|  | // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) | 
|  | /* af_can.c - Protocol family CAN core module | 
|  | *            (used by different CAN protocol modules) | 
|  | * | 
|  | * Copyright (c) 2002-2017 Volkswagen Group Electronic Research | 
|  | * All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. Neither the name of Volkswagen nor the names of its contributors | 
|  | *    may be used to endorse or promote products derived from this software | 
|  | *    without specific prior written permission. | 
|  | * | 
|  | * Alternatively, provided that this notice is retained in full, this | 
|  | * software may be distributed under the terms of the GNU General | 
|  | * Public License ("GPL") version 2, in which case the provisions of the | 
|  | * GPL apply INSTEAD OF those given above. | 
|  | * | 
|  | * The provided data structures and external interfaces from this code | 
|  | * are not restricted to be used by modules with a GPL compatible license. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH | 
|  | * DAMAGE. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kmod.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/net.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/socket.h> | 
|  | #include <linux/if_ether.h> | 
|  | #include <linux/if_arp.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/can.h> | 
|  | #include <linux/can/core.h> | 
|  | #include <linux/can/skb.h> | 
|  | #include <linux/can/can-ml.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <net/net_namespace.h> | 
|  | #include <net/sock.h> | 
|  |  | 
|  | #include "af_can.h" | 
|  |  | 
|  | MODULE_DESCRIPTION("Controller Area Network PF_CAN core"); | 
|  | MODULE_LICENSE("Dual BSD/GPL"); | 
|  | MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, " | 
|  | "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>"); | 
|  |  | 
|  | MODULE_ALIAS_NETPROTO(PF_CAN); | 
|  |  | 
|  | static int stats_timer __read_mostly = 1; | 
|  | module_param(stats_timer, int, 0444); | 
|  | MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)"); | 
|  |  | 
|  | static struct kmem_cache *rcv_cache __read_mostly; | 
|  |  | 
|  | /* table of registered CAN protocols */ | 
|  | static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly; | 
|  | static DEFINE_MUTEX(proto_tab_lock); | 
|  |  | 
|  | static atomic_t skbcounter = ATOMIC_INIT(0); | 
|  |  | 
|  | /* af_can socket functions */ | 
|  |  | 
|  | void can_sock_destruct(struct sock *sk) | 
|  | { | 
|  | skb_queue_purge(&sk->sk_receive_queue); | 
|  | skb_queue_purge(&sk->sk_error_queue); | 
|  | } | 
|  | EXPORT_SYMBOL(can_sock_destruct); | 
|  |  | 
|  | static const struct can_proto *can_get_proto(int protocol) | 
|  | { | 
|  | const struct can_proto *cp; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | cp = rcu_dereference(proto_tab[protocol]); | 
|  | if (cp && !try_module_get(cp->prot->owner)) | 
|  | cp = NULL; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return cp; | 
|  | } | 
|  |  | 
|  | static inline void can_put_proto(const struct can_proto *cp) | 
|  | { | 
|  | module_put(cp->prot->owner); | 
|  | } | 
|  |  | 
|  | static int can_create(struct net *net, struct socket *sock, int protocol, | 
|  | int kern) | 
|  | { | 
|  | struct sock *sk; | 
|  | const struct can_proto *cp; | 
|  | int err = 0; | 
|  |  | 
|  | sock->state = SS_UNCONNECTED; | 
|  |  | 
|  | if (protocol < 0 || protocol >= CAN_NPROTO) | 
|  | return -EINVAL; | 
|  |  | 
|  | cp = can_get_proto(protocol); | 
|  |  | 
|  | #ifdef CONFIG_MODULES | 
|  | if (!cp) { | 
|  | /* try to load protocol module if kernel is modular */ | 
|  |  | 
|  | err = request_module("can-proto-%d", protocol); | 
|  |  | 
|  | /* In case of error we only print a message but don't | 
|  | * return the error code immediately.  Below we will | 
|  | * return -EPROTONOSUPPORT | 
|  | */ | 
|  | if (err) | 
|  | pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n", | 
|  | protocol); | 
|  |  | 
|  | cp = can_get_proto(protocol); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* check for available protocol and correct usage */ | 
|  |  | 
|  | if (!cp) | 
|  | return -EPROTONOSUPPORT; | 
|  |  | 
|  | if (cp->type != sock->type) { | 
|  | err = -EPROTOTYPE; | 
|  | goto errout; | 
|  | } | 
|  |  | 
|  | sock->ops = cp->ops; | 
|  |  | 
|  | sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern); | 
|  | if (!sk) { | 
|  | err = -ENOMEM; | 
|  | goto errout; | 
|  | } | 
|  |  | 
|  | sock_init_data(sock, sk); | 
|  | sk->sk_destruct = can_sock_destruct; | 
|  |  | 
|  | if (sk->sk_prot->init) | 
|  | err = sk->sk_prot->init(sk); | 
|  |  | 
|  | if (err) { | 
|  | /* release sk on errors */ | 
|  | sock_orphan(sk); | 
|  | sock_put(sk); | 
|  | sock->sk = NULL; | 
|  | } else { | 
|  | sock_prot_inuse_add(net, sk->sk_prot, 1); | 
|  | } | 
|  |  | 
|  | errout: | 
|  | can_put_proto(cp); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* af_can tx path */ | 
|  |  | 
|  | /** | 
|  | * can_send - transmit a CAN frame (optional with local loopback) | 
|  | * @skb: pointer to socket buffer with CAN frame in data section | 
|  | * @loop: loopback for listeners on local CAN sockets (recommended default!) | 
|  | * | 
|  | * Due to the loopback this routine must not be called from hardirq context. | 
|  | * | 
|  | * Return: | 
|  | *  0 on success | 
|  | *  -ENETDOWN when the selected interface is down | 
|  | *  -ENOBUFS on full driver queue (see net_xmit_errno()) | 
|  | *  -ENOMEM when local loopback failed at calling skb_clone() | 
|  | *  -EPERM when trying to send on a non-CAN interface | 
|  | *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU | 
|  | *  -EINVAL when the skb->data does not contain a valid CAN frame | 
|  | */ | 
|  | int can_send(struct sk_buff *skb, int loop) | 
|  | { | 
|  | struct sk_buff *newskb = NULL; | 
|  | struct can_pkg_stats *pkg_stats = dev_net(skb->dev)->can.pkg_stats; | 
|  | int err = -EINVAL; | 
|  |  | 
|  | if (can_is_canxl_skb(skb)) { | 
|  | skb->protocol = htons(ETH_P_CANXL); | 
|  | } else if (can_is_can_skb(skb)) { | 
|  | skb->protocol = htons(ETH_P_CAN); | 
|  | } else if (can_is_canfd_skb(skb)) { | 
|  | struct canfd_frame *cfd = (struct canfd_frame *)skb->data; | 
|  |  | 
|  | skb->protocol = htons(ETH_P_CANFD); | 
|  |  | 
|  | /* set CAN FD flag for CAN FD frames by default */ | 
|  | cfd->flags |= CANFD_FDF; | 
|  | } else { | 
|  | goto inval_skb; | 
|  | } | 
|  |  | 
|  | /* Make sure the CAN frame can pass the selected CAN netdevice. */ | 
|  | if (unlikely(skb->len > READ_ONCE(skb->dev->mtu))) { | 
|  | err = -EMSGSIZE; | 
|  | goto inval_skb; | 
|  | } | 
|  |  | 
|  | if (unlikely(skb->dev->type != ARPHRD_CAN)) { | 
|  | err = -EPERM; | 
|  | goto inval_skb; | 
|  | } | 
|  |  | 
|  | if (unlikely(!(skb->dev->flags & IFF_UP))) { | 
|  | err = -ENETDOWN; | 
|  | goto inval_skb; | 
|  | } | 
|  |  | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  |  | 
|  | skb_reset_mac_header(skb); | 
|  | skb_reset_network_header(skb); | 
|  | skb_reset_transport_header(skb); | 
|  |  | 
|  | if (loop) { | 
|  | /* local loopback of sent CAN frames */ | 
|  |  | 
|  | /* indication for the CAN driver: do loopback */ | 
|  | skb->pkt_type = PACKET_LOOPBACK; | 
|  |  | 
|  | /* The reference to the originating sock may be required | 
|  | * by the receiving socket to check whether the frame is | 
|  | * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS | 
|  | * Therefore we have to ensure that skb->sk remains the | 
|  | * reference to the originating sock by restoring skb->sk | 
|  | * after each skb_clone() or skb_orphan() usage. | 
|  | */ | 
|  |  | 
|  | if (!(skb->dev->flags & IFF_ECHO)) { | 
|  | /* If the interface is not capable to do loopback | 
|  | * itself, we do it here. | 
|  | */ | 
|  | newskb = skb_clone(skb, GFP_ATOMIC); | 
|  | if (!newskb) { | 
|  | kfree_skb(skb); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | can_skb_set_owner(newskb, skb->sk); | 
|  | newskb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | newskb->pkt_type = PACKET_BROADCAST; | 
|  | } | 
|  | } else { | 
|  | /* indication for the CAN driver: no loopback required */ | 
|  | skb->pkt_type = PACKET_HOST; | 
|  | } | 
|  |  | 
|  | /* send to netdevice */ | 
|  | err = dev_queue_xmit(skb); | 
|  | if (err > 0) | 
|  | err = net_xmit_errno(err); | 
|  |  | 
|  | if (err) { | 
|  | kfree_skb(newskb); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (newskb) | 
|  | netif_rx(newskb); | 
|  |  | 
|  | /* update statistics */ | 
|  | atomic_long_inc(&pkg_stats->tx_frames); | 
|  | atomic_long_inc(&pkg_stats->tx_frames_delta); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | inval_skb: | 
|  | kfree_skb(skb); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(can_send); | 
|  |  | 
|  | /* af_can rx path */ | 
|  |  | 
|  | static struct can_dev_rcv_lists *can_dev_rcv_lists_find(struct net *net, | 
|  | struct net_device *dev) | 
|  | { | 
|  | if (dev) { | 
|  | struct can_ml_priv *can_ml = can_get_ml_priv(dev); | 
|  | return &can_ml->dev_rcv_lists; | 
|  | } else { | 
|  | return net->can.rx_alldev_list; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * effhash - hash function for 29 bit CAN identifier reduction | 
|  | * @can_id: 29 bit CAN identifier | 
|  | * | 
|  | * Description: | 
|  | *  To reduce the linear traversal in one linked list of _single_ EFF CAN | 
|  | *  frame subscriptions the 29 bit identifier is mapped to 10 bits. | 
|  | *  (see CAN_EFF_RCV_HASH_BITS definition) | 
|  | * | 
|  | * Return: | 
|  | *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask ) | 
|  | */ | 
|  | static unsigned int effhash(canid_t can_id) | 
|  | { | 
|  | unsigned int hash; | 
|  |  | 
|  | hash = can_id; | 
|  | hash ^= can_id >> CAN_EFF_RCV_HASH_BITS; | 
|  | hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS); | 
|  |  | 
|  | return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * can_rcv_list_find - determine optimal filterlist inside device filter struct | 
|  | * @can_id: pointer to CAN identifier of a given can_filter | 
|  | * @mask: pointer to CAN mask of a given can_filter | 
|  | * @dev_rcv_lists: pointer to the device filter struct | 
|  | * | 
|  | * Description: | 
|  | *  Returns the optimal filterlist to reduce the filter handling in the | 
|  | *  receive path. This function is called by service functions that need | 
|  | *  to register or unregister a can_filter in the filter lists. | 
|  | * | 
|  | *  A filter matches in general, when | 
|  | * | 
|  | *          <received_can_id> & mask == can_id & mask | 
|  | * | 
|  | *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe | 
|  | *  relevant bits for the filter. | 
|  | * | 
|  | *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can | 
|  | *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg | 
|  | *  frames there is a special filterlist and a special rx path filter handling. | 
|  | * | 
|  | * Return: | 
|  | *  Pointer to optimal filterlist for the given can_id/mask pair. | 
|  | *  Consistency checked mask. | 
|  | *  Reduced can_id to have a preprocessed filter compare value. | 
|  | */ | 
|  | static struct hlist_head *can_rcv_list_find(canid_t *can_id, canid_t *mask, | 
|  | struct can_dev_rcv_lists *dev_rcv_lists) | 
|  | { | 
|  | canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */ | 
|  |  | 
|  | /* filter for error message frames in extra filterlist */ | 
|  | if (*mask & CAN_ERR_FLAG) { | 
|  | /* clear CAN_ERR_FLAG in filter entry */ | 
|  | *mask &= CAN_ERR_MASK; | 
|  | return &dev_rcv_lists->rx[RX_ERR]; | 
|  | } | 
|  |  | 
|  | /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */ | 
|  |  | 
|  | #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG) | 
|  |  | 
|  | /* ensure valid values in can_mask for 'SFF only' frame filtering */ | 
|  | if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG)) | 
|  | *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS); | 
|  |  | 
|  | /* reduce condition testing at receive time */ | 
|  | *can_id &= *mask; | 
|  |  | 
|  | /* inverse can_id/can_mask filter */ | 
|  | if (inv) | 
|  | return &dev_rcv_lists->rx[RX_INV]; | 
|  |  | 
|  | /* mask == 0 => no condition testing at receive time */ | 
|  | if (!(*mask)) | 
|  | return &dev_rcv_lists->rx[RX_ALL]; | 
|  |  | 
|  | /* extra filterlists for the subscription of a single non-RTR can_id */ | 
|  | if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) && | 
|  | !(*can_id & CAN_RTR_FLAG)) { | 
|  | if (*can_id & CAN_EFF_FLAG) { | 
|  | if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) | 
|  | return &dev_rcv_lists->rx_eff[effhash(*can_id)]; | 
|  | } else { | 
|  | if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS)) | 
|  | return &dev_rcv_lists->rx_sff[*can_id]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* default: filter via can_id/can_mask */ | 
|  | return &dev_rcv_lists->rx[RX_FIL]; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * can_rx_register - subscribe CAN frames from a specific interface | 
|  | * @net: the applicable net namespace | 
|  | * @dev: pointer to netdevice (NULL => subscribe from 'all' CAN devices list) | 
|  | * @can_id: CAN identifier (see description) | 
|  | * @mask: CAN mask (see description) | 
|  | * @func: callback function on filter match | 
|  | * @data: returned parameter for callback function | 
|  | * @ident: string for calling module identification | 
|  | * @sk: socket pointer (might be NULL) | 
|  | * | 
|  | * Description: | 
|  | *  Invokes the callback function with the received sk_buff and the given | 
|  | *  parameter 'data' on a matching receive filter. A filter matches, when | 
|  | * | 
|  | *          <received_can_id> & mask == can_id & mask | 
|  | * | 
|  | *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can | 
|  | *  filter for error message frames (CAN_ERR_FLAG bit set in mask). | 
|  | * | 
|  | *  The provided pointer to the sk_buff is guaranteed to be valid as long as | 
|  | *  the callback function is running. The callback function must *not* free | 
|  | *  the given sk_buff while processing it's task. When the given sk_buff is | 
|  | *  needed after the end of the callback function it must be cloned inside | 
|  | *  the callback function with skb_clone(). | 
|  | * | 
|  | * Return: | 
|  | *  0 on success | 
|  | *  -ENOMEM on missing cache mem to create subscription entry | 
|  | *  -ENODEV unknown device | 
|  | */ | 
|  | int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id, | 
|  | canid_t mask, void (*func)(struct sk_buff *, void *), | 
|  | void *data, char *ident, struct sock *sk) | 
|  | { | 
|  | struct receiver *rcv; | 
|  | struct hlist_head *rcv_list; | 
|  | struct can_dev_rcv_lists *dev_rcv_lists; | 
|  | struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats; | 
|  |  | 
|  | /* insert new receiver  (dev,canid,mask) -> (func,data) */ | 
|  |  | 
|  | if (dev && (dev->type != ARPHRD_CAN || !can_get_ml_priv(dev))) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (dev && !net_eq(net, dev_net(dev))) | 
|  | return -ENODEV; | 
|  |  | 
|  | rcv = kmem_cache_alloc(rcv_cache, GFP_KERNEL); | 
|  | if (!rcv) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock_bh(&net->can.rcvlists_lock); | 
|  |  | 
|  | dev_rcv_lists = can_dev_rcv_lists_find(net, dev); | 
|  | rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists); | 
|  |  | 
|  | rcv->can_id = can_id; | 
|  | rcv->mask = mask; | 
|  | rcv->matches = 0; | 
|  | rcv->func = func; | 
|  | rcv->data = data; | 
|  | rcv->ident = ident; | 
|  | rcv->sk = sk; | 
|  |  | 
|  | hlist_add_head_rcu(&rcv->list, rcv_list); | 
|  | dev_rcv_lists->entries++; | 
|  |  | 
|  | rcv_lists_stats->rcv_entries++; | 
|  | rcv_lists_stats->rcv_entries_max = max(rcv_lists_stats->rcv_entries_max, | 
|  | rcv_lists_stats->rcv_entries); | 
|  | spin_unlock_bh(&net->can.rcvlists_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(can_rx_register); | 
|  |  | 
|  | /* can_rx_delete_receiver - rcu callback for single receiver entry removal */ | 
|  | static void can_rx_delete_receiver(struct rcu_head *rp) | 
|  | { | 
|  | struct receiver *rcv = container_of(rp, struct receiver, rcu); | 
|  | struct sock *sk = rcv->sk; | 
|  |  | 
|  | kmem_cache_free(rcv_cache, rcv); | 
|  | if (sk) | 
|  | sock_put(sk); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * can_rx_unregister - unsubscribe CAN frames from a specific interface | 
|  | * @net: the applicable net namespace | 
|  | * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list) | 
|  | * @can_id: CAN identifier | 
|  | * @mask: CAN mask | 
|  | * @func: callback function on filter match | 
|  | * @data: returned parameter for callback function | 
|  | * | 
|  | * Description: | 
|  | *  Removes subscription entry depending on given (subscription) values. | 
|  | */ | 
|  | void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id, | 
|  | canid_t mask, void (*func)(struct sk_buff *, void *), | 
|  | void *data) | 
|  | { | 
|  | struct receiver *rcv = NULL; | 
|  | struct hlist_head *rcv_list; | 
|  | struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats; | 
|  | struct can_dev_rcv_lists *dev_rcv_lists; | 
|  |  | 
|  | if (dev && dev->type != ARPHRD_CAN) | 
|  | return; | 
|  |  | 
|  | if (dev && !net_eq(net, dev_net(dev))) | 
|  | return; | 
|  |  | 
|  | spin_lock_bh(&net->can.rcvlists_lock); | 
|  |  | 
|  | dev_rcv_lists = can_dev_rcv_lists_find(net, dev); | 
|  | rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists); | 
|  |  | 
|  | /* Search the receiver list for the item to delete.  This should | 
|  | * exist, since no receiver may be unregistered that hasn't | 
|  | * been registered before. | 
|  | */ | 
|  | hlist_for_each_entry_rcu(rcv, rcv_list, list) { | 
|  | if (rcv->can_id == can_id && rcv->mask == mask && | 
|  | rcv->func == func && rcv->data == data) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Check for bugs in CAN protocol implementations using af_can.c: | 
|  | * 'rcv' will be NULL if no matching list item was found for removal. | 
|  | * As this case may potentially happen when closing a socket while | 
|  | * the notifier for removing the CAN netdev is running we just print | 
|  | * a warning here. | 
|  | */ | 
|  | if (!rcv) { | 
|  | pr_warn("can: receive list entry not found for dev %s, id %03X, mask %03X\n", | 
|  | DNAME(dev), can_id, mask); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | hlist_del_rcu(&rcv->list); | 
|  | dev_rcv_lists->entries--; | 
|  |  | 
|  | if (rcv_lists_stats->rcv_entries > 0) | 
|  | rcv_lists_stats->rcv_entries--; | 
|  |  | 
|  | out: | 
|  | spin_unlock_bh(&net->can.rcvlists_lock); | 
|  |  | 
|  | /* schedule the receiver item for deletion */ | 
|  | if (rcv) { | 
|  | if (rcv->sk) | 
|  | sock_hold(rcv->sk); | 
|  | call_rcu(&rcv->rcu, can_rx_delete_receiver); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(can_rx_unregister); | 
|  |  | 
|  | static inline void deliver(struct sk_buff *skb, struct receiver *rcv) | 
|  | { | 
|  | rcv->func(skb, rcv->data); | 
|  | rcv->matches++; | 
|  | } | 
|  |  | 
|  | static int can_rcv_filter(struct can_dev_rcv_lists *dev_rcv_lists, struct sk_buff *skb) | 
|  | { | 
|  | struct receiver *rcv; | 
|  | int matches = 0; | 
|  | struct can_frame *cf = (struct can_frame *)skb->data; | 
|  | canid_t can_id = cf->can_id; | 
|  |  | 
|  | if (dev_rcv_lists->entries == 0) | 
|  | return 0; | 
|  |  | 
|  | if (can_id & CAN_ERR_FLAG) { | 
|  | /* check for error message frame entries only */ | 
|  | hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ERR], list) { | 
|  | if (can_id & rcv->mask) { | 
|  | deliver(skb, rcv); | 
|  | matches++; | 
|  | } | 
|  | } | 
|  | return matches; | 
|  | } | 
|  |  | 
|  | /* check for unfiltered entries */ | 
|  | hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ALL], list) { | 
|  | deliver(skb, rcv); | 
|  | matches++; | 
|  | } | 
|  |  | 
|  | /* check for can_id/mask entries */ | 
|  | hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_FIL], list) { | 
|  | if ((can_id & rcv->mask) == rcv->can_id) { | 
|  | deliver(skb, rcv); | 
|  | matches++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check for inverted can_id/mask entries */ | 
|  | hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_INV], list) { | 
|  | if ((can_id & rcv->mask) != rcv->can_id) { | 
|  | deliver(skb, rcv); | 
|  | matches++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check filterlists for single non-RTR can_ids */ | 
|  | if (can_id & CAN_RTR_FLAG) | 
|  | return matches; | 
|  |  | 
|  | if (can_id & CAN_EFF_FLAG) { | 
|  | hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_eff[effhash(can_id)], list) { | 
|  | if (rcv->can_id == can_id) { | 
|  | deliver(skb, rcv); | 
|  | matches++; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | can_id &= CAN_SFF_MASK; | 
|  | hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_sff[can_id], list) { | 
|  | deliver(skb, rcv); | 
|  | matches++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return matches; | 
|  | } | 
|  |  | 
|  | static void can_receive(struct sk_buff *skb, struct net_device *dev) | 
|  | { | 
|  | struct can_dev_rcv_lists *dev_rcv_lists; | 
|  | struct net *net = dev_net(dev); | 
|  | struct can_pkg_stats *pkg_stats = net->can.pkg_stats; | 
|  | int matches; | 
|  |  | 
|  | /* update statistics */ | 
|  | atomic_long_inc(&pkg_stats->rx_frames); | 
|  | atomic_long_inc(&pkg_stats->rx_frames_delta); | 
|  |  | 
|  | /* create non-zero unique skb identifier together with *skb */ | 
|  | while (!(can_skb_prv(skb)->skbcnt)) | 
|  | can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter); | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | /* deliver the packet to sockets listening on all devices */ | 
|  | matches = can_rcv_filter(net->can.rx_alldev_list, skb); | 
|  |  | 
|  | /* find receive list for this device */ | 
|  | dev_rcv_lists = can_dev_rcv_lists_find(net, dev); | 
|  | matches += can_rcv_filter(dev_rcv_lists, skb); | 
|  |  | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* consume the skbuff allocated by the netdevice driver */ | 
|  | consume_skb(skb); | 
|  |  | 
|  | if (matches > 0) { | 
|  | atomic_long_inc(&pkg_stats->matches); | 
|  | atomic_long_inc(&pkg_stats->matches_delta); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int can_rcv(struct sk_buff *skb, struct net_device *dev, | 
|  | struct packet_type *pt, struct net_device *orig_dev) | 
|  | { | 
|  | if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_can_skb(skb))) { | 
|  | pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d\n", | 
|  | dev->type, skb->len); | 
|  |  | 
|  | kfree_skb_reason(skb, SKB_DROP_REASON_CAN_RX_INVALID_FRAME); | 
|  | return NET_RX_DROP; | 
|  | } | 
|  |  | 
|  | can_receive(skb, dev); | 
|  | return NET_RX_SUCCESS; | 
|  | } | 
|  |  | 
|  | static int canfd_rcv(struct sk_buff *skb, struct net_device *dev, | 
|  | struct packet_type *pt, struct net_device *orig_dev) | 
|  | { | 
|  | if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_canfd_skb(skb))) { | 
|  | pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d\n", | 
|  | dev->type, skb->len); | 
|  |  | 
|  | kfree_skb_reason(skb, SKB_DROP_REASON_CANFD_RX_INVALID_FRAME); | 
|  | return NET_RX_DROP; | 
|  | } | 
|  |  | 
|  | can_receive(skb, dev); | 
|  | return NET_RX_SUCCESS; | 
|  | } | 
|  |  | 
|  | static int canxl_rcv(struct sk_buff *skb, struct net_device *dev, | 
|  | struct packet_type *pt, struct net_device *orig_dev) | 
|  | { | 
|  | if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_canxl_skb(skb))) { | 
|  | pr_warn_once("PF_CAN: dropped non conform CAN XL skbuff: dev type %d, len %d\n", | 
|  | dev->type, skb->len); | 
|  |  | 
|  | kfree_skb_reason(skb, SKB_DROP_REASON_CANXL_RX_INVALID_FRAME); | 
|  | return NET_RX_DROP; | 
|  | } | 
|  |  | 
|  | can_receive(skb, dev); | 
|  | return NET_RX_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* af_can protocol functions */ | 
|  |  | 
|  | /** | 
|  | * can_proto_register - register CAN transport protocol | 
|  | * @cp: pointer to CAN protocol structure | 
|  | * | 
|  | * Return: | 
|  | *  0 on success | 
|  | *  -EINVAL invalid (out of range) protocol number | 
|  | *  -EBUSY  protocol already in use | 
|  | *  -ENOBUF if proto_register() fails | 
|  | */ | 
|  | int can_proto_register(const struct can_proto *cp) | 
|  | { | 
|  | int proto = cp->protocol; | 
|  | int err = 0; | 
|  |  | 
|  | if (proto < 0 || proto >= CAN_NPROTO) { | 
|  | pr_err("can: protocol number %d out of range\n", proto); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | err = proto_register(cp->prot, 0); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | mutex_lock(&proto_tab_lock); | 
|  |  | 
|  | if (rcu_access_pointer(proto_tab[proto])) { | 
|  | pr_err("can: protocol %d already registered\n", proto); | 
|  | err = -EBUSY; | 
|  | } else { | 
|  | RCU_INIT_POINTER(proto_tab[proto], cp); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&proto_tab_lock); | 
|  |  | 
|  | if (err < 0) | 
|  | proto_unregister(cp->prot); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(can_proto_register); | 
|  |  | 
|  | /** | 
|  | * can_proto_unregister - unregister CAN transport protocol | 
|  | * @cp: pointer to CAN protocol structure | 
|  | */ | 
|  | void can_proto_unregister(const struct can_proto *cp) | 
|  | { | 
|  | int proto = cp->protocol; | 
|  |  | 
|  | mutex_lock(&proto_tab_lock); | 
|  | BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp); | 
|  | RCU_INIT_POINTER(proto_tab[proto], NULL); | 
|  | mutex_unlock(&proto_tab_lock); | 
|  |  | 
|  | synchronize_rcu(); | 
|  |  | 
|  | proto_unregister(cp->prot); | 
|  | } | 
|  | EXPORT_SYMBOL(can_proto_unregister); | 
|  |  | 
|  | static int can_pernet_init(struct net *net) | 
|  | { | 
|  | spin_lock_init(&net->can.rcvlists_lock); | 
|  | net->can.rx_alldev_list = | 
|  | kzalloc(sizeof(*net->can.rx_alldev_list), GFP_KERNEL); | 
|  | if (!net->can.rx_alldev_list) | 
|  | goto out; | 
|  | net->can.pkg_stats = kzalloc(sizeof(*net->can.pkg_stats), GFP_KERNEL); | 
|  | if (!net->can.pkg_stats) | 
|  | goto out_free_rx_alldev_list; | 
|  | net->can.rcv_lists_stats = kzalloc(sizeof(*net->can.rcv_lists_stats), GFP_KERNEL); | 
|  | if (!net->can.rcv_lists_stats) | 
|  | goto out_free_pkg_stats; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_PROC_FS)) { | 
|  | /* the statistics are updated every second (timer triggered) */ | 
|  | if (stats_timer) { | 
|  | timer_setup(&net->can.stattimer, can_stat_update, | 
|  | 0); | 
|  | mod_timer(&net->can.stattimer, | 
|  | round_jiffies(jiffies + HZ)); | 
|  | } | 
|  | net->can.pkg_stats->jiffies_init = jiffies; | 
|  | can_init_proc(net); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free_pkg_stats: | 
|  | kfree(net->can.pkg_stats); | 
|  | out_free_rx_alldev_list: | 
|  | kfree(net->can.rx_alldev_list); | 
|  | out: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void can_pernet_exit(struct net *net) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_PROC_FS)) { | 
|  | can_remove_proc(net); | 
|  | if (stats_timer) | 
|  | timer_delete_sync(&net->can.stattimer); | 
|  | } | 
|  |  | 
|  | kfree(net->can.rx_alldev_list); | 
|  | kfree(net->can.pkg_stats); | 
|  | kfree(net->can.rcv_lists_stats); | 
|  | } | 
|  |  | 
|  | /* af_can module init/exit functions */ | 
|  |  | 
|  | static struct packet_type can_packet __read_mostly = { | 
|  | .type = cpu_to_be16(ETH_P_CAN), | 
|  | .func = can_rcv, | 
|  | }; | 
|  |  | 
|  | static struct packet_type canfd_packet __read_mostly = { | 
|  | .type = cpu_to_be16(ETH_P_CANFD), | 
|  | .func = canfd_rcv, | 
|  | }; | 
|  |  | 
|  | static struct packet_type canxl_packet __read_mostly = { | 
|  | .type = cpu_to_be16(ETH_P_CANXL), | 
|  | .func = canxl_rcv, | 
|  | }; | 
|  |  | 
|  | static const struct net_proto_family can_family_ops = { | 
|  | .family = PF_CAN, | 
|  | .create = can_create, | 
|  | .owner  = THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static struct pernet_operations can_pernet_ops __read_mostly = { | 
|  | .init = can_pernet_init, | 
|  | .exit = can_pernet_exit, | 
|  | }; | 
|  |  | 
|  | static __init int can_init(void) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | /* check for correct padding to be able to use the structs similarly */ | 
|  | BUILD_BUG_ON(offsetof(struct can_frame, len) != | 
|  | offsetof(struct canfd_frame, len) || | 
|  | offsetof(struct can_frame, len) != | 
|  | offsetof(struct canxl_frame, flags) || | 
|  | offsetof(struct can_frame, data) != | 
|  | offsetof(struct canfd_frame, data)); | 
|  |  | 
|  | pr_info("can: controller area network core\n"); | 
|  |  | 
|  | rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver), | 
|  | 0, 0, NULL); | 
|  | if (!rcv_cache) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = register_pernet_subsys(&can_pernet_ops); | 
|  | if (err) | 
|  | goto out_pernet; | 
|  |  | 
|  | /* protocol register */ | 
|  | err = sock_register(&can_family_ops); | 
|  | if (err) | 
|  | goto out_sock; | 
|  |  | 
|  | dev_add_pack(&can_packet); | 
|  | dev_add_pack(&canfd_packet); | 
|  | dev_add_pack(&canxl_packet); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_sock: | 
|  | unregister_pernet_subsys(&can_pernet_ops); | 
|  | out_pernet: | 
|  | kmem_cache_destroy(rcv_cache); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static __exit void can_exit(void) | 
|  | { | 
|  | /* protocol unregister */ | 
|  | dev_remove_pack(&canxl_packet); | 
|  | dev_remove_pack(&canfd_packet); | 
|  | dev_remove_pack(&can_packet); | 
|  | sock_unregister(PF_CAN); | 
|  |  | 
|  | unregister_pernet_subsys(&can_pernet_ops); | 
|  |  | 
|  | rcu_barrier(); /* Wait for completion of call_rcu()'s */ | 
|  |  | 
|  | kmem_cache_destroy(rcv_cache); | 
|  | } | 
|  |  | 
|  | module_init(can_init); | 
|  | module_exit(can_exit); |