|  | // SPDX-License-Identifier: GPL-2.0 | 
|  |  | 
|  | /* | 
|  | * Helper functions for finding the symbol in an ELF which is "nearest" | 
|  | * to a given address. | 
|  | */ | 
|  | #include <xalloc.h> | 
|  | #include "modpost.h" | 
|  |  | 
|  | struct syminfo { | 
|  | unsigned int symbol_index; | 
|  | unsigned int section_index; | 
|  | Elf_Addr addr; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Container used to hold an entire binary search table. | 
|  | * Entries in table are ascending, sorted first by section_index, | 
|  | * then by addr, and last by symbol_index.  The sorting by | 
|  | * symbol_index is used to ensure predictable behavior when | 
|  | * multiple symbols are present with the same address; all | 
|  | * symbols past the first are effectively ignored, by eliding | 
|  | * them in symsearch_fixup(). | 
|  | */ | 
|  | struct symsearch { | 
|  | unsigned int table_size; | 
|  | struct syminfo table[]; | 
|  | }; | 
|  |  | 
|  | static int syminfo_compare(const void *s1, const void *s2) | 
|  | { | 
|  | const struct syminfo *sym1 = s1; | 
|  | const struct syminfo *sym2 = s2; | 
|  |  | 
|  | if (sym1->section_index > sym2->section_index) | 
|  | return 1; | 
|  | if (sym1->section_index < sym2->section_index) | 
|  | return -1; | 
|  | if (sym1->addr > sym2->addr) | 
|  | return 1; | 
|  | if (sym1->addr < sym2->addr) | 
|  | return -1; | 
|  | if (sym1->symbol_index > sym2->symbol_index) | 
|  | return 1; | 
|  | if (sym1->symbol_index < sym2->symbol_index) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned int symbol_count(struct elf_info *elf) | 
|  | { | 
|  | unsigned int result = 0; | 
|  |  | 
|  | for (Elf_Sym *sym = elf->symtab_start; sym < elf->symtab_stop; sym++) { | 
|  | if (is_valid_name(elf, sym)) | 
|  | result++; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Populate the search array that we just allocated. | 
|  | * Be slightly paranoid here.  The ELF file is mmap'd and could | 
|  | * conceivably change between symbol_count() and symsearch_populate(). | 
|  | * If we notice any difference, bail out rather than potentially | 
|  | * propagating errors or crashing. | 
|  | */ | 
|  | static void symsearch_populate(struct elf_info *elf, | 
|  | struct syminfo *table, | 
|  | unsigned int table_size) | 
|  | { | 
|  | bool is_arm = (elf->hdr->e_machine == EM_ARM); | 
|  |  | 
|  | for (Elf_Sym *sym = elf->symtab_start; sym < elf->symtab_stop; sym++) { | 
|  | if (is_valid_name(elf, sym)) { | 
|  | if (table_size-- == 0) | 
|  | fatal("%s: size mismatch\n", __func__); | 
|  | table->symbol_index = sym - elf->symtab_start; | 
|  | table->section_index = get_secindex(elf, sym); | 
|  | table->addr = sym->st_value; | 
|  |  | 
|  | /* | 
|  | * For ARM Thumb instruction, the bit 0 of st_value is | 
|  | * set if the symbol is STT_FUNC type. Mask it to get | 
|  | * the address. | 
|  | */ | 
|  | if (is_arm && ELF_ST_TYPE(sym->st_info) == STT_FUNC) | 
|  | table->addr &= ~1; | 
|  |  | 
|  | table++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (table_size != 0) | 
|  | fatal("%s: size mismatch\n", __func__); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do any fixups on the table after sorting. | 
|  | * For now, this just finds adjacent entries which have | 
|  | * the same section_index and addr, and it propagates | 
|  | * the first symbol_index over the subsequent entries, | 
|  | * so that only one symbol_index is seen for any given | 
|  | * section_index and addr.  This ensures that whether | 
|  | * we're looking at an address from "above" or "below" | 
|  | * that we see the same symbol_index. | 
|  | * This does leave some duplicate entries in the table; | 
|  | * in practice, these are a small fraction of the | 
|  | * total number of entries, and they are harmless to | 
|  | * the binary search algorithm other than a few occasional | 
|  | * unnecessary comparisons. | 
|  | */ | 
|  | static void symsearch_fixup(struct syminfo *table, unsigned int table_size) | 
|  | { | 
|  | /* Don't look at index 0, it will never change. */ | 
|  | for (unsigned int i = 1; i < table_size; i++) { | 
|  | if (table[i].addr == table[i - 1].addr && | 
|  | table[i].section_index == table[i - 1].section_index) { | 
|  | table[i].symbol_index = table[i - 1].symbol_index; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void symsearch_init(struct elf_info *elf) | 
|  | { | 
|  | unsigned int table_size = symbol_count(elf); | 
|  |  | 
|  | elf->symsearch = xmalloc(sizeof(struct symsearch) + | 
|  | sizeof(struct syminfo) * table_size); | 
|  | elf->symsearch->table_size = table_size; | 
|  |  | 
|  | symsearch_populate(elf, elf->symsearch->table, table_size); | 
|  | qsort(elf->symsearch->table, table_size, | 
|  | sizeof(struct syminfo), syminfo_compare); | 
|  |  | 
|  | symsearch_fixup(elf->symsearch->table, table_size); | 
|  | } | 
|  |  | 
|  | void symsearch_finish(struct elf_info *elf) | 
|  | { | 
|  | free(elf->symsearch); | 
|  | elf->symsearch = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the syminfo which is in secndx and "nearest" to addr. | 
|  | * allow_negative: allow returning a symbol whose address is > addr. | 
|  | * min_distance: ignore symbols which are further away than this. | 
|  | * | 
|  | * Returns a pointer into the symbol table for success. | 
|  | * Returns NULL if no legal symbol is found within the requested range. | 
|  | */ | 
|  | Elf_Sym *symsearch_find_nearest(struct elf_info *elf, Elf_Addr addr, | 
|  | unsigned int secndx, bool allow_negative, | 
|  | Elf_Addr min_distance) | 
|  | { | 
|  | unsigned int hi = elf->symsearch->table_size; | 
|  | unsigned int lo = 0; | 
|  | struct syminfo *table = elf->symsearch->table; | 
|  | struct syminfo target; | 
|  |  | 
|  | target.addr = addr; | 
|  | target.section_index = secndx; | 
|  | target.symbol_index = ~0;  /* compares greater than any actual index */ | 
|  | while (hi > lo) { | 
|  | unsigned int mid = lo + (hi - lo) / 2;  /* Avoids overflow */ | 
|  |  | 
|  | if (syminfo_compare(&table[mid], &target) > 0) | 
|  | hi = mid; | 
|  | else | 
|  | lo = mid + 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * table[hi], if it exists, is the first entry in the array which | 
|  | * lies beyond target.  table[hi - 1], if it exists, is the last | 
|  | * entry in the array which comes before target, including the | 
|  | * case where it perfectly matches the section and the address. | 
|  | * | 
|  | * Note -- if the address we're looking up falls perfectly | 
|  | * in the middle of two symbols, this is written to always | 
|  | * prefer the symbol with the lower address. | 
|  | */ | 
|  | Elf_Sym *result = NULL; | 
|  |  | 
|  | if (allow_negative && | 
|  | hi < elf->symsearch->table_size && | 
|  | table[hi].section_index == secndx && | 
|  | table[hi].addr - addr <= min_distance) { | 
|  | min_distance = table[hi].addr - addr; | 
|  | result = &elf->symtab_start[table[hi].symbol_index]; | 
|  | } | 
|  | if (hi > 0 && | 
|  | table[hi - 1].section_index == secndx && | 
|  | addr - table[hi - 1].addr <= min_distance) { | 
|  | result = &elf->symtab_start[table[hi - 1].symbol_index]; | 
|  | } | 
|  | return result; | 
|  | } |