| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Kernel-based Virtual Machine (KVM) Hypervisor | 
 |  * | 
 |  * Copyright (C) 2006 Qumranet, Inc. | 
 |  * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
 |  * | 
 |  * Authors: | 
 |  *   Avi Kivity   <avi@qumranet.com> | 
 |  *   Yaniv Kamay  <yaniv@qumranet.com> | 
 |  */ | 
 |  | 
 | #include <kvm/iodev.h> | 
 |  | 
 | #include <linux/kvm_host.h> | 
 | #include <linux/kvm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/miscdevice.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/file.h> | 
 | #include <linux/syscore_ops.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/sched/stat.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/anon_inodes.h> | 
 | #include <linux/profile.h> | 
 | #include <linux/kvm_para.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/compat.h> | 
 | #include <linux/srcu.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/sort.h> | 
 | #include <linux/bsearch.h> | 
 | #include <linux/io.h> | 
 | #include <linux/lockdep.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/suspend.h> | 
 |  | 
 | #include <asm/processor.h> | 
 | #include <asm/ioctl.h> | 
 | #include <linux/uaccess.h> | 
 |  | 
 | #include "coalesced_mmio.h" | 
 | #include "async_pf.h" | 
 | #include "kvm_mm.h" | 
 | #include "vfio.h" | 
 |  | 
 | #include <trace/events/ipi.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/kvm.h> | 
 |  | 
 | #include <linux/kvm_dirty_ring.h> | 
 |  | 
 |  | 
 | /* Worst case buffer size needed for holding an integer. */ | 
 | #define ITOA_MAX_LEN 12 | 
 |  | 
 | MODULE_AUTHOR("Qumranet"); | 
 | MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor"); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | /* Architectures should define their poll value according to the halt latency */ | 
 | unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; | 
 | module_param(halt_poll_ns, uint, 0644); | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns); | 
 |  | 
 | /* Default doubles per-vcpu halt_poll_ns. */ | 
 | unsigned int halt_poll_ns_grow = 2; | 
 | module_param(halt_poll_ns_grow, uint, 0644); | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow); | 
 |  | 
 | /* The start value to grow halt_poll_ns from */ | 
 | unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ | 
 | module_param(halt_poll_ns_grow_start, uint, 0644); | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_grow_start); | 
 |  | 
 | /* Default halves per-vcpu halt_poll_ns. */ | 
 | unsigned int halt_poll_ns_shrink = 2; | 
 | module_param(halt_poll_ns_shrink, uint, 0644); | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(halt_poll_ns_shrink); | 
 |  | 
 | /* | 
 |  * Allow direct access (from KVM or the CPU) without MMU notifier protection | 
 |  * to unpinned pages. | 
 |  */ | 
 | static bool allow_unsafe_mappings; | 
 | module_param(allow_unsafe_mappings, bool, 0444); | 
 |  | 
 | /* | 
 |  * Ordering of locks: | 
 |  * | 
 |  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock | 
 |  */ | 
 |  | 
 | DEFINE_MUTEX(kvm_lock); | 
 | LIST_HEAD(vm_list); | 
 |  | 
 | static struct kmem_cache *kvm_vcpu_cache; | 
 |  | 
 | static __read_mostly struct preempt_ops kvm_preempt_ops; | 
 | static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); | 
 |  | 
 | static struct dentry *kvm_debugfs_dir; | 
 |  | 
 | static const struct file_operations stat_fops_per_vm; | 
 |  | 
 | static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, | 
 | 			   unsigned long arg); | 
 | #ifdef CONFIG_KVM_COMPAT | 
 | static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, | 
 | 				  unsigned long arg); | 
 | #define KVM_COMPAT(c)	.compat_ioctl	= (c) | 
 | #else | 
 | /* | 
 |  * For architectures that don't implement a compat infrastructure, | 
 |  * adopt a double line of defense: | 
 |  * - Prevent a compat task from opening /dev/kvm | 
 |  * - If the open has been done by a 64bit task, and the KVM fd | 
 |  *   passed to a compat task, let the ioctls fail. | 
 |  */ | 
 | static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, | 
 | 				unsigned long arg) { return -EINVAL; } | 
 |  | 
 | static int kvm_no_compat_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	return is_compat_task() ? -ENODEV : 0; | 
 | } | 
 | #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\ | 
 | 			.open		= kvm_no_compat_open | 
 | #endif | 
 |  | 
 | static void kvm_io_bus_destroy(struct kvm_io_bus *bus); | 
 |  | 
 | #define KVM_EVENT_CREATE_VM 0 | 
 | #define KVM_EVENT_DESTROY_VM 1 | 
 | static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); | 
 | static unsigned long long kvm_createvm_count; | 
 | static unsigned long long kvm_active_vms; | 
 |  | 
 | static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); | 
 |  | 
 | __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * Switches to specified vcpu, until a matching vcpu_put() | 
 |  */ | 
 | void vcpu_load(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int cpu = get_cpu(); | 
 |  | 
 | 	__this_cpu_write(kvm_running_vcpu, vcpu); | 
 | 	preempt_notifier_register(&vcpu->preempt_notifier); | 
 | 	kvm_arch_vcpu_load(vcpu, cpu); | 
 | 	put_cpu(); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_load); | 
 |  | 
 | void vcpu_put(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	preempt_disable(); | 
 | 	kvm_arch_vcpu_put(vcpu); | 
 | 	preempt_notifier_unregister(&vcpu->preempt_notifier); | 
 | 	__this_cpu_write(kvm_running_vcpu, NULL); | 
 | 	preempt_enable(); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(vcpu_put); | 
 |  | 
 | /* TODO: merge with kvm_arch_vcpu_should_kick */ | 
 | static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) | 
 | { | 
 | 	int mode = kvm_vcpu_exiting_guest_mode(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * We need to wait for the VCPU to reenable interrupts and get out of | 
 | 	 * READING_SHADOW_PAGE_TABLES mode. | 
 | 	 */ | 
 | 	if (req & KVM_REQUEST_WAIT) | 
 | 		return mode != OUTSIDE_GUEST_MODE; | 
 |  | 
 | 	/* | 
 | 	 * Need to kick a running VCPU, but otherwise there is nothing to do. | 
 | 	 */ | 
 | 	return mode == IN_GUEST_MODE; | 
 | } | 
 |  | 
 | static void ack_kick(void *_completed) | 
 | { | 
 | } | 
 |  | 
 | static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) | 
 | { | 
 | 	if (cpumask_empty(cpus)) | 
 | 		return false; | 
 |  | 
 | 	smp_call_function_many(cpus, ack_kick, NULL, wait); | 
 | 	return true; | 
 | } | 
 |  | 
 | static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, | 
 | 				  struct cpumask *tmp, int current_cpu) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	if (likely(!(req & KVM_REQUEST_NO_ACTION))) | 
 | 		__kvm_make_request(req, vcpu); | 
 |  | 
 | 	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Note, the vCPU could get migrated to a different pCPU at any point | 
 | 	 * after kvm_request_needs_ipi(), which could result in sending an IPI | 
 | 	 * to the previous pCPU.  But, that's OK because the purpose of the IPI | 
 | 	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is | 
 | 	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES | 
 | 	 * after this point is also OK, as the requirement is only that KVM wait | 
 | 	 * for vCPUs that were reading SPTEs _before_ any changes were | 
 | 	 * finalized. See kvm_vcpu_kick() for more details on handling requests. | 
 | 	 */ | 
 | 	if (kvm_request_needs_ipi(vcpu, req)) { | 
 | 		cpu = READ_ONCE(vcpu->cpu); | 
 | 		if (cpu != -1 && cpu != current_cpu) | 
 | 			__cpumask_set_cpu(cpu, tmp); | 
 | 	} | 
 | } | 
 |  | 
 | bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, | 
 | 				 unsigned long *vcpu_bitmap) | 
 | { | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	struct cpumask *cpus; | 
 | 	int i, me; | 
 | 	bool called; | 
 |  | 
 | 	me = get_cpu(); | 
 |  | 
 | 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); | 
 | 	cpumask_clear(cpus); | 
 |  | 
 | 	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { | 
 | 		vcpu = kvm_get_vcpu(kvm, i); | 
 | 		if (!vcpu) | 
 | 			continue; | 
 | 		kvm_make_vcpu_request(vcpu, req, cpus, me); | 
 | 	} | 
 |  | 
 | 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); | 
 | 	put_cpu(); | 
 |  | 
 | 	return called; | 
 | } | 
 |  | 
 | bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) | 
 | { | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	struct cpumask *cpus; | 
 | 	unsigned long i; | 
 | 	bool called; | 
 | 	int me; | 
 |  | 
 | 	me = get_cpu(); | 
 |  | 
 | 	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); | 
 | 	cpumask_clear(cpus); | 
 |  | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) | 
 | 		kvm_make_vcpu_request(vcpu, req, cpus, me); | 
 |  | 
 | 	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); | 
 | 	put_cpu(); | 
 |  | 
 | 	return called; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_make_all_cpus_request); | 
 |  | 
 | void kvm_flush_remote_tlbs(struct kvm *kvm) | 
 | { | 
 | 	++kvm->stat.generic.remote_tlb_flush_requests; | 
 |  | 
 | 	/* | 
 | 	 * We want to publish modifications to the page tables before reading | 
 | 	 * mode. Pairs with a memory barrier in arch-specific code. | 
 | 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest | 
 | 	 * and smp_mb in walk_shadow_page_lockless_begin/end. | 
 | 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter. | 
 | 	 * | 
 | 	 * There is already an smp_mb__after_atomic() before | 
 | 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that | 
 | 	 * barrier here. | 
 | 	 */ | 
 | 	if (!kvm_arch_flush_remote_tlbs(kvm) | 
 | 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) | 
 | 		++kvm->stat.generic.remote_tlb_flush; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_flush_remote_tlbs); | 
 |  | 
 | void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages) | 
 | { | 
 | 	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Fall back to a flushing entire TLBs if the architecture range-based | 
 | 	 * TLB invalidation is unsupported or can't be performed for whatever | 
 | 	 * reason. | 
 | 	 */ | 
 | 	kvm_flush_remote_tlbs(kvm); | 
 | } | 
 |  | 
 | void kvm_flush_remote_tlbs_memslot(struct kvm *kvm, | 
 | 				   const struct kvm_memory_slot *memslot) | 
 | { | 
 | 	/* | 
 | 	 * All current use cases for flushing the TLBs for a specific memslot | 
 | 	 * are related to dirty logging, and many do the TLB flush out of | 
 | 	 * mmu_lock. The interaction between the various operations on memslot | 
 | 	 * must be serialized by slots_lock to ensure the TLB flush from one | 
 | 	 * operation is observed by any other operation on the same memslot. | 
 | 	 */ | 
 | 	lockdep_assert_held(&kvm->slots_lock); | 
 | 	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages); | 
 | } | 
 |  | 
 | static void kvm_flush_shadow_all(struct kvm *kvm) | 
 | { | 
 | 	kvm_arch_flush_shadow_all(kvm); | 
 | 	kvm_arch_guest_memory_reclaimed(kvm); | 
 | } | 
 |  | 
 | #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE | 
 | static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, | 
 | 					       gfp_t gfp_flags) | 
 | { | 
 | 	void *page; | 
 |  | 
 | 	gfp_flags |= mc->gfp_zero; | 
 |  | 
 | 	if (mc->kmem_cache) | 
 | 		return kmem_cache_alloc(mc->kmem_cache, gfp_flags); | 
 |  | 
 | 	page = (void *)__get_free_page(gfp_flags); | 
 | 	if (page && mc->init_value) | 
 | 		memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64)); | 
 | 	return page; | 
 | } | 
 |  | 
 | int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) | 
 | { | 
 | 	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; | 
 | 	void *obj; | 
 |  | 
 | 	if (mc->nobjs >= min) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(!mc->objects)) { | 
 | 		if (WARN_ON_ONCE(!capacity)) | 
 | 			return -EIO; | 
 |  | 
 | 		/* | 
 | 		 * Custom init values can be used only for page allocations, | 
 | 		 * and obviously conflict with __GFP_ZERO. | 
 | 		 */ | 
 | 		if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero))) | 
 | 			return -EIO; | 
 |  | 
 | 		mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp); | 
 | 		if (!mc->objects) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		mc->capacity = capacity; | 
 | 	} | 
 |  | 
 | 	/* It is illegal to request a different capacity across topups. */ | 
 | 	if (WARN_ON_ONCE(mc->capacity != capacity)) | 
 | 		return -EIO; | 
 |  | 
 | 	while (mc->nobjs < mc->capacity) { | 
 | 		obj = mmu_memory_cache_alloc_obj(mc, gfp); | 
 | 		if (!obj) | 
 | 			return mc->nobjs >= min ? 0 : -ENOMEM; | 
 | 		mc->objects[mc->nobjs++] = obj; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) | 
 | { | 
 | 	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); | 
 | } | 
 |  | 
 | int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) | 
 | { | 
 | 	return mc->nobjs; | 
 | } | 
 |  | 
 | void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) | 
 | { | 
 | 	while (mc->nobjs) { | 
 | 		if (mc->kmem_cache) | 
 | 			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); | 
 | 		else | 
 | 			free_page((unsigned long)mc->objects[--mc->nobjs]); | 
 | 	} | 
 |  | 
 | 	kvfree(mc->objects); | 
 |  | 
 | 	mc->objects = NULL; | 
 | 	mc->capacity = 0; | 
 | } | 
 |  | 
 | void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) | 
 | { | 
 | 	void *p; | 
 |  | 
 | 	if (WARN_ON(!mc->nobjs)) | 
 | 		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); | 
 | 	else | 
 | 		p = mc->objects[--mc->nobjs]; | 
 | 	BUG_ON(!p); | 
 | 	return p; | 
 | } | 
 | #endif | 
 |  | 
 | static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) | 
 | { | 
 | 	mutex_init(&vcpu->mutex); | 
 | 	vcpu->cpu = -1; | 
 | 	vcpu->kvm = kvm; | 
 | 	vcpu->vcpu_id = id; | 
 | 	vcpu->pid = NULL; | 
 | 	rwlock_init(&vcpu->pid_lock); | 
 | #ifndef __KVM_HAVE_ARCH_WQP | 
 | 	rcuwait_init(&vcpu->wait); | 
 | #endif | 
 | 	kvm_async_pf_vcpu_init(vcpu); | 
 |  | 
 | 	kvm_vcpu_set_in_spin_loop(vcpu, false); | 
 | 	kvm_vcpu_set_dy_eligible(vcpu, false); | 
 | 	vcpu->preempted = false; | 
 | 	vcpu->ready = false; | 
 | 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); | 
 | 	vcpu->last_used_slot = NULL; | 
 |  | 
 | 	/* Fill the stats id string for the vcpu */ | 
 | 	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", | 
 | 		 task_pid_nr(current), id); | 
 | } | 
 |  | 
 | static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_arch_vcpu_destroy(vcpu); | 
 | 	kvm_dirty_ring_free(&vcpu->dirty_ring); | 
 |  | 
 | 	/* | 
 | 	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes | 
 | 	 * the vcpu->pid pointer, and at destruction time all file descriptors | 
 | 	 * are already gone. | 
 | 	 */ | 
 | 	put_pid(vcpu->pid); | 
 |  | 
 | 	free_page((unsigned long)vcpu->run); | 
 | 	kmem_cache_free(kvm_vcpu_cache, vcpu); | 
 | } | 
 |  | 
 | void kvm_destroy_vcpus(struct kvm *kvm) | 
 | { | 
 | 	unsigned long i; | 
 | 	struct kvm_vcpu *vcpu; | 
 |  | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) { | 
 | 		kvm_vcpu_destroy(vcpu); | 
 | 		xa_erase(&kvm->vcpu_array, i); | 
 |  | 
 | 		/* | 
 | 		 * Assert that the vCPU isn't visible in any way, to ensure KVM | 
 | 		 * doesn't trigger a use-after-free if destroying vCPUs results | 
 | 		 * in VM-wide request, e.g. to flush remote TLBs when tearing | 
 | 		 * down MMUs, or to mark the VM dead if a KVM_BUG_ON() fires. | 
 | 		 */ | 
 | 		WARN_ON_ONCE(xa_load(&kvm->vcpu_array, i) || kvm_get_vcpu(kvm, i)); | 
 | 	} | 
 |  | 
 | 	atomic_set(&kvm->online_vcpus, 0); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_destroy_vcpus); | 
 |  | 
 | #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER | 
 | static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) | 
 | { | 
 | 	return container_of(mn, struct kvm, mmu_notifier); | 
 | } | 
 |  | 
 | typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); | 
 |  | 
 | typedef void (*on_lock_fn_t)(struct kvm *kvm); | 
 |  | 
 | struct kvm_mmu_notifier_range { | 
 | 	/* | 
 | 	 * 64-bit addresses, as KVM notifiers can operate on host virtual | 
 | 	 * addresses (unsigned long) and guest physical addresses (64-bit). | 
 | 	 */ | 
 | 	u64 start; | 
 | 	u64 end; | 
 | 	union kvm_mmu_notifier_arg arg; | 
 | 	gfn_handler_t handler; | 
 | 	on_lock_fn_t on_lock; | 
 | 	bool flush_on_ret; | 
 | 	bool may_block; | 
 | 	bool lockless; | 
 | }; | 
 |  | 
 | /* | 
 |  * The inner-most helper returns a tuple containing the return value from the | 
 |  * arch- and action-specific handler, plus a flag indicating whether or not at | 
 |  * least one memslot was found, i.e. if the handler found guest memory. | 
 |  * | 
 |  * Note, most notifiers are averse to booleans, so even though KVM tracks the | 
 |  * return from arch code as a bool, outer helpers will cast it to an int. :-( | 
 |  */ | 
 | typedef struct kvm_mmu_notifier_return { | 
 | 	bool ret; | 
 | 	bool found_memslot; | 
 | } kvm_mn_ret_t; | 
 |  | 
 | /* | 
 |  * Use a dedicated stub instead of NULL to indicate that there is no callback | 
 |  * function/handler.  The compiler technically can't guarantee that a real | 
 |  * function will have a non-zero address, and so it will generate code to | 
 |  * check for !NULL, whereas comparing against a stub will be elided at compile | 
 |  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). | 
 |  */ | 
 | static void kvm_null_fn(void) | 
 | { | 
 |  | 
 | } | 
 | #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) | 
 |  | 
 | /* Iterate over each memslot intersecting [start, last] (inclusive) range */ | 
 | #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \ | 
 | 	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ | 
 | 	     node;							     \ | 
 | 	     node = interval_tree_iter_next(node, start, last))	     \ | 
 |  | 
 | static __always_inline kvm_mn_ret_t kvm_handle_hva_range(struct kvm *kvm, | 
 | 							 const struct kvm_mmu_notifier_range *range) | 
 | { | 
 | 	struct kvm_mmu_notifier_return r = { | 
 | 		.ret = false, | 
 | 		.found_memslot = false, | 
 | 	}; | 
 | 	struct kvm_gfn_range gfn_range; | 
 | 	struct kvm_memory_slot *slot; | 
 | 	struct kvm_memslots *slots; | 
 | 	int i, idx; | 
 |  | 
 | 	if (WARN_ON_ONCE(range->end <= range->start)) | 
 | 		return r; | 
 |  | 
 | 	/* A null handler is allowed if and only if on_lock() is provided. */ | 
 | 	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && | 
 | 			 IS_KVM_NULL_FN(range->handler))) | 
 | 		return r; | 
 |  | 
 | 	/* on_lock will never be called for lockless walks */ | 
 | 	if (WARN_ON_ONCE(range->lockless && !IS_KVM_NULL_FN(range->on_lock))) | 
 | 		return r; | 
 |  | 
 | 	idx = srcu_read_lock(&kvm->srcu); | 
 |  | 
 | 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { | 
 | 		struct interval_tree_node *node; | 
 |  | 
 | 		slots = __kvm_memslots(kvm, i); | 
 | 		kvm_for_each_memslot_in_hva_range(node, slots, | 
 | 						  range->start, range->end - 1) { | 
 | 			unsigned long hva_start, hva_end; | 
 |  | 
 | 			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); | 
 | 			hva_start = max_t(unsigned long, range->start, slot->userspace_addr); | 
 | 			hva_end = min_t(unsigned long, range->end, | 
 | 					slot->userspace_addr + (slot->npages << PAGE_SHIFT)); | 
 |  | 
 | 			/* | 
 | 			 * To optimize for the likely case where the address | 
 | 			 * range is covered by zero or one memslots, don't | 
 | 			 * bother making these conditional (to avoid writes on | 
 | 			 * the second or later invocation of the handler). | 
 | 			 */ | 
 | 			gfn_range.arg = range->arg; | 
 | 			gfn_range.may_block = range->may_block; | 
 | 			/* | 
 | 			 * HVA-based notifications aren't relevant to private | 
 | 			 * mappings as they don't have a userspace mapping. | 
 | 			 */ | 
 | 			gfn_range.attr_filter = KVM_FILTER_SHARED; | 
 |  | 
 | 			/* | 
 | 			 * {gfn(page) | page intersects with [hva_start, hva_end)} = | 
 | 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}. | 
 | 			 */ | 
 | 			gfn_range.start = hva_to_gfn_memslot(hva_start, slot); | 
 | 			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); | 
 | 			gfn_range.slot = slot; | 
 | 			gfn_range.lockless = range->lockless; | 
 |  | 
 | 			if (!r.found_memslot) { | 
 | 				r.found_memslot = true; | 
 | 				if (!range->lockless) { | 
 | 					KVM_MMU_LOCK(kvm); | 
 | 					if (!IS_KVM_NULL_FN(range->on_lock)) | 
 | 						range->on_lock(kvm); | 
 |  | 
 | 					if (IS_KVM_NULL_FN(range->handler)) | 
 | 						goto mmu_unlock; | 
 | 				} | 
 | 			} | 
 | 			r.ret |= range->handler(kvm, &gfn_range); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (range->flush_on_ret && r.ret) | 
 | 		kvm_flush_remote_tlbs(kvm); | 
 |  | 
 | mmu_unlock: | 
 | 	if (r.found_memslot && !range->lockless) | 
 | 		KVM_MMU_UNLOCK(kvm); | 
 |  | 
 | 	srcu_read_unlock(&kvm->srcu, idx); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static __always_inline int kvm_age_hva_range(struct mmu_notifier *mn, | 
 | 						unsigned long start, | 
 | 						unsigned long end, | 
 | 						gfn_handler_t handler, | 
 | 						bool flush_on_ret) | 
 | { | 
 | 	struct kvm *kvm = mmu_notifier_to_kvm(mn); | 
 | 	const struct kvm_mmu_notifier_range range = { | 
 | 		.start		= start, | 
 | 		.end		= end, | 
 | 		.handler	= handler, | 
 | 		.on_lock	= (void *)kvm_null_fn, | 
 | 		.flush_on_ret	= flush_on_ret, | 
 | 		.may_block	= false, | 
 | 		.lockless	= IS_ENABLED(CONFIG_KVM_MMU_LOCKLESS_AGING), | 
 | 	}; | 
 |  | 
 | 	return kvm_handle_hva_range(kvm, &range).ret; | 
 | } | 
 |  | 
 | static __always_inline int kvm_age_hva_range_no_flush(struct mmu_notifier *mn, | 
 | 						      unsigned long start, | 
 | 						      unsigned long end, | 
 | 						      gfn_handler_t handler) | 
 | { | 
 | 	return kvm_age_hva_range(mn, start, end, handler, false); | 
 | } | 
 |  | 
 | void kvm_mmu_invalidate_begin(struct kvm *kvm) | 
 | { | 
 | 	lockdep_assert_held_write(&kvm->mmu_lock); | 
 | 	/* | 
 | 	 * The count increase must become visible at unlock time as no | 
 | 	 * spte can be established without taking the mmu_lock and | 
 | 	 * count is also read inside the mmu_lock critical section. | 
 | 	 */ | 
 | 	kvm->mmu_invalidate_in_progress++; | 
 |  | 
 | 	if (likely(kvm->mmu_invalidate_in_progress == 1)) { | 
 | 		kvm->mmu_invalidate_range_start = INVALID_GPA; | 
 | 		kvm->mmu_invalidate_range_end = INVALID_GPA; | 
 | 	} | 
 | } | 
 |  | 
 | void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end) | 
 | { | 
 | 	lockdep_assert_held_write(&kvm->mmu_lock); | 
 |  | 
 | 	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress); | 
 |  | 
 | 	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) { | 
 | 		kvm->mmu_invalidate_range_start = start; | 
 | 		kvm->mmu_invalidate_range_end = end; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Fully tracking multiple concurrent ranges has diminishing | 
 | 		 * returns. Keep things simple and just find the minimal range | 
 | 		 * which includes the current and new ranges. As there won't be | 
 | 		 * enough information to subtract a range after its invalidate | 
 | 		 * completes, any ranges invalidated concurrently will | 
 | 		 * accumulate and persist until all outstanding invalidates | 
 | 		 * complete. | 
 | 		 */ | 
 | 		kvm->mmu_invalidate_range_start = | 
 | 			min(kvm->mmu_invalidate_range_start, start); | 
 | 		kvm->mmu_invalidate_range_end = | 
 | 			max(kvm->mmu_invalidate_range_end, end); | 
 | 	} | 
 | } | 
 |  | 
 | bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) | 
 | { | 
 | 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end); | 
 | 	return kvm_unmap_gfn_range(kvm, range); | 
 | } | 
 |  | 
 | static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, | 
 | 					const struct mmu_notifier_range *range) | 
 | { | 
 | 	struct kvm *kvm = mmu_notifier_to_kvm(mn); | 
 | 	const struct kvm_mmu_notifier_range hva_range = { | 
 | 		.start		= range->start, | 
 | 		.end		= range->end, | 
 | 		.handler	= kvm_mmu_unmap_gfn_range, | 
 | 		.on_lock	= kvm_mmu_invalidate_begin, | 
 | 		.flush_on_ret	= true, | 
 | 		.may_block	= mmu_notifier_range_blockable(range), | 
 | 	}; | 
 |  | 
 | 	trace_kvm_unmap_hva_range(range->start, range->end); | 
 |  | 
 | 	/* | 
 | 	 * Prevent memslot modification between range_start() and range_end() | 
 | 	 * so that conditionally locking provides the same result in both | 
 | 	 * functions.  Without that guarantee, the mmu_invalidate_in_progress | 
 | 	 * adjustments will be imbalanced. | 
 | 	 * | 
 | 	 * Pairs with the decrement in range_end(). | 
 | 	 */ | 
 | 	spin_lock(&kvm->mn_invalidate_lock); | 
 | 	kvm->mn_active_invalidate_count++; | 
 | 	spin_unlock(&kvm->mn_invalidate_lock); | 
 |  | 
 | 	/* | 
 | 	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. | 
 | 	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring | 
 | 	 * each cache's lock.  There are relatively few caches in existence at | 
 | 	 * any given time, and the caches themselves can check for hva overlap, | 
 | 	 * i.e. don't need to rely on memslot overlap checks for performance. | 
 | 	 * Because this runs without holding mmu_lock, the pfn caches must use | 
 | 	 * mn_active_invalidate_count (see above) instead of | 
 | 	 * mmu_invalidate_in_progress. | 
 | 	 */ | 
 | 	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end); | 
 |  | 
 | 	/* | 
 | 	 * If one or more memslots were found and thus zapped, notify arch code | 
 | 	 * that guest memory has been reclaimed.  This needs to be done *after* | 
 | 	 * dropping mmu_lock, as x86's reclaim path is slooooow. | 
 | 	 */ | 
 | 	if (kvm_handle_hva_range(kvm, &hva_range).found_memslot) | 
 | 		kvm_arch_guest_memory_reclaimed(kvm); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_mmu_invalidate_end(struct kvm *kvm) | 
 | { | 
 | 	lockdep_assert_held_write(&kvm->mmu_lock); | 
 |  | 
 | 	/* | 
 | 	 * This sequence increase will notify the kvm page fault that | 
 | 	 * the page that is going to be mapped in the spte could have | 
 | 	 * been freed. | 
 | 	 */ | 
 | 	kvm->mmu_invalidate_seq++; | 
 | 	smp_wmb(); | 
 | 	/* | 
 | 	 * The above sequence increase must be visible before the | 
 | 	 * below count decrease, which is ensured by the smp_wmb above | 
 | 	 * in conjunction with the smp_rmb in mmu_invalidate_retry(). | 
 | 	 */ | 
 | 	kvm->mmu_invalidate_in_progress--; | 
 | 	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm); | 
 |  | 
 | 	/* | 
 | 	 * Assert that at least one range was added between start() and end(). | 
 | 	 * Not adding a range isn't fatal, but it is a KVM bug. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA); | 
 | } | 
 |  | 
 | static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, | 
 | 					const struct mmu_notifier_range *range) | 
 | { | 
 | 	struct kvm *kvm = mmu_notifier_to_kvm(mn); | 
 | 	const struct kvm_mmu_notifier_range hva_range = { | 
 | 		.start		= range->start, | 
 | 		.end		= range->end, | 
 | 		.handler	= (void *)kvm_null_fn, | 
 | 		.on_lock	= kvm_mmu_invalidate_end, | 
 | 		.flush_on_ret	= false, | 
 | 		.may_block	= mmu_notifier_range_blockable(range), | 
 | 	}; | 
 | 	bool wake; | 
 |  | 
 | 	kvm_handle_hva_range(kvm, &hva_range); | 
 |  | 
 | 	/* Pairs with the increment in range_start(). */ | 
 | 	spin_lock(&kvm->mn_invalidate_lock); | 
 | 	if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count)) | 
 | 		--kvm->mn_active_invalidate_count; | 
 | 	wake = !kvm->mn_active_invalidate_count; | 
 | 	spin_unlock(&kvm->mn_invalidate_lock); | 
 |  | 
 | 	/* | 
 | 	 * There can only be one waiter, since the wait happens under | 
 | 	 * slots_lock. | 
 | 	 */ | 
 | 	if (wake) | 
 | 		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); | 
 | } | 
 |  | 
 | static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, | 
 | 					      struct mm_struct *mm, | 
 | 					      unsigned long start, | 
 | 					      unsigned long end) | 
 | { | 
 | 	trace_kvm_age_hva(start, end); | 
 |  | 
 | 	return kvm_age_hva_range(mn, start, end, kvm_age_gfn, | 
 | 				 !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG)); | 
 | } | 
 |  | 
 | static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, | 
 | 					struct mm_struct *mm, | 
 | 					unsigned long start, | 
 | 					unsigned long end) | 
 | { | 
 | 	trace_kvm_age_hva(start, end); | 
 |  | 
 | 	/* | 
 | 	 * Even though we do not flush TLB, this will still adversely | 
 | 	 * affect performance on pre-Haswell Intel EPT, where there is | 
 | 	 * no EPT Access Bit to clear so that we have to tear down EPT | 
 | 	 * tables instead. If we find this unacceptable, we can always | 
 | 	 * add a parameter to kvm_age_hva so that it effectively doesn't | 
 | 	 * do anything on clear_young. | 
 | 	 * | 
 | 	 * Also note that currently we never issue secondary TLB flushes | 
 | 	 * from clear_young, leaving this job up to the regular system | 
 | 	 * cadence. If we find this inaccurate, we might come up with a | 
 | 	 * more sophisticated heuristic later. | 
 | 	 */ | 
 | 	return kvm_age_hva_range_no_flush(mn, start, end, kvm_age_gfn); | 
 | } | 
 |  | 
 | static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, | 
 | 				       struct mm_struct *mm, | 
 | 				       unsigned long address) | 
 | { | 
 | 	trace_kvm_test_age_hva(address); | 
 |  | 
 | 	return kvm_age_hva_range_no_flush(mn, address, address + 1, | 
 | 					  kvm_test_age_gfn); | 
 | } | 
 |  | 
 | static void kvm_mmu_notifier_release(struct mmu_notifier *mn, | 
 | 				     struct mm_struct *mm) | 
 | { | 
 | 	struct kvm *kvm = mmu_notifier_to_kvm(mn); | 
 | 	int idx; | 
 |  | 
 | 	idx = srcu_read_lock(&kvm->srcu); | 
 | 	kvm_flush_shadow_all(kvm); | 
 | 	srcu_read_unlock(&kvm->srcu, idx); | 
 | } | 
 |  | 
 | static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { | 
 | 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start, | 
 | 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end, | 
 | 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young, | 
 | 	.clear_young		= kvm_mmu_notifier_clear_young, | 
 | 	.test_young		= kvm_mmu_notifier_test_young, | 
 | 	.release		= kvm_mmu_notifier_release, | 
 | }; | 
 |  | 
 | static int kvm_init_mmu_notifier(struct kvm *kvm) | 
 | { | 
 | 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; | 
 | 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm); | 
 | } | 
 |  | 
 | #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */ | 
 |  | 
 | static int kvm_init_mmu_notifier(struct kvm *kvm) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */ | 
 |  | 
 | #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER | 
 | static int kvm_pm_notifier_call(struct notifier_block *bl, | 
 | 				unsigned long state, | 
 | 				void *unused) | 
 | { | 
 | 	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); | 
 |  | 
 | 	return kvm_arch_pm_notifier(kvm, state); | 
 | } | 
 |  | 
 | static void kvm_init_pm_notifier(struct kvm *kvm) | 
 | { | 
 | 	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; | 
 | 	/* Suspend KVM before we suspend ftrace, RCU, etc. */ | 
 | 	kvm->pm_notifier.priority = INT_MAX; | 
 | 	register_pm_notifier(&kvm->pm_notifier); | 
 | } | 
 |  | 
 | static void kvm_destroy_pm_notifier(struct kvm *kvm) | 
 | { | 
 | 	unregister_pm_notifier(&kvm->pm_notifier); | 
 | } | 
 | #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ | 
 | static void kvm_init_pm_notifier(struct kvm *kvm) | 
 | { | 
 | } | 
 |  | 
 | static void kvm_destroy_pm_notifier(struct kvm *kvm) | 
 | { | 
 | } | 
 | #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ | 
 |  | 
 | static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) | 
 | { | 
 | 	if (!memslot->dirty_bitmap) | 
 | 		return; | 
 |  | 
 | 	vfree(memslot->dirty_bitmap); | 
 | 	memslot->dirty_bitmap = NULL; | 
 | } | 
 |  | 
 | /* This does not remove the slot from struct kvm_memslots data structures */ | 
 | static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) | 
 | { | 
 | 	if (slot->flags & KVM_MEM_GUEST_MEMFD) | 
 | 		kvm_gmem_unbind(slot); | 
 |  | 
 | 	kvm_destroy_dirty_bitmap(slot); | 
 |  | 
 | 	kvm_arch_free_memslot(kvm, slot); | 
 |  | 
 | 	kfree(slot); | 
 | } | 
 |  | 
 | static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) | 
 | { | 
 | 	struct hlist_node *idnode; | 
 | 	struct kvm_memory_slot *memslot; | 
 | 	int bkt; | 
 |  | 
 | 	/* | 
 | 	 * The same memslot objects live in both active and inactive sets, | 
 | 	 * arbitrarily free using index '1' so the second invocation of this | 
 | 	 * function isn't operating over a structure with dangling pointers | 
 | 	 * (even though this function isn't actually touching them). | 
 | 	 */ | 
 | 	if (!slots->node_idx) | 
 | 		return; | 
 |  | 
 | 	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) | 
 | 		kvm_free_memslot(kvm, memslot); | 
 | } | 
 |  | 
 | static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) | 
 | { | 
 | 	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { | 
 | 	case KVM_STATS_TYPE_INSTANT: | 
 | 		return 0444; | 
 | 	case KVM_STATS_TYPE_CUMULATIVE: | 
 | 	case KVM_STATS_TYPE_PEAK: | 
 | 	default: | 
 | 		return 0644; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static void kvm_destroy_vm_debugfs(struct kvm *kvm) | 
 | { | 
 | 	int i; | 
 | 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + | 
 | 				      kvm_vcpu_stats_header.num_desc; | 
 |  | 
 | 	if (IS_ERR(kvm->debugfs_dentry)) | 
 | 		return; | 
 |  | 
 | 	debugfs_remove_recursive(kvm->debugfs_dentry); | 
 |  | 
 | 	if (kvm->debugfs_stat_data) { | 
 | 		for (i = 0; i < kvm_debugfs_num_entries; i++) | 
 | 			kfree(kvm->debugfs_stat_data[i]); | 
 | 		kfree(kvm->debugfs_stat_data); | 
 | 	} | 
 | } | 
 |  | 
 | static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) | 
 | { | 
 | 	static DEFINE_MUTEX(kvm_debugfs_lock); | 
 | 	struct dentry *dent; | 
 | 	char dir_name[ITOA_MAX_LEN * 2]; | 
 | 	struct kvm_stat_data *stat_data; | 
 | 	const struct _kvm_stats_desc *pdesc; | 
 | 	int i, ret = -ENOMEM; | 
 | 	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + | 
 | 				      kvm_vcpu_stats_header.num_desc; | 
 |  | 
 | 	if (!debugfs_initialized()) | 
 | 		return 0; | 
 |  | 
 | 	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); | 
 | 	mutex_lock(&kvm_debugfs_lock); | 
 | 	dent = debugfs_lookup(dir_name, kvm_debugfs_dir); | 
 | 	if (dent) { | 
 | 		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); | 
 | 		dput(dent); | 
 | 		mutex_unlock(&kvm_debugfs_lock); | 
 | 		return 0; | 
 | 	} | 
 | 	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); | 
 | 	mutex_unlock(&kvm_debugfs_lock); | 
 | 	if (IS_ERR(dent)) | 
 | 		return 0; | 
 |  | 
 | 	kvm->debugfs_dentry = dent; | 
 | 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, | 
 | 					 sizeof(*kvm->debugfs_stat_data), | 
 | 					 GFP_KERNEL_ACCOUNT); | 
 | 	if (!kvm->debugfs_stat_data) | 
 | 		goto out_err; | 
 |  | 
 | 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { | 
 | 		pdesc = &kvm_vm_stats_desc[i]; | 
 | 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); | 
 | 		if (!stat_data) | 
 | 			goto out_err; | 
 |  | 
 | 		stat_data->kvm = kvm; | 
 | 		stat_data->desc = pdesc; | 
 | 		stat_data->kind = KVM_STAT_VM; | 
 | 		kvm->debugfs_stat_data[i] = stat_data; | 
 | 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), | 
 | 				    kvm->debugfs_dentry, stat_data, | 
 | 				    &stat_fops_per_vm); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { | 
 | 		pdesc = &kvm_vcpu_stats_desc[i]; | 
 | 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); | 
 | 		if (!stat_data) | 
 | 			goto out_err; | 
 |  | 
 | 		stat_data->kvm = kvm; | 
 | 		stat_data->desc = pdesc; | 
 | 		stat_data->kind = KVM_STAT_VCPU; | 
 | 		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; | 
 | 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), | 
 | 				    kvm->debugfs_dentry, stat_data, | 
 | 				    &stat_fops_per_vm); | 
 | 	} | 
 |  | 
 | 	kvm_arch_create_vm_debugfs(kvm); | 
 | 	return 0; | 
 | out_err: | 
 | 	kvm_destroy_vm_debugfs(kvm); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Called just after removing the VM from the vm_list, but before doing any | 
 |  * other destruction. | 
 |  */ | 
 | void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should | 
 |  * be setup already, so we can create arch-specific debugfs entries under it. | 
 |  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so | 
 |  * a per-arch destroy interface is not needed. | 
 |  */ | 
 | void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) | 
 | { | 
 | } | 
 |  | 
 | /* Called only on cleanup and destruction paths when there are no users. */ | 
 | static inline struct kvm_io_bus *kvm_get_bus_for_destruction(struct kvm *kvm, | 
 | 							     enum kvm_bus idx) | 
 | { | 
 | 	return rcu_dereference_protected(kvm->buses[idx], | 
 | 					 !refcount_read(&kvm->users_count)); | 
 | } | 
 |  | 
 | static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) | 
 | { | 
 | 	struct kvm *kvm = kvm_arch_alloc_vm(); | 
 | 	struct kvm_memslots *slots; | 
 | 	int r, i, j; | 
 |  | 
 | 	if (!kvm) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	KVM_MMU_LOCK_INIT(kvm); | 
 | 	mmgrab(current->mm); | 
 | 	kvm->mm = current->mm; | 
 | 	kvm_eventfd_init(kvm); | 
 | 	mutex_init(&kvm->lock); | 
 | 	mutex_init(&kvm->irq_lock); | 
 | 	mutex_init(&kvm->slots_lock); | 
 | 	mutex_init(&kvm->slots_arch_lock); | 
 | 	spin_lock_init(&kvm->mn_invalidate_lock); | 
 | 	rcuwait_init(&kvm->mn_memslots_update_rcuwait); | 
 | 	xa_init(&kvm->vcpu_array); | 
 | #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES | 
 | 	xa_init(&kvm->mem_attr_array); | 
 | #endif | 
 |  | 
 | 	INIT_LIST_HEAD(&kvm->gpc_list); | 
 | 	spin_lock_init(&kvm->gpc_lock); | 
 |  | 
 | 	INIT_LIST_HEAD(&kvm->devices); | 
 | 	kvm->max_vcpus = KVM_MAX_VCPUS; | 
 |  | 
 | 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); | 
 |  | 
 | 	/* | 
 | 	 * Force subsequent debugfs file creations to fail if the VM directory | 
 | 	 * is not created (by kvm_create_vm_debugfs()). | 
 | 	 */ | 
 | 	kvm->debugfs_dentry = ERR_PTR(-ENOENT); | 
 |  | 
 | 	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", | 
 | 		 task_pid_nr(current)); | 
 |  | 
 | 	r = -ENOMEM; | 
 | 	if (init_srcu_struct(&kvm->srcu)) | 
 | 		goto out_err_no_srcu; | 
 | 	if (init_srcu_struct(&kvm->irq_srcu)) | 
 | 		goto out_err_no_irq_srcu; | 
 |  | 
 | 	r = kvm_init_irq_routing(kvm); | 
 | 	if (r) | 
 | 		goto out_err_no_irq_routing; | 
 |  | 
 | 	refcount_set(&kvm->users_count, 1); | 
 |  | 
 | 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { | 
 | 		for (j = 0; j < 2; j++) { | 
 | 			slots = &kvm->__memslots[i][j]; | 
 |  | 
 | 			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); | 
 | 			slots->hva_tree = RB_ROOT_CACHED; | 
 | 			slots->gfn_tree = RB_ROOT; | 
 | 			hash_init(slots->id_hash); | 
 | 			slots->node_idx = j; | 
 |  | 
 | 			/* Generations must be different for each address space. */ | 
 | 			slots->generation = i; | 
 | 		} | 
 |  | 
 | 		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); | 
 | 	} | 
 |  | 
 | 	r = -ENOMEM; | 
 | 	for (i = 0; i < KVM_NR_BUSES; i++) { | 
 | 		rcu_assign_pointer(kvm->buses[i], | 
 | 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); | 
 | 		if (!kvm->buses[i]) | 
 | 			goto out_err_no_arch_destroy_vm; | 
 | 	} | 
 |  | 
 | 	r = kvm_arch_init_vm(kvm, type); | 
 | 	if (r) | 
 | 		goto out_err_no_arch_destroy_vm; | 
 |  | 
 | 	r = kvm_enable_virtualization(); | 
 | 	if (r) | 
 | 		goto out_err_no_disable; | 
 |  | 
 | #ifdef CONFIG_HAVE_KVM_IRQCHIP | 
 | 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); | 
 | #endif | 
 |  | 
 | 	r = kvm_init_mmu_notifier(kvm); | 
 | 	if (r) | 
 | 		goto out_err_no_mmu_notifier; | 
 |  | 
 | 	r = kvm_coalesced_mmio_init(kvm); | 
 | 	if (r < 0) | 
 | 		goto out_no_coalesced_mmio; | 
 |  | 
 | 	r = kvm_create_vm_debugfs(kvm, fdname); | 
 | 	if (r) | 
 | 		goto out_err_no_debugfs; | 
 |  | 
 | 	mutex_lock(&kvm_lock); | 
 | 	list_add(&kvm->vm_list, &vm_list); | 
 | 	mutex_unlock(&kvm_lock); | 
 |  | 
 | 	preempt_notifier_inc(); | 
 | 	kvm_init_pm_notifier(kvm); | 
 |  | 
 | 	return kvm; | 
 |  | 
 | out_err_no_debugfs: | 
 | 	kvm_coalesced_mmio_free(kvm); | 
 | out_no_coalesced_mmio: | 
 | #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER | 
 | 	if (kvm->mmu_notifier.ops) | 
 | 		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); | 
 | #endif | 
 | out_err_no_mmu_notifier: | 
 | 	kvm_disable_virtualization(); | 
 | out_err_no_disable: | 
 | 	kvm_arch_destroy_vm(kvm); | 
 | out_err_no_arch_destroy_vm: | 
 | 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); | 
 | 	for (i = 0; i < KVM_NR_BUSES; i++) | 
 | 		kfree(kvm_get_bus_for_destruction(kvm, i)); | 
 | 	kvm_free_irq_routing(kvm); | 
 | out_err_no_irq_routing: | 
 | 	cleanup_srcu_struct(&kvm->irq_srcu); | 
 | out_err_no_irq_srcu: | 
 | 	cleanup_srcu_struct(&kvm->srcu); | 
 | out_err_no_srcu: | 
 | 	kvm_arch_free_vm(kvm); | 
 | 	mmdrop(current->mm); | 
 | 	return ERR_PTR(r); | 
 | } | 
 |  | 
 | static void kvm_destroy_devices(struct kvm *kvm) | 
 | { | 
 | 	struct kvm_device *dev, *tmp; | 
 |  | 
 | 	/* | 
 | 	 * We do not need to take the kvm->lock here, because nobody else | 
 | 	 * has a reference to the struct kvm at this point and therefore | 
 | 	 * cannot access the devices list anyhow. | 
 | 	 * | 
 | 	 * The device list is generally managed as an rculist, but list_del() | 
 | 	 * is used intentionally here. If a bug in KVM introduced a reader that | 
 | 	 * was not backed by a reference on the kvm struct, the hope is that | 
 | 	 * it'd consume the poisoned forward pointer instead of suffering a | 
 | 	 * use-after-free, even though this cannot be guaranteed. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { | 
 | 		list_del(&dev->vm_node); | 
 | 		dev->ops->destroy(dev); | 
 | 	} | 
 | } | 
 |  | 
 | static void kvm_destroy_vm(struct kvm *kvm) | 
 | { | 
 | 	int i; | 
 | 	struct mm_struct *mm = kvm->mm; | 
 |  | 
 | 	kvm_destroy_pm_notifier(kvm); | 
 | 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); | 
 | 	kvm_destroy_vm_debugfs(kvm); | 
 | 	mutex_lock(&kvm_lock); | 
 | 	list_del(&kvm->vm_list); | 
 | 	mutex_unlock(&kvm_lock); | 
 | 	kvm_arch_pre_destroy_vm(kvm); | 
 |  | 
 | 	kvm_free_irq_routing(kvm); | 
 | 	for (i = 0; i < KVM_NR_BUSES; i++) { | 
 | 		struct kvm_io_bus *bus = kvm_get_bus_for_destruction(kvm, i); | 
 |  | 
 | 		if (bus) | 
 | 			kvm_io_bus_destroy(bus); | 
 | 		kvm->buses[i] = NULL; | 
 | 	} | 
 | 	kvm_coalesced_mmio_free(kvm); | 
 | #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER | 
 | 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); | 
 | 	/* | 
 | 	 * At this point, pending calls to invalidate_range_start() | 
 | 	 * have completed but no more MMU notifiers will run, so | 
 | 	 * mn_active_invalidate_count may remain unbalanced. | 
 | 	 * No threads can be waiting in kvm_swap_active_memslots() as the | 
 | 	 * last reference on KVM has been dropped, but freeing | 
 | 	 * memslots would deadlock without this manual intervention. | 
 | 	 * | 
 | 	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU | 
 | 	 * notifier between a start() and end(), then there shouldn't be any | 
 | 	 * in-progress invalidations. | 
 | 	 */ | 
 | 	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); | 
 | 	if (kvm->mn_active_invalidate_count) | 
 | 		kvm->mn_active_invalidate_count = 0; | 
 | 	else | 
 | 		WARN_ON(kvm->mmu_invalidate_in_progress); | 
 | #else | 
 | 	kvm_flush_shadow_all(kvm); | 
 | #endif | 
 | 	kvm_arch_destroy_vm(kvm); | 
 | 	kvm_destroy_devices(kvm); | 
 | 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { | 
 | 		kvm_free_memslots(kvm, &kvm->__memslots[i][0]); | 
 | 		kvm_free_memslots(kvm, &kvm->__memslots[i][1]); | 
 | 	} | 
 | 	cleanup_srcu_struct(&kvm->irq_srcu); | 
 | 	srcu_barrier(&kvm->srcu); | 
 | 	cleanup_srcu_struct(&kvm->srcu); | 
 | #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES | 
 | 	xa_destroy(&kvm->mem_attr_array); | 
 | #endif | 
 | 	kvm_arch_free_vm(kvm); | 
 | 	preempt_notifier_dec(); | 
 | 	kvm_disable_virtualization(); | 
 | 	mmdrop(mm); | 
 | } | 
 |  | 
 | void kvm_get_kvm(struct kvm *kvm) | 
 | { | 
 | 	refcount_inc(&kvm->users_count); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_kvm); | 
 |  | 
 | /* | 
 |  * Make sure the vm is not during destruction, which is a safe version of | 
 |  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise. | 
 |  */ | 
 | bool kvm_get_kvm_safe(struct kvm *kvm) | 
 | { | 
 | 	return refcount_inc_not_zero(&kvm->users_count); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); | 
 |  | 
 | void kvm_put_kvm(struct kvm *kvm) | 
 | { | 
 | 	if (refcount_dec_and_test(&kvm->users_count)) | 
 | 		kvm_destroy_vm(kvm); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_put_kvm); | 
 |  | 
 | /* | 
 |  * Used to put a reference that was taken on behalf of an object associated | 
 |  * with a user-visible file descriptor, e.g. a vcpu or device, if installation | 
 |  * of the new file descriptor fails and the reference cannot be transferred to | 
 |  * its final owner.  In such cases, the caller is still actively using @kvm and | 
 |  * will fail miserably if the refcount unexpectedly hits zero. | 
 |  */ | 
 | void kvm_put_kvm_no_destroy(struct kvm *kvm) | 
 | { | 
 | 	WARN_ON(refcount_dec_and_test(&kvm->users_count)); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_put_kvm_no_destroy); | 
 |  | 
 | static int kvm_vm_release(struct inode *inode, struct file *filp) | 
 | { | 
 | 	struct kvm *kvm = filp->private_data; | 
 |  | 
 | 	kvm_irqfd_release(kvm); | 
 |  | 
 | 	kvm_put_kvm(kvm); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_trylock_all_vcpus(struct kvm *kvm) | 
 | { | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	unsigned long i, j; | 
 |  | 
 | 	lockdep_assert_held(&kvm->lock); | 
 |  | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) | 
 | 		if (!mutex_trylock_nest_lock(&vcpu->mutex, &kvm->lock)) | 
 | 			goto out_unlock; | 
 | 	return 0; | 
 |  | 
 | out_unlock: | 
 | 	kvm_for_each_vcpu(j, vcpu, kvm) { | 
 | 		if (i == j) | 
 | 			break; | 
 | 		mutex_unlock(&vcpu->mutex); | 
 | 	} | 
 | 	return -EINTR; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_trylock_all_vcpus); | 
 |  | 
 | int kvm_lock_all_vcpus(struct kvm *kvm) | 
 | { | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	unsigned long i, j; | 
 | 	int r; | 
 |  | 
 | 	lockdep_assert_held(&kvm->lock); | 
 |  | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) { | 
 | 		r = mutex_lock_killable_nest_lock(&vcpu->mutex, &kvm->lock); | 
 | 		if (r) | 
 | 			goto out_unlock; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | out_unlock: | 
 | 	kvm_for_each_vcpu(j, vcpu, kvm) { | 
 | 		if (i == j) | 
 | 			break; | 
 | 		mutex_unlock(&vcpu->mutex); | 
 | 	} | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_lock_all_vcpus); | 
 |  | 
 | void kvm_unlock_all_vcpus(struct kvm *kvm) | 
 | { | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	unsigned long i; | 
 |  | 
 | 	lockdep_assert_held(&kvm->lock); | 
 |  | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) | 
 | 		mutex_unlock(&vcpu->mutex); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_unlock_all_vcpus); | 
 |  | 
 | /* | 
 |  * Allocation size is twice as large as the actual dirty bitmap size. | 
 |  * See kvm_vm_ioctl_get_dirty_log() why this is needed. | 
 |  */ | 
 | static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) | 
 | { | 
 | 	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); | 
 |  | 
 | 	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); | 
 | 	if (!memslot->dirty_bitmap) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) | 
 | { | 
 | 	struct kvm_memslots *active = __kvm_memslots(kvm, as_id); | 
 | 	int node_idx_inactive = active->node_idx ^ 1; | 
 |  | 
 | 	return &kvm->__memslots[as_id][node_idx_inactive]; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper to get the address space ID when one of memslot pointers may be NULL. | 
 |  * This also serves as a sanity that at least one of the pointers is non-NULL, | 
 |  * and that their address space IDs don't diverge. | 
 |  */ | 
 | static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, | 
 | 				  struct kvm_memory_slot *b) | 
 | { | 
 | 	if (WARN_ON_ONCE(!a && !b)) | 
 | 		return 0; | 
 |  | 
 | 	if (!a) | 
 | 		return b->as_id; | 
 | 	if (!b) | 
 | 		return a->as_id; | 
 |  | 
 | 	WARN_ON_ONCE(a->as_id != b->as_id); | 
 | 	return a->as_id; | 
 | } | 
 |  | 
 | static void kvm_insert_gfn_node(struct kvm_memslots *slots, | 
 | 				struct kvm_memory_slot *slot) | 
 | { | 
 | 	struct rb_root *gfn_tree = &slots->gfn_tree; | 
 | 	struct rb_node **node, *parent; | 
 | 	int idx = slots->node_idx; | 
 |  | 
 | 	parent = NULL; | 
 | 	for (node = &gfn_tree->rb_node; *node; ) { | 
 | 		struct kvm_memory_slot *tmp; | 
 |  | 
 | 		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); | 
 | 		parent = *node; | 
 | 		if (slot->base_gfn < tmp->base_gfn) | 
 | 			node = &(*node)->rb_left; | 
 | 		else if (slot->base_gfn > tmp->base_gfn) | 
 | 			node = &(*node)->rb_right; | 
 | 		else | 
 | 			BUG(); | 
 | 	} | 
 |  | 
 | 	rb_link_node(&slot->gfn_node[idx], parent, node); | 
 | 	rb_insert_color(&slot->gfn_node[idx], gfn_tree); | 
 | } | 
 |  | 
 | static void kvm_erase_gfn_node(struct kvm_memslots *slots, | 
 | 			       struct kvm_memory_slot *slot) | 
 | { | 
 | 	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); | 
 | } | 
 |  | 
 | static void kvm_replace_gfn_node(struct kvm_memslots *slots, | 
 | 				 struct kvm_memory_slot *old, | 
 | 				 struct kvm_memory_slot *new) | 
 | { | 
 | 	int idx = slots->node_idx; | 
 |  | 
 | 	WARN_ON_ONCE(old->base_gfn != new->base_gfn); | 
 |  | 
 | 	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], | 
 | 			&slots->gfn_tree); | 
 | } | 
 |  | 
 | /* | 
 |  * Replace @old with @new in the inactive memslots. | 
 |  * | 
 |  * With NULL @old this simply adds @new. | 
 |  * With NULL @new this simply removes @old. | 
 |  * | 
 |  * If @new is non-NULL its hva_node[slots_idx] range has to be set | 
 |  * appropriately. | 
 |  */ | 
 | static void kvm_replace_memslot(struct kvm *kvm, | 
 | 				struct kvm_memory_slot *old, | 
 | 				struct kvm_memory_slot *new) | 
 | { | 
 | 	int as_id = kvm_memslots_get_as_id(old, new); | 
 | 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); | 
 | 	int idx = slots->node_idx; | 
 |  | 
 | 	if (old) { | 
 | 		hash_del(&old->id_node[idx]); | 
 | 		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); | 
 |  | 
 | 		if ((long)old == atomic_long_read(&slots->last_used_slot)) | 
 | 			atomic_long_set(&slots->last_used_slot, (long)new); | 
 |  | 
 | 		if (!new) { | 
 | 			kvm_erase_gfn_node(slots, old); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Initialize @new's hva range.  Do this even when replacing an @old | 
 | 	 * slot, kvm_copy_memslot() deliberately does not touch node data. | 
 | 	 */ | 
 | 	new->hva_node[idx].start = new->userspace_addr; | 
 | 	new->hva_node[idx].last = new->userspace_addr + | 
 | 				  (new->npages << PAGE_SHIFT) - 1; | 
 |  | 
 | 	/* | 
 | 	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(), | 
 | 	 * hva_node needs to be swapped with remove+insert even though hva can't | 
 | 	 * change when replacing an existing slot. | 
 | 	 */ | 
 | 	hash_add(slots->id_hash, &new->id_node[idx], new->id); | 
 | 	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); | 
 |  | 
 | 	/* | 
 | 	 * If the memslot gfn is unchanged, rb_replace_node() can be used to | 
 | 	 * switch the node in the gfn tree instead of removing the old and | 
 | 	 * inserting the new as two separate operations. Replacement is a | 
 | 	 * single O(1) operation versus two O(log(n)) operations for | 
 | 	 * remove+insert. | 
 | 	 */ | 
 | 	if (old && old->base_gfn == new->base_gfn) { | 
 | 		kvm_replace_gfn_node(slots, old, new); | 
 | 	} else { | 
 | 		if (old) | 
 | 			kvm_erase_gfn_node(slots, old); | 
 | 		kvm_insert_gfn_node(slots, new); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Flags that do not access any of the extra space of struct | 
 |  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS | 
 |  * only allows these. | 
 |  */ | 
 | #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \ | 
 | 	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY) | 
 |  | 
 | static int check_memory_region_flags(struct kvm *kvm, | 
 | 				     const struct kvm_userspace_memory_region2 *mem) | 
 | { | 
 | 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_KVM_GUEST_MEMFD)) | 
 | 		valid_flags |= KVM_MEM_GUEST_MEMFD; | 
 |  | 
 | 	/* Dirty logging private memory is not currently supported. */ | 
 | 	if (mem->flags & KVM_MEM_GUEST_MEMFD) | 
 | 		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES; | 
 |  | 
 | 	/* | 
 | 	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to | 
 | 	 * read-only memslots have emulated MMIO, not page fault, semantics, | 
 | 	 * and KVM doesn't allow emulated MMIO for private memory. | 
 | 	 */ | 
 | 	if (kvm_arch_has_readonly_mem(kvm) && | 
 | 	    !(mem->flags & KVM_MEM_GUEST_MEMFD)) | 
 | 		valid_flags |= KVM_MEM_READONLY; | 
 |  | 
 | 	if (mem->flags & ~valid_flags) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) | 
 | { | 
 | 	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); | 
 |  | 
 | 	/* Grab the generation from the activate memslots. */ | 
 | 	u64 gen = __kvm_memslots(kvm, as_id)->generation; | 
 |  | 
 | 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); | 
 | 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; | 
 |  | 
 | 	/* | 
 | 	 * Do not store the new memslots while there are invalidations in | 
 | 	 * progress, otherwise the locking in invalidate_range_start and | 
 | 	 * invalidate_range_end will be unbalanced. | 
 | 	 */ | 
 | 	spin_lock(&kvm->mn_invalidate_lock); | 
 | 	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); | 
 | 	while (kvm->mn_active_invalidate_count) { | 
 | 		set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 		spin_unlock(&kvm->mn_invalidate_lock); | 
 | 		schedule(); | 
 | 		spin_lock(&kvm->mn_invalidate_lock); | 
 | 	} | 
 | 	finish_rcuwait(&kvm->mn_memslots_update_rcuwait); | 
 | 	rcu_assign_pointer(kvm->memslots[as_id], slots); | 
 | 	spin_unlock(&kvm->mn_invalidate_lock); | 
 |  | 
 | 	/* | 
 | 	 * Acquired in kvm_set_memslot. Must be released before synchronize | 
 | 	 * SRCU below in order to avoid deadlock with another thread | 
 | 	 * acquiring the slots_arch_lock in an srcu critical section. | 
 | 	 */ | 
 | 	mutex_unlock(&kvm->slots_arch_lock); | 
 |  | 
 | 	synchronize_srcu_expedited(&kvm->srcu); | 
 |  | 
 | 	/* | 
 | 	 * Increment the new memslot generation a second time, dropping the | 
 | 	 * update in-progress flag and incrementing the generation based on | 
 | 	 * the number of address spaces.  This provides a unique and easily | 
 | 	 * identifiable generation number while the memslots are in flux. | 
 | 	 */ | 
 | 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; | 
 |  | 
 | 	/* | 
 | 	 * Generations must be unique even across address spaces.  We do not need | 
 | 	 * a global counter for that, instead the generation space is evenly split | 
 | 	 * across address spaces.  For example, with two address spaces, address | 
 | 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will | 
 | 	 * use generations 1, 3, 5, ... | 
 | 	 */ | 
 | 	gen += kvm_arch_nr_memslot_as_ids(kvm); | 
 |  | 
 | 	kvm_arch_memslots_updated(kvm, gen); | 
 |  | 
 | 	slots->generation = gen; | 
 | } | 
 |  | 
 | static int kvm_prepare_memory_region(struct kvm *kvm, | 
 | 				     const struct kvm_memory_slot *old, | 
 | 				     struct kvm_memory_slot *new, | 
 | 				     enum kvm_mr_change change) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	/* | 
 | 	 * If dirty logging is disabled, nullify the bitmap; the old bitmap | 
 | 	 * will be freed on "commit".  If logging is enabled in both old and | 
 | 	 * new, reuse the existing bitmap.  If logging is enabled only in the | 
 | 	 * new and KVM isn't using a ring buffer, allocate and initialize a | 
 | 	 * new bitmap. | 
 | 	 */ | 
 | 	if (change != KVM_MR_DELETE) { | 
 | 		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) | 
 | 			new->dirty_bitmap = NULL; | 
 | 		else if (old && old->dirty_bitmap) | 
 | 			new->dirty_bitmap = old->dirty_bitmap; | 
 | 		else if (kvm_use_dirty_bitmap(kvm)) { | 
 | 			r = kvm_alloc_dirty_bitmap(new); | 
 | 			if (r) | 
 | 				return r; | 
 |  | 
 | 			if (kvm_dirty_log_manual_protect_and_init_set(kvm)) | 
 | 				bitmap_set(new->dirty_bitmap, 0, new->npages); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	r = kvm_arch_prepare_memory_region(kvm, old, new, change); | 
 |  | 
 | 	/* Free the bitmap on failure if it was allocated above. */ | 
 | 	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) | 
 | 		kvm_destroy_dirty_bitmap(new); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void kvm_commit_memory_region(struct kvm *kvm, | 
 | 				     struct kvm_memory_slot *old, | 
 | 				     const struct kvm_memory_slot *new, | 
 | 				     enum kvm_mr_change change) | 
 | { | 
 | 	int old_flags = old ? old->flags : 0; | 
 | 	int new_flags = new ? new->flags : 0; | 
 | 	/* | 
 | 	 * Update the total number of memslot pages before calling the arch | 
 | 	 * hook so that architectures can consume the result directly. | 
 | 	 */ | 
 | 	if (change == KVM_MR_DELETE) | 
 | 		kvm->nr_memslot_pages -= old->npages; | 
 | 	else if (change == KVM_MR_CREATE) | 
 | 		kvm->nr_memslot_pages += new->npages; | 
 |  | 
 | 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { | 
 | 		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; | 
 | 		atomic_set(&kvm->nr_memslots_dirty_logging, | 
 | 			   atomic_read(&kvm->nr_memslots_dirty_logging) + change); | 
 | 	} | 
 |  | 
 | 	kvm_arch_commit_memory_region(kvm, old, new, change); | 
 |  | 
 | 	switch (change) { | 
 | 	case KVM_MR_CREATE: | 
 | 		/* Nothing more to do. */ | 
 | 		break; | 
 | 	case KVM_MR_DELETE: | 
 | 		/* Free the old memslot and all its metadata. */ | 
 | 		kvm_free_memslot(kvm, old); | 
 | 		break; | 
 | 	case KVM_MR_MOVE: | 
 | 	case KVM_MR_FLAGS_ONLY: | 
 | 		/* | 
 | 		 * Free the dirty bitmap as needed; the below check encompasses | 
 | 		 * both the flags and whether a ring buffer is being used) | 
 | 		 */ | 
 | 		if (old->dirty_bitmap && !new->dirty_bitmap) | 
 | 			kvm_destroy_dirty_bitmap(old); | 
 |  | 
 | 		/* | 
 | 		 * The final quirk.  Free the detached, old slot, but only its | 
 | 		 * memory, not any metadata.  Metadata, including arch specific | 
 | 		 * data, may be reused by @new. | 
 | 		 */ | 
 | 		kfree(old); | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Activate @new, which must be installed in the inactive slots by the caller, | 
 |  * by swapping the active slots and then propagating @new to @old once @old is | 
 |  * unreachable and can be safely modified. | 
 |  * | 
 |  * With NULL @old this simply adds @new to @active (while swapping the sets). | 
 |  * With NULL @new this simply removes @old from @active and frees it | 
 |  * (while also swapping the sets). | 
 |  */ | 
 | static void kvm_activate_memslot(struct kvm *kvm, | 
 | 				 struct kvm_memory_slot *old, | 
 | 				 struct kvm_memory_slot *new) | 
 | { | 
 | 	int as_id = kvm_memslots_get_as_id(old, new); | 
 |  | 
 | 	kvm_swap_active_memslots(kvm, as_id); | 
 |  | 
 | 	/* Propagate the new memslot to the now inactive memslots. */ | 
 | 	kvm_replace_memslot(kvm, old, new); | 
 | } | 
 |  | 
 | static void kvm_copy_memslot(struct kvm_memory_slot *dest, | 
 | 			     const struct kvm_memory_slot *src) | 
 | { | 
 | 	dest->base_gfn = src->base_gfn; | 
 | 	dest->npages = src->npages; | 
 | 	dest->dirty_bitmap = src->dirty_bitmap; | 
 | 	dest->arch = src->arch; | 
 | 	dest->userspace_addr = src->userspace_addr; | 
 | 	dest->flags = src->flags; | 
 | 	dest->id = src->id; | 
 | 	dest->as_id = src->as_id; | 
 | } | 
 |  | 
 | static void kvm_invalidate_memslot(struct kvm *kvm, | 
 | 				   struct kvm_memory_slot *old, | 
 | 				   struct kvm_memory_slot *invalid_slot) | 
 | { | 
 | 	/* | 
 | 	 * Mark the current slot INVALID.  As with all memslot modifications, | 
 | 	 * this must be done on an unreachable slot to avoid modifying the | 
 | 	 * current slot in the active tree. | 
 | 	 */ | 
 | 	kvm_copy_memslot(invalid_slot, old); | 
 | 	invalid_slot->flags |= KVM_MEMSLOT_INVALID; | 
 | 	kvm_replace_memslot(kvm, old, invalid_slot); | 
 |  | 
 | 	/* | 
 | 	 * Activate the slot that is now marked INVALID, but don't propagate | 
 | 	 * the slot to the now inactive slots. The slot is either going to be | 
 | 	 * deleted or recreated as a new slot. | 
 | 	 */ | 
 | 	kvm_swap_active_memslots(kvm, old->as_id); | 
 |  | 
 | 	/* | 
 | 	 * From this point no new shadow pages pointing to a deleted, or moved, | 
 | 	 * memslot will be created.  Validation of sp->gfn happens in: | 
 | 	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn) | 
 | 	 *	- kvm_is_visible_gfn (mmu_check_root) | 
 | 	 */ | 
 | 	kvm_arch_flush_shadow_memslot(kvm, old); | 
 | 	kvm_arch_guest_memory_reclaimed(kvm); | 
 |  | 
 | 	/* Was released by kvm_swap_active_memslots(), reacquire. */ | 
 | 	mutex_lock(&kvm->slots_arch_lock); | 
 |  | 
 | 	/* | 
 | 	 * Copy the arch-specific field of the newly-installed slot back to the | 
 | 	 * old slot as the arch data could have changed between releasing | 
 | 	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock | 
 | 	 * above.  Writers are required to retrieve memslots *after* acquiring | 
 | 	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. | 
 | 	 */ | 
 | 	old->arch = invalid_slot->arch; | 
 | } | 
 |  | 
 | static void kvm_create_memslot(struct kvm *kvm, | 
 | 			       struct kvm_memory_slot *new) | 
 | { | 
 | 	/* Add the new memslot to the inactive set and activate. */ | 
 | 	kvm_replace_memslot(kvm, NULL, new); | 
 | 	kvm_activate_memslot(kvm, NULL, new); | 
 | } | 
 |  | 
 | static void kvm_delete_memslot(struct kvm *kvm, | 
 | 			       struct kvm_memory_slot *old, | 
 | 			       struct kvm_memory_slot *invalid_slot) | 
 | { | 
 | 	/* | 
 | 	 * Remove the old memslot (in the inactive memslots) by passing NULL as | 
 | 	 * the "new" slot, and for the invalid version in the active slots. | 
 | 	 */ | 
 | 	kvm_replace_memslot(kvm, old, NULL); | 
 | 	kvm_activate_memslot(kvm, invalid_slot, NULL); | 
 | } | 
 |  | 
 | static void kvm_move_memslot(struct kvm *kvm, | 
 | 			     struct kvm_memory_slot *old, | 
 | 			     struct kvm_memory_slot *new, | 
 | 			     struct kvm_memory_slot *invalid_slot) | 
 | { | 
 | 	/* | 
 | 	 * Replace the old memslot in the inactive slots, and then swap slots | 
 | 	 * and replace the current INVALID with the new as well. | 
 | 	 */ | 
 | 	kvm_replace_memslot(kvm, old, new); | 
 | 	kvm_activate_memslot(kvm, invalid_slot, new); | 
 | } | 
 |  | 
 | static void kvm_update_flags_memslot(struct kvm *kvm, | 
 | 				     struct kvm_memory_slot *old, | 
 | 				     struct kvm_memory_slot *new) | 
 | { | 
 | 	/* | 
 | 	 * Similar to the MOVE case, but the slot doesn't need to be zapped as | 
 | 	 * an intermediate step. Instead, the old memslot is simply replaced | 
 | 	 * with a new, updated copy in both memslot sets. | 
 | 	 */ | 
 | 	kvm_replace_memslot(kvm, old, new); | 
 | 	kvm_activate_memslot(kvm, old, new); | 
 | } | 
 |  | 
 | static int kvm_set_memslot(struct kvm *kvm, | 
 | 			   struct kvm_memory_slot *old, | 
 | 			   struct kvm_memory_slot *new, | 
 | 			   enum kvm_mr_change change) | 
 | { | 
 | 	struct kvm_memory_slot *invalid_slot; | 
 | 	int r; | 
 |  | 
 | 	/* | 
 | 	 * Released in kvm_swap_active_memslots(). | 
 | 	 * | 
 | 	 * Must be held from before the current memslots are copied until after | 
 | 	 * the new memslots are installed with rcu_assign_pointer, then | 
 | 	 * released before the synchronize srcu in kvm_swap_active_memslots(). | 
 | 	 * | 
 | 	 * When modifying memslots outside of the slots_lock, must be held | 
 | 	 * before reading the pointer to the current memslots until after all | 
 | 	 * changes to those memslots are complete. | 
 | 	 * | 
 | 	 * These rules ensure that installing new memslots does not lose | 
 | 	 * changes made to the previous memslots. | 
 | 	 */ | 
 | 	mutex_lock(&kvm->slots_arch_lock); | 
 |  | 
 | 	/* | 
 | 	 * Invalidate the old slot if it's being deleted or moved.  This is | 
 | 	 * done prior to actually deleting/moving the memslot to allow vCPUs to | 
 | 	 * continue running by ensuring there are no mappings or shadow pages | 
 | 	 * for the memslot when it is deleted/moved.  Without pre-invalidation | 
 | 	 * (and without a lock), a window would exist between effecting the | 
 | 	 * delete/move and committing the changes in arch code where KVM or a | 
 | 	 * guest could access a non-existent memslot. | 
 | 	 * | 
 | 	 * Modifications are done on a temporary, unreachable slot.  The old | 
 | 	 * slot needs to be preserved in case a later step fails and the | 
 | 	 * invalidation needs to be reverted. | 
 | 	 */ | 
 | 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { | 
 | 		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); | 
 | 		if (!invalid_slot) { | 
 | 			mutex_unlock(&kvm->slots_arch_lock); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		kvm_invalidate_memslot(kvm, old, invalid_slot); | 
 | 	} | 
 |  | 
 | 	r = kvm_prepare_memory_region(kvm, old, new, change); | 
 | 	if (r) { | 
 | 		/* | 
 | 		 * For DELETE/MOVE, revert the above INVALID change.  No | 
 | 		 * modifications required since the original slot was preserved | 
 | 		 * in the inactive slots.  Changing the active memslots also | 
 | 		 * release slots_arch_lock. | 
 | 		 */ | 
 | 		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { | 
 | 			kvm_activate_memslot(kvm, invalid_slot, old); | 
 | 			kfree(invalid_slot); | 
 | 		} else { | 
 | 			mutex_unlock(&kvm->slots_arch_lock); | 
 | 		} | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For DELETE and MOVE, the working slot is now active as the INVALID | 
 | 	 * version of the old slot.  MOVE is particularly special as it reuses | 
 | 	 * the old slot and returns a copy of the old slot (in working_slot). | 
 | 	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the | 
 | 	 * old slot is detached but otherwise preserved. | 
 | 	 */ | 
 | 	if (change == KVM_MR_CREATE) | 
 | 		kvm_create_memslot(kvm, new); | 
 | 	else if (change == KVM_MR_DELETE) | 
 | 		kvm_delete_memslot(kvm, old, invalid_slot); | 
 | 	else if (change == KVM_MR_MOVE) | 
 | 		kvm_move_memslot(kvm, old, new, invalid_slot); | 
 | 	else if (change == KVM_MR_FLAGS_ONLY) | 
 | 		kvm_update_flags_memslot(kvm, old, new); | 
 | 	else | 
 | 		BUG(); | 
 |  | 
 | 	/* Free the temporary INVALID slot used for DELETE and MOVE. */ | 
 | 	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) | 
 | 		kfree(invalid_slot); | 
 |  | 
 | 	/* | 
 | 	 * No need to refresh new->arch, changes after dropping slots_arch_lock | 
 | 	 * will directly hit the final, active memslot.  Architectures are | 
 | 	 * responsible for knowing that new->arch may be stale. | 
 | 	 */ | 
 | 	kvm_commit_memory_region(kvm, old, new, change); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, | 
 | 				      gfn_t start, gfn_t end) | 
 | { | 
 | 	struct kvm_memslot_iter iter; | 
 |  | 
 | 	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { | 
 | 		if (iter.slot->id != id) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static int kvm_set_memory_region(struct kvm *kvm, | 
 | 				 const struct kvm_userspace_memory_region2 *mem) | 
 | { | 
 | 	struct kvm_memory_slot *old, *new; | 
 | 	struct kvm_memslots *slots; | 
 | 	enum kvm_mr_change change; | 
 | 	unsigned long npages; | 
 | 	gfn_t base_gfn; | 
 | 	int as_id, id; | 
 | 	int r; | 
 |  | 
 | 	lockdep_assert_held(&kvm->slots_lock); | 
 |  | 
 | 	r = check_memory_region_flags(kvm, mem); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	as_id = mem->slot >> 16; | 
 | 	id = (u16)mem->slot; | 
 |  | 
 | 	/* General sanity checks */ | 
 | 	if ((mem->memory_size & (PAGE_SIZE - 1)) || | 
 | 	    (mem->memory_size != (unsigned long)mem->memory_size)) | 
 | 		return -EINVAL; | 
 | 	if (mem->guest_phys_addr & (PAGE_SIZE - 1)) | 
 | 		return -EINVAL; | 
 | 	/* We can read the guest memory with __xxx_user() later on. */ | 
 | 	if ((mem->userspace_addr & (PAGE_SIZE - 1)) || | 
 | 	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || | 
 | 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr, | 
 | 			mem->memory_size)) | 
 | 		return -EINVAL; | 
 | 	if (mem->flags & KVM_MEM_GUEST_MEMFD && | 
 | 	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) || | 
 | 	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset)) | 
 | 		return -EINVAL; | 
 | 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM) | 
 | 		return -EINVAL; | 
 | 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * The size of userspace-defined memory regions is restricted in order | 
 | 	 * to play nice with dirty bitmap operations, which are indexed with an | 
 | 	 * "unsigned int".  KVM's internal memory regions don't support dirty | 
 | 	 * logging, and so are exempt. | 
 | 	 */ | 
 | 	if (id < KVM_USER_MEM_SLOTS && | 
 | 	    (mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) | 
 | 		return -EINVAL; | 
 |  | 
 | 	slots = __kvm_memslots(kvm, as_id); | 
 |  | 
 | 	/* | 
 | 	 * Note, the old memslot (and the pointer itself!) may be invalidated | 
 | 	 * and/or destroyed by kvm_set_memslot(). | 
 | 	 */ | 
 | 	old = id_to_memslot(slots, id); | 
 |  | 
 | 	if (!mem->memory_size) { | 
 | 		if (!old || !old->npages) | 
 | 			return -EINVAL; | 
 |  | 
 | 		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) | 
 | 			return -EIO; | 
 |  | 
 | 		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); | 
 | 	} | 
 |  | 
 | 	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); | 
 | 	npages = (mem->memory_size >> PAGE_SHIFT); | 
 |  | 
 | 	if (!old || !old->npages) { | 
 | 		change = KVM_MR_CREATE; | 
 |  | 
 | 		/* | 
 | 		 * To simplify KVM internals, the total number of pages across | 
 | 		 * all memslots must fit in an unsigned long. | 
 | 		 */ | 
 | 		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) | 
 | 			return -EINVAL; | 
 | 	} else { /* Modify an existing slot. */ | 
 | 		/* Private memslots are immutable, they can only be deleted. */ | 
 | 		if (mem->flags & KVM_MEM_GUEST_MEMFD) | 
 | 			return -EINVAL; | 
 | 		if ((mem->userspace_addr != old->userspace_addr) || | 
 | 		    (npages != old->npages) || | 
 | 		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		if (base_gfn != old->base_gfn) | 
 | 			change = KVM_MR_MOVE; | 
 | 		else if (mem->flags != old->flags) | 
 | 			change = KVM_MR_FLAGS_ONLY; | 
 | 		else /* Nothing to change. */ | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && | 
 | 	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) | 
 | 		return -EEXIST; | 
 |  | 
 | 	/* Allocate a slot that will persist in the memslot. */ | 
 | 	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	new->as_id = as_id; | 
 | 	new->id = id; | 
 | 	new->base_gfn = base_gfn; | 
 | 	new->npages = npages; | 
 | 	new->flags = mem->flags; | 
 | 	new->userspace_addr = mem->userspace_addr; | 
 | 	if (mem->flags & KVM_MEM_GUEST_MEMFD) { | 
 | 		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset); | 
 | 		if (r) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	r = kvm_set_memslot(kvm, old, new, change); | 
 | 	if (r) | 
 | 		goto out_unbind; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_unbind: | 
 | 	if (mem->flags & KVM_MEM_GUEST_MEMFD) | 
 | 		kvm_gmem_unbind(new); | 
 | out: | 
 | 	kfree(new); | 
 | 	return r; | 
 | } | 
 |  | 
 | int kvm_set_internal_memslot(struct kvm *kvm, | 
 | 			     const struct kvm_userspace_memory_region2 *mem) | 
 | { | 
 | 	if (WARN_ON_ONCE(mem->slot < KVM_USER_MEM_SLOTS)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (WARN_ON_ONCE(mem->flags)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return kvm_set_memory_region(kvm, mem); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_internal_memslot); | 
 |  | 
 | static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, | 
 | 					  struct kvm_userspace_memory_region2 *mem) | 
 | { | 
 | 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	guard(mutex)(&kvm->slots_lock); | 
 | 	return kvm_set_memory_region(kvm, mem); | 
 | } | 
 |  | 
 | #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT | 
 | /** | 
 |  * kvm_get_dirty_log - get a snapshot of dirty pages | 
 |  * @kvm:	pointer to kvm instance | 
 |  * @log:	slot id and address to which we copy the log | 
 |  * @is_dirty:	set to '1' if any dirty pages were found | 
 |  * @memslot:	set to the associated memslot, always valid on success | 
 |  */ | 
 | int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, | 
 | 		      int *is_dirty, struct kvm_memory_slot **memslot) | 
 | { | 
 | 	struct kvm_memslots *slots; | 
 | 	int i, as_id, id; | 
 | 	unsigned long n; | 
 | 	unsigned long any = 0; | 
 |  | 
 | 	/* Dirty ring tracking may be exclusive to dirty log tracking */ | 
 | 	if (!kvm_use_dirty_bitmap(kvm)) | 
 | 		return -ENXIO; | 
 |  | 
 | 	*memslot = NULL; | 
 | 	*is_dirty = 0; | 
 |  | 
 | 	as_id = log->slot >> 16; | 
 | 	id = (u16)log->slot; | 
 | 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	slots = __kvm_memslots(kvm, as_id); | 
 | 	*memslot = id_to_memslot(slots, id); | 
 | 	if (!(*memslot) || !(*memslot)->dirty_bitmap) | 
 | 		return -ENOENT; | 
 |  | 
 | 	kvm_arch_sync_dirty_log(kvm, *memslot); | 
 |  | 
 | 	n = kvm_dirty_bitmap_bytes(*memslot); | 
 |  | 
 | 	for (i = 0; !any && i < n/sizeof(long); ++i) | 
 | 		any = (*memslot)->dirty_bitmap[i]; | 
 |  | 
 | 	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (any) | 
 | 		*is_dirty = 1; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_dirty_log); | 
 |  | 
 | #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ | 
 | /** | 
 |  * kvm_get_dirty_log_protect - get a snapshot of dirty pages | 
 |  *	and reenable dirty page tracking for the corresponding pages. | 
 |  * @kvm:	pointer to kvm instance | 
 |  * @log:	slot id and address to which we copy the log | 
 |  * | 
 |  * We need to keep it in mind that VCPU threads can write to the bitmap | 
 |  * concurrently. So, to avoid losing track of dirty pages we keep the | 
 |  * following order: | 
 |  * | 
 |  *    1. Take a snapshot of the bit and clear it if needed. | 
 |  *    2. Write protect the corresponding page. | 
 |  *    3. Copy the snapshot to the userspace. | 
 |  *    4. Upon return caller flushes TLB's if needed. | 
 |  * | 
 |  * Between 2 and 4, the guest may write to the page using the remaining TLB | 
 |  * entry.  This is not a problem because the page is reported dirty using | 
 |  * the snapshot taken before and step 4 ensures that writes done after | 
 |  * exiting to userspace will be logged for the next call. | 
 |  * | 
 |  */ | 
 | static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) | 
 | { | 
 | 	struct kvm_memslots *slots; | 
 | 	struct kvm_memory_slot *memslot; | 
 | 	int i, as_id, id; | 
 | 	unsigned long n; | 
 | 	unsigned long *dirty_bitmap; | 
 | 	unsigned long *dirty_bitmap_buffer; | 
 | 	bool flush; | 
 |  | 
 | 	/* Dirty ring tracking may be exclusive to dirty log tracking */ | 
 | 	if (!kvm_use_dirty_bitmap(kvm)) | 
 | 		return -ENXIO; | 
 |  | 
 | 	as_id = log->slot >> 16; | 
 | 	id = (u16)log->slot; | 
 | 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	slots = __kvm_memslots(kvm, as_id); | 
 | 	memslot = id_to_memslot(slots, id); | 
 | 	if (!memslot || !memslot->dirty_bitmap) | 
 | 		return -ENOENT; | 
 |  | 
 | 	dirty_bitmap = memslot->dirty_bitmap; | 
 |  | 
 | 	kvm_arch_sync_dirty_log(kvm, memslot); | 
 |  | 
 | 	n = kvm_dirty_bitmap_bytes(memslot); | 
 | 	flush = false; | 
 | 	if (kvm->manual_dirty_log_protect) { | 
 | 		/* | 
 | 		 * Unlike kvm_get_dirty_log, we always return false in *flush, | 
 | 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There | 
 | 		 * is some code duplication between this function and | 
 | 		 * kvm_get_dirty_log, but hopefully all architecture | 
 | 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log | 
 | 		 * can be eliminated. | 
 | 		 */ | 
 | 		dirty_bitmap_buffer = dirty_bitmap; | 
 | 	} else { | 
 | 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); | 
 | 		memset(dirty_bitmap_buffer, 0, n); | 
 |  | 
 | 		KVM_MMU_LOCK(kvm); | 
 | 		for (i = 0; i < n / sizeof(long); i++) { | 
 | 			unsigned long mask; | 
 | 			gfn_t offset; | 
 |  | 
 | 			if (!dirty_bitmap[i]) | 
 | 				continue; | 
 |  | 
 | 			flush = true; | 
 | 			mask = xchg(&dirty_bitmap[i], 0); | 
 | 			dirty_bitmap_buffer[i] = mask; | 
 |  | 
 | 			offset = i * BITS_PER_LONG; | 
 | 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, | 
 | 								offset, mask); | 
 | 		} | 
 | 		KVM_MMU_UNLOCK(kvm); | 
 | 	} | 
 |  | 
 | 	if (flush) | 
 | 		kvm_flush_remote_tlbs_memslot(kvm, memslot); | 
 |  | 
 | 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) | 
 | 		return -EFAULT; | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot | 
 |  * @kvm: kvm instance | 
 |  * @log: slot id and address to which we copy the log | 
 |  * | 
 |  * Steps 1-4 below provide general overview of dirty page logging. See | 
 |  * kvm_get_dirty_log_protect() function description for additional details. | 
 |  * | 
 |  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we | 
 |  * always flush the TLB (step 4) even if previous step failed  and the dirty | 
 |  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API | 
 |  * does not preclude user space subsequent dirty log read. Flushing TLB ensures | 
 |  * writes will be marked dirty for next log read. | 
 |  * | 
 |  *   1. Take a snapshot of the bit and clear it if needed. | 
 |  *   2. Write protect the corresponding page. | 
 |  *   3. Copy the snapshot to the userspace. | 
 |  *   4. Flush TLB's if needed. | 
 |  */ | 
 | static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, | 
 | 				      struct kvm_dirty_log *log) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	mutex_lock(&kvm->slots_lock); | 
 |  | 
 | 	r = kvm_get_dirty_log_protect(kvm, log); | 
 |  | 
 | 	mutex_unlock(&kvm->slots_lock); | 
 | 	return r; | 
 | } | 
 |  | 
 | /** | 
 |  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap | 
 |  *	and reenable dirty page tracking for the corresponding pages. | 
 |  * @kvm:	pointer to kvm instance | 
 |  * @log:	slot id and address from which to fetch the bitmap of dirty pages | 
 |  */ | 
 | static int kvm_clear_dirty_log_protect(struct kvm *kvm, | 
 | 				       struct kvm_clear_dirty_log *log) | 
 | { | 
 | 	struct kvm_memslots *slots; | 
 | 	struct kvm_memory_slot *memslot; | 
 | 	int as_id, id; | 
 | 	gfn_t offset; | 
 | 	unsigned long i, n; | 
 | 	unsigned long *dirty_bitmap; | 
 | 	unsigned long *dirty_bitmap_buffer; | 
 | 	bool flush; | 
 |  | 
 | 	/* Dirty ring tracking may be exclusive to dirty log tracking */ | 
 | 	if (!kvm_use_dirty_bitmap(kvm)) | 
 | 		return -ENXIO; | 
 |  | 
 | 	as_id = log->slot >> 16; | 
 | 	id = (u16)log->slot; | 
 | 	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (log->first_page & 63) | 
 | 		return -EINVAL; | 
 |  | 
 | 	slots = __kvm_memslots(kvm, as_id); | 
 | 	memslot = id_to_memslot(slots, id); | 
 | 	if (!memslot || !memslot->dirty_bitmap) | 
 | 		return -ENOENT; | 
 |  | 
 | 	dirty_bitmap = memslot->dirty_bitmap; | 
 |  | 
 | 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; | 
 |  | 
 | 	if (log->first_page > memslot->npages || | 
 | 	    log->num_pages > memslot->npages - log->first_page || | 
 | 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) | 
 | 	    return -EINVAL; | 
 |  | 
 | 	kvm_arch_sync_dirty_log(kvm, memslot); | 
 |  | 
 | 	flush = false; | 
 | 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); | 
 | 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	KVM_MMU_LOCK(kvm); | 
 | 	for (offset = log->first_page, i = offset / BITS_PER_LONG, | 
 | 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; | 
 | 	     i++, offset += BITS_PER_LONG) { | 
 | 		unsigned long mask = *dirty_bitmap_buffer++; | 
 | 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; | 
 | 		if (!mask) | 
 | 			continue; | 
 |  | 
 | 		mask &= atomic_long_fetch_andnot(mask, p); | 
 |  | 
 | 		/* | 
 | 		 * mask contains the bits that really have been cleared.  This | 
 | 		 * never includes any bits beyond the length of the memslot (if | 
 | 		 * the length is not aligned to 64 pages), therefore it is not | 
 | 		 * a problem if userspace sets them in log->dirty_bitmap. | 
 | 		*/ | 
 | 		if (mask) { | 
 | 			flush = true; | 
 | 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, | 
 | 								offset, mask); | 
 | 		} | 
 | 	} | 
 | 	KVM_MMU_UNLOCK(kvm); | 
 |  | 
 | 	if (flush) | 
 | 		kvm_flush_remote_tlbs_memslot(kvm, memslot); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, | 
 | 					struct kvm_clear_dirty_log *log) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	mutex_lock(&kvm->slots_lock); | 
 |  | 
 | 	r = kvm_clear_dirty_log_protect(kvm, log); | 
 |  | 
 | 	mutex_unlock(&kvm->slots_lock); | 
 | 	return r; | 
 | } | 
 | #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ | 
 |  | 
 | #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES | 
 | static u64 kvm_supported_mem_attributes(struct kvm *kvm) | 
 | { | 
 | 	if (!kvm || kvm_arch_has_private_mem(kvm)) | 
 | 		return KVM_MEMORY_ATTRIBUTE_PRIVATE; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true if _all_ gfns in the range [@start, @end) have attributes | 
 |  * such that the bits in @mask match @attrs. | 
 |  */ | 
 | bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end, | 
 | 				     unsigned long mask, unsigned long attrs) | 
 | { | 
 | 	XA_STATE(xas, &kvm->mem_attr_array, start); | 
 | 	unsigned long index; | 
 | 	void *entry; | 
 |  | 
 | 	mask &= kvm_supported_mem_attributes(kvm); | 
 | 	if (attrs & ~mask) | 
 | 		return false; | 
 |  | 
 | 	if (end == start + 1) | 
 | 		return (kvm_get_memory_attributes(kvm, start) & mask) == attrs; | 
 |  | 
 | 	guard(rcu)(); | 
 | 	if (!attrs) | 
 | 		return !xas_find(&xas, end - 1); | 
 |  | 
 | 	for (index = start; index < end; index++) { | 
 | 		do { | 
 | 			entry = xas_next(&xas); | 
 | 		} while (xas_retry(&xas, entry)); | 
 |  | 
 | 		if (xas.xa_index != index || | 
 | 		    (xa_to_value(entry) & mask) != attrs) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static __always_inline void kvm_handle_gfn_range(struct kvm *kvm, | 
 | 						 struct kvm_mmu_notifier_range *range) | 
 | { | 
 | 	struct kvm_gfn_range gfn_range; | 
 | 	struct kvm_memory_slot *slot; | 
 | 	struct kvm_memslots *slots; | 
 | 	struct kvm_memslot_iter iter; | 
 | 	bool found_memslot = false; | 
 | 	bool ret = false; | 
 | 	int i; | 
 |  | 
 | 	gfn_range.arg = range->arg; | 
 | 	gfn_range.may_block = range->may_block; | 
 |  | 
 | 	/* | 
 | 	 * If/when KVM supports more attributes beyond private .vs shared, this | 
 | 	 * _could_ set KVM_FILTER_{SHARED,PRIVATE} appropriately if the entire target | 
 | 	 * range already has the desired private vs. shared state (it's unclear | 
 | 	 * if that is a net win).  For now, KVM reaches this point if and only | 
 | 	 * if the private flag is being toggled, i.e. all mappings are in play. | 
 | 	 */ | 
 |  | 
 | 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { | 
 | 		slots = __kvm_memslots(kvm, i); | 
 |  | 
 | 		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) { | 
 | 			slot = iter.slot; | 
 | 			gfn_range.slot = slot; | 
 |  | 
 | 			gfn_range.start = max(range->start, slot->base_gfn); | 
 | 			gfn_range.end = min(range->end, slot->base_gfn + slot->npages); | 
 | 			if (gfn_range.start >= gfn_range.end) | 
 | 				continue; | 
 |  | 
 | 			if (!found_memslot) { | 
 | 				found_memslot = true; | 
 | 				KVM_MMU_LOCK(kvm); | 
 | 				if (!IS_KVM_NULL_FN(range->on_lock)) | 
 | 					range->on_lock(kvm); | 
 | 			} | 
 |  | 
 | 			ret |= range->handler(kvm, &gfn_range); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (range->flush_on_ret && ret) | 
 | 		kvm_flush_remote_tlbs(kvm); | 
 |  | 
 | 	if (found_memslot) | 
 | 		KVM_MMU_UNLOCK(kvm); | 
 | } | 
 |  | 
 | static bool kvm_pre_set_memory_attributes(struct kvm *kvm, | 
 | 					  struct kvm_gfn_range *range) | 
 | { | 
 | 	/* | 
 | 	 * Unconditionally add the range to the invalidation set, regardless of | 
 | 	 * whether or not the arch callback actually needs to zap SPTEs.  E.g. | 
 | 	 * if KVM supports RWX attributes in the future and the attributes are | 
 | 	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally | 
 | 	 * adding the range allows KVM to require that MMU invalidations add at | 
 | 	 * least one range between begin() and end(), e.g. allows KVM to detect | 
 | 	 * bugs where the add() is missed.  Relaxing the rule *might* be safe, | 
 | 	 * but it's not obvious that allowing new mappings while the attributes | 
 | 	 * are in flux is desirable or worth the complexity. | 
 | 	 */ | 
 | 	kvm_mmu_invalidate_range_add(kvm, range->start, range->end); | 
 |  | 
 | 	return kvm_arch_pre_set_memory_attributes(kvm, range); | 
 | } | 
 |  | 
 | /* Set @attributes for the gfn range [@start, @end). */ | 
 | static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end, | 
 | 				     unsigned long attributes) | 
 | { | 
 | 	struct kvm_mmu_notifier_range pre_set_range = { | 
 | 		.start = start, | 
 | 		.end = end, | 
 | 		.arg.attributes = attributes, | 
 | 		.handler = kvm_pre_set_memory_attributes, | 
 | 		.on_lock = kvm_mmu_invalidate_begin, | 
 | 		.flush_on_ret = true, | 
 | 		.may_block = true, | 
 | 	}; | 
 | 	struct kvm_mmu_notifier_range post_set_range = { | 
 | 		.start = start, | 
 | 		.end = end, | 
 | 		.arg.attributes = attributes, | 
 | 		.handler = kvm_arch_post_set_memory_attributes, | 
 | 		.on_lock = kvm_mmu_invalidate_end, | 
 | 		.may_block = true, | 
 | 	}; | 
 | 	unsigned long i; | 
 | 	void *entry; | 
 | 	int r = 0; | 
 |  | 
 | 	entry = attributes ? xa_mk_value(attributes) : NULL; | 
 |  | 
 | 	trace_kvm_vm_set_mem_attributes(start, end, attributes); | 
 |  | 
 | 	mutex_lock(&kvm->slots_lock); | 
 |  | 
 | 	/* Nothing to do if the entire range has the desired attributes. */ | 
 | 	if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * Reserve memory ahead of time to avoid having to deal with failures | 
 | 	 * partway through setting the new attributes. | 
 | 	 */ | 
 | 	for (i = start; i < end; i++) { | 
 | 		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT); | 
 | 		if (r) | 
 | 			goto out_unlock; | 
 |  | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	kvm_handle_gfn_range(kvm, &pre_set_range); | 
 |  | 
 | 	for (i = start; i < end; i++) { | 
 | 		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry, | 
 | 				    GFP_KERNEL_ACCOUNT)); | 
 | 		KVM_BUG_ON(r, kvm); | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	kvm_handle_gfn_range(kvm, &post_set_range); | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&kvm->slots_lock); | 
 |  | 
 | 	return r; | 
 | } | 
 | static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm, | 
 | 					   struct kvm_memory_attributes *attrs) | 
 | { | 
 | 	gfn_t start, end; | 
 |  | 
 | 	/* flags is currently not used. */ | 
 | 	if (attrs->flags) | 
 | 		return -EINVAL; | 
 | 	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm)) | 
 | 		return -EINVAL; | 
 | 	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address) | 
 | 		return -EINVAL; | 
 | 	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	start = attrs->address >> PAGE_SHIFT; | 
 | 	end = (attrs->address + attrs->size) >> PAGE_SHIFT; | 
 |  | 
 | 	/* | 
 | 	 * xarray tracks data using "unsigned long", and as a result so does | 
 | 	 * KVM.  For simplicity, supports generic attributes only on 64-bit | 
 | 	 * architectures. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long)); | 
 |  | 
 | 	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes); | 
 | } | 
 | #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ | 
 |  | 
 | struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) | 
 | { | 
 | 	return __gfn_to_memslot(kvm_memslots(kvm), gfn); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_memslot); | 
 |  | 
 | struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) | 
 | { | 
 | 	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); | 
 | 	u64 gen = slots->generation; | 
 | 	struct kvm_memory_slot *slot; | 
 |  | 
 | 	/* | 
 | 	 * This also protects against using a memslot from a different address space, | 
 | 	 * since different address spaces have different generation numbers. | 
 | 	 */ | 
 | 	if (unlikely(gen != vcpu->last_used_slot_gen)) { | 
 | 		vcpu->last_used_slot = NULL; | 
 | 		vcpu->last_used_slot_gen = gen; | 
 | 	} | 
 |  | 
 | 	slot = try_get_memslot(vcpu->last_used_slot, gfn); | 
 | 	if (slot) | 
 | 		return slot; | 
 |  | 
 | 	/* | 
 | 	 * Fall back to searching all memslots. We purposely use | 
 | 	 * search_memslots() instead of __gfn_to_memslot() to avoid | 
 | 	 * thrashing the VM-wide last_used_slot in kvm_memslots. | 
 | 	 */ | 
 | 	slot = search_memslots(slots, gfn, false); | 
 | 	if (slot) { | 
 | 		vcpu->last_used_slot = slot; | 
 | 		return slot; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_memslot); | 
 |  | 
 | bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) | 
 | { | 
 | 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); | 
 |  | 
 | 	return kvm_is_visible_memslot(memslot); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_is_visible_gfn); | 
 |  | 
 | bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | 
 | { | 
 | 	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); | 
 |  | 
 | 	return kvm_is_visible_memslot(memslot); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_is_visible_gfn); | 
 |  | 
 | unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	unsigned long addr, size; | 
 |  | 
 | 	size = PAGE_SIZE; | 
 |  | 
 | 	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); | 
 | 	if (kvm_is_error_hva(addr)) | 
 | 		return PAGE_SIZE; | 
 |  | 
 | 	mmap_read_lock(current->mm); | 
 | 	vma = find_vma(current->mm, addr); | 
 | 	if (!vma) | 
 | 		goto out; | 
 |  | 
 | 	size = vma_kernel_pagesize(vma); | 
 |  | 
 | out: | 
 | 	mmap_read_unlock(current->mm); | 
 |  | 
 | 	return size; | 
 | } | 
 |  | 
 | static bool memslot_is_readonly(const struct kvm_memory_slot *slot) | 
 | { | 
 | 	return slot->flags & KVM_MEM_READONLY; | 
 | } | 
 |  | 
 | static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, | 
 | 				       gfn_t *nr_pages, bool write) | 
 | { | 
 | 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID) | 
 | 		return KVM_HVA_ERR_BAD; | 
 |  | 
 | 	if (memslot_is_readonly(slot) && write) | 
 | 		return KVM_HVA_ERR_RO_BAD; | 
 |  | 
 | 	if (nr_pages) | 
 | 		*nr_pages = slot->npages - (gfn - slot->base_gfn); | 
 |  | 
 | 	return __gfn_to_hva_memslot(slot, gfn); | 
 | } | 
 |  | 
 | static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, | 
 | 				     gfn_t *nr_pages) | 
 | { | 
 | 	return __gfn_to_hva_many(slot, gfn, nr_pages, true); | 
 | } | 
 |  | 
 | unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, | 
 | 					gfn_t gfn) | 
 | { | 
 | 	return gfn_to_hva_many(slot, gfn, NULL); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva_memslot); | 
 |  | 
 | unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) | 
 | { | 
 | 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(gfn_to_hva); | 
 |  | 
 | unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) | 
 | { | 
 | 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_gfn_to_hva); | 
 |  | 
 | /* | 
 |  * Return the hva of a @gfn and the R/W attribute if possible. | 
 |  * | 
 |  * @slot: the kvm_memory_slot which contains @gfn | 
 |  * @gfn: the gfn to be translated | 
 |  * @writable: used to return the read/write attribute of the @slot if the hva | 
 |  * is valid and @writable is not NULL | 
 |  */ | 
 | unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, | 
 | 				      gfn_t gfn, bool *writable) | 
 | { | 
 | 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); | 
 |  | 
 | 	if (!kvm_is_error_hva(hva) && writable) | 
 | 		*writable = !memslot_is_readonly(slot); | 
 |  | 
 | 	return hva; | 
 | } | 
 |  | 
 | unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) | 
 | { | 
 | 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); | 
 |  | 
 | 	return gfn_to_hva_memslot_prot(slot, gfn, writable); | 
 | } | 
 |  | 
 | unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) | 
 | { | 
 | 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); | 
 |  | 
 | 	return gfn_to_hva_memslot_prot(slot, gfn, writable); | 
 | } | 
 |  | 
 | static bool kvm_is_ad_tracked_page(struct page *page) | 
 | { | 
 | 	/* | 
 | 	 * Per page-flags.h, pages tagged PG_reserved "should in general not be | 
 | 	 * touched (e.g. set dirty) except by its owner". | 
 | 	 */ | 
 | 	return !PageReserved(page); | 
 | } | 
 |  | 
 | static void kvm_set_page_dirty(struct page *page) | 
 | { | 
 | 	if (kvm_is_ad_tracked_page(page)) | 
 | 		SetPageDirty(page); | 
 | } | 
 |  | 
 | static void kvm_set_page_accessed(struct page *page) | 
 | { | 
 | 	if (kvm_is_ad_tracked_page(page)) | 
 | 		mark_page_accessed(page); | 
 | } | 
 |  | 
 | void kvm_release_page_clean(struct page *page) | 
 | { | 
 | 	if (!page) | 
 | 		return; | 
 |  | 
 | 	kvm_set_page_accessed(page); | 
 | 	put_page(page); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_clean); | 
 |  | 
 | void kvm_release_page_dirty(struct page *page) | 
 | { | 
 | 	if (!page) | 
 | 		return; | 
 |  | 
 | 	kvm_set_page_dirty(page); | 
 | 	kvm_release_page_clean(page); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_release_page_dirty); | 
 |  | 
 | static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page, | 
 | 				 struct follow_pfnmap_args *map, bool writable) | 
 | { | 
 | 	kvm_pfn_t pfn; | 
 |  | 
 | 	WARN_ON_ONCE(!!page == !!map); | 
 |  | 
 | 	if (kfp->map_writable) | 
 | 		*kfp->map_writable = writable; | 
 |  | 
 | 	if (map) | 
 | 		pfn = map->pfn; | 
 | 	else | 
 | 		pfn = page_to_pfn(page); | 
 |  | 
 | 	*kfp->refcounted_page = page; | 
 |  | 
 | 	return pfn; | 
 | } | 
 |  | 
 | /* | 
 |  * The fast path to get the writable pfn which will be stored in @pfn, | 
 |  * true indicates success, otherwise false is returned. | 
 |  */ | 
 | static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn) | 
 | { | 
 | 	struct page *page; | 
 | 	bool r; | 
 |  | 
 | 	/* | 
 | 	 * Try the fast-only path when the caller wants to pin/get the page for | 
 | 	 * writing.  If the caller only wants to read the page, KVM must go | 
 | 	 * down the full, slow path in order to avoid racing an operation that | 
 | 	 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing | 
 | 	 * at the old, read-only page while mm/ points at a new, writable page. | 
 | 	 */ | 
 | 	if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable)) | 
 | 		return false; | 
 |  | 
 | 	if (kfp->pin) | 
 | 		r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1; | 
 | 	else | 
 | 		r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page); | 
 |  | 
 | 	if (r) { | 
 | 		*pfn = kvm_resolve_pfn(kfp, page, NULL, true); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * The slow path to get the pfn of the specified host virtual address, | 
 |  * 1 indicates success, -errno is returned if error is detected. | 
 |  */ | 
 | static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn) | 
 | { | 
 | 	/* | 
 | 	 * When a VCPU accesses a page that is not mapped into the secondary | 
 | 	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can | 
 | 	 * make progress. We always want to honor NUMA hinting faults in that | 
 | 	 * case, because GUP usage corresponds to memory accesses from the VCPU. | 
 | 	 * Otherwise, we'd not trigger NUMA hinting faults once a page is | 
 | 	 * mapped into the secondary MMU and gets accessed by a VCPU. | 
 | 	 * | 
 | 	 * Note that get_user_page_fast_only() and FOLL_WRITE for now | 
 | 	 * implicitly honor NUMA hinting faults and don't need this flag. | 
 | 	 */ | 
 | 	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags; | 
 | 	struct page *page, *wpage; | 
 | 	int npages; | 
 |  | 
 | 	if (kfp->pin) | 
 | 		npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags); | 
 | 	else | 
 | 		npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags); | 
 | 	if (npages != 1) | 
 | 		return npages; | 
 |  | 
 | 	/* | 
 | 	 * Pinning is mutually exclusive with opportunistically mapping a read | 
 | 	 * fault as writable, as KVM should never pin pages when mapping memory | 
 | 	 * into the guest (pinning is only for direct accesses from KVM). | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(kfp->map_writable && kfp->pin)) | 
 | 		goto out; | 
 |  | 
 | 	/* map read fault as writable if possible */ | 
 | 	if (!(flags & FOLL_WRITE) && kfp->map_writable && | 
 | 	    get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) { | 
 | 		put_page(page); | 
 | 		page = wpage; | 
 | 		flags |= FOLL_WRITE; | 
 | 	} | 
 |  | 
 | out: | 
 | 	*pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE); | 
 | 	return npages; | 
 | } | 
 |  | 
 | static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) | 
 | { | 
 | 	if (unlikely(!(vma->vm_flags & VM_READ))) | 
 | 		return false; | 
 |  | 
 | 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int hva_to_pfn_remapped(struct vm_area_struct *vma, | 
 | 			       struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn) | 
 | { | 
 | 	struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva }; | 
 | 	bool write_fault = kfp->flags & FOLL_WRITE; | 
 | 	int r; | 
 |  | 
 | 	/* | 
 | 	 * Remapped memory cannot be pinned in any meaningful sense.  Bail if | 
 | 	 * the caller wants to pin the page, i.e. access the page outside of | 
 | 	 * MMU notifier protection, and unsafe umappings are disallowed. | 
 | 	 */ | 
 | 	if (kfp->pin && !allow_unsafe_mappings) | 
 | 		return -EINVAL; | 
 |  | 
 | 	r = follow_pfnmap_start(&args); | 
 | 	if (r) { | 
 | 		/* | 
 | 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does | 
 | 		 * not call the fault handler, so do it here. | 
 | 		 */ | 
 | 		bool unlocked = false; | 
 | 		r = fixup_user_fault(current->mm, kfp->hva, | 
 | 				     (write_fault ? FAULT_FLAG_WRITE : 0), | 
 | 				     &unlocked); | 
 | 		if (unlocked) | 
 | 			return -EAGAIN; | 
 | 		if (r) | 
 | 			return r; | 
 |  | 
 | 		r = follow_pfnmap_start(&args); | 
 | 		if (r) | 
 | 			return r; | 
 | 	} | 
 |  | 
 | 	if (write_fault && !args.writable) { | 
 | 		*p_pfn = KVM_PFN_ERR_RO_FAULT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	*p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable); | 
 | out: | 
 | 	follow_pfnmap_end(&args); | 
 | 	return r; | 
 | } | 
 |  | 
 | kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	kvm_pfn_t pfn; | 
 | 	int npages, r; | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	if (WARN_ON_ONCE(!kfp->refcounted_page)) | 
 | 		return KVM_PFN_ERR_FAULT; | 
 |  | 
 | 	if (hva_to_pfn_fast(kfp, &pfn)) | 
 | 		return pfn; | 
 |  | 
 | 	npages = hva_to_pfn_slow(kfp, &pfn); | 
 | 	if (npages == 1) | 
 | 		return pfn; | 
 | 	if (npages == -EINTR || npages == -EAGAIN) | 
 | 		return KVM_PFN_ERR_SIGPENDING; | 
 | 	if (npages == -EHWPOISON) | 
 | 		return KVM_PFN_ERR_HWPOISON; | 
 |  | 
 | 	mmap_read_lock(current->mm); | 
 | retry: | 
 | 	vma = vma_lookup(current->mm, kfp->hva); | 
 |  | 
 | 	if (vma == NULL) | 
 | 		pfn = KVM_PFN_ERR_FAULT; | 
 | 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { | 
 | 		r = hva_to_pfn_remapped(vma, kfp, &pfn); | 
 | 		if (r == -EAGAIN) | 
 | 			goto retry; | 
 | 		if (r < 0) | 
 | 			pfn = KVM_PFN_ERR_FAULT; | 
 | 	} else { | 
 | 		if ((kfp->flags & FOLL_NOWAIT) && | 
 | 		    vma_is_valid(vma, kfp->flags & FOLL_WRITE)) | 
 | 			pfn = KVM_PFN_ERR_NEEDS_IO; | 
 | 		else | 
 | 			pfn = KVM_PFN_ERR_FAULT; | 
 | 	} | 
 | 	mmap_read_unlock(current->mm); | 
 | 	return pfn; | 
 | } | 
 |  | 
 | static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp) | 
 | { | 
 | 	kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL, | 
 | 				     kfp->flags & FOLL_WRITE); | 
 |  | 
 | 	if (kfp->hva == KVM_HVA_ERR_RO_BAD) | 
 | 		return KVM_PFN_ERR_RO_FAULT; | 
 |  | 
 | 	if (kvm_is_error_hva(kfp->hva)) | 
 | 		return KVM_PFN_NOSLOT; | 
 |  | 
 | 	if (memslot_is_readonly(kfp->slot) && kfp->map_writable) { | 
 | 		*kfp->map_writable = false; | 
 | 		kfp->map_writable = NULL; | 
 | 	} | 
 |  | 
 | 	return hva_to_pfn(kfp); | 
 | } | 
 |  | 
 | kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn, | 
 | 			    unsigned int foll, bool *writable, | 
 | 			    struct page **refcounted_page) | 
 | { | 
 | 	struct kvm_follow_pfn kfp = { | 
 | 		.slot = slot, | 
 | 		.gfn = gfn, | 
 | 		.flags = foll, | 
 | 		.map_writable = writable, | 
 | 		.refcounted_page = refcounted_page, | 
 | 	}; | 
 |  | 
 | 	if (WARN_ON_ONCE(!writable || !refcounted_page)) | 
 | 		return KVM_PFN_ERR_FAULT; | 
 |  | 
 | 	*writable = false; | 
 | 	*refcounted_page = NULL; | 
 |  | 
 | 	return kvm_follow_pfn(&kfp); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_faultin_pfn); | 
 |  | 
 | int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn, | 
 | 		       struct page **pages, int nr_pages) | 
 | { | 
 | 	unsigned long addr; | 
 | 	gfn_t entry = 0; | 
 |  | 
 | 	addr = gfn_to_hva_many(slot, gfn, &entry); | 
 | 	if (kvm_is_error_hva(addr)) | 
 | 		return -1; | 
 |  | 
 | 	if (entry < nr_pages) | 
 | 		return 0; | 
 |  | 
 | 	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_prefetch_pages); | 
 |  | 
 | /* | 
 |  * Don't use this API unless you are absolutely, positively certain that KVM | 
 |  * needs to get a struct page, e.g. to pin the page for firmware DMA. | 
 |  * | 
 |  * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate | 
 |  *	  its refcount. | 
 |  */ | 
 | struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write) | 
 | { | 
 | 	struct page *refcounted_page = NULL; | 
 | 	struct kvm_follow_pfn kfp = { | 
 | 		.slot = gfn_to_memslot(kvm, gfn), | 
 | 		.gfn = gfn, | 
 | 		.flags = write ? FOLL_WRITE : 0, | 
 | 		.refcounted_page = &refcounted_page, | 
 | 	}; | 
 |  | 
 | 	(void)kvm_follow_pfn(&kfp); | 
 | 	return refcounted_page; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(__gfn_to_page); | 
 |  | 
 | int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, | 
 | 		   bool writable) | 
 | { | 
 | 	struct kvm_follow_pfn kfp = { | 
 | 		.slot = gfn_to_memslot(vcpu->kvm, gfn), | 
 | 		.gfn = gfn, | 
 | 		.flags = writable ? FOLL_WRITE : 0, | 
 | 		.refcounted_page = &map->pinned_page, | 
 | 		.pin = true, | 
 | 	}; | 
 |  | 
 | 	map->pinned_page = NULL; | 
 | 	map->page = NULL; | 
 | 	map->hva = NULL; | 
 | 	map->gfn = gfn; | 
 | 	map->writable = writable; | 
 |  | 
 | 	map->pfn = kvm_follow_pfn(&kfp); | 
 | 	if (is_error_noslot_pfn(map->pfn)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (pfn_valid(map->pfn)) { | 
 | 		map->page = pfn_to_page(map->pfn); | 
 | 		map->hva = kmap(map->page); | 
 | #ifdef CONFIG_HAS_IOMEM | 
 | 	} else { | 
 | 		map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	return map->hva ? 0 : -EFAULT; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_map); | 
 |  | 
 | void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map) | 
 | { | 
 | 	if (!map->hva) | 
 | 		return; | 
 |  | 
 | 	if (map->page) | 
 | 		kunmap(map->page); | 
 | #ifdef CONFIG_HAS_IOMEM | 
 | 	else | 
 | 		memunmap(map->hva); | 
 | #endif | 
 |  | 
 | 	if (map->writable) | 
 | 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn); | 
 |  | 
 | 	if (map->pinned_page) { | 
 | 		if (map->writable) | 
 | 			kvm_set_page_dirty(map->pinned_page); | 
 | 		kvm_set_page_accessed(map->pinned_page); | 
 | 		unpin_user_page(map->pinned_page); | 
 | 	} | 
 |  | 
 | 	map->hva = NULL; | 
 | 	map->page = NULL; | 
 | 	map->pinned_page = NULL; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_unmap); | 
 |  | 
 | static int next_segment(unsigned long len, int offset) | 
 | { | 
 | 	if (len > PAGE_SIZE - offset) | 
 | 		return PAGE_SIZE - offset; | 
 | 	else | 
 | 		return len; | 
 | } | 
 |  | 
 | /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */ | 
 | static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, | 
 | 				 void *data, int offset, int len) | 
 | { | 
 | 	int r; | 
 | 	unsigned long addr; | 
 |  | 
 | 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); | 
 | 	if (kvm_is_error_hva(addr)) | 
 | 		return -EFAULT; | 
 | 	r = __copy_from_user(data, (void __user *)addr + offset, len); | 
 | 	if (r) | 
 | 		return -EFAULT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, | 
 | 			int len) | 
 | { | 
 | 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); | 
 |  | 
 | 	return __kvm_read_guest_page(slot, gfn, data, offset, len); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_page); | 
 |  | 
 | int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, | 
 | 			     int offset, int len) | 
 | { | 
 | 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); | 
 |  | 
 | 	return __kvm_read_guest_page(slot, gfn, data, offset, len); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_page); | 
 |  | 
 | int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) | 
 | { | 
 | 	gfn_t gfn = gpa >> PAGE_SHIFT; | 
 | 	int seg; | 
 | 	int offset = offset_in_page(gpa); | 
 | 	int ret; | 
 |  | 
 | 	while ((seg = next_segment(len, offset)) != 0) { | 
 | 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		offset = 0; | 
 | 		len -= seg; | 
 | 		data += seg; | 
 | 		++gfn; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest); | 
 |  | 
 | int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) | 
 | { | 
 | 	gfn_t gfn = gpa >> PAGE_SHIFT; | 
 | 	int seg; | 
 | 	int offset = offset_in_page(gpa); | 
 | 	int ret; | 
 |  | 
 | 	while ((seg = next_segment(len, offset)) != 0) { | 
 | 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		offset = 0; | 
 | 		len -= seg; | 
 | 		data += seg; | 
 | 		++gfn; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest); | 
 |  | 
 | static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, | 
 | 			           void *data, int offset, unsigned long len) | 
 | { | 
 | 	int r; | 
 | 	unsigned long addr; | 
 |  | 
 | 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); | 
 | 	if (kvm_is_error_hva(addr)) | 
 | 		return -EFAULT; | 
 | 	pagefault_disable(); | 
 | 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); | 
 | 	pagefault_enable(); | 
 | 	if (r) | 
 | 		return -EFAULT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 			       void *data, unsigned long len) | 
 | { | 
 | 	gfn_t gfn = gpa >> PAGE_SHIFT; | 
 | 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); | 
 | 	int offset = offset_in_page(gpa); | 
 |  | 
 | 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_read_guest_atomic); | 
 |  | 
 | /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */ | 
 | static int __kvm_write_guest_page(struct kvm *kvm, | 
 | 				  struct kvm_memory_slot *memslot, gfn_t gfn, | 
 | 			          const void *data, int offset, int len) | 
 | { | 
 | 	int r; | 
 | 	unsigned long addr; | 
 |  | 
 | 	if (WARN_ON_ONCE(offset + len > PAGE_SIZE)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	addr = gfn_to_hva_memslot(memslot, gfn); | 
 | 	if (kvm_is_error_hva(addr)) | 
 | 		return -EFAULT; | 
 | 	r = __copy_to_user((void __user *)addr + offset, data, len); | 
 | 	if (r) | 
 | 		return -EFAULT; | 
 | 	mark_page_dirty_in_slot(kvm, memslot, gfn); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, | 
 | 			 const void *data, int offset, int len) | 
 | { | 
 | 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); | 
 |  | 
 | 	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_page); | 
 |  | 
 | int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, | 
 | 			      const void *data, int offset, int len) | 
 | { | 
 | 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); | 
 |  | 
 | 	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest_page); | 
 |  | 
 | int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, | 
 | 		    unsigned long len) | 
 | { | 
 | 	gfn_t gfn = gpa >> PAGE_SHIFT; | 
 | 	int seg; | 
 | 	int offset = offset_in_page(gpa); | 
 | 	int ret; | 
 |  | 
 | 	while ((seg = next_segment(len, offset)) != 0) { | 
 | 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		offset = 0; | 
 | 		len -= seg; | 
 | 		data += seg; | 
 | 		++gfn; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest); | 
 |  | 
 | int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, | 
 | 		         unsigned long len) | 
 | { | 
 | 	gfn_t gfn = gpa >> PAGE_SHIFT; | 
 | 	int seg; | 
 | 	int offset = offset_in_page(gpa); | 
 | 	int ret; | 
 |  | 
 | 	while ((seg = next_segment(len, offset)) != 0) { | 
 | 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		offset = 0; | 
 | 		len -= seg; | 
 | 		data += seg; | 
 | 		++gfn; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_write_guest); | 
 |  | 
 | static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, | 
 | 				       struct gfn_to_hva_cache *ghc, | 
 | 				       gpa_t gpa, unsigned long len) | 
 | { | 
 | 	int offset = offset_in_page(gpa); | 
 | 	gfn_t start_gfn = gpa >> PAGE_SHIFT; | 
 | 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; | 
 | 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1; | 
 | 	gfn_t nr_pages_avail; | 
 |  | 
 | 	/* Update ghc->generation before performing any error checks. */ | 
 | 	ghc->generation = slots->generation; | 
 |  | 
 | 	if (start_gfn > end_gfn) { | 
 | 		ghc->hva = KVM_HVA_ERR_BAD; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the requested region crosses two memslots, we still | 
 | 	 * verify that the entire region is valid here. | 
 | 	 */ | 
 | 	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { | 
 | 		ghc->memslot = __gfn_to_memslot(slots, start_gfn); | 
 | 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, | 
 | 					   &nr_pages_avail); | 
 | 		if (kvm_is_error_hva(ghc->hva)) | 
 | 			return -EFAULT; | 
 | 	} | 
 |  | 
 | 	/* Use the slow path for cross page reads and writes. */ | 
 | 	if (nr_pages_needed == 1) | 
 | 		ghc->hva += offset; | 
 | 	else | 
 | 		ghc->memslot = NULL; | 
 |  | 
 | 	ghc->gpa = gpa; | 
 | 	ghc->len = len; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, | 
 | 			      gpa_t gpa, unsigned long len) | 
 | { | 
 | 	struct kvm_memslots *slots = kvm_memslots(kvm); | 
 | 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_gfn_to_hva_cache_init); | 
 |  | 
 | int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, | 
 | 				  void *data, unsigned int offset, | 
 | 				  unsigned long len) | 
 | { | 
 | 	struct kvm_memslots *slots = kvm_memslots(kvm); | 
 | 	int r; | 
 | 	gpa_t gpa = ghc->gpa + offset; | 
 |  | 
 | 	if (WARN_ON_ONCE(len + offset > ghc->len)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (slots->generation != ghc->generation) { | 
 | 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) | 
 | 			return -EFAULT; | 
 | 	} | 
 |  | 
 | 	if (kvm_is_error_hva(ghc->hva)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (unlikely(!ghc->memslot)) | 
 | 		return kvm_write_guest(kvm, gpa, data, len); | 
 |  | 
 | 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len); | 
 | 	if (r) | 
 | 		return -EFAULT; | 
 | 	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_offset_cached); | 
 |  | 
 | int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, | 
 | 			   void *data, unsigned long len) | 
 | { | 
 | 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_write_guest_cached); | 
 |  | 
 | int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, | 
 | 				 void *data, unsigned int offset, | 
 | 				 unsigned long len) | 
 | { | 
 | 	struct kvm_memslots *slots = kvm_memslots(kvm); | 
 | 	int r; | 
 | 	gpa_t gpa = ghc->gpa + offset; | 
 |  | 
 | 	if (WARN_ON_ONCE(len + offset > ghc->len)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (slots->generation != ghc->generation) { | 
 | 		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) | 
 | 			return -EFAULT; | 
 | 	} | 
 |  | 
 | 	if (kvm_is_error_hva(ghc->hva)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (unlikely(!ghc->memslot)) | 
 | 		return kvm_read_guest(kvm, gpa, data, len); | 
 |  | 
 | 	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); | 
 | 	if (r) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_offset_cached); | 
 |  | 
 | int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, | 
 | 			  void *data, unsigned long len) | 
 | { | 
 | 	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_read_guest_cached); | 
 |  | 
 | int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) | 
 | { | 
 | 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); | 
 | 	gfn_t gfn = gpa >> PAGE_SHIFT; | 
 | 	int seg; | 
 | 	int offset = offset_in_page(gpa); | 
 | 	int ret; | 
 |  | 
 | 	while ((seg = next_segment(len, offset)) != 0) { | 
 | 		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		offset = 0; | 
 | 		len -= seg; | 
 | 		++gfn; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_clear_guest); | 
 |  | 
 | void mark_page_dirty_in_slot(struct kvm *kvm, | 
 | 			     const struct kvm_memory_slot *memslot, | 
 | 		 	     gfn_t gfn) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); | 
 |  | 
 | #ifdef CONFIG_HAVE_KVM_DIRTY_RING | 
 | 	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) | 
 | 		return; | 
 |  | 
 | 	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); | 
 | #endif | 
 |  | 
 | 	if (memslot && kvm_slot_dirty_track_enabled(memslot)) { | 
 | 		unsigned long rel_gfn = gfn - memslot->base_gfn; | 
 | 		u32 slot = (memslot->as_id << 16) | memslot->id; | 
 |  | 
 | 		if (kvm->dirty_ring_size && vcpu) | 
 | 			kvm_dirty_ring_push(vcpu, slot, rel_gfn); | 
 | 		else if (memslot->dirty_bitmap) | 
 | 			set_bit_le(rel_gfn, memslot->dirty_bitmap); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty_in_slot); | 
 |  | 
 | void mark_page_dirty(struct kvm *kvm, gfn_t gfn) | 
 | { | 
 | 	struct kvm_memory_slot *memslot; | 
 |  | 
 | 	memslot = gfn_to_memslot(kvm, gfn); | 
 | 	mark_page_dirty_in_slot(kvm, memslot, gfn); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(mark_page_dirty); | 
 |  | 
 | void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) | 
 | { | 
 | 	struct kvm_memory_slot *memslot; | 
 |  | 
 | 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); | 
 | 	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_mark_page_dirty); | 
 |  | 
 | void kvm_sigset_activate(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!vcpu->sigset_active) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * This does a lockless modification of ->real_blocked, which is fine | 
 | 	 * because, only current can change ->real_blocked and all readers of | 
 | 	 * ->real_blocked don't care as long ->real_blocked is always a subset | 
 | 	 * of ->blocked. | 
 | 	 */ | 
 | 	sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); | 
 | } | 
 |  | 
 | void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!vcpu->sigset_active) | 
 | 		return; | 
 |  | 
 | 	sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); | 
 | 	sigemptyset(¤t->real_blocked); | 
 | } | 
 |  | 
 | static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned int old, val, grow, grow_start; | 
 |  | 
 | 	old = val = vcpu->halt_poll_ns; | 
 | 	grow_start = READ_ONCE(halt_poll_ns_grow_start); | 
 | 	grow = READ_ONCE(halt_poll_ns_grow); | 
 | 	if (!grow) | 
 | 		goto out; | 
 |  | 
 | 	val *= grow; | 
 | 	if (val < grow_start) | 
 | 		val = grow_start; | 
 |  | 
 | 	vcpu->halt_poll_ns = val; | 
 | out: | 
 | 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); | 
 | } | 
 |  | 
 | static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned int old, val, shrink, grow_start; | 
 |  | 
 | 	old = val = vcpu->halt_poll_ns; | 
 | 	shrink = READ_ONCE(halt_poll_ns_shrink); | 
 | 	grow_start = READ_ONCE(halt_poll_ns_grow_start); | 
 | 	if (shrink == 0) | 
 | 		val = 0; | 
 | 	else | 
 | 		val /= shrink; | 
 |  | 
 | 	if (val < grow_start) | 
 | 		val = 0; | 
 |  | 
 | 	vcpu->halt_poll_ns = val; | 
 | 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); | 
 | } | 
 |  | 
 | static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int ret = -EINTR; | 
 | 	int idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 |  | 
 | 	if (kvm_arch_vcpu_runnable(vcpu)) | 
 | 		goto out; | 
 | 	if (kvm_cpu_has_pending_timer(vcpu)) | 
 | 		goto out; | 
 | 	if (signal_pending(current)) | 
 | 		goto out; | 
 | 	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) | 
 | 		goto out; | 
 |  | 
 | 	ret = 0; | 
 | out: | 
 | 	srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is | 
 |  * pending.  This is mostly used when halting a vCPU, but may also be used | 
 |  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. | 
 |  */ | 
 | bool kvm_vcpu_block(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); | 
 | 	bool waited = false; | 
 |  | 
 | 	vcpu->stat.generic.blocking = 1; | 
 |  | 
 | 	preempt_disable(); | 
 | 	kvm_arch_vcpu_blocking(vcpu); | 
 | 	prepare_to_rcuwait(wait); | 
 | 	preempt_enable(); | 
 |  | 
 | 	for (;;) { | 
 | 		set_current_state(TASK_INTERRUPTIBLE); | 
 |  | 
 | 		if (kvm_vcpu_check_block(vcpu) < 0) | 
 | 			break; | 
 |  | 
 | 		waited = true; | 
 | 		schedule(); | 
 | 	} | 
 |  | 
 | 	preempt_disable(); | 
 | 	finish_rcuwait(wait); | 
 | 	kvm_arch_vcpu_unblocking(vcpu); | 
 | 	preempt_enable(); | 
 |  | 
 | 	vcpu->stat.generic.blocking = 0; | 
 |  | 
 | 	return waited; | 
 | } | 
 |  | 
 | static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, | 
 | 					  ktime_t end, bool success) | 
 | { | 
 | 	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; | 
 | 	u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); | 
 |  | 
 | 	++vcpu->stat.generic.halt_attempted_poll; | 
 |  | 
 | 	if (success) { | 
 | 		++vcpu->stat.generic.halt_successful_poll; | 
 |  | 
 | 		if (!vcpu_valid_wakeup(vcpu)) | 
 | 			++vcpu->stat.generic.halt_poll_invalid; | 
 |  | 
 | 		stats->halt_poll_success_ns += poll_ns; | 
 | 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); | 
 | 	} else { | 
 | 		stats->halt_poll_fail_ns += poll_ns; | 
 | 		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 |  | 
 | 	if (kvm->override_halt_poll_ns) { | 
 | 		/* | 
 | 		 * Ensure kvm->max_halt_poll_ns is not read before | 
 | 		 * kvm->override_halt_poll_ns. | 
 | 		 * | 
 | 		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. | 
 | 		 */ | 
 | 		smp_rmb(); | 
 | 		return READ_ONCE(kvm->max_halt_poll_ns); | 
 | 	} | 
 |  | 
 | 	return READ_ONCE(halt_poll_ns); | 
 | } | 
 |  | 
 | /* | 
 |  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt | 
 |  * polling is enabled, busy wait for a short time before blocking to avoid the | 
 |  * expensive block+unblock sequence if a wake event arrives soon after the vCPU | 
 |  * is halted. | 
 |  */ | 
 | void kvm_vcpu_halt(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); | 
 | 	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); | 
 | 	ktime_t start, cur, poll_end; | 
 | 	bool waited = false; | 
 | 	bool do_halt_poll; | 
 | 	u64 halt_ns; | 
 |  | 
 | 	if (vcpu->halt_poll_ns > max_halt_poll_ns) | 
 | 		vcpu->halt_poll_ns = max_halt_poll_ns; | 
 |  | 
 | 	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; | 
 |  | 
 | 	start = cur = poll_end = ktime_get(); | 
 | 	if (do_halt_poll) { | 
 | 		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); | 
 |  | 
 | 		do { | 
 | 			if (kvm_vcpu_check_block(vcpu) < 0) | 
 | 				goto out; | 
 | 			cpu_relax(); | 
 | 			poll_end = cur = ktime_get(); | 
 | 		} while (kvm_vcpu_can_poll(cur, stop)); | 
 | 	} | 
 |  | 
 | 	waited = kvm_vcpu_block(vcpu); | 
 |  | 
 | 	cur = ktime_get(); | 
 | 	if (waited) { | 
 | 		vcpu->stat.generic.halt_wait_ns += | 
 | 			ktime_to_ns(cur) - ktime_to_ns(poll_end); | 
 | 		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, | 
 | 				ktime_to_ns(cur) - ktime_to_ns(poll_end)); | 
 | 	} | 
 | out: | 
 | 	/* The total time the vCPU was "halted", including polling time. */ | 
 | 	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); | 
 |  | 
 | 	/* | 
 | 	 * Note, halt-polling is considered successful so long as the vCPU was | 
 | 	 * never actually scheduled out, i.e. even if the wake event arrived | 
 | 	 * after of the halt-polling loop itself, but before the full wait. | 
 | 	 */ | 
 | 	if (do_halt_poll) | 
 | 		update_halt_poll_stats(vcpu, start, poll_end, !waited); | 
 |  | 
 | 	if (halt_poll_allowed) { | 
 | 		/* Recompute the max halt poll time in case it changed. */ | 
 | 		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); | 
 |  | 
 | 		if (!vcpu_valid_wakeup(vcpu)) { | 
 | 			shrink_halt_poll_ns(vcpu); | 
 | 		} else if (max_halt_poll_ns) { | 
 | 			if (halt_ns <= vcpu->halt_poll_ns) | 
 | 				; | 
 | 			/* we had a long block, shrink polling */ | 
 | 			else if (vcpu->halt_poll_ns && | 
 | 				 halt_ns > max_halt_poll_ns) | 
 | 				shrink_halt_poll_ns(vcpu); | 
 | 			/* we had a short halt and our poll time is too small */ | 
 | 			else if (vcpu->halt_poll_ns < max_halt_poll_ns && | 
 | 				 halt_ns < max_halt_poll_ns) | 
 | 				grow_halt_poll_ns(vcpu); | 
 | 		} else { | 
 | 			vcpu->halt_poll_ns = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_halt); | 
 |  | 
 | bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (__kvm_vcpu_wake_up(vcpu)) { | 
 | 		WRITE_ONCE(vcpu->ready, true); | 
 | 		++vcpu->stat.generic.halt_wakeup; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_wake_up); | 
 |  | 
 | #ifndef CONFIG_S390 | 
 | /* | 
 |  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. | 
 |  */ | 
 | void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait) | 
 | { | 
 | 	int me, cpu; | 
 |  | 
 | 	if (kvm_vcpu_wake_up(vcpu)) | 
 | 		return; | 
 |  | 
 | 	me = get_cpu(); | 
 | 	/* | 
 | 	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE | 
 | 	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should | 
 | 	 * kick" check does not need atomic operations if kvm_vcpu_kick is used | 
 | 	 * within the vCPU thread itself. | 
 | 	 */ | 
 | 	if (vcpu == __this_cpu_read(kvm_running_vcpu)) { | 
 | 		if (vcpu->mode == IN_GUEST_MODE) | 
 | 			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Note, the vCPU could get migrated to a different pCPU at any point | 
 | 	 * after kvm_arch_vcpu_should_kick(), which could result in sending an | 
 | 	 * IPI to the previous pCPU.  But, that's ok because the purpose of the | 
 | 	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the | 
 | 	 * vCPU also requires it to leave IN_GUEST_MODE. | 
 | 	 */ | 
 | 	if (kvm_arch_vcpu_should_kick(vcpu)) { | 
 | 		cpu = READ_ONCE(vcpu->cpu); | 
 | 		if (cpu != me && (unsigned int)cpu < nr_cpu_ids && cpu_online(cpu)) { | 
 | 			/* | 
 | 			 * Use a reschedule IPI to kick the vCPU if the caller | 
 | 			 * doesn't need to wait for a response, as KVM allows | 
 | 			 * kicking vCPUs while IRQs are disabled, but using the | 
 | 			 * SMP function call framework with IRQs disabled can | 
 | 			 * deadlock due to taking cross-CPU locks. | 
 | 			 */ | 
 | 			if (wait) | 
 | 				smp_call_function_single(cpu, ack_kick, NULL, wait); | 
 | 			else | 
 | 				smp_send_reschedule(cpu); | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	put_cpu(); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(__kvm_vcpu_kick); | 
 | #endif /* !CONFIG_S390 */ | 
 |  | 
 | int kvm_vcpu_yield_to(struct kvm_vcpu *target) | 
 | { | 
 | 	struct task_struct *task = NULL; | 
 | 	int ret; | 
 |  | 
 | 	if (!read_trylock(&target->pid_lock)) | 
 | 		return 0; | 
 |  | 
 | 	if (target->pid) | 
 | 		task = get_pid_task(target->pid, PIDTYPE_PID); | 
 |  | 
 | 	read_unlock(&target->pid_lock); | 
 |  | 
 | 	if (!task) | 
 | 		return 0; | 
 | 	ret = yield_to(task, 1); | 
 | 	put_task_struct(task); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_yield_to); | 
 |  | 
 | /* | 
 |  * Helper that checks whether a VCPU is eligible for directed yield. | 
 |  * Most eligible candidate to yield is decided by following heuristics: | 
 |  * | 
 |  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently | 
 |  *  (preempted lock holder), indicated by @in_spin_loop. | 
 |  *  Set at the beginning and cleared at the end of interception/PLE handler. | 
 |  * | 
 |  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get | 
 |  *  chance last time (mostly it has become eligible now since we have probably | 
 |  *  yielded to lockholder in last iteration. This is done by toggling | 
 |  *  @dy_eligible each time a VCPU checked for eligibility.) | 
 |  * | 
 |  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding | 
 |  *  to preempted lock-holder could result in wrong VCPU selection and CPU | 
 |  *  burning. Giving priority for a potential lock-holder increases lock | 
 |  *  progress. | 
 |  * | 
 |  *  Since algorithm is based on heuristics, accessing another VCPU data without | 
 |  *  locking does not harm. It may result in trying to yield to  same VCPU, fail | 
 |  *  and continue with next VCPU and so on. | 
 |  */ | 
 | static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) | 
 | { | 
 | #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT | 
 | 	bool eligible; | 
 |  | 
 | 	eligible = !vcpu->spin_loop.in_spin_loop || | 
 | 		    vcpu->spin_loop.dy_eligible; | 
 |  | 
 | 	if (vcpu->spin_loop.in_spin_loop) | 
 | 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); | 
 |  | 
 | 	return eligible; | 
 | #else | 
 | 	return true; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Unlike kvm_arch_vcpu_runnable, this function is called outside | 
 |  * a vcpu_load/vcpu_put pair.  However, for most architectures | 
 |  * kvm_arch_vcpu_runnable does not require vcpu_load. | 
 |  */ | 
 | bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_arch_vcpu_runnable(vcpu); | 
 | } | 
 |  | 
 | static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (kvm_arch_dy_runnable(vcpu)) | 
 | 		return true; | 
 |  | 
 | #ifdef CONFIG_KVM_ASYNC_PF | 
 | 	if (!list_empty_careful(&vcpu->async_pf.done)) | 
 | 		return true; | 
 | #endif | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * By default, simply query the target vCPU's current mode when checking if a | 
 |  * vCPU was preempted in kernel mode.  All architectures except x86 (or more | 
 |  * specifical, except VMX) allow querying whether or not a vCPU is in kernel | 
 |  * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel() | 
 |  * directly for cross-vCPU checks is functionally correct and accurate. | 
 |  */ | 
 | bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_arch_vcpu_in_kernel(vcpu); | 
 | } | 
 |  | 
 | bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) | 
 | { | 
 | 	int nr_vcpus, start, i, idx, yielded; | 
 | 	struct kvm *kvm = me->kvm; | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	int try = 3; | 
 |  | 
 | 	nr_vcpus = atomic_read(&kvm->online_vcpus); | 
 | 	if (nr_vcpus < 2) | 
 | 		return; | 
 |  | 
 | 	/* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */ | 
 | 	smp_rmb(); | 
 |  | 
 | 	kvm_vcpu_set_in_spin_loop(me, true); | 
 |  | 
 | 	/* | 
 | 	 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely | 
 | 	 * waiting for a resource to become available.  Attempt to yield to a | 
 | 	 * vCPU that is runnable, but not currently running, e.g. because the | 
 | 	 * vCPU was preempted by a higher priority task.  With luck, the vCPU | 
 | 	 * that was preempted is holding a lock or some other resource that the | 
 | 	 * current vCPU is waiting to acquire, and yielding to the other vCPU | 
 | 	 * will allow it to make forward progress and release the lock (or kick | 
 | 	 * the spinning vCPU, etc). | 
 | 	 * | 
 | 	 * Since KVM has no insight into what exactly the guest is doing, | 
 | 	 * approximate a round-robin selection by iterating over all vCPUs, | 
 | 	 * starting at the last boosted vCPU.  I.e. if N=kvm->last_boosted_vcpu, | 
 | 	 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed. | 
 | 	 * | 
 | 	 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning, | 
 | 	 * they may all try to yield to the same vCPU(s).  But as above, this | 
 | 	 * is all best effort due to KVM's lack of visibility into the guest. | 
 | 	 */ | 
 | 	start = READ_ONCE(kvm->last_boosted_vcpu) + 1; | 
 | 	for (i = 0; i < nr_vcpus; i++) { | 
 | 		idx = (start + i) % nr_vcpus; | 
 | 		if (idx == me->vcpu_idx) | 
 | 			continue; | 
 |  | 
 | 		vcpu = xa_load(&kvm->vcpu_array, idx); | 
 | 		if (!READ_ONCE(vcpu->ready)) | 
 | 			continue; | 
 | 		if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Treat the target vCPU as being in-kernel if it has a pending | 
 | 		 * interrupt, as the vCPU trying to yield may be spinning | 
 | 		 * waiting on IPI delivery, i.e. the target vCPU is in-kernel | 
 | 		 * for the purposes of directed yield. | 
 | 		 */ | 
 | 		if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && | 
 | 		    !kvm_arch_dy_has_pending_interrupt(vcpu) && | 
 | 		    !kvm_arch_vcpu_preempted_in_kernel(vcpu)) | 
 | 			continue; | 
 |  | 
 | 		if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) | 
 | 			continue; | 
 |  | 
 | 		yielded = kvm_vcpu_yield_to(vcpu); | 
 | 		if (yielded > 0) { | 
 | 			WRITE_ONCE(kvm->last_boosted_vcpu, i); | 
 | 			break; | 
 | 		} else if (yielded < 0 && !--try) { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	kvm_vcpu_set_in_spin_loop(me, false); | 
 |  | 
 | 	/* Ensure vcpu is not eligible during next spinloop */ | 
 | 	kvm_vcpu_set_dy_eligible(me, false); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_vcpu_on_spin); | 
 |  | 
 | static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) | 
 | { | 
 | #ifdef CONFIG_HAVE_KVM_DIRTY_RING | 
 | 	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && | 
 | 	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + | 
 | 	     kvm->dirty_ring_size / PAGE_SIZE); | 
 | #else | 
 | 	return false; | 
 | #endif | 
 | } | 
 |  | 
 | static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; | 
 | 	struct page *page; | 
 |  | 
 | 	if (vmf->pgoff == 0) | 
 | 		page = virt_to_page(vcpu->run); | 
 | #ifdef CONFIG_X86 | 
 | 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) | 
 | 		page = virt_to_page(vcpu->arch.pio_data); | 
 | #endif | 
 | #ifdef CONFIG_KVM_MMIO | 
 | 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) | 
 | 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); | 
 | #endif | 
 | 	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) | 
 | 		page = kvm_dirty_ring_get_page( | 
 | 		    &vcpu->dirty_ring, | 
 | 		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); | 
 | 	else | 
 | 		return kvm_arch_vcpu_fault(vcpu, vmf); | 
 | 	get_page(page); | 
 | 	vmf->page = page; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct vm_operations_struct kvm_vcpu_vm_ops = { | 
 | 	.fault = kvm_vcpu_fault, | 
 | }; | 
 |  | 
 | static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = file->private_data; | 
 | 	unsigned long pages = vma_pages(vma); | 
 |  | 
 | 	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || | 
 | 	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && | 
 | 	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	vma->vm_ops = &kvm_vcpu_vm_ops; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vcpu_release(struct inode *inode, struct file *filp) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = filp->private_data; | 
 |  | 
 | 	kvm_put_kvm(vcpu->kvm); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct file_operations kvm_vcpu_fops = { | 
 | 	.release        = kvm_vcpu_release, | 
 | 	.unlocked_ioctl = kvm_vcpu_ioctl, | 
 | 	.mmap           = kvm_vcpu_mmap, | 
 | 	.llseek		= noop_llseek, | 
 | 	KVM_COMPAT(kvm_vcpu_compat_ioctl), | 
 | }; | 
 |  | 
 | /* | 
 |  * Allocates an inode for the vcpu. | 
 |  */ | 
 | static int create_vcpu_fd(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	char name[8 + 1 + ITOA_MAX_LEN + 1]; | 
 |  | 
 | 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); | 
 | 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); | 
 | } | 
 |  | 
 | #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS | 
 | static int vcpu_get_pid(void *data, u64 *val) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = data; | 
 |  | 
 | 	read_lock(&vcpu->pid_lock); | 
 | 	*val = pid_nr(vcpu->pid); | 
 | 	read_unlock(&vcpu->pid_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); | 
 |  | 
 | static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct dentry *debugfs_dentry; | 
 | 	char dir_name[ITOA_MAX_LEN * 2]; | 
 |  | 
 | 	if (!debugfs_initialized()) | 
 | 		return; | 
 |  | 
 | 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); | 
 | 	debugfs_dentry = debugfs_create_dir(dir_name, | 
 | 					    vcpu->kvm->debugfs_dentry); | 
 | 	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, | 
 | 			    &vcpu_get_pid_fops); | 
 |  | 
 | 	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Creates some virtual cpus.  Good luck creating more than one. | 
 |  */ | 
 | static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id) | 
 | { | 
 | 	int r; | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	struct page *page; | 
 |  | 
 | 	/* | 
 | 	 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject | 
 | 	 * too-large values instead of silently truncating. | 
 | 	 * | 
 | 	 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first | 
 | 	 * changing the storage type (at the very least, IDs should be tracked | 
 | 	 * as unsigned ints). | 
 | 	 */ | 
 | 	BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX); | 
 | 	if (id >= KVM_MAX_VCPU_IDS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&kvm->lock); | 
 | 	if (kvm->created_vcpus >= kvm->max_vcpus) { | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	r = kvm_arch_vcpu_precreate(kvm, id); | 
 | 	if (r) { | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	kvm->created_vcpus++; | 
 | 	mutex_unlock(&kvm->lock); | 
 |  | 
 | 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); | 
 | 	if (!vcpu) { | 
 | 		r = -ENOMEM; | 
 | 		goto vcpu_decrement; | 
 | 	} | 
 |  | 
 | 	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); | 
 | 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); | 
 | 	if (!page) { | 
 | 		r = -ENOMEM; | 
 | 		goto vcpu_free; | 
 | 	} | 
 | 	vcpu->run = page_address(page); | 
 |  | 
 | 	kvm_vcpu_init(vcpu, kvm, id); | 
 |  | 
 | 	r = kvm_arch_vcpu_create(vcpu); | 
 | 	if (r) | 
 | 		goto vcpu_free_run_page; | 
 |  | 
 | 	if (kvm->dirty_ring_size) { | 
 | 		r = kvm_dirty_ring_alloc(kvm, &vcpu->dirty_ring, | 
 | 					 id, kvm->dirty_ring_size); | 
 | 		if (r) | 
 | 			goto arch_vcpu_destroy; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&kvm->lock); | 
 |  | 
 | 	if (kvm_get_vcpu_by_id(kvm, id)) { | 
 | 		r = -EEXIST; | 
 | 		goto unlock_vcpu_destroy; | 
 | 	} | 
 |  | 
 | 	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); | 
 | 	r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); | 
 | 	WARN_ON_ONCE(r == -EBUSY); | 
 | 	if (r) | 
 | 		goto unlock_vcpu_destroy; | 
 |  | 
 | 	/* | 
 | 	 * Now it's all set up, let userspace reach it.  Grab the vCPU's mutex | 
 | 	 * so that userspace can't invoke vCPU ioctl()s until the vCPU is fully | 
 | 	 * visible (per online_vcpus), e.g. so that KVM doesn't get tricked | 
 | 	 * into a NULL-pointer dereference because KVM thinks the _current_ | 
 | 	 * vCPU doesn't exist.  As a bonus, taking vcpu->mutex ensures lockdep | 
 | 	 * knows it's taken *inside* kvm->lock. | 
 | 	 */ | 
 | 	mutex_lock(&vcpu->mutex); | 
 | 	kvm_get_kvm(kvm); | 
 | 	r = create_vcpu_fd(vcpu); | 
 | 	if (r < 0) | 
 | 		goto kvm_put_xa_erase; | 
 |  | 
 | 	/* | 
 | 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu | 
 | 	 * pointer before kvm->online_vcpu's incremented value. | 
 | 	 */ | 
 | 	smp_wmb(); | 
 | 	atomic_inc(&kvm->online_vcpus); | 
 | 	mutex_unlock(&vcpu->mutex); | 
 |  | 
 | 	mutex_unlock(&kvm->lock); | 
 | 	kvm_arch_vcpu_postcreate(vcpu); | 
 | 	kvm_create_vcpu_debugfs(vcpu); | 
 | 	return r; | 
 |  | 
 | kvm_put_xa_erase: | 
 | 	mutex_unlock(&vcpu->mutex); | 
 | 	kvm_put_kvm_no_destroy(kvm); | 
 | 	xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); | 
 | unlock_vcpu_destroy: | 
 | 	mutex_unlock(&kvm->lock); | 
 | 	kvm_dirty_ring_free(&vcpu->dirty_ring); | 
 | arch_vcpu_destroy: | 
 | 	kvm_arch_vcpu_destroy(vcpu); | 
 | vcpu_free_run_page: | 
 | 	free_page((unsigned long)vcpu->run); | 
 | vcpu_free: | 
 | 	kmem_cache_free(kvm_vcpu_cache, vcpu); | 
 | vcpu_decrement: | 
 | 	mutex_lock(&kvm->lock); | 
 | 	kvm->created_vcpus--; | 
 | 	mutex_unlock(&kvm->lock); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) | 
 | { | 
 | 	if (sigset) { | 
 | 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); | 
 | 		vcpu->sigset_active = 1; | 
 | 		vcpu->sigset = *sigset; | 
 | 	} else | 
 | 		vcpu->sigset_active = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, | 
 | 			      size_t size, loff_t *offset) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = file->private_data; | 
 |  | 
 | 	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, | 
 | 			&kvm_vcpu_stats_desc[0], &vcpu->stat, | 
 | 			sizeof(vcpu->stat), user_buffer, size, offset); | 
 | } | 
 |  | 
 | static int kvm_vcpu_stats_release(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = file->private_data; | 
 |  | 
 | 	kvm_put_kvm(vcpu->kvm); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct file_operations kvm_vcpu_stats_fops = { | 
 | 	.owner = THIS_MODULE, | 
 | 	.read = kvm_vcpu_stats_read, | 
 | 	.release = kvm_vcpu_stats_release, | 
 | 	.llseek = noop_llseek, | 
 | }; | 
 |  | 
 | static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int fd; | 
 | 	struct file *file; | 
 | 	char name[15 + ITOA_MAX_LEN + 1]; | 
 |  | 
 | 	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); | 
 |  | 
 | 	fd = get_unused_fd_flags(O_CLOEXEC); | 
 | 	if (fd < 0) | 
 | 		return fd; | 
 |  | 
 | 	file = anon_inode_getfile_fmode(name, &kvm_vcpu_stats_fops, vcpu, | 
 | 					O_RDONLY, FMODE_PREAD); | 
 | 	if (IS_ERR(file)) { | 
 | 		put_unused_fd(fd); | 
 | 		return PTR_ERR(file); | 
 | 	} | 
 |  | 
 | 	kvm_get_kvm(vcpu->kvm); | 
 | 	fd_install(fd, file); | 
 |  | 
 | 	return fd; | 
 | } | 
 |  | 
 | #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY | 
 | static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, | 
 | 				     struct kvm_pre_fault_memory *range) | 
 | { | 
 | 	int idx; | 
 | 	long r; | 
 | 	u64 full_size; | 
 |  | 
 | 	if (range->flags) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!PAGE_ALIGNED(range->gpa) || | 
 | 	    !PAGE_ALIGNED(range->size) || | 
 | 	    range->gpa + range->size <= range->gpa) | 
 | 		return -EINVAL; | 
 |  | 
 | 	vcpu_load(vcpu); | 
 | 	idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 |  | 
 | 	full_size = range->size; | 
 | 	do { | 
 | 		if (signal_pending(current)) { | 
 | 			r = -EINTR; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		r = kvm_arch_vcpu_pre_fault_memory(vcpu, range); | 
 | 		if (WARN_ON_ONCE(r == 0 || r == -EIO)) | 
 | 			break; | 
 |  | 
 | 		if (r < 0) | 
 | 			break; | 
 |  | 
 | 		range->size -= r; | 
 | 		range->gpa += r; | 
 | 		cond_resched(); | 
 | 	} while (range->size); | 
 |  | 
 | 	srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	/* Return success if at least one page was mapped successfully.  */ | 
 | 	return full_size == range->size ? r : 0; | 
 | } | 
 | #endif | 
 |  | 
 | static int kvm_wait_for_vcpu_online(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 |  | 
 | 	/* | 
 | 	 * In practice, this happy path will always be taken, as a well-behaved | 
 | 	 * VMM will never invoke a vCPU ioctl() before KVM_CREATE_VCPU returns. | 
 | 	 */ | 
 | 	if (likely(vcpu->vcpu_idx < atomic_read(&kvm->online_vcpus))) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Acquire and release the vCPU's mutex to wait for vCPU creation to | 
 | 	 * complete (kvm_vm_ioctl_create_vcpu() holds the mutex until the vCPU | 
 | 	 * is fully online). | 
 | 	 */ | 
 | 	if (mutex_lock_killable(&vcpu->mutex)) | 
 | 		return -EINTR; | 
 |  | 
 | 	mutex_unlock(&vcpu->mutex); | 
 |  | 
 | 	if (WARN_ON_ONCE(!kvm_get_vcpu(kvm, vcpu->vcpu_idx))) | 
 | 		return -EIO; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static long kvm_vcpu_ioctl(struct file *filp, | 
 | 			   unsigned int ioctl, unsigned long arg) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = filp->private_data; | 
 | 	void __user *argp = (void __user *)arg; | 
 | 	int r; | 
 | 	struct kvm_fpu *fpu = NULL; | 
 | 	struct kvm_sregs *kvm_sregs = NULL; | 
 |  | 
 | 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) | 
 | 		return -EIO; | 
 |  | 
 | 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Wait for the vCPU to be online before handling the ioctl(), as KVM | 
 | 	 * assumes the vCPU is reachable via vcpu_array, i.e. may dereference | 
 | 	 * a NULL pointer if userspace invokes an ioctl() before KVM is ready. | 
 | 	 */ | 
 | 	r = kvm_wait_for_vcpu_online(vcpu); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	/* | 
 | 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu | 
 | 	 * execution; mutex_lock() would break them. | 
 | 	 */ | 
 | 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); | 
 | 	if (r != -ENOIOCTLCMD) | 
 | 		return r; | 
 |  | 
 | 	if (mutex_lock_killable(&vcpu->mutex)) | 
 | 		return -EINTR; | 
 | 	switch (ioctl) { | 
 | 	case KVM_RUN: { | 
 | 		struct pid *oldpid; | 
 | 		r = -EINVAL; | 
 | 		if (arg) | 
 | 			goto out; | 
 |  | 
 | 		/* | 
 | 		 * Note, vcpu->pid is primarily protected by vcpu->mutex. The | 
 | 		 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to | 
 | 		 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield | 
 | 		 * directly to this vCPU | 
 | 		 */ | 
 | 		oldpid = vcpu->pid; | 
 | 		if (unlikely(oldpid != task_pid(current))) { | 
 | 			/* The thread running this VCPU changed. */ | 
 | 			struct pid *newpid; | 
 |  | 
 | 			r = kvm_arch_vcpu_run_pid_change(vcpu); | 
 | 			if (r) | 
 | 				break; | 
 |  | 
 | 			newpid = get_task_pid(current, PIDTYPE_PID); | 
 | 			write_lock(&vcpu->pid_lock); | 
 | 			vcpu->pid = newpid; | 
 | 			write_unlock(&vcpu->pid_lock); | 
 |  | 
 | 			put_pid(oldpid); | 
 | 		} | 
 | 		vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe); | 
 | 		r = kvm_arch_vcpu_ioctl_run(vcpu); | 
 | 		vcpu->wants_to_run = false; | 
 |  | 
 | 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_REGS: { | 
 | 		struct kvm_regs *kvm_regs; | 
 |  | 
 | 		r = -ENOMEM; | 
 | 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); | 
 | 		if (!kvm_regs) | 
 | 			goto out; | 
 | 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); | 
 | 		if (r) | 
 | 			goto out_free1; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) | 
 | 			goto out_free1; | 
 | 		r = 0; | 
 | out_free1: | 
 | 		kfree(kvm_regs); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_REGS: { | 
 | 		struct kvm_regs *kvm_regs; | 
 |  | 
 | 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); | 
 | 		if (IS_ERR(kvm_regs)) { | 
 | 			r = PTR_ERR(kvm_regs); | 
 | 			goto out; | 
 | 		} | 
 | 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); | 
 | 		kfree(kvm_regs); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_SREGS: { | 
 | 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); | 
 | 		r = -ENOMEM; | 
 | 		if (!kvm_sregs) | 
 | 			goto out; | 
 | 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_SREGS: { | 
 | 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); | 
 | 		if (IS_ERR(kvm_sregs)) { | 
 | 			r = PTR_ERR(kvm_sregs); | 
 | 			kvm_sregs = NULL; | 
 | 			goto out; | 
 | 		} | 
 | 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_MP_STATE: { | 
 | 		struct kvm_mp_state mp_state; | 
 |  | 
 | 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &mp_state, sizeof(mp_state))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_MP_STATE: { | 
 | 		struct kvm_mp_state mp_state; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&mp_state, argp, sizeof(mp_state))) | 
 | 			goto out; | 
 | 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_TRANSLATE: { | 
 | 		struct kvm_translation tr; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&tr, argp, sizeof(tr))) | 
 | 			goto out; | 
 | 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &tr, sizeof(tr))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_GUEST_DEBUG: { | 
 | 		struct kvm_guest_debug dbg; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&dbg, argp, sizeof(dbg))) | 
 | 			goto out; | 
 | 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_SIGNAL_MASK: { | 
 | 		struct kvm_signal_mask __user *sigmask_arg = argp; | 
 | 		struct kvm_signal_mask kvm_sigmask; | 
 | 		sigset_t sigset, *p; | 
 |  | 
 | 		p = NULL; | 
 | 		if (argp) { | 
 | 			r = -EFAULT; | 
 | 			if (copy_from_user(&kvm_sigmask, argp, | 
 | 					   sizeof(kvm_sigmask))) | 
 | 				goto out; | 
 | 			r = -EINVAL; | 
 | 			if (kvm_sigmask.len != sizeof(sigset)) | 
 | 				goto out; | 
 | 			r = -EFAULT; | 
 | 			if (copy_from_user(&sigset, sigmask_arg->sigset, | 
 | 					   sizeof(sigset))) | 
 | 				goto out; | 
 | 			p = &sigset; | 
 | 		} | 
 | 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_FPU: { | 
 | 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); | 
 | 		r = -ENOMEM; | 
 | 		if (!fpu) | 
 | 			goto out; | 
 | 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_FPU: { | 
 | 		fpu = memdup_user(argp, sizeof(*fpu)); | 
 | 		if (IS_ERR(fpu)) { | 
 | 			r = PTR_ERR(fpu); | 
 | 			fpu = NULL; | 
 | 			goto out; | 
 | 		} | 
 | 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_STATS_FD: { | 
 | 		r = kvm_vcpu_ioctl_get_stats_fd(vcpu); | 
 | 		break; | 
 | 	} | 
 | #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY | 
 | 	case KVM_PRE_FAULT_MEMORY: { | 
 | 		struct kvm_pre_fault_memory range; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&range, argp, sizeof(range))) | 
 | 			break; | 
 | 		r = kvm_vcpu_pre_fault_memory(vcpu, &range); | 
 | 		/* Pass back leftover range. */ | 
 | 		if (copy_to_user(argp, &range, sizeof(range))) | 
 | 			r = -EFAULT; | 
 | 		break; | 
 | 	} | 
 | #endif | 
 | 	default: | 
 | 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); | 
 | 	} | 
 | out: | 
 | 	mutex_unlock(&vcpu->mutex); | 
 | 	kfree(fpu); | 
 | 	kfree(kvm_sregs); | 
 | 	return r; | 
 | } | 
 |  | 
 | #ifdef CONFIG_KVM_COMPAT | 
 | static long kvm_vcpu_compat_ioctl(struct file *filp, | 
 | 				  unsigned int ioctl, unsigned long arg) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = filp->private_data; | 
 | 	void __user *argp = compat_ptr(arg); | 
 | 	int r; | 
 |  | 
 | 	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) | 
 | 		return -EIO; | 
 |  | 
 | 	switch (ioctl) { | 
 | 	case KVM_SET_SIGNAL_MASK: { | 
 | 		struct kvm_signal_mask __user *sigmask_arg = argp; | 
 | 		struct kvm_signal_mask kvm_sigmask; | 
 | 		sigset_t sigset; | 
 |  | 
 | 		if (argp) { | 
 | 			r = -EFAULT; | 
 | 			if (copy_from_user(&kvm_sigmask, argp, | 
 | 					   sizeof(kvm_sigmask))) | 
 | 				goto out; | 
 | 			r = -EINVAL; | 
 | 			if (kvm_sigmask.len != sizeof(compat_sigset_t)) | 
 | 				goto out; | 
 | 			r = -EFAULT; | 
 | 			if (get_compat_sigset(&sigset, | 
 | 					      (compat_sigset_t __user *)sigmask_arg->sigset)) | 
 | 				goto out; | 
 | 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); | 
 | 		} else | 
 | 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		r = kvm_vcpu_ioctl(filp, ioctl, arg); | 
 | 	} | 
 |  | 
 | out: | 
 | 	return r; | 
 | } | 
 | #endif | 
 |  | 
 | static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) | 
 | { | 
 | 	struct kvm_device *dev = filp->private_data; | 
 |  | 
 | 	if (dev->ops->mmap) | 
 | 		return dev->ops->mmap(dev, vma); | 
 |  | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static int kvm_device_ioctl_attr(struct kvm_device *dev, | 
 | 				 int (*accessor)(struct kvm_device *dev, | 
 | 						 struct kvm_device_attr *attr), | 
 | 				 unsigned long arg) | 
 | { | 
 | 	struct kvm_device_attr attr; | 
 |  | 
 | 	if (!accessor) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return accessor(dev, &attr); | 
 | } | 
 |  | 
 | static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, | 
 | 			     unsigned long arg) | 
 | { | 
 | 	struct kvm_device *dev = filp->private_data; | 
 |  | 
 | 	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) | 
 | 		return -EIO; | 
 |  | 
 | 	switch (ioctl) { | 
 | 	case KVM_SET_DEVICE_ATTR: | 
 | 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); | 
 | 	case KVM_GET_DEVICE_ATTR: | 
 | 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); | 
 | 	case KVM_HAS_DEVICE_ATTR: | 
 | 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); | 
 | 	default: | 
 | 		if (dev->ops->ioctl) | 
 | 			return dev->ops->ioctl(dev, ioctl, arg); | 
 |  | 
 | 		return -ENOTTY; | 
 | 	} | 
 | } | 
 |  | 
 | static int kvm_device_release(struct inode *inode, struct file *filp) | 
 | { | 
 | 	struct kvm_device *dev = filp->private_data; | 
 | 	struct kvm *kvm = dev->kvm; | 
 |  | 
 | 	if (dev->ops->release) { | 
 | 		mutex_lock(&kvm->lock); | 
 | 		list_del_rcu(&dev->vm_node); | 
 | 		synchronize_rcu(); | 
 | 		dev->ops->release(dev); | 
 | 		mutex_unlock(&kvm->lock); | 
 | 	} | 
 |  | 
 | 	kvm_put_kvm(kvm); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct file_operations kvm_device_fops = { | 
 | 	.unlocked_ioctl = kvm_device_ioctl, | 
 | 	.release = kvm_device_release, | 
 | 	KVM_COMPAT(kvm_device_ioctl), | 
 | 	.mmap = kvm_device_mmap, | 
 | }; | 
 |  | 
 | struct kvm_device *kvm_device_from_filp(struct file *filp) | 
 | { | 
 | 	if (filp->f_op != &kvm_device_fops) | 
 | 		return NULL; | 
 |  | 
 | 	return filp->private_data; | 
 | } | 
 |  | 
 | static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { | 
 | #ifdef CONFIG_KVM_MPIC | 
 | 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops, | 
 | 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops, | 
 | #endif | 
 | }; | 
 |  | 
 | int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) | 
 | { | 
 | 	if (type >= ARRAY_SIZE(kvm_device_ops_table)) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	if (kvm_device_ops_table[type] != NULL) | 
 | 		return -EEXIST; | 
 |  | 
 | 	kvm_device_ops_table[type] = ops; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_unregister_device_ops(u32 type) | 
 | { | 
 | 	if (kvm_device_ops_table[type] != NULL) | 
 | 		kvm_device_ops_table[type] = NULL; | 
 | } | 
 |  | 
 | static int kvm_ioctl_create_device(struct kvm *kvm, | 
 | 				   struct kvm_create_device *cd) | 
 | { | 
 | 	const struct kvm_device_ops *ops; | 
 | 	struct kvm_device *dev; | 
 | 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST; | 
 | 	int type; | 
 | 	int ret; | 
 |  | 
 | 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); | 
 | 	ops = kvm_device_ops_table[type]; | 
 | 	if (ops == NULL) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (test) | 
 | 		return 0; | 
 |  | 
 | 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); | 
 | 	if (!dev) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	dev->ops = ops; | 
 | 	dev->kvm = kvm; | 
 |  | 
 | 	mutex_lock(&kvm->lock); | 
 | 	ret = ops->create(dev, type); | 
 | 	if (ret < 0) { | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		kfree(dev); | 
 | 		return ret; | 
 | 	} | 
 | 	list_add_rcu(&dev->vm_node, &kvm->devices); | 
 | 	mutex_unlock(&kvm->lock); | 
 |  | 
 | 	if (ops->init) | 
 | 		ops->init(dev); | 
 |  | 
 | 	kvm_get_kvm(kvm); | 
 | 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); | 
 | 	if (ret < 0) { | 
 | 		kvm_put_kvm_no_destroy(kvm); | 
 | 		mutex_lock(&kvm->lock); | 
 | 		list_del_rcu(&dev->vm_node); | 
 | 		synchronize_rcu(); | 
 | 		if (ops->release) | 
 | 			ops->release(dev); | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		if (ops->destroy) | 
 | 			ops->destroy(dev); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	cd->fd = ret; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) | 
 | { | 
 | 	switch (arg) { | 
 | 	case KVM_CAP_USER_MEMORY: | 
 | 	case KVM_CAP_USER_MEMORY2: | 
 | 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: | 
 | 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: | 
 | 	case KVM_CAP_INTERNAL_ERROR_DATA: | 
 | #ifdef CONFIG_HAVE_KVM_MSI | 
 | 	case KVM_CAP_SIGNAL_MSI: | 
 | #endif | 
 | #ifdef CONFIG_HAVE_KVM_IRQCHIP | 
 | 	case KVM_CAP_IRQFD: | 
 | #endif | 
 | 	case KVM_CAP_IOEVENTFD_ANY_LENGTH: | 
 | 	case KVM_CAP_CHECK_EXTENSION_VM: | 
 | 	case KVM_CAP_ENABLE_CAP_VM: | 
 | 	case KVM_CAP_HALT_POLL: | 
 | 		return 1; | 
 | #ifdef CONFIG_KVM_MMIO | 
 | 	case KVM_CAP_COALESCED_MMIO: | 
 | 		return KVM_COALESCED_MMIO_PAGE_OFFSET; | 
 | 	case KVM_CAP_COALESCED_PIO: | 
 | 		return 1; | 
 | #endif | 
 | #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT | 
 | 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: | 
 | 		return KVM_DIRTY_LOG_MANUAL_CAPS; | 
 | #endif | 
 | #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING | 
 | 	case KVM_CAP_IRQ_ROUTING: | 
 | 		return KVM_MAX_IRQ_ROUTES; | 
 | #endif | 
 | #if KVM_MAX_NR_ADDRESS_SPACES > 1 | 
 | 	case KVM_CAP_MULTI_ADDRESS_SPACE: | 
 | 		if (kvm) | 
 | 			return kvm_arch_nr_memslot_as_ids(kvm); | 
 | 		return KVM_MAX_NR_ADDRESS_SPACES; | 
 | #endif | 
 | 	case KVM_CAP_NR_MEMSLOTS: | 
 | 		return KVM_USER_MEM_SLOTS; | 
 | 	case KVM_CAP_DIRTY_LOG_RING: | 
 | #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO | 
 | 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); | 
 | #else | 
 | 		return 0; | 
 | #endif | 
 | 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: | 
 | #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL | 
 | 		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); | 
 | #else | 
 | 		return 0; | 
 | #endif | 
 | #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP | 
 | 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: | 
 | #endif | 
 | 	case KVM_CAP_BINARY_STATS_FD: | 
 | 	case KVM_CAP_SYSTEM_EVENT_DATA: | 
 | 	case KVM_CAP_DEVICE_CTRL: | 
 | 		return 1; | 
 | #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES | 
 | 	case KVM_CAP_MEMORY_ATTRIBUTES: | 
 | 		return kvm_supported_mem_attributes(kvm); | 
 | #endif | 
 | #ifdef CONFIG_KVM_GUEST_MEMFD | 
 | 	case KVM_CAP_GUEST_MEMFD: | 
 | 		return 1; | 
 | 	case KVM_CAP_GUEST_MEMFD_MMAP: | 
 | 		return !kvm || kvm_arch_supports_gmem_mmap(kvm); | 
 | #endif | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return kvm_vm_ioctl_check_extension(kvm, arg); | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	if (!KVM_DIRTY_LOG_PAGE_OFFSET) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* the size should be power of 2 */ | 
 | 	if (!size || (size & (size - 1))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Should be bigger to keep the reserved entries, or a page */ | 
 | 	if (size < kvm_dirty_ring_get_rsvd_entries(kvm) * | 
 | 	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (size > KVM_DIRTY_RING_MAX_ENTRIES * | 
 | 	    sizeof(struct kvm_dirty_gfn)) | 
 | 		return -E2BIG; | 
 |  | 
 | 	/* We only allow it to set once */ | 
 | 	if (kvm->dirty_ring_size) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&kvm->lock); | 
 |  | 
 | 	if (kvm->created_vcpus) { | 
 | 		/* We don't allow to change this value after vcpu created */ | 
 | 		r = -EINVAL; | 
 | 	} else { | 
 | 		kvm->dirty_ring_size = size; | 
 | 		r = 0; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&kvm->lock); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) | 
 | { | 
 | 	unsigned long i; | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	int cleared = 0, r; | 
 |  | 
 | 	if (!kvm->dirty_ring_size) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&kvm->slots_lock); | 
 |  | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) { | 
 | 		r = kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring, &cleared); | 
 | 		if (r) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&kvm->slots_lock); | 
 |  | 
 | 	if (cleared) | 
 | 		kvm_flush_remote_tlbs(kvm); | 
 |  | 
 | 	return cleared; | 
 | } | 
 |  | 
 | int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, | 
 | 						  struct kvm_enable_cap *cap) | 
 | { | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | bool kvm_are_all_memslots_empty(struct kvm *kvm) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	lockdep_assert_held(&kvm->slots_lock); | 
 |  | 
 | 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { | 
 | 		if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_are_all_memslots_empty); | 
 |  | 
 | static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, | 
 | 					   struct kvm_enable_cap *cap) | 
 | { | 
 | 	switch (cap->cap) { | 
 | #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT | 
 | 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { | 
 | 		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; | 
 |  | 
 | 		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) | 
 | 			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; | 
 |  | 
 | 		if (cap->flags || (cap->args[0] & ~allowed_options)) | 
 | 			return -EINVAL; | 
 | 		kvm->manual_dirty_log_protect = cap->args[0]; | 
 | 		return 0; | 
 | 	} | 
 | #endif | 
 | 	case KVM_CAP_HALT_POLL: { | 
 | 		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) | 
 | 			return -EINVAL; | 
 |  | 
 | 		kvm->max_halt_poll_ns = cap->args[0]; | 
 |  | 
 | 		/* | 
 | 		 * Ensure kvm->override_halt_poll_ns does not become visible | 
 | 		 * before kvm->max_halt_poll_ns. | 
 | 		 * | 
 | 		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). | 
 | 		 */ | 
 | 		smp_wmb(); | 
 | 		kvm->override_halt_poll_ns = true; | 
 |  | 
 | 		return 0; | 
 | 	} | 
 | 	case KVM_CAP_DIRTY_LOG_RING: | 
 | 	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: | 
 | 		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); | 
 | 	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { | 
 | 		int r = -EINVAL; | 
 |  | 
 | 		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || | 
 | 		    !kvm->dirty_ring_size || cap->flags) | 
 | 			return r; | 
 |  | 
 | 		mutex_lock(&kvm->slots_lock); | 
 |  | 
 | 		/* | 
 | 		 * For simplicity, allow enabling ring+bitmap if and only if | 
 | 		 * there are no memslots, e.g. to ensure all memslots allocate | 
 | 		 * a bitmap after the capability is enabled. | 
 | 		 */ | 
 | 		if (kvm_are_all_memslots_empty(kvm)) { | 
 | 			kvm->dirty_ring_with_bitmap = true; | 
 | 			r = 0; | 
 | 		} | 
 |  | 
 | 		mutex_unlock(&kvm->slots_lock); | 
 |  | 
 | 		return r; | 
 | 	} | 
 | 	default: | 
 | 		return kvm_vm_ioctl_enable_cap(kvm, cap); | 
 | 	} | 
 | } | 
 |  | 
 | static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, | 
 | 			      size_t size, loff_t *offset) | 
 | { | 
 | 	struct kvm *kvm = file->private_data; | 
 |  | 
 | 	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, | 
 | 				&kvm_vm_stats_desc[0], &kvm->stat, | 
 | 				sizeof(kvm->stat), user_buffer, size, offset); | 
 | } | 
 |  | 
 | static int kvm_vm_stats_release(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct kvm *kvm = file->private_data; | 
 |  | 
 | 	kvm_put_kvm(kvm); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct file_operations kvm_vm_stats_fops = { | 
 | 	.owner = THIS_MODULE, | 
 | 	.read = kvm_vm_stats_read, | 
 | 	.release = kvm_vm_stats_release, | 
 | 	.llseek = noop_llseek, | 
 | }; | 
 |  | 
 | static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) | 
 | { | 
 | 	int fd; | 
 | 	struct file *file; | 
 |  | 
 | 	fd = get_unused_fd_flags(O_CLOEXEC); | 
 | 	if (fd < 0) | 
 | 		return fd; | 
 |  | 
 | 	file = anon_inode_getfile_fmode("kvm-vm-stats", | 
 | 			&kvm_vm_stats_fops, kvm, O_RDONLY, FMODE_PREAD); | 
 | 	if (IS_ERR(file)) { | 
 | 		put_unused_fd(fd); | 
 | 		return PTR_ERR(file); | 
 | 	} | 
 |  | 
 | 	kvm_get_kvm(kvm); | 
 | 	fd_install(fd, file); | 
 |  | 
 | 	return fd; | 
 | } | 
 |  | 
 | #define SANITY_CHECK_MEM_REGION_FIELD(field)					\ | 
 | do {										\ | 
 | 	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\ | 
 | 		     offsetof(struct kvm_userspace_memory_region2, field));	\ | 
 | 	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\ | 
 | 		     sizeof_field(struct kvm_userspace_memory_region2, field));	\ | 
 | } while (0) | 
 |  | 
 | static long kvm_vm_ioctl(struct file *filp, | 
 | 			   unsigned int ioctl, unsigned long arg) | 
 | { | 
 | 	struct kvm *kvm = filp->private_data; | 
 | 	void __user *argp = (void __user *)arg; | 
 | 	int r; | 
 |  | 
 | 	if (kvm->mm != current->mm || kvm->vm_dead) | 
 | 		return -EIO; | 
 | 	switch (ioctl) { | 
 | 	case KVM_CREATE_VCPU: | 
 | 		r = kvm_vm_ioctl_create_vcpu(kvm, arg); | 
 | 		break; | 
 | 	case KVM_ENABLE_CAP: { | 
 | 		struct kvm_enable_cap cap; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&cap, argp, sizeof(cap))) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_USER_MEMORY_REGION2: | 
 | 	case KVM_SET_USER_MEMORY_REGION: { | 
 | 		struct kvm_userspace_memory_region2 mem; | 
 | 		unsigned long size; | 
 |  | 
 | 		if (ioctl == KVM_SET_USER_MEMORY_REGION) { | 
 | 			/* | 
 | 			 * Fields beyond struct kvm_userspace_memory_region shouldn't be | 
 | 			 * accessed, but avoid leaking kernel memory in case of a bug. | 
 | 			 */ | 
 | 			memset(&mem, 0, sizeof(mem)); | 
 | 			size = sizeof(struct kvm_userspace_memory_region); | 
 | 		} else { | 
 | 			size = sizeof(struct kvm_userspace_memory_region2); | 
 | 		} | 
 |  | 
 | 		/* Ensure the common parts of the two structs are identical. */ | 
 | 		SANITY_CHECK_MEM_REGION_FIELD(slot); | 
 | 		SANITY_CHECK_MEM_REGION_FIELD(flags); | 
 | 		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr); | 
 | 		SANITY_CHECK_MEM_REGION_FIELD(memory_size); | 
 | 		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr); | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&mem, argp, size)) | 
 | 			goto out; | 
 |  | 
 | 		r = -EINVAL; | 
 | 		if (ioctl == KVM_SET_USER_MEMORY_REGION && | 
 | 		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS)) | 
 | 			goto out; | 
 |  | 
 | 		r = kvm_vm_ioctl_set_memory_region(kvm, &mem); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_DIRTY_LOG: { | 
 | 		struct kvm_dirty_log log; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&log, argp, sizeof(log))) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log); | 
 | 		break; | 
 | 	} | 
 | #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT | 
 | 	case KVM_CLEAR_DIRTY_LOG: { | 
 | 		struct kvm_clear_dirty_log log; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&log, argp, sizeof(log))) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); | 
 | 		break; | 
 | 	} | 
 | #endif | 
 | #ifdef CONFIG_KVM_MMIO | 
 | 	case KVM_REGISTER_COALESCED_MMIO: { | 
 | 		struct kvm_coalesced_mmio_zone zone; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&zone, argp, sizeof(zone))) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_UNREGISTER_COALESCED_MMIO: { | 
 | 		struct kvm_coalesced_mmio_zone zone; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&zone, argp, sizeof(zone))) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); | 
 | 		break; | 
 | 	} | 
 | #endif | 
 | 	case KVM_IRQFD: { | 
 | 		struct kvm_irqfd data; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&data, argp, sizeof(data))) | 
 | 			goto out; | 
 | 		r = kvm_irqfd(kvm, &data); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_IOEVENTFD: { | 
 | 		struct kvm_ioeventfd data; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&data, argp, sizeof(data))) | 
 | 			goto out; | 
 | 		r = kvm_ioeventfd(kvm, &data); | 
 | 		break; | 
 | 	} | 
 | #ifdef CONFIG_HAVE_KVM_MSI | 
 | 	case KVM_SIGNAL_MSI: { | 
 | 		struct kvm_msi msi; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&msi, argp, sizeof(msi))) | 
 | 			goto out; | 
 | 		r = kvm_send_userspace_msi(kvm, &msi); | 
 | 		break; | 
 | 	} | 
 | #endif | 
 | #ifdef __KVM_HAVE_IRQ_LINE | 
 | 	case KVM_IRQ_LINE_STATUS: | 
 | 	case KVM_IRQ_LINE: { | 
 | 		struct kvm_irq_level irq_event; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&irq_event, argp, sizeof(irq_event))) | 
 | 			goto out; | 
 |  | 
 | 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event, | 
 | 					ioctl == KVM_IRQ_LINE_STATUS); | 
 | 		if (r) | 
 | 			goto out; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (ioctl == KVM_IRQ_LINE_STATUS) { | 
 | 			if (copy_to_user(argp, &irq_event, sizeof(irq_event))) | 
 | 				goto out; | 
 | 		} | 
 |  | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | #endif | 
 | #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING | 
 | 	case KVM_SET_GSI_ROUTING: { | 
 | 		struct kvm_irq_routing routing; | 
 | 		struct kvm_irq_routing __user *urouting; | 
 | 		struct kvm_irq_routing_entry *entries = NULL; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&routing, argp, sizeof(routing))) | 
 | 			goto out; | 
 | 		r = -EINVAL; | 
 | 		if (!kvm_arch_can_set_irq_routing(kvm)) | 
 | 			goto out; | 
 | 		if (routing.nr > KVM_MAX_IRQ_ROUTES) | 
 | 			goto out; | 
 | 		if (routing.flags) | 
 | 			goto out; | 
 | 		if (routing.nr) { | 
 | 			urouting = argp; | 
 | 			entries = vmemdup_array_user(urouting->entries, | 
 | 						     routing.nr, sizeof(*entries)); | 
 | 			if (IS_ERR(entries)) { | 
 | 				r = PTR_ERR(entries); | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 		r = kvm_set_irq_routing(kvm, entries, routing.nr, | 
 | 					routing.flags); | 
 | 		kvfree(entries); | 
 | 		break; | 
 | 	} | 
 | #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ | 
 | #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES | 
 | 	case KVM_SET_MEMORY_ATTRIBUTES: { | 
 | 		struct kvm_memory_attributes attrs; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&attrs, argp, sizeof(attrs))) | 
 | 			goto out; | 
 |  | 
 | 		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs); | 
 | 		break; | 
 | 	} | 
 | #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */ | 
 | 	case KVM_CREATE_DEVICE: { | 
 | 		struct kvm_create_device cd; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&cd, argp, sizeof(cd))) | 
 | 			goto out; | 
 |  | 
 | 		r = kvm_ioctl_create_device(kvm, &cd); | 
 | 		if (r) | 
 | 			goto out; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &cd, sizeof(cd))) | 
 | 			goto out; | 
 |  | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_CHECK_EXTENSION: | 
 | 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg); | 
 | 		break; | 
 | 	case KVM_RESET_DIRTY_RINGS: | 
 | 		r = kvm_vm_ioctl_reset_dirty_pages(kvm); | 
 | 		break; | 
 | 	case KVM_GET_STATS_FD: | 
 | 		r = kvm_vm_ioctl_get_stats_fd(kvm); | 
 | 		break; | 
 | #ifdef CONFIG_KVM_GUEST_MEMFD | 
 | 	case KVM_CREATE_GUEST_MEMFD: { | 
 | 		struct kvm_create_guest_memfd guest_memfd; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd))) | 
 | 			goto out; | 
 |  | 
 | 		r = kvm_gmem_create(kvm, &guest_memfd); | 
 | 		break; | 
 | 	} | 
 | #endif | 
 | 	default: | 
 | 		r = kvm_arch_vm_ioctl(filp, ioctl, arg); | 
 | 	} | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | #ifdef CONFIG_KVM_COMPAT | 
 | struct compat_kvm_dirty_log { | 
 | 	__u32 slot; | 
 | 	__u32 padding1; | 
 | 	union { | 
 | 		compat_uptr_t dirty_bitmap; /* one bit per page */ | 
 | 		__u64 padding2; | 
 | 	}; | 
 | }; | 
 |  | 
 | struct compat_kvm_clear_dirty_log { | 
 | 	__u32 slot; | 
 | 	__u32 num_pages; | 
 | 	__u64 first_page; | 
 | 	union { | 
 | 		compat_uptr_t dirty_bitmap; /* one bit per page */ | 
 | 		__u64 padding2; | 
 | 	}; | 
 | }; | 
 |  | 
 | long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, | 
 | 				     unsigned long arg) | 
 | { | 
 | 	return -ENOTTY; | 
 | } | 
 |  | 
 | static long kvm_vm_compat_ioctl(struct file *filp, | 
 | 			   unsigned int ioctl, unsigned long arg) | 
 | { | 
 | 	struct kvm *kvm = filp->private_data; | 
 | 	int r; | 
 |  | 
 | 	if (kvm->mm != current->mm || kvm->vm_dead) | 
 | 		return -EIO; | 
 |  | 
 | 	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); | 
 | 	if (r != -ENOTTY) | 
 | 		return r; | 
 |  | 
 | 	switch (ioctl) { | 
 | #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT | 
 | 	case KVM_CLEAR_DIRTY_LOG: { | 
 | 		struct compat_kvm_clear_dirty_log compat_log; | 
 | 		struct kvm_clear_dirty_log log; | 
 |  | 
 | 		if (copy_from_user(&compat_log, (void __user *)arg, | 
 | 				   sizeof(compat_log))) | 
 | 			return -EFAULT; | 
 | 		log.slot	 = compat_log.slot; | 
 | 		log.num_pages	 = compat_log.num_pages; | 
 | 		log.first_page	 = compat_log.first_page; | 
 | 		log.padding2	 = compat_log.padding2; | 
 | 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); | 
 |  | 
 | 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); | 
 | 		break; | 
 | 	} | 
 | #endif | 
 | 	case KVM_GET_DIRTY_LOG: { | 
 | 		struct compat_kvm_dirty_log compat_log; | 
 | 		struct kvm_dirty_log log; | 
 |  | 
 | 		if (copy_from_user(&compat_log, (void __user *)arg, | 
 | 				   sizeof(compat_log))) | 
 | 			return -EFAULT; | 
 | 		log.slot	 = compat_log.slot; | 
 | 		log.padding1	 = compat_log.padding1; | 
 | 		log.padding2	 = compat_log.padding2; | 
 | 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); | 
 |  | 
 | 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log); | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		r = kvm_vm_ioctl(filp, ioctl, arg); | 
 | 	} | 
 | 	return r; | 
 | } | 
 | #endif | 
 |  | 
 | static struct file_operations kvm_vm_fops = { | 
 | 	.release        = kvm_vm_release, | 
 | 	.unlocked_ioctl = kvm_vm_ioctl, | 
 | 	.llseek		= noop_llseek, | 
 | 	KVM_COMPAT(kvm_vm_compat_ioctl), | 
 | }; | 
 |  | 
 | bool file_is_kvm(struct file *file) | 
 | { | 
 | 	return file && file->f_op == &kvm_vm_fops; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(file_is_kvm); | 
 |  | 
 | static int kvm_dev_ioctl_create_vm(unsigned long type) | 
 | { | 
 | 	char fdname[ITOA_MAX_LEN + 1]; | 
 | 	int r, fd; | 
 | 	struct kvm *kvm; | 
 | 	struct file *file; | 
 |  | 
 | 	fd = get_unused_fd_flags(O_CLOEXEC); | 
 | 	if (fd < 0) | 
 | 		return fd; | 
 |  | 
 | 	snprintf(fdname, sizeof(fdname), "%d", fd); | 
 |  | 
 | 	kvm = kvm_create_vm(type, fdname); | 
 | 	if (IS_ERR(kvm)) { | 
 | 		r = PTR_ERR(kvm); | 
 | 		goto put_fd; | 
 | 	} | 
 |  | 
 | 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); | 
 | 	if (IS_ERR(file)) { | 
 | 		r = PTR_ERR(file); | 
 | 		goto put_kvm; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is | 
 | 	 * already set, with ->release() being kvm_vm_release().  In error | 
 | 	 * cases it will be called by the final fput(file) and will take | 
 | 	 * care of doing kvm_put_kvm(kvm). | 
 | 	 */ | 
 | 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); | 
 |  | 
 | 	fd_install(fd, file); | 
 | 	return fd; | 
 |  | 
 | put_kvm: | 
 | 	kvm_put_kvm(kvm); | 
 | put_fd: | 
 | 	put_unused_fd(fd); | 
 | 	return r; | 
 | } | 
 |  | 
 | static long kvm_dev_ioctl(struct file *filp, | 
 | 			  unsigned int ioctl, unsigned long arg) | 
 | { | 
 | 	int r = -EINVAL; | 
 |  | 
 | 	switch (ioctl) { | 
 | 	case KVM_GET_API_VERSION: | 
 | 		if (arg) | 
 | 			goto out; | 
 | 		r = KVM_API_VERSION; | 
 | 		break; | 
 | 	case KVM_CREATE_VM: | 
 | 		r = kvm_dev_ioctl_create_vm(arg); | 
 | 		break; | 
 | 	case KVM_CHECK_EXTENSION: | 
 | 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg); | 
 | 		break; | 
 | 	case KVM_GET_VCPU_MMAP_SIZE: | 
 | 		if (arg) | 
 | 			goto out; | 
 | 		r = PAGE_SIZE;     /* struct kvm_run */ | 
 | #ifdef CONFIG_X86 | 
 | 		r += PAGE_SIZE;    /* pio data page */ | 
 | #endif | 
 | #ifdef CONFIG_KVM_MMIO | 
 | 		r += PAGE_SIZE;    /* coalesced mmio ring page */ | 
 | #endif | 
 | 		break; | 
 | 	default: | 
 | 		return kvm_arch_dev_ioctl(filp, ioctl, arg); | 
 | 	} | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static struct file_operations kvm_chardev_ops = { | 
 | 	.unlocked_ioctl = kvm_dev_ioctl, | 
 | 	.llseek		= noop_llseek, | 
 | 	KVM_COMPAT(kvm_dev_ioctl), | 
 | }; | 
 |  | 
 | static struct miscdevice kvm_dev = { | 
 | 	KVM_MINOR, | 
 | 	"kvm", | 
 | 	&kvm_chardev_ops, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING | 
 | bool enable_virt_at_load = true; | 
 | module_param(enable_virt_at_load, bool, 0444); | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(enable_virt_at_load); | 
 |  | 
 | __visible bool kvm_rebooting; | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_rebooting); | 
 |  | 
 | static DEFINE_PER_CPU(bool, virtualization_enabled); | 
 | static DEFINE_MUTEX(kvm_usage_lock); | 
 | static int kvm_usage_count; | 
 |  | 
 | __weak void kvm_arch_enable_virtualization(void) | 
 | { | 
 |  | 
 | } | 
 |  | 
 | __weak void kvm_arch_disable_virtualization(void) | 
 | { | 
 |  | 
 | } | 
 |  | 
 | static int kvm_enable_virtualization_cpu(void) | 
 | { | 
 | 	if (__this_cpu_read(virtualization_enabled)) | 
 | 		return 0; | 
 |  | 
 | 	if (kvm_arch_enable_virtualization_cpu()) { | 
 | 		pr_info("kvm: enabling virtualization on CPU%d failed\n", | 
 | 			raw_smp_processor_id()); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	__this_cpu_write(virtualization_enabled, true); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_online_cpu(unsigned int cpu) | 
 | { | 
 | 	/* | 
 | 	 * Abort the CPU online process if hardware virtualization cannot | 
 | 	 * be enabled. Otherwise running VMs would encounter unrecoverable | 
 | 	 * errors when scheduled to this CPU. | 
 | 	 */ | 
 | 	return kvm_enable_virtualization_cpu(); | 
 | } | 
 |  | 
 | static void kvm_disable_virtualization_cpu(void *ign) | 
 | { | 
 | 	if (!__this_cpu_read(virtualization_enabled)) | 
 | 		return; | 
 |  | 
 | 	kvm_arch_disable_virtualization_cpu(); | 
 |  | 
 | 	__this_cpu_write(virtualization_enabled, false); | 
 | } | 
 |  | 
 | static int kvm_offline_cpu(unsigned int cpu) | 
 | { | 
 | 	kvm_disable_virtualization_cpu(NULL); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_shutdown(void) | 
 | { | 
 | 	/* | 
 | 	 * Disable hardware virtualization and set kvm_rebooting to indicate | 
 | 	 * that KVM has asynchronously disabled hardware virtualization, i.e. | 
 | 	 * that relevant errors and exceptions aren't entirely unexpected. | 
 | 	 * Some flavors of hardware virtualization need to be disabled before | 
 | 	 * transferring control to firmware (to perform shutdown/reboot), e.g. | 
 | 	 * on x86, virtualization can block INIT interrupts, which are used by | 
 | 	 * firmware to pull APs back under firmware control.  Note, this path | 
 | 	 * is used for both shutdown and reboot scenarios, i.e. neither name is | 
 | 	 * 100% comprehensive. | 
 | 	 */ | 
 | 	pr_info("kvm: exiting hardware virtualization\n"); | 
 | 	kvm_rebooting = true; | 
 | 	on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1); | 
 | } | 
 |  | 
 | static int kvm_suspend(void) | 
 | { | 
 | 	/* | 
 | 	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume | 
 | 	 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage | 
 | 	 * count is stable.  Assert that kvm_usage_lock is not held to ensure | 
 | 	 * the system isn't suspended while KVM is enabling hardware.  Hardware | 
 | 	 * enabling can be preempted, but the task cannot be frozen until it has | 
 | 	 * dropped all locks (userspace tasks are frozen via a fake signal). | 
 | 	 */ | 
 | 	lockdep_assert_not_held(&kvm_usage_lock); | 
 | 	lockdep_assert_irqs_disabled(); | 
 |  | 
 | 	kvm_disable_virtualization_cpu(NULL); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_resume(void) | 
 | { | 
 | 	lockdep_assert_not_held(&kvm_usage_lock); | 
 | 	lockdep_assert_irqs_disabled(); | 
 |  | 
 | 	WARN_ON_ONCE(kvm_enable_virtualization_cpu()); | 
 | } | 
 |  | 
 | static struct syscore_ops kvm_syscore_ops = { | 
 | 	.suspend = kvm_suspend, | 
 | 	.resume = kvm_resume, | 
 | 	.shutdown = kvm_shutdown, | 
 | }; | 
 |  | 
 | int kvm_enable_virtualization(void) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	guard(mutex)(&kvm_usage_lock); | 
 |  | 
 | 	if (kvm_usage_count++) | 
 | 		return 0; | 
 |  | 
 | 	kvm_arch_enable_virtualization(); | 
 |  | 
 | 	r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", | 
 | 			      kvm_online_cpu, kvm_offline_cpu); | 
 | 	if (r) | 
 | 		goto err_cpuhp; | 
 |  | 
 | 	register_syscore_ops(&kvm_syscore_ops); | 
 |  | 
 | 	/* | 
 | 	 * Undo virtualization enabling and bail if the system is going down. | 
 | 	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's | 
 | 	 * possible for an in-flight operation to enable virtualization after | 
 | 	 * syscore_shutdown() is called, i.e. without kvm_shutdown() being | 
 | 	 * invoked.  Note, this relies on system_state being set _before_ | 
 | 	 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked | 
 | 	 * or this CPU observes the impending shutdown.  Which is why KVM uses | 
 | 	 * a syscore ops hook instead of registering a dedicated reboot | 
 | 	 * notifier (the latter runs before system_state is updated). | 
 | 	 */ | 
 | 	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF || | 
 | 	    system_state == SYSTEM_RESTART) { | 
 | 		r = -EBUSY; | 
 | 		goto err_rebooting; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_rebooting: | 
 | 	unregister_syscore_ops(&kvm_syscore_ops); | 
 | 	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE); | 
 | err_cpuhp: | 
 | 	kvm_arch_disable_virtualization(); | 
 | 	--kvm_usage_count; | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_enable_virtualization); | 
 |  | 
 | void kvm_disable_virtualization(void) | 
 | { | 
 | 	guard(mutex)(&kvm_usage_lock); | 
 |  | 
 | 	if (--kvm_usage_count) | 
 | 		return; | 
 |  | 
 | 	unregister_syscore_ops(&kvm_syscore_ops); | 
 | 	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE); | 
 | 	kvm_arch_disable_virtualization(); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_disable_virtualization); | 
 |  | 
 | static int kvm_init_virtualization(void) | 
 | { | 
 | 	if (enable_virt_at_load) | 
 | 		return kvm_enable_virtualization(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_uninit_virtualization(void) | 
 | { | 
 | 	if (enable_virt_at_load) | 
 | 		kvm_disable_virtualization(); | 
 | } | 
 | #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ | 
 | static int kvm_init_virtualization(void) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_uninit_virtualization(void) | 
 | { | 
 |  | 
 | } | 
 | #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ | 
 |  | 
 | static void kvm_iodevice_destructor(struct kvm_io_device *dev) | 
 | { | 
 | 	if (dev->ops->destructor) | 
 | 		dev->ops->destructor(dev); | 
 | } | 
 |  | 
 | static void kvm_io_bus_destroy(struct kvm_io_bus *bus) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < bus->dev_count; i++) { | 
 | 		struct kvm_io_device *pos = bus->range[i].dev; | 
 |  | 
 | 		kvm_iodevice_destructor(pos); | 
 | 	} | 
 | 	kfree(bus); | 
 | } | 
 |  | 
 | static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, | 
 | 				 const struct kvm_io_range *r2) | 
 | { | 
 | 	gpa_t addr1 = r1->addr; | 
 | 	gpa_t addr2 = r2->addr; | 
 |  | 
 | 	if (addr1 < addr2) | 
 | 		return -1; | 
 |  | 
 | 	/* If r2->len == 0, match the exact address.  If r2->len != 0, | 
 | 	 * accept any overlapping write.  Any order is acceptable for | 
 | 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures | 
 | 	 * we process all of them. | 
 | 	 */ | 
 | 	if (r2->len) { | 
 | 		addr1 += r1->len; | 
 | 		addr2 += r2->len; | 
 | 	} | 
 |  | 
 | 	if (addr1 > addr2) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) | 
 | { | 
 | 	return kvm_io_bus_cmp(p1, p2); | 
 | } | 
 |  | 
 | static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, | 
 | 			     gpa_t addr, int len) | 
 | { | 
 | 	struct kvm_io_range *range, key; | 
 | 	int off; | 
 |  | 
 | 	key = (struct kvm_io_range) { | 
 | 		.addr = addr, | 
 | 		.len = len, | 
 | 	}; | 
 |  | 
 | 	range = bsearch(&key, bus->range, bus->dev_count, | 
 | 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); | 
 | 	if (range == NULL) | 
 | 		return -ENOENT; | 
 |  | 
 | 	off = range - bus->range; | 
 |  | 
 | 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) | 
 | 		off--; | 
 |  | 
 | 	return off; | 
 | } | 
 |  | 
 | static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, | 
 | 			      struct kvm_io_range *range, const void *val) | 
 | { | 
 | 	int idx; | 
 |  | 
 | 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); | 
 | 	if (idx < 0) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	while (idx < bus->dev_count && | 
 | 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { | 
 | 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, | 
 | 					range->len, val)) | 
 | 			return idx; | 
 | 		idx++; | 
 | 	} | 
 |  | 
 | 	return -EOPNOTSUPP; | 
 | } | 
 |  | 
 | static struct kvm_io_bus *kvm_get_bus_srcu(struct kvm *kvm, enum kvm_bus idx) | 
 | { | 
 | 	/* | 
 | 	 * Ensure that any updates to kvm_buses[] observed by the previous vCPU | 
 | 	 * machine instruction are also visible to the vCPU machine instruction | 
 | 	 * that triggered this call. | 
 | 	 */ | 
 | 	smp_mb__after_srcu_read_lock(); | 
 |  | 
 | 	return srcu_dereference(kvm->buses[idx], &kvm->srcu); | 
 | } | 
 |  | 
 | int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, | 
 | 		     int len, const void *val) | 
 | { | 
 | 	struct kvm_io_bus *bus; | 
 | 	struct kvm_io_range range; | 
 | 	int r; | 
 |  | 
 | 	range = (struct kvm_io_range) { | 
 | 		.addr = addr, | 
 | 		.len = len, | 
 | 	}; | 
 |  | 
 | 	bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx); | 
 | 	if (!bus) | 
 | 		return -ENOMEM; | 
 | 	r = __kvm_io_bus_write(vcpu, bus, &range, val); | 
 | 	return r < 0 ? r : 0; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_write); | 
 |  | 
 | int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, | 
 | 			    gpa_t addr, int len, const void *val, long cookie) | 
 | { | 
 | 	struct kvm_io_bus *bus; | 
 | 	struct kvm_io_range range; | 
 |  | 
 | 	range = (struct kvm_io_range) { | 
 | 		.addr = addr, | 
 | 		.len = len, | 
 | 	}; | 
 |  | 
 | 	bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx); | 
 | 	if (!bus) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* First try the device referenced by cookie. */ | 
 | 	if ((cookie >= 0) && (cookie < bus->dev_count) && | 
 | 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) | 
 | 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, | 
 | 					val)) | 
 | 			return cookie; | 
 |  | 
 | 	/* | 
 | 	 * cookie contained garbage; fall back to search and return the | 
 | 	 * correct cookie value. | 
 | 	 */ | 
 | 	return __kvm_io_bus_write(vcpu, bus, &range, val); | 
 | } | 
 |  | 
 | static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, | 
 | 			     struct kvm_io_range *range, void *val) | 
 | { | 
 | 	int idx; | 
 |  | 
 | 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); | 
 | 	if (idx < 0) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	while (idx < bus->dev_count && | 
 | 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { | 
 | 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, | 
 | 				       range->len, val)) | 
 | 			return idx; | 
 | 		idx++; | 
 | 	} | 
 |  | 
 | 	return -EOPNOTSUPP; | 
 | } | 
 |  | 
 | int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, | 
 | 		    int len, void *val) | 
 | { | 
 | 	struct kvm_io_bus *bus; | 
 | 	struct kvm_io_range range; | 
 | 	int r; | 
 |  | 
 | 	range = (struct kvm_io_range) { | 
 | 		.addr = addr, | 
 | 		.len = len, | 
 | 	}; | 
 |  | 
 | 	bus = kvm_get_bus_srcu(vcpu->kvm, bus_idx); | 
 | 	if (!bus) | 
 | 		return -ENOMEM; | 
 | 	r = __kvm_io_bus_read(vcpu, bus, &range, val); | 
 | 	return r < 0 ? r : 0; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_read); | 
 |  | 
 | static void __free_bus(struct rcu_head *rcu) | 
 | { | 
 | 	struct kvm_io_bus *bus = container_of(rcu, struct kvm_io_bus, rcu); | 
 |  | 
 | 	kfree(bus); | 
 | } | 
 |  | 
 | int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, | 
 | 			    int len, struct kvm_io_device *dev) | 
 | { | 
 | 	int i; | 
 | 	struct kvm_io_bus *new_bus, *bus; | 
 | 	struct kvm_io_range range; | 
 |  | 
 | 	lockdep_assert_held(&kvm->slots_lock); | 
 |  | 
 | 	bus = kvm_get_bus(kvm, bus_idx); | 
 | 	if (!bus) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* exclude ioeventfd which is limited by maximum fd */ | 
 | 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), | 
 | 			  GFP_KERNEL_ACCOUNT); | 
 | 	if (!new_bus) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	range = (struct kvm_io_range) { | 
 | 		.addr = addr, | 
 | 		.len = len, | 
 | 		.dev = dev, | 
 | 	}; | 
 |  | 
 | 	for (i = 0; i < bus->dev_count; i++) | 
 | 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) | 
 | 			break; | 
 |  | 
 | 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); | 
 | 	new_bus->dev_count++; | 
 | 	new_bus->range[i] = range; | 
 | 	memcpy(new_bus->range + i + 1, bus->range + i, | 
 | 		(bus->dev_count - i) * sizeof(struct kvm_io_range)); | 
 | 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus); | 
 | 	call_srcu(&kvm->srcu, &bus->rcu, __free_bus); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, | 
 | 			      struct kvm_io_device *dev) | 
 | { | 
 | 	int i; | 
 | 	struct kvm_io_bus *new_bus, *bus; | 
 |  | 
 | 	lockdep_assert_held(&kvm->slots_lock); | 
 |  | 
 | 	bus = kvm_get_bus(kvm, bus_idx); | 
 | 	if (!bus) | 
 | 		return 0; | 
 |  | 
 | 	for (i = 0; i < bus->dev_count; i++) { | 
 | 		if (bus->range[i].dev == dev) { | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (i == bus->dev_count) | 
 | 		return 0; | 
 |  | 
 | 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), | 
 | 			  GFP_KERNEL_ACCOUNT); | 
 | 	if (new_bus) { | 
 | 		memcpy(new_bus, bus, struct_size(bus, range, i)); | 
 | 		new_bus->dev_count--; | 
 | 		memcpy(new_bus->range + i, bus->range + i + 1, | 
 | 				flex_array_size(new_bus, range, new_bus->dev_count - i)); | 
 | 	} | 
 |  | 
 | 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus); | 
 | 	synchronize_srcu_expedited(&kvm->srcu); | 
 |  | 
 | 	/* | 
 | 	 * If NULL bus is installed, destroy the old bus, including all the | 
 | 	 * attached devices. Otherwise, destroy the caller's device only. | 
 | 	 */ | 
 | 	if (!new_bus) { | 
 | 		pr_err("kvm: failed to shrink bus, removing it completely\n"); | 
 | 		kvm_io_bus_destroy(bus); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	kvm_iodevice_destructor(dev); | 
 | 	kfree(bus); | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, | 
 | 					 gpa_t addr) | 
 | { | 
 | 	struct kvm_io_bus *bus; | 
 | 	int dev_idx, srcu_idx; | 
 | 	struct kvm_io_device *iodev = NULL; | 
 |  | 
 | 	srcu_idx = srcu_read_lock(&kvm->srcu); | 
 |  | 
 | 	bus = kvm_get_bus_srcu(kvm, bus_idx); | 
 | 	if (!bus) | 
 | 		goto out_unlock; | 
 |  | 
 | 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); | 
 | 	if (dev_idx < 0) | 
 | 		goto out_unlock; | 
 |  | 
 | 	iodev = bus->range[dev_idx].dev; | 
 |  | 
 | out_unlock: | 
 | 	srcu_read_unlock(&kvm->srcu, srcu_idx); | 
 |  | 
 | 	return iodev; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_io_bus_get_dev); | 
 |  | 
 | static int kvm_debugfs_open(struct inode *inode, struct file *file, | 
 | 			   int (*get)(void *, u64 *), int (*set)(void *, u64), | 
 | 			   const char *fmt) | 
 | { | 
 | 	int ret; | 
 | 	struct kvm_stat_data *stat_data = inode->i_private; | 
 |  | 
 | 	/* | 
 | 	 * The debugfs files are a reference to the kvm struct which | 
 |         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe | 
 |         * avoids the race between open and the removal of the debugfs directory. | 
 | 	 */ | 
 | 	if (!kvm_get_kvm_safe(stat_data->kvm)) | 
 | 		return -ENOENT; | 
 |  | 
 | 	ret = simple_attr_open(inode, file, get, | 
 | 			       kvm_stats_debugfs_mode(stat_data->desc) & 0222 | 
 | 			       ? set : NULL, fmt); | 
 | 	if (ret) | 
 | 		kvm_put_kvm(stat_data->kvm); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int kvm_debugfs_release(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct kvm_stat_data *stat_data = inode->i_private; | 
 |  | 
 | 	simple_attr_release(inode, file); | 
 | 	kvm_put_kvm(stat_data->kvm); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) | 
 | { | 
 | 	*val = *(u64 *)((void *)(&kvm->stat) + offset); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) | 
 | { | 
 | 	*(u64 *)((void *)(&kvm->stat) + offset) = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) | 
 | { | 
 | 	unsigned long i; | 
 | 	struct kvm_vcpu *vcpu; | 
 |  | 
 | 	*val = 0; | 
 |  | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) | 
 | 		*val += *(u64 *)((void *)(&vcpu->stat) + offset); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) | 
 | { | 
 | 	unsigned long i; | 
 | 	struct kvm_vcpu *vcpu; | 
 |  | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) | 
 | 		*(u64 *)((void *)(&vcpu->stat) + offset) = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_stat_data_get(void *data, u64 *val) | 
 | { | 
 | 	int r = -EFAULT; | 
 | 	struct kvm_stat_data *stat_data = data; | 
 |  | 
 | 	switch (stat_data->kind) { | 
 | 	case KVM_STAT_VM: | 
 | 		r = kvm_get_stat_per_vm(stat_data->kvm, | 
 | 					stat_data->desc->desc.offset, val); | 
 | 		break; | 
 | 	case KVM_STAT_VCPU: | 
 | 		r = kvm_get_stat_per_vcpu(stat_data->kvm, | 
 | 					  stat_data->desc->desc.offset, val); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_stat_data_clear(void *data, u64 val) | 
 | { | 
 | 	int r = -EFAULT; | 
 | 	struct kvm_stat_data *stat_data = data; | 
 |  | 
 | 	if (val) | 
 | 		return -EINVAL; | 
 |  | 
 | 	switch (stat_data->kind) { | 
 | 	case KVM_STAT_VM: | 
 | 		r = kvm_clear_stat_per_vm(stat_data->kvm, | 
 | 					  stat_data->desc->desc.offset); | 
 | 		break; | 
 | 	case KVM_STAT_VCPU: | 
 | 		r = kvm_clear_stat_per_vcpu(stat_data->kvm, | 
 | 					    stat_data->desc->desc.offset); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_stat_data_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	__simple_attr_check_format("%llu\n", 0ull); | 
 | 	return kvm_debugfs_open(inode, file, kvm_stat_data_get, | 
 | 				kvm_stat_data_clear, "%llu\n"); | 
 | } | 
 |  | 
 | static const struct file_operations stat_fops_per_vm = { | 
 | 	.owner = THIS_MODULE, | 
 | 	.open = kvm_stat_data_open, | 
 | 	.release = kvm_debugfs_release, | 
 | 	.read = simple_attr_read, | 
 | 	.write = simple_attr_write, | 
 | }; | 
 |  | 
 | static int vm_stat_get(void *_offset, u64 *val) | 
 | { | 
 | 	unsigned offset = (long)_offset; | 
 | 	struct kvm *kvm; | 
 | 	u64 tmp_val; | 
 |  | 
 | 	*val = 0; | 
 | 	mutex_lock(&kvm_lock); | 
 | 	list_for_each_entry(kvm, &vm_list, vm_list) { | 
 | 		kvm_get_stat_per_vm(kvm, offset, &tmp_val); | 
 | 		*val += tmp_val; | 
 | 	} | 
 | 	mutex_unlock(&kvm_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vm_stat_clear(void *_offset, u64 val) | 
 | { | 
 | 	unsigned offset = (long)_offset; | 
 | 	struct kvm *kvm; | 
 |  | 
 | 	if (val) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&kvm_lock); | 
 | 	list_for_each_entry(kvm, &vm_list, vm_list) { | 
 | 		kvm_clear_stat_per_vm(kvm, offset); | 
 | 	} | 
 | 	mutex_unlock(&kvm_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); | 
 | DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); | 
 |  | 
 | static int vcpu_stat_get(void *_offset, u64 *val) | 
 | { | 
 | 	unsigned offset = (long)_offset; | 
 | 	struct kvm *kvm; | 
 | 	u64 tmp_val; | 
 |  | 
 | 	*val = 0; | 
 | 	mutex_lock(&kvm_lock); | 
 | 	list_for_each_entry(kvm, &vm_list, vm_list) { | 
 | 		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); | 
 | 		*val += tmp_val; | 
 | 	} | 
 | 	mutex_unlock(&kvm_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vcpu_stat_clear(void *_offset, u64 val) | 
 | { | 
 | 	unsigned offset = (long)_offset; | 
 | 	struct kvm *kvm; | 
 |  | 
 | 	if (val) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&kvm_lock); | 
 | 	list_for_each_entry(kvm, &vm_list, vm_list) { | 
 | 		kvm_clear_stat_per_vcpu(kvm, offset); | 
 | 	} | 
 | 	mutex_unlock(&kvm_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, | 
 | 			"%llu\n"); | 
 | DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); | 
 |  | 
 | static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) | 
 | { | 
 | 	struct kobj_uevent_env *env; | 
 | 	unsigned long long created, active; | 
 |  | 
 | 	if (!kvm_dev.this_device || !kvm) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&kvm_lock); | 
 | 	if (type == KVM_EVENT_CREATE_VM) { | 
 | 		kvm_createvm_count++; | 
 | 		kvm_active_vms++; | 
 | 	} else if (type == KVM_EVENT_DESTROY_VM) { | 
 | 		kvm_active_vms--; | 
 | 	} | 
 | 	created = kvm_createvm_count; | 
 | 	active = kvm_active_vms; | 
 | 	mutex_unlock(&kvm_lock); | 
 |  | 
 | 	env = kzalloc(sizeof(*env), GFP_KERNEL); | 
 | 	if (!env) | 
 | 		return; | 
 |  | 
 | 	add_uevent_var(env, "CREATED=%llu", created); | 
 | 	add_uevent_var(env, "COUNT=%llu", active); | 
 |  | 
 | 	if (type == KVM_EVENT_CREATE_VM) { | 
 | 		add_uevent_var(env, "EVENT=create"); | 
 | 		kvm->userspace_pid = task_pid_nr(current); | 
 | 	} else if (type == KVM_EVENT_DESTROY_VM) { | 
 | 		add_uevent_var(env, "EVENT=destroy"); | 
 | 	} | 
 | 	add_uevent_var(env, "PID=%d", kvm->userspace_pid); | 
 |  | 
 | 	if (!IS_ERR(kvm->debugfs_dentry)) { | 
 | 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); | 
 |  | 
 | 		if (p) { | 
 | 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); | 
 | 			if (!IS_ERR(tmp)) | 
 | 				add_uevent_var(env, "STATS_PATH=%s", tmp); | 
 | 			kfree(p); | 
 | 		} | 
 | 	} | 
 | 	/* no need for checks, since we are adding at most only 5 keys */ | 
 | 	env->envp[env->envp_idx++] = NULL; | 
 | 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); | 
 | 	kfree(env); | 
 | } | 
 |  | 
 | static void kvm_init_debug(void) | 
 | { | 
 | 	const struct file_operations *fops; | 
 | 	const struct _kvm_stats_desc *pdesc; | 
 | 	int i; | 
 |  | 
 | 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); | 
 |  | 
 | 	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { | 
 | 		pdesc = &kvm_vm_stats_desc[i]; | 
 | 		if (kvm_stats_debugfs_mode(pdesc) & 0222) | 
 | 			fops = &vm_stat_fops; | 
 | 		else | 
 | 			fops = &vm_stat_readonly_fops; | 
 | 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), | 
 | 				kvm_debugfs_dir, | 
 | 				(void *)(long)pdesc->desc.offset, fops); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { | 
 | 		pdesc = &kvm_vcpu_stats_desc[i]; | 
 | 		if (kvm_stats_debugfs_mode(pdesc) & 0222) | 
 | 			fops = &vcpu_stat_fops; | 
 | 		else | 
 | 			fops = &vcpu_stat_readonly_fops; | 
 | 		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), | 
 | 				kvm_debugfs_dir, | 
 | 				(void *)(long)pdesc->desc.offset, fops); | 
 | 	} | 
 | } | 
 |  | 
 | static inline | 
 | struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) | 
 | { | 
 | 	return container_of(pn, struct kvm_vcpu, preempt_notifier); | 
 | } | 
 |  | 
 | static void kvm_sched_in(struct preempt_notifier *pn, int cpu) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); | 
 |  | 
 | 	WRITE_ONCE(vcpu->preempted, false); | 
 | 	WRITE_ONCE(vcpu->ready, false); | 
 |  | 
 | 	__this_cpu_write(kvm_running_vcpu, vcpu); | 
 | 	kvm_arch_vcpu_load(vcpu, cpu); | 
 |  | 
 | 	WRITE_ONCE(vcpu->scheduled_out, false); | 
 | } | 
 |  | 
 | static void kvm_sched_out(struct preempt_notifier *pn, | 
 | 			  struct task_struct *next) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); | 
 |  | 
 | 	WRITE_ONCE(vcpu->scheduled_out, true); | 
 |  | 
 | 	if (task_is_runnable(current) && vcpu->wants_to_run) { | 
 | 		WRITE_ONCE(vcpu->preempted, true); | 
 | 		WRITE_ONCE(vcpu->ready, true); | 
 | 	} | 
 | 	kvm_arch_vcpu_put(vcpu); | 
 | 	__this_cpu_write(kvm_running_vcpu, NULL); | 
 | } | 
 |  | 
 | /** | 
 |  * kvm_get_running_vcpu - get the vcpu running on the current CPU. | 
 |  * | 
 |  * We can disable preemption locally around accessing the per-CPU variable, | 
 |  * and use the resolved vcpu pointer after enabling preemption again, | 
 |  * because even if the current thread is migrated to another CPU, reading | 
 |  * the per-CPU value later will give us the same value as we update the | 
 |  * per-CPU variable in the preempt notifier handlers. | 
 |  */ | 
 | struct kvm_vcpu *kvm_get_running_vcpu(void) | 
 | { | 
 | 	struct kvm_vcpu *vcpu; | 
 |  | 
 | 	preempt_disable(); | 
 | 	vcpu = __this_cpu_read(kvm_running_vcpu); | 
 | 	preempt_enable(); | 
 |  | 
 | 	return vcpu; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_get_running_vcpu); | 
 |  | 
 | /** | 
 |  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. | 
 |  */ | 
 | struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) | 
 | { | 
 |         return &kvm_running_vcpu; | 
 | } | 
 |  | 
 | #ifdef CONFIG_GUEST_PERF_EVENTS | 
 | static unsigned int kvm_guest_state(void) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); | 
 | 	unsigned int state; | 
 |  | 
 | 	if (!kvm_arch_pmi_in_guest(vcpu)) | 
 | 		return 0; | 
 |  | 
 | 	state = PERF_GUEST_ACTIVE; | 
 | 	if (!kvm_arch_vcpu_in_kernel(vcpu)) | 
 | 		state |= PERF_GUEST_USER; | 
 |  | 
 | 	return state; | 
 | } | 
 |  | 
 | static unsigned long kvm_guest_get_ip(void) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); | 
 |  | 
 | 	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ | 
 | 	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) | 
 | 		return 0; | 
 |  | 
 | 	return kvm_arch_vcpu_get_ip(vcpu); | 
 | } | 
 |  | 
 | static struct perf_guest_info_callbacks kvm_guest_cbs = { | 
 | 	.state			= kvm_guest_state, | 
 | 	.get_ip			= kvm_guest_get_ip, | 
 | 	.handle_intel_pt_intr	= NULL, | 
 | }; | 
 |  | 
 | void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) | 
 | { | 
 | 	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; | 
 | 	perf_register_guest_info_callbacks(&kvm_guest_cbs); | 
 | } | 
 | void kvm_unregister_perf_callbacks(void) | 
 | { | 
 | 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs); | 
 | } | 
 | #endif | 
 |  | 
 | int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) | 
 | { | 
 | 	int r; | 
 | 	int cpu; | 
 |  | 
 | 	/* A kmem cache lets us meet the alignment requirements of fx_save. */ | 
 | 	if (!vcpu_align) | 
 | 		vcpu_align = __alignof__(struct kvm_vcpu); | 
 | 	kvm_vcpu_cache = | 
 | 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, | 
 | 					   SLAB_ACCOUNT, | 
 | 					   offsetof(struct kvm_vcpu, arch), | 
 | 					   offsetofend(struct kvm_vcpu, stats_id) | 
 | 					   - offsetof(struct kvm_vcpu, arch), | 
 | 					   NULL); | 
 | 	if (!kvm_vcpu_cache) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), | 
 | 					    GFP_KERNEL, cpu_to_node(cpu))) { | 
 | 			r = -ENOMEM; | 
 | 			goto err_cpu_kick_mask; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	r = kvm_irqfd_init(); | 
 | 	if (r) | 
 | 		goto err_irqfd; | 
 |  | 
 | 	r = kvm_async_pf_init(); | 
 | 	if (r) | 
 | 		goto err_async_pf; | 
 |  | 
 | 	kvm_chardev_ops.owner = module; | 
 | 	kvm_vm_fops.owner = module; | 
 | 	kvm_vcpu_fops.owner = module; | 
 | 	kvm_device_fops.owner = module; | 
 |  | 
 | 	kvm_preempt_ops.sched_in = kvm_sched_in; | 
 | 	kvm_preempt_ops.sched_out = kvm_sched_out; | 
 |  | 
 | 	kvm_init_debug(); | 
 |  | 
 | 	r = kvm_vfio_ops_init(); | 
 | 	if (WARN_ON_ONCE(r)) | 
 | 		goto err_vfio; | 
 |  | 
 | 	kvm_gmem_init(module); | 
 |  | 
 | 	r = kvm_init_virtualization(); | 
 | 	if (r) | 
 | 		goto err_virt; | 
 |  | 
 | 	/* | 
 | 	 * Registration _must_ be the very last thing done, as this exposes | 
 | 	 * /dev/kvm to userspace, i.e. all infrastructure must be setup! | 
 | 	 */ | 
 | 	r = misc_register(&kvm_dev); | 
 | 	if (r) { | 
 | 		pr_err("kvm: misc device register failed\n"); | 
 | 		goto err_register; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_register: | 
 | 	kvm_uninit_virtualization(); | 
 | err_virt: | 
 | 	kvm_vfio_ops_exit(); | 
 | err_vfio: | 
 | 	kvm_async_pf_deinit(); | 
 | err_async_pf: | 
 | 	kvm_irqfd_exit(); | 
 | err_irqfd: | 
 | err_cpu_kick_mask: | 
 | 	for_each_possible_cpu(cpu) | 
 | 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); | 
 | 	kmem_cache_destroy(kvm_vcpu_cache); | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_init); | 
 |  | 
 | void kvm_exit(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	/* | 
 | 	 * Note, unregistering /dev/kvm doesn't strictly need to come first, | 
 | 	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references | 
 | 	 * to KVM while the module is being stopped. | 
 | 	 */ | 
 | 	misc_deregister(&kvm_dev); | 
 |  | 
 | 	kvm_uninit_virtualization(); | 
 |  | 
 | 	debugfs_remove_recursive(kvm_debugfs_dir); | 
 | 	for_each_possible_cpu(cpu) | 
 | 		free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); | 
 | 	kmem_cache_destroy(kvm_vcpu_cache); | 
 | 	kvm_vfio_ops_exit(); | 
 | 	kvm_async_pf_deinit(); | 
 | 	kvm_irqfd_exit(); | 
 | } | 
 | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_exit); |