %d", | 
|  | len, lnum, err); | 
|  | ubifs_ro_mode(c, err); | 
|  | dump_stack(); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int ubifs_leb_unmap(struct ubifs_info *c, int lnum) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | ubifs_assert(c, !c->ro_media && !c->ro_mount); | 
|  | if (c->ro_error) | 
|  | return -EROFS; | 
|  | if (!dbg_is_tst_rcvry(c)) | 
|  | err = ubi_leb_unmap(c->ubi, lnum); | 
|  | else | 
|  | err = dbg_leb_unmap(c, lnum); | 
|  | if (err) { | 
|  | ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err); | 
|  | ubifs_ro_mode(c, err); | 
|  | dump_stack(); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int ubifs_leb_map(struct ubifs_info *c, int lnum) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | ubifs_assert(c, !c->ro_media && !c->ro_mount); | 
|  | if (c->ro_error) | 
|  | return -EROFS; | 
|  | if (!dbg_is_tst_rcvry(c)) | 
|  | err = ubi_leb_map(c->ubi, lnum); | 
|  | else | 
|  | err = dbg_leb_map(c, lnum); | 
|  | if (err) { | 
|  | ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err); | 
|  | ubifs_ro_mode(c, err); | 
|  | dump_stack(); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int ubifs_is_mapped(const struct ubifs_info *c, int lnum) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = ubi_is_mapped(c->ubi, lnum); | 
|  | if (err < 0) { | 
|  | ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d", | 
|  | lnum, err); | 
|  | dump_stack(); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void record_magic_error(struct ubifs_stats_info *stats) | 
|  | { | 
|  | if (stats) | 
|  | stats->magic_errors++; | 
|  | } | 
|  |  | 
|  | static void record_node_error(struct ubifs_stats_info *stats) | 
|  | { | 
|  | if (stats) | 
|  | stats->node_errors++; | 
|  | } | 
|  |  | 
|  | static void record_crc_error(struct ubifs_stats_info *stats) | 
|  | { | 
|  | if (stats) | 
|  | stats->crc_errors++; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_check_node - check node. | 
|  | * @c: UBIFS file-system description object | 
|  | * @buf: node to check | 
|  | * @len: node length | 
|  | * @lnum: logical eraseblock number | 
|  | * @offs: offset within the logical eraseblock | 
|  | * @quiet: print no messages | 
|  | * @must_chk_crc: indicates whether to always check the CRC | 
|  | * | 
|  | * This function checks node magic number and CRC checksum. This function also | 
|  | * validates node length to prevent UBIFS from becoming crazy when an attacker | 
|  | * feeds it a file-system image with incorrect nodes. For example, too large | 
|  | * node length in the common header could cause UBIFS to read memory outside of | 
|  | * allocated buffer when checking the CRC checksum. | 
|  | * | 
|  | * This function may skip data nodes CRC checking if @c->no_chk_data_crc is | 
|  | * true, which is controlled by corresponding UBIFS mount option. However, if | 
|  | * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is | 
|  | * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are | 
|  | * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC | 
|  | * is checked. This is because during mounting or re-mounting from R/O mode to | 
|  | * R/W mode we may read journal nodes (when replying the journal or doing the | 
|  | * recovery) and the journal nodes may potentially be corrupted, so checking is | 
|  | * required. | 
|  | * | 
|  | * This function returns zero in case of success and %-EUCLEAN in case of bad | 
|  | * CRC or magic. | 
|  | */ | 
|  | int ubifs_check_node(const struct ubifs_info *c, const void *buf, int len, | 
|  | int lnum, int offs, int quiet, int must_chk_crc) | 
|  | { | 
|  | int err = -EINVAL, type, node_len; | 
|  | uint32_t crc, node_crc, magic; | 
|  | const struct ubifs_ch *ch = buf; | 
|  |  | 
|  | ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0); | 
|  | ubifs_assert(c, !(offs & 7) && offs < c->leb_size); | 
|  |  | 
|  | magic = le32_to_cpu(ch->magic); | 
|  | if (magic != UBIFS_NODE_MAGIC) { | 
|  | if (!quiet) | 
|  | ubifs_err(c, "bad magic %#08x, expected %#08x", | 
|  | magic, UBIFS_NODE_MAGIC); | 
|  | record_magic_error(c->stats); | 
|  | err = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | type = ch->node_type; | 
|  | if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { | 
|  | if (!quiet) | 
|  | ubifs_err(c, "bad node type %d", type); | 
|  | record_node_error(c->stats); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | node_len = le32_to_cpu(ch->len); | 
|  | if (node_len + offs > c->leb_size) | 
|  | goto out_len; | 
|  |  | 
|  | if (c->ranges[type].max_len == 0) { | 
|  | if (node_len != c->ranges[type].len) | 
|  | goto out_len; | 
|  | } else if (node_len < c->ranges[type].min_len || | 
|  | node_len > c->ranges[type].max_len) | 
|  | goto out_len; | 
|  |  | 
|  | if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting && | 
|  | !c->remounting_rw && c->no_chk_data_crc) | 
|  | return 0; | 
|  |  | 
|  | crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); | 
|  | node_crc = le32_to_cpu(ch->crc); | 
|  | if (crc != node_crc) { | 
|  | if (!quiet) | 
|  | ubifs_err(c, "bad CRC: calculated %#08x, read %#08x", | 
|  | crc, node_crc); | 
|  | record_crc_error(c->stats); | 
|  | err = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_len: | 
|  | if (!quiet) | 
|  | ubifs_err(c, "bad node length %d", node_len); | 
|  | out: | 
|  | if (!quiet) { | 
|  | ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); | 
|  | ubifs_dump_node(c, buf, len); | 
|  | dump_stack(); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_pad - pad flash space. | 
|  | * @c: UBIFS file-system description object | 
|  | * @buf: buffer to put padding to | 
|  | * @pad: how many bytes to pad | 
|  | * | 
|  | * The flash media obliges us to write only in chunks of %c->min_io_size and | 
|  | * when we have to write less data we add padding node to the write-buffer and | 
|  | * pad it to the next minimal I/O unit's boundary. Padding nodes help when the | 
|  | * media is being scanned. If the amount of wasted space is not enough to fit a | 
|  | * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes | 
|  | * pattern (%UBIFS_PADDING_BYTE). | 
|  | * | 
|  | * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is | 
|  | * used. | 
|  | */ | 
|  | void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) | 
|  | { | 
|  | uint32_t crc; | 
|  |  | 
|  | ubifs_assert(c, pad >= 0); | 
|  |  | 
|  | if (pad >= UBIFS_PAD_NODE_SZ) { | 
|  | struct ubifs_ch *ch = buf; | 
|  | struct ubifs_pad_node *pad_node = buf; | 
|  |  | 
|  | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); | 
|  | ch->node_type = UBIFS_PAD_NODE; | 
|  | ch->group_type = UBIFS_NO_NODE_GROUP; | 
|  | ch->padding[0] = ch->padding[1] = 0; | 
|  | ch->sqnum = 0; | 
|  | ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); | 
|  | pad -= UBIFS_PAD_NODE_SZ; | 
|  | pad_node->pad_len = cpu_to_le32(pad); | 
|  | crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); | 
|  | ch->crc = cpu_to_le32(crc); | 
|  | memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); | 
|  | } else if (pad > 0) | 
|  | /* Too little space, padding node won't fit */ | 
|  | memset(buf, UBIFS_PADDING_BYTE, pad); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * next_sqnum - get next sequence number. | 
|  | * @c: UBIFS file-system description object | 
|  | */ | 
|  | static unsigned long long next_sqnum(struct ubifs_info *c) | 
|  | { | 
|  | unsigned long long sqnum; | 
|  |  | 
|  | spin_lock(&c->cnt_lock); | 
|  | sqnum = ++c->max_sqnum; | 
|  | spin_unlock(&c->cnt_lock); | 
|  |  | 
|  | if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { | 
|  | if (sqnum >= SQNUM_WATERMARK) { | 
|  | ubifs_err(c, "sequence number overflow %llu, end of life", | 
|  | sqnum); | 
|  | ubifs_ro_mode(c, -EINVAL); | 
|  | } | 
|  | ubifs_warn(c, "running out of sequence numbers, end of life soon"); | 
|  | } | 
|  |  | 
|  | return sqnum; | 
|  | } | 
|  |  | 
|  | void ubifs_init_node(struct ubifs_info *c, void *node, int len, int pad) | 
|  | { | 
|  | struct ubifs_ch *ch = node; | 
|  | unsigned long long sqnum = next_sqnum(c); | 
|  |  | 
|  | ubifs_assert(c, len >= UBIFS_CH_SZ); | 
|  |  | 
|  | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); | 
|  | ch->len = cpu_to_le32(len); | 
|  | ch->group_type = UBIFS_NO_NODE_GROUP; | 
|  | ch->sqnum = cpu_to_le64(sqnum); | 
|  | ch->padding[0] = ch->padding[1] = 0; | 
|  |  | 
|  | if (pad) { | 
|  | len = ALIGN(len, 8); | 
|  | pad = ALIGN(len, c->min_io_size) - len; | 
|  | ubifs_pad(c, node + len, pad); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ubifs_crc_node(struct ubifs_info *c, void *node, int len) | 
|  | { | 
|  | struct ubifs_ch *ch = node; | 
|  | uint32_t crc; | 
|  |  | 
|  | crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); | 
|  | ch->crc = cpu_to_le32(crc); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_prepare_node_hmac - prepare node to be written to flash. | 
|  | * @c: UBIFS file-system description object | 
|  | * @node: the node to pad | 
|  | * @len: node length | 
|  | * @hmac_offs: offset of the HMAC in the node | 
|  | * @pad: if the buffer has to be padded | 
|  | * | 
|  | * This function prepares node at @node to be written to the media - it | 
|  | * calculates node CRC, fills the common header, and adds proper padding up to | 
|  | * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then | 
|  | * a HMAC is inserted into the node at the given offset. | 
|  | * | 
|  | * This function returns 0 for success or a negative error code otherwise. | 
|  | */ | 
|  | int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len, | 
|  | int hmac_offs, int pad) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | ubifs_init_node(c, node, len, pad); | 
|  |  | 
|  | if (hmac_offs > 0) { | 
|  | err = ubifs_node_insert_hmac(c, node, len, hmac_offs); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | ubifs_crc_node(c, node, len); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_prepare_node - prepare node to be written to flash. | 
|  | * @c: UBIFS file-system description object | 
|  | * @node: the node to pad | 
|  | * @len: node length | 
|  | * @pad: if the buffer has to be padded | 
|  | * | 
|  | * This function prepares node at @node to be written to the media - it | 
|  | * calculates node CRC, fills the common header, and adds proper padding up to | 
|  | * the next minimum I/O unit if @pad is not zero. | 
|  | */ | 
|  | void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) | 
|  | { | 
|  | /* | 
|  | * Deliberately ignore return value since this function can only fail | 
|  | * when a hmac offset is given. | 
|  | */ | 
|  | ubifs_prepare_node_hmac(c, node, len, 0, pad); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_prep_grp_node - prepare node of a group to be written to flash. | 
|  | * @c: UBIFS file-system description object | 
|  | * @node: the node to pad | 
|  | * @len: node length | 
|  | * @last: indicates the last node of the group | 
|  | * | 
|  | * This function prepares node at @node to be written to the media - it | 
|  | * calculates node CRC and fills the common header. | 
|  | */ | 
|  | void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) | 
|  | { | 
|  | uint32_t crc; | 
|  | struct ubifs_ch *ch = node; | 
|  | unsigned long long sqnum = next_sqnum(c); | 
|  |  | 
|  | ubifs_assert(c, len >= UBIFS_CH_SZ); | 
|  |  | 
|  | ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); | 
|  | ch->len = cpu_to_le32(len); | 
|  | if (last) | 
|  | ch->group_type = UBIFS_LAST_OF_NODE_GROUP; | 
|  | else | 
|  | ch->group_type = UBIFS_IN_NODE_GROUP; | 
|  | ch->sqnum = cpu_to_le64(sqnum); | 
|  | ch->padding[0] = ch->padding[1] = 0; | 
|  | crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); | 
|  | ch->crc = cpu_to_le32(crc); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * wbuf_timer_callback_nolock - write-buffer timer callback function. | 
|  | * @timer: timer data (write-buffer descriptor) | 
|  | * | 
|  | * This function is called when the write-buffer timer expires. | 
|  | */ | 
|  | static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer) | 
|  | { | 
|  | struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer); | 
|  |  | 
|  | dbg_io("jhead %s", dbg_jhead(wbuf->jhead)); | 
|  | wbuf->need_sync = 1; | 
|  | wbuf->c->need_wbuf_sync = 1; | 
|  | ubifs_wake_up_bgt(wbuf->c); | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * new_wbuf_timer_nolock - start new write-buffer timer. | 
|  | * @c: UBIFS file-system description object | 
|  | * @wbuf: write-buffer descriptor | 
|  | */ | 
|  | static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf) | 
|  | { | 
|  | ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10); | 
|  | unsigned long long delta = dirty_writeback_interval; | 
|  |  | 
|  | /* centi to milli, milli to nano, then 10% */ | 
|  | delta *= 10ULL * NSEC_PER_MSEC / 10ULL; | 
|  |  | 
|  | ubifs_assert(c, !hrtimer_active(&wbuf->timer)); | 
|  | ubifs_assert(c, delta <= ULONG_MAX); | 
|  |  | 
|  | if (wbuf->no_timer) | 
|  | return; | 
|  | dbg_io("set timer for jhead %s, %llu-%llu millisecs", | 
|  | dbg_jhead(wbuf->jhead), | 
|  | div_u64(ktime_to_ns(softlimit), USEC_PER_SEC), | 
|  | div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC)); | 
|  | hrtimer_start_range_ns(&wbuf->timer, softlimit, delta, | 
|  | HRTIMER_MODE_REL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cancel_wbuf_timer_nolock - cancel write-buffer timer. | 
|  | * @wbuf: write-buffer descriptor | 
|  | */ | 
|  | static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) | 
|  | { | 
|  | if (wbuf->no_timer) | 
|  | return; | 
|  | wbuf->need_sync = 0; | 
|  | hrtimer_cancel(&wbuf->timer); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_wbuf_sync_nolock - synchronize write-buffer. | 
|  | * @wbuf: write-buffer to synchronize | 
|  | * | 
|  | * This function synchronizes write-buffer @buf and returns zero in case of | 
|  | * success or a negative error code in case of failure. | 
|  | * | 
|  | * Note, although write-buffers are of @c->max_write_size, this function does | 
|  | * not necessarily writes all @c->max_write_size bytes to the flash. Instead, | 
|  | * if the write-buffer is only partially filled with data, only the used part | 
|  | * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized. | 
|  | * This way we waste less space. | 
|  | */ | 
|  | int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) | 
|  | { | 
|  | struct ubifs_info *c = wbuf->c; | 
|  | int err, dirt, sync_len; | 
|  |  | 
|  | cancel_wbuf_timer_nolock(wbuf); | 
|  | if (!wbuf->used || wbuf->lnum == -1) | 
|  | /* Write-buffer is empty or not seeked */ | 
|  | return 0; | 
|  |  | 
|  | dbg_io("LEB %d:%d, %d bytes, jhead %s", | 
|  | wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead)); | 
|  | ubifs_assert(c, !(wbuf->avail & 7)); | 
|  | ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size); | 
|  | ubifs_assert(c, wbuf->size >= c->min_io_size); | 
|  | ubifs_assert(c, wbuf->size <= c->max_write_size); | 
|  | ubifs_assert(c, wbuf->size % c->min_io_size == 0); | 
|  | ubifs_assert(c, !c->ro_media && !c->ro_mount); | 
|  | if (c->leb_size - wbuf->offs >= c->max_write_size) | 
|  | ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size)); | 
|  |  | 
|  | if (c->ro_error) | 
|  | return -EROFS; | 
|  |  | 
|  | /* | 
|  | * Do not write whole write buffer but write only the minimum necessary | 
|  | * amount of min. I/O units. | 
|  | */ | 
|  | sync_len = ALIGN(wbuf->used, c->min_io_size); | 
|  | dirt = sync_len - wbuf->used; | 
|  | if (dirt) | 
|  | ubifs_pad(c, wbuf->buf + wbuf->used, dirt); | 
|  | err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | spin_lock(&wbuf->lock); | 
|  | wbuf->offs += sync_len; | 
|  | /* | 
|  | * Now @wbuf->offs is not necessarily aligned to @c->max_write_size. | 
|  | * But our goal is to optimize writes and make sure we write in | 
|  | * @c->max_write_size chunks and to @c->max_write_size-aligned offset. | 
|  | * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make | 
|  | * sure that @wbuf->offs + @wbuf->size is aligned to | 
|  | * @c->max_write_size. This way we make sure that after next | 
|  | * write-buffer flush we are again at the optimal offset (aligned to | 
|  | * @c->max_write_size). | 
|  | */ | 
|  | if (c->leb_size - wbuf->offs < c->max_write_size) | 
|  | wbuf->size = c->leb_size - wbuf->offs; | 
|  | else if (wbuf->offs & (c->max_write_size - 1)) | 
|  | wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; | 
|  | else | 
|  | wbuf->size = c->max_write_size; | 
|  | wbuf->avail = wbuf->size; | 
|  | wbuf->used = 0; | 
|  | wbuf->next_ino = 0; | 
|  | spin_unlock(&wbuf->lock); | 
|  |  | 
|  | if (wbuf->sync_callback) | 
|  | err = wbuf->sync_callback(c, wbuf->lnum, | 
|  | c->leb_size - wbuf->offs, dirt); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_wbuf_seek_nolock - seek write-buffer. | 
|  | * @wbuf: write-buffer | 
|  | * @lnum: logical eraseblock number to seek to | 
|  | * @offs: logical eraseblock offset to seek to | 
|  | * | 
|  | * This function targets the write-buffer to logical eraseblock @lnum:@offs. | 
|  | * The write-buffer has to be empty. Returns zero in case of success and a | 
|  | * negative error code in case of failure. | 
|  | */ | 
|  | int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs) | 
|  | { | 
|  | const struct ubifs_info *c = wbuf->c; | 
|  |  | 
|  | dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead)); | 
|  | ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt); | 
|  | ubifs_assert(c, offs >= 0 && offs <= c->leb_size); | 
|  | ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7)); | 
|  | ubifs_assert(c, lnum != wbuf->lnum); | 
|  | ubifs_assert(c, wbuf->used == 0); | 
|  |  | 
|  | spin_lock(&wbuf->lock); | 
|  | wbuf->lnum = lnum; | 
|  | wbuf->offs = offs; | 
|  | if (c->leb_size - wbuf->offs < c->max_write_size) | 
|  | wbuf->size = c->leb_size - wbuf->offs; | 
|  | else if (wbuf->offs & (c->max_write_size - 1)) | 
|  | wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; | 
|  | else | 
|  | wbuf->size = c->max_write_size; | 
|  | wbuf->avail = wbuf->size; | 
|  | wbuf->used = 0; | 
|  | spin_unlock(&wbuf->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_bg_wbufs_sync - synchronize write-buffers. | 
|  | * @c: UBIFS file-system description object | 
|  | * | 
|  | * This function is called by background thread to synchronize write-buffers. | 
|  | * Returns zero in case of success and a negative error code in case of | 
|  | * failure. | 
|  | */ | 
|  | int ubifs_bg_wbufs_sync(struct ubifs_info *c) | 
|  | { | 
|  | int err, i; | 
|  |  | 
|  | ubifs_assert(c, !c->ro_media && !c->ro_mount); | 
|  | if (!c->need_wbuf_sync) | 
|  | return 0; | 
|  | c->need_wbuf_sync = 0; | 
|  |  | 
|  | if (c->ro_error) { | 
|  | err = -EROFS; | 
|  | goto out_timers; | 
|  | } | 
|  |  | 
|  | dbg_io("synchronize"); | 
|  | for (i = 0; i < c->jhead_cnt; i++) { | 
|  | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | /* | 
|  | * If the mutex is locked then wbuf is being changed, so | 
|  | * synchronization is not necessary. | 
|  | */ | 
|  | if (mutex_is_locked(&wbuf->io_mutex)) | 
|  | continue; | 
|  |  | 
|  | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | 
|  | if (!wbuf->need_sync) { | 
|  | mutex_unlock(&wbuf->io_mutex); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | err = ubifs_wbuf_sync_nolock(wbuf); | 
|  | mutex_unlock(&wbuf->io_mutex); | 
|  | if (err) { | 
|  | ubifs_err(c, "cannot sync write-buffer, error %d", err); | 
|  | ubifs_ro_mode(c, err); | 
|  | goto out_timers; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_timers: | 
|  | /* Cancel all timers to prevent repeated errors */ | 
|  | for (i = 0; i < c->jhead_cnt; i++) { | 
|  | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; | 
|  |  | 
|  | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | 
|  | cancel_wbuf_timer_nolock(wbuf); | 
|  | mutex_unlock(&wbuf->io_mutex); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_wbuf_write_nolock - write data to flash via write-buffer. | 
|  | * @wbuf: write-buffer | 
|  | * @buf: node to write | 
|  | * @len: node length | 
|  | * | 
|  | * This function writes data to flash via write-buffer @wbuf. This means that | 
|  | * the last piece of the node won't reach the flash media immediately if it | 
|  | * does not take whole max. write unit (@c->max_write_size). Instead, the node | 
|  | * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or | 
|  | * because more data are appended to the write-buffer). | 
|  | * | 
|  | * This function returns zero in case of success and a negative error code in | 
|  | * case of failure. If the node cannot be written because there is no more | 
|  | * space in this logical eraseblock, %-ENOSPC is returned. | 
|  | */ | 
|  | int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) | 
|  | { | 
|  | struct ubifs_info *c = wbuf->c; | 
|  | int err, n, written = 0, aligned_len = ALIGN(len, 8); | 
|  |  | 
|  | dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len, | 
|  | dbg_ntype(((struct ubifs_ch *)buf)->node_type), | 
|  | dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used); | 
|  | ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); | 
|  | ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); | 
|  | ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size); | 
|  | ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size); | 
|  | ubifs_assert(c, wbuf->size >= c->min_io_size); | 
|  | ubifs_assert(c, wbuf->size <= c->max_write_size); | 
|  | ubifs_assert(c, wbuf->size % c->min_io_size == 0); | 
|  | ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex)); | 
|  | ubifs_assert(c, !c->ro_media && !c->ro_mount); | 
|  | ubifs_assert(c, !c->space_fixup); | 
|  | if (c->leb_size - wbuf->offs >= c->max_write_size) | 
|  | ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size)); | 
|  |  | 
|  | if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { | 
|  | err = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | cancel_wbuf_timer_nolock(wbuf); | 
|  |  | 
|  | if (c->ro_error) | 
|  | return -EROFS; | 
|  |  | 
|  | if (aligned_len <= wbuf->avail) { | 
|  | /* | 
|  | * The node is not very large and fits entirely within | 
|  | * write-buffer. | 
|  | */ | 
|  | memcpy(wbuf->buf + wbuf->used, buf, len); | 
|  | if (aligned_len > len) { | 
|  | ubifs_assert(c, aligned_len - len < 8); | 
|  | ubifs_pad(c, wbuf->buf + wbuf->used + len, aligned_len - len); | 
|  | } | 
|  |  | 
|  | if (aligned_len == wbuf->avail) { | 
|  | dbg_io("flush jhead %s wbuf to LEB %d:%d", | 
|  | dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); | 
|  | err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, | 
|  | wbuf->offs, wbuf->size); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | spin_lock(&wbuf->lock); | 
|  | wbuf->offs += wbuf->size; | 
|  | if (c->leb_size - wbuf->offs >= c->max_write_size) | 
|  | wbuf->size = c->max_write_size; | 
|  | else | 
|  | wbuf->size = c->leb_size - wbuf->offs; | 
|  | wbuf->avail = wbuf->size; | 
|  | wbuf->used = 0; | 
|  | wbuf->next_ino = 0; | 
|  | spin_unlock(&wbuf->lock); | 
|  | } else { | 
|  | spin_lock(&wbuf->lock); | 
|  | wbuf->avail -= aligned_len; | 
|  | wbuf->used += aligned_len; | 
|  | spin_unlock(&wbuf->lock); | 
|  | } | 
|  |  | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | if (wbuf->used) { | 
|  | /* | 
|  | * The node is large enough and does not fit entirely within | 
|  | * current available space. We have to fill and flush | 
|  | * write-buffer and switch to the next max. write unit. | 
|  | */ | 
|  | dbg_io("flush jhead %s wbuf to LEB %d:%d", | 
|  | dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); | 
|  | memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); | 
|  | err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, | 
|  | wbuf->size); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | wbuf->offs += wbuf->size; | 
|  | len -= wbuf->avail; | 
|  | aligned_len -= wbuf->avail; | 
|  | written += wbuf->avail; | 
|  | } else if (wbuf->offs & (c->max_write_size - 1)) { | 
|  | /* | 
|  | * The write-buffer offset is not aligned to | 
|  | * @c->max_write_size and @wbuf->size is less than | 
|  | * @c->max_write_size. Write @wbuf->size bytes to make sure the | 
|  | * following writes are done in optimal @c->max_write_size | 
|  | * chunks. | 
|  | */ | 
|  | dbg_io("write %d bytes to LEB %d:%d", | 
|  | wbuf->size, wbuf->lnum, wbuf->offs); | 
|  | err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs, | 
|  | wbuf->size); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | wbuf->offs += wbuf->size; | 
|  | len -= wbuf->size; | 
|  | aligned_len -= wbuf->size; | 
|  | written += wbuf->size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The remaining data may take more whole max. write units, so write the | 
|  | * remains multiple to max. write unit size directly to the flash media. | 
|  | * We align node length to 8-byte boundary because we anyway flash wbuf | 
|  | * if the remaining space is less than 8 bytes. | 
|  | */ | 
|  | n = aligned_len >> c->max_write_shift; | 
|  | if (n) { | 
|  | int m = n - 1; | 
|  |  | 
|  | dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, | 
|  | wbuf->offs); | 
|  |  | 
|  | if (m) { | 
|  | /* '(n-1)<<c->max_write_shift < len' is always true. */ | 
|  | m <<= c->max_write_shift; | 
|  | err = ubifs_leb_write(c, wbuf->lnum, buf + written, | 
|  | wbuf->offs, m); | 
|  | if (err) | 
|  | goto out; | 
|  | wbuf->offs += m; | 
|  | aligned_len -= m; | 
|  | len -= m; | 
|  | written += m; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The non-written len of buf may be less than 'n' because | 
|  | * parameter 'len' is not 8 bytes aligned, so here we read | 
|  | * min(len, n) bytes from buf. | 
|  | */ | 
|  | n = 1 << c->max_write_shift; | 
|  | memcpy(wbuf->buf, buf + written, min(len, n)); | 
|  | if (n > len) { | 
|  | ubifs_assert(c, n - len < 8); | 
|  | ubifs_pad(c, wbuf->buf + len, n - len); | 
|  | } | 
|  |  | 
|  | err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, n); | 
|  | if (err) | 
|  | goto out; | 
|  | wbuf->offs += n; | 
|  | aligned_len -= n; | 
|  | len -= min(len, n); | 
|  | written += n; | 
|  | } | 
|  |  | 
|  | spin_lock(&wbuf->lock); | 
|  | if (aligned_len) { | 
|  | /* | 
|  | * And now we have what's left and what does not take whole | 
|  | * max. write unit, so write it to the write-buffer and we are | 
|  | * done. | 
|  | */ | 
|  | memcpy(wbuf->buf, buf + written, len); | 
|  | if (aligned_len > len) { | 
|  | ubifs_assert(c, aligned_len - len < 8); | 
|  | ubifs_pad(c, wbuf->buf + len, aligned_len - len); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (c->leb_size - wbuf->offs >= c->max_write_size) | 
|  | wbuf->size = c->max_write_size; | 
|  | else | 
|  | wbuf->size = c->leb_size - wbuf->offs; | 
|  | wbuf->avail = wbuf->size - aligned_len; | 
|  | wbuf->used = aligned_len; | 
|  | wbuf->next_ino = 0; | 
|  | spin_unlock(&wbuf->lock); | 
|  |  | 
|  | exit: | 
|  | if (wbuf->sync_callback) { | 
|  | int free = c->leb_size - wbuf->offs - wbuf->used; | 
|  |  | 
|  | err = wbuf->sync_callback(c, wbuf->lnum, free, 0); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (wbuf->used) | 
|  | new_wbuf_timer_nolock(c, wbuf); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d", | 
|  | len, wbuf->lnum, wbuf->offs, err); | 
|  | ubifs_dump_node(c, buf, written + len); | 
|  | dump_stack(); | 
|  | ubifs_dump_leb(c, wbuf->lnum); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_write_node_hmac - write node to the media. | 
|  | * @c: UBIFS file-system description object | 
|  | * @buf: the node to write | 
|  | * @len: node length | 
|  | * @lnum: logical eraseblock number | 
|  | * @offs: offset within the logical eraseblock | 
|  | * @hmac_offs: offset of the HMAC within the node | 
|  | * | 
|  | * This function automatically fills node magic number, assigns sequence | 
|  | * number, and calculates node CRC checksum. The length of the @buf buffer has | 
|  | * to be aligned to the minimal I/O unit size. This function automatically | 
|  | * appends padding node and padding bytes if needed. Returns zero in case of | 
|  | * success and a negative error code in case of failure. | 
|  | */ | 
|  | int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum, | 
|  | int offs, int hmac_offs) | 
|  | { | 
|  | int err, buf_len = ALIGN(len, c->min_io_size); | 
|  |  | 
|  | dbg_io("LEB %d:%d, %s, length %d (aligned %d)", | 
|  | lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, | 
|  | buf_len); | 
|  | ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0); | 
|  | ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size); | 
|  | ubifs_assert(c, !c->ro_media && !c->ro_mount); | 
|  | ubifs_assert(c, !c->space_fixup); | 
|  |  | 
|  | if (c->ro_error) | 
|  | return -EROFS; | 
|  |  | 
|  | err = ubifs_prepare_node_hmac(c, buf, len, hmac_offs, 1); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = ubifs_leb_write(c, lnum, buf, offs, buf_len); | 
|  | if (err) | 
|  | ubifs_dump_node(c, buf, len); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_write_node - write node to the media. | 
|  | * @c: UBIFS file-system description object | 
|  | * @buf: the node to write | 
|  | * @len: node length | 
|  | * @lnum: logical eraseblock number | 
|  | * @offs: offset within the logical eraseblock | 
|  | * | 
|  | * This function automatically fills node magic number, assigns sequence | 
|  | * number, and calculates node CRC checksum. The length of the @buf buffer has | 
|  | * to be aligned to the minimal I/O unit size. This function automatically | 
|  | * appends padding node and padding bytes if needed. Returns zero in case of | 
|  | * success and a negative error code in case of failure. | 
|  | */ | 
|  | int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, | 
|  | int offs) | 
|  | { | 
|  | return ubifs_write_node_hmac(c, buf, len, lnum, offs, -1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_read_node_wbuf - read node from the media or write-buffer. | 
|  | * @wbuf: wbuf to check for un-written data | 
|  | * @buf: buffer to read to | 
|  | * @type: node type | 
|  | * @len: node length | 
|  | * @lnum: logical eraseblock number | 
|  | * @offs: offset within the logical eraseblock | 
|  | * | 
|  | * This function reads a node of known type and length, checks it and stores | 
|  | * in @buf. If the node partially or fully sits in the write-buffer, this | 
|  | * function takes data from the buffer, otherwise it reads the flash media. | 
|  | * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative | 
|  | * error code in case of failure. | 
|  | */ | 
|  | int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, | 
|  | int lnum, int offs) | 
|  | { | 
|  | const struct ubifs_info *c = wbuf->c; | 
|  | int err, rlen, overlap; | 
|  | struct ubifs_ch *ch = buf; | 
|  |  | 
|  | dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs, | 
|  | dbg_ntype(type), len, dbg_jhead(wbuf->jhead)); | 
|  | ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); | 
|  | ubifs_assert(c, !(offs & 7) && offs < c->leb_size); | 
|  | ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT); | 
|  |  | 
|  | spin_lock(&wbuf->lock); | 
|  | overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); | 
|  | if (!overlap) { | 
|  | /* We may safely unlock the write-buffer and read the data */ | 
|  | spin_unlock(&wbuf->lock); | 
|  | return ubifs_read_node(c, buf, type, len, lnum, offs); | 
|  | } | 
|  |  | 
|  | /* Don't read under wbuf */ | 
|  | rlen = wbuf->offs - offs; | 
|  | if (rlen < 0) | 
|  | rlen = 0; | 
|  |  | 
|  | /* Copy the rest from the write-buffer */ | 
|  | memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); | 
|  | spin_unlock(&wbuf->lock); | 
|  |  | 
|  | if (rlen > 0) { | 
|  | /* Read everything that goes before write-buffer */ | 
|  | err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0); | 
|  | if (err && err != -EBADMSG) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (type != ch->node_type) { | 
|  | ubifs_err(c, "bad node type (%d but expected %d)", | 
|  | ch->node_type, type); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0); | 
|  | if (err) { | 
|  | ubifs_err(c, "expected node type %d", type); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | rlen = le32_to_cpu(ch->len); | 
|  | if (rlen != len) { | 
|  | ubifs_err(c, "bad node length %d, expected %d", rlen, len); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); | 
|  | ubifs_dump_node(c, buf, len); | 
|  | dump_stack(); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_read_node - read node. | 
|  | * @c: UBIFS file-system description object | 
|  | * @buf: buffer to read to | 
|  | * @type: node type | 
|  | * @len: node length (not aligned) | 
|  | * @lnum: logical eraseblock number | 
|  | * @offs: offset within the logical eraseblock | 
|  | * | 
|  | * This function reads a node of known type and length, checks it and | 
|  | * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched | 
|  | * and a negative error code in case of failure. | 
|  | */ | 
|  | int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, | 
|  | int lnum, int offs) | 
|  | { | 
|  | int err, l; | 
|  | struct ubifs_ch *ch = buf; | 
|  |  | 
|  | dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); | 
|  | ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0); | 
|  | ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size); | 
|  | ubifs_assert(c, !(offs & 7) && offs < c->leb_size); | 
|  | ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT); | 
|  |  | 
|  | err = ubifs_leb_read(c, lnum, buf, offs, len, 0); | 
|  | if (err && err != -EBADMSG) | 
|  | return err; | 
|  |  | 
|  | if (type != ch->node_type) { | 
|  | ubifs_errc(c, "bad node type (%d but expected %d)", | 
|  | ch->node_type, type); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0); | 
|  | if (err) { | 
|  | ubifs_errc(c, "expected node type %d", type); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | l = le32_to_cpu(ch->len); | 
|  | if (l != len) { | 
|  | ubifs_errc(c, "bad node length %d, expected %d", l, len); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum, | 
|  | offs, ubi_is_mapped(c->ubi, lnum)); | 
|  | if (!c->probing) { | 
|  | ubifs_dump_node(c, buf, len); | 
|  | dump_stack(); | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_wbuf_init - initialize write-buffer. | 
|  | * @c: UBIFS file-system description object | 
|  | * @wbuf: write-buffer to initialize | 
|  | * | 
|  | * This function initializes write-buffer. Returns zero in case of success | 
|  | * %-ENOMEM in case of failure. | 
|  | */ | 
|  | int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) | 
|  | { | 
|  | size_t size; | 
|  |  | 
|  | wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL); | 
|  | if (!wbuf->buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); | 
|  | wbuf->inodes = kmalloc(size, GFP_KERNEL); | 
|  | if (!wbuf->inodes) { | 
|  | kfree(wbuf->buf); | 
|  | wbuf->buf = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | wbuf->used = 0; | 
|  | wbuf->lnum = wbuf->offs = -1; | 
|  | /* | 
|  | * If the LEB starts at the max. write size aligned address, then | 
|  | * write-buffer size has to be set to @c->max_write_size. Otherwise, | 
|  | * set it to something smaller so that it ends at the closest max. | 
|  | * write size boundary. | 
|  | */ | 
|  | size = c->max_write_size - (c->leb_start % c->max_write_size); | 
|  | wbuf->avail = wbuf->size = size; | 
|  | wbuf->sync_callback = NULL; | 
|  | mutex_init(&wbuf->io_mutex); | 
|  | spin_lock_init(&wbuf->lock); | 
|  | wbuf->c = c; | 
|  | wbuf->next_ino = 0; | 
|  |  | 
|  | hrtimer_setup(&wbuf->timer, wbuf_timer_callback_nolock, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. | 
|  | * @wbuf: the write-buffer where to add | 
|  | * @inum: the inode number | 
|  | * | 
|  | * This function adds an inode number to the inode array of the write-buffer. | 
|  | */ | 
|  | void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) | 
|  | { | 
|  | if (!wbuf->buf) | 
|  | /* NOR flash or something similar */ | 
|  | return; | 
|  |  | 
|  | spin_lock(&wbuf->lock); | 
|  | if (wbuf->used) | 
|  | wbuf->inodes[wbuf->next_ino++] = inum; | 
|  | spin_unlock(&wbuf->lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * wbuf_has_ino - returns if the wbuf contains data from the inode. | 
|  | * @wbuf: the write-buffer | 
|  | * @inum: the inode number | 
|  | * | 
|  | * This function returns with %1 if the write-buffer contains some data from the | 
|  | * given inode otherwise it returns with %0. | 
|  | */ | 
|  | static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) | 
|  | { | 
|  | int i, ret = 0; | 
|  |  | 
|  | spin_lock(&wbuf->lock); | 
|  | for (i = 0; i < wbuf->next_ino; i++) | 
|  | if (inum == wbuf->inodes[i]) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | spin_unlock(&wbuf->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. | 
|  | * @c: UBIFS file-system description object | 
|  | * @inode: inode to synchronize | 
|  | * | 
|  | * This function synchronizes write-buffers which contain nodes belonging to | 
|  | * @inode. Returns zero in case of success and a negative error code in case of | 
|  | * failure. | 
|  | */ | 
|  | int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) | 
|  | { | 
|  | int i, err = 0; | 
|  |  | 
|  | for (i = 0; i < c->jhead_cnt; i++) { | 
|  | struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; | 
|  |  | 
|  | if (i == GCHD) | 
|  | /* | 
|  | * GC head is special, do not look at it. Even if the | 
|  | * head contains something related to this inode, it is | 
|  | * a _copy_ of corresponding on-flash node which sits | 
|  | * somewhere else. | 
|  | */ | 
|  | continue; | 
|  |  | 
|  | if (!wbuf_has_ino(wbuf, inode->i_ino)) | 
|  | continue; | 
|  |  | 
|  | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | 
|  | if (wbuf_has_ino(wbuf, inode->i_ino)) | 
|  | err = ubifs_wbuf_sync_nolock(wbuf); | 
|  | mutex_unlock(&wbuf->io_mutex); | 
|  |  | 
|  | if (err) { | 
|  | ubifs_ro_mode(c, err); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } |