| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * HCTR2 length-preserving encryption mode | 
 |  * | 
 |  * Copyright 2021 Google LLC | 
 |  */ | 
 |  | 
 |  | 
 | /* | 
 |  * HCTR2 is a length-preserving encryption mode that is efficient on | 
 |  * processors with instructions to accelerate AES and carryless | 
 |  * multiplication, e.g. x86 processors with AES-NI and CLMUL, and ARM | 
 |  * processors with the ARMv8 crypto extensions. | 
 |  * | 
 |  * For more details, see the paper: "Length-preserving encryption with HCTR2" | 
 |  * (https://eprint.iacr.org/2021/1441.pdf) | 
 |  */ | 
 |  | 
 | #include <crypto/internal/cipher.h> | 
 | #include <crypto/internal/hash.h> | 
 | #include <crypto/internal/skcipher.h> | 
 | #include <crypto/polyval.h> | 
 | #include <crypto/scatterwalk.h> | 
 | #include <linux/module.h> | 
 |  | 
 | #define BLOCKCIPHER_BLOCK_SIZE		16 | 
 |  | 
 | /* | 
 |  * The specification allows variable-length tweaks, but Linux's crypto API | 
 |  * currently only allows algorithms to support a single length.  The "natural" | 
 |  * tweak length for HCTR2 is 16, since that fits into one POLYVAL block for | 
 |  * the best performance.  But longer tweaks are useful for fscrypt, to avoid | 
 |  * needing to derive per-file keys.  So instead we use two blocks, or 32 bytes. | 
 |  */ | 
 | #define TWEAK_SIZE		32 | 
 |  | 
 | struct hctr2_instance_ctx { | 
 | 	struct crypto_cipher_spawn blockcipher_spawn; | 
 | 	struct crypto_skcipher_spawn xctr_spawn; | 
 | 	struct crypto_shash_spawn polyval_spawn; | 
 | }; | 
 |  | 
 | struct hctr2_tfm_ctx { | 
 | 	struct crypto_cipher *blockcipher; | 
 | 	struct crypto_skcipher *xctr; | 
 | 	struct crypto_shash *polyval; | 
 | 	u8 L[BLOCKCIPHER_BLOCK_SIZE]; | 
 | 	int hashed_tweak_offset; | 
 | 	/* | 
 | 	 * This struct is allocated with extra space for two exported hash | 
 | 	 * states.  Since the hash state size is not known at compile-time, we | 
 | 	 * can't add these to the struct directly. | 
 | 	 * | 
 | 	 * hashed_tweaklen_divisible; | 
 | 	 * hashed_tweaklen_remainder; | 
 | 	 */ | 
 | }; | 
 |  | 
 | struct hctr2_request_ctx { | 
 | 	u8 first_block[BLOCKCIPHER_BLOCK_SIZE]; | 
 | 	u8 xctr_iv[BLOCKCIPHER_BLOCK_SIZE]; | 
 | 	struct scatterlist *bulk_part_dst; | 
 | 	struct scatterlist *bulk_part_src; | 
 | 	struct scatterlist sg_src[2]; | 
 | 	struct scatterlist sg_dst[2]; | 
 | 	/* | 
 | 	 * Sub-request sizes are unknown at compile-time, so they need to go | 
 | 	 * after the members with known sizes. | 
 | 	 */ | 
 | 	union { | 
 | 		struct shash_desc hash_desc; | 
 | 		struct skcipher_request xctr_req; | 
 | 	} u; | 
 | 	/* | 
 | 	 * This struct is allocated with extra space for one exported hash | 
 | 	 * state.  Since the hash state size is not known at compile-time, we | 
 | 	 * can't add it to the struct directly. | 
 | 	 * | 
 | 	 * hashed_tweak; | 
 | 	 */ | 
 | }; | 
 |  | 
 | static inline u8 *hctr2_hashed_tweaklen(const struct hctr2_tfm_ctx *tctx, | 
 | 					bool has_remainder) | 
 | { | 
 | 	u8 *p = (u8 *)tctx + sizeof(*tctx); | 
 |  | 
 | 	if (has_remainder) /* For messages not a multiple of block length */ | 
 | 		p += crypto_shash_statesize(tctx->polyval); | 
 | 	return p; | 
 | } | 
 |  | 
 | static inline u8 *hctr2_hashed_tweak(const struct hctr2_tfm_ctx *tctx, | 
 | 				     struct hctr2_request_ctx *rctx) | 
 | { | 
 | 	return (u8 *)rctx + tctx->hashed_tweak_offset; | 
 | } | 
 |  | 
 | /* | 
 |  * The input data for each HCTR2 hash step begins with a 16-byte block that | 
 |  * contains the tweak length and a flag that indicates whether the input is evenly | 
 |  * divisible into blocks.  Since this implementation only supports one tweak | 
 |  * length, we precompute the two hash states resulting from hashing the two | 
 |  * possible values of this initial block.  This reduces by one block the amount of | 
 |  * data that needs to be hashed for each encryption/decryption | 
 |  * | 
 |  * These precomputed hashes are stored in hctr2_tfm_ctx. | 
 |  */ | 
 | static int hctr2_hash_tweaklen(struct hctr2_tfm_ctx *tctx, bool has_remainder) | 
 | { | 
 | 	SHASH_DESC_ON_STACK(shash, tfm->polyval); | 
 | 	__le64 tweak_length_block[2]; | 
 | 	int err; | 
 |  | 
 | 	shash->tfm = tctx->polyval; | 
 | 	memset(tweak_length_block, 0, sizeof(tweak_length_block)); | 
 |  | 
 | 	tweak_length_block[0] = cpu_to_le64(TWEAK_SIZE * 8 * 2 + 2 + has_remainder); | 
 | 	err = crypto_shash_init(shash); | 
 | 	if (err) | 
 | 		return err; | 
 | 	err = crypto_shash_update(shash, (u8 *)tweak_length_block, | 
 | 				  POLYVAL_BLOCK_SIZE); | 
 | 	if (err) | 
 | 		return err; | 
 | 	return crypto_shash_export(shash, hctr2_hashed_tweaklen(tctx, has_remainder)); | 
 | } | 
 |  | 
 | static int hctr2_setkey(struct crypto_skcipher *tfm, const u8 *key, | 
 | 			unsigned int keylen) | 
 | { | 
 | 	struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); | 
 | 	u8 hbar[BLOCKCIPHER_BLOCK_SIZE]; | 
 | 	int err; | 
 |  | 
 | 	crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK); | 
 | 	crypto_cipher_set_flags(tctx->blockcipher, | 
 | 				crypto_skcipher_get_flags(tfm) & | 
 | 				CRYPTO_TFM_REQ_MASK); | 
 | 	err = crypto_cipher_setkey(tctx->blockcipher, key, keylen); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	crypto_skcipher_clear_flags(tctx->xctr, CRYPTO_TFM_REQ_MASK); | 
 | 	crypto_skcipher_set_flags(tctx->xctr, | 
 | 				  crypto_skcipher_get_flags(tfm) & | 
 | 				  CRYPTO_TFM_REQ_MASK); | 
 | 	err = crypto_skcipher_setkey(tctx->xctr, key, keylen); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	memset(hbar, 0, sizeof(hbar)); | 
 | 	crypto_cipher_encrypt_one(tctx->blockcipher, hbar, hbar); | 
 |  | 
 | 	memset(tctx->L, 0, sizeof(tctx->L)); | 
 | 	tctx->L[0] = 0x01; | 
 | 	crypto_cipher_encrypt_one(tctx->blockcipher, tctx->L, tctx->L); | 
 |  | 
 | 	crypto_shash_clear_flags(tctx->polyval, CRYPTO_TFM_REQ_MASK); | 
 | 	crypto_shash_set_flags(tctx->polyval, crypto_skcipher_get_flags(tfm) & | 
 | 			       CRYPTO_TFM_REQ_MASK); | 
 | 	err = crypto_shash_setkey(tctx->polyval, hbar, BLOCKCIPHER_BLOCK_SIZE); | 
 | 	if (err) | 
 | 		return err; | 
 | 	memzero_explicit(hbar, sizeof(hbar)); | 
 |  | 
 | 	return hctr2_hash_tweaklen(tctx, true) ?: hctr2_hash_tweaklen(tctx, false); | 
 | } | 
 |  | 
 | static int hctr2_hash_tweak(struct skcipher_request *req) | 
 | { | 
 | 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
 | 	const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); | 
 | 	struct hctr2_request_ctx *rctx = skcipher_request_ctx(req); | 
 | 	struct shash_desc *hash_desc = &rctx->u.hash_desc; | 
 | 	int err; | 
 | 	bool has_remainder = req->cryptlen % POLYVAL_BLOCK_SIZE; | 
 |  | 
 | 	hash_desc->tfm = tctx->polyval; | 
 | 	err = crypto_shash_import(hash_desc, hctr2_hashed_tweaklen(tctx, has_remainder)); | 
 | 	if (err) | 
 | 		return err; | 
 | 	err = crypto_shash_update(hash_desc, req->iv, TWEAK_SIZE); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	// Store the hashed tweak, since we need it when computing both | 
 | 	// H(T || N) and H(T || V). | 
 | 	return crypto_shash_export(hash_desc, hctr2_hashed_tweak(tctx, rctx)); | 
 | } | 
 |  | 
 | static int hctr2_hash_message(struct skcipher_request *req, | 
 | 			      struct scatterlist *sgl, | 
 | 			      u8 digest[POLYVAL_DIGEST_SIZE]) | 
 | { | 
 | 	static const u8 padding[BLOCKCIPHER_BLOCK_SIZE] = { 0x1 }; | 
 | 	struct hctr2_request_ctx *rctx = skcipher_request_ctx(req); | 
 | 	struct shash_desc *hash_desc = &rctx->u.hash_desc; | 
 | 	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; | 
 | 	struct sg_mapping_iter miter; | 
 | 	unsigned int remainder = bulk_len % BLOCKCIPHER_BLOCK_SIZE; | 
 | 	int i; | 
 | 	int err = 0; | 
 | 	int n = 0; | 
 |  | 
 | 	sg_miter_start(&miter, sgl, sg_nents(sgl), | 
 | 		       SG_MITER_FROM_SG | SG_MITER_ATOMIC); | 
 | 	for (i = 0; i < bulk_len; i += n) { | 
 | 		sg_miter_next(&miter); | 
 | 		n = min_t(unsigned int, miter.length, bulk_len - i); | 
 | 		err = crypto_shash_update(hash_desc, miter.addr, n); | 
 | 		if (err) | 
 | 			break; | 
 | 	} | 
 | 	sg_miter_stop(&miter); | 
 |  | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (remainder) { | 
 | 		err = crypto_shash_update(hash_desc, padding, | 
 | 					  BLOCKCIPHER_BLOCK_SIZE - remainder); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 | 	return crypto_shash_final(hash_desc, digest); | 
 | } | 
 |  | 
 | static int hctr2_finish(struct skcipher_request *req) | 
 | { | 
 | 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
 | 	const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); | 
 | 	struct hctr2_request_ctx *rctx = skcipher_request_ctx(req); | 
 | 	u8 digest[POLYVAL_DIGEST_SIZE]; | 
 | 	struct shash_desc *hash_desc = &rctx->u.hash_desc; | 
 | 	int err; | 
 |  | 
 | 	// U = UU ^ H(T || V) | 
 | 	// or M = MM ^ H(T || N) | 
 | 	hash_desc->tfm = tctx->polyval; | 
 | 	err = crypto_shash_import(hash_desc, hctr2_hashed_tweak(tctx, rctx)); | 
 | 	if (err) | 
 | 		return err; | 
 | 	err = hctr2_hash_message(req, rctx->bulk_part_dst, digest); | 
 | 	if (err) | 
 | 		return err; | 
 | 	crypto_xor(rctx->first_block, digest, BLOCKCIPHER_BLOCK_SIZE); | 
 |  | 
 | 	// Copy U (or M) into dst scatterlist | 
 | 	scatterwalk_map_and_copy(rctx->first_block, req->dst, | 
 | 				 0, BLOCKCIPHER_BLOCK_SIZE, 1); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void hctr2_xctr_done(void *data, int err) | 
 | { | 
 | 	struct skcipher_request *req = data; | 
 |  | 
 | 	if (!err) | 
 | 		err = hctr2_finish(req); | 
 |  | 
 | 	skcipher_request_complete(req, err); | 
 | } | 
 |  | 
 | static int hctr2_crypt(struct skcipher_request *req, bool enc) | 
 | { | 
 | 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
 | 	const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); | 
 | 	struct hctr2_request_ctx *rctx = skcipher_request_ctx(req); | 
 | 	u8 digest[POLYVAL_DIGEST_SIZE]; | 
 | 	int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; | 
 | 	int err; | 
 |  | 
 | 	// Requests must be at least one block | 
 | 	if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	// Copy M (or U) into a temporary buffer | 
 | 	scatterwalk_map_and_copy(rctx->first_block, req->src, | 
 | 				 0, BLOCKCIPHER_BLOCK_SIZE, 0); | 
 |  | 
 | 	// Create scatterlists for N and V | 
 | 	rctx->bulk_part_src = scatterwalk_ffwd(rctx->sg_src, req->src, | 
 | 					       BLOCKCIPHER_BLOCK_SIZE); | 
 | 	rctx->bulk_part_dst = scatterwalk_ffwd(rctx->sg_dst, req->dst, | 
 | 					       BLOCKCIPHER_BLOCK_SIZE); | 
 |  | 
 | 	// MM = M ^ H(T || N) | 
 | 	// or UU = U ^ H(T || V) | 
 | 	err = hctr2_hash_tweak(req); | 
 | 	if (err) | 
 | 		return err; | 
 | 	err = hctr2_hash_message(req, rctx->bulk_part_src, digest); | 
 | 	if (err) | 
 | 		return err; | 
 | 	crypto_xor(digest, rctx->first_block, BLOCKCIPHER_BLOCK_SIZE); | 
 |  | 
 | 	// UU = E(MM) | 
 | 	// or MM = D(UU) | 
 | 	if (enc) | 
 | 		crypto_cipher_encrypt_one(tctx->blockcipher, rctx->first_block, | 
 | 					  digest); | 
 | 	else | 
 | 		crypto_cipher_decrypt_one(tctx->blockcipher, rctx->first_block, | 
 | 					  digest); | 
 |  | 
 | 	// S = MM ^ UU ^ L | 
 | 	crypto_xor(digest, rctx->first_block, BLOCKCIPHER_BLOCK_SIZE); | 
 | 	crypto_xor_cpy(rctx->xctr_iv, digest, tctx->L, BLOCKCIPHER_BLOCK_SIZE); | 
 |  | 
 | 	// V = XCTR(S, N) | 
 | 	// or N = XCTR(S, V) | 
 | 	skcipher_request_set_tfm(&rctx->u.xctr_req, tctx->xctr); | 
 | 	skcipher_request_set_crypt(&rctx->u.xctr_req, rctx->bulk_part_src, | 
 | 				   rctx->bulk_part_dst, bulk_len, | 
 | 				   rctx->xctr_iv); | 
 | 	skcipher_request_set_callback(&rctx->u.xctr_req, | 
 | 				      req->base.flags, | 
 | 				      hctr2_xctr_done, req); | 
 | 	return crypto_skcipher_encrypt(&rctx->u.xctr_req) ?: | 
 | 		hctr2_finish(req); | 
 | } | 
 |  | 
 | static int hctr2_encrypt(struct skcipher_request *req) | 
 | { | 
 | 	return hctr2_crypt(req, true); | 
 | } | 
 |  | 
 | static int hctr2_decrypt(struct skcipher_request *req) | 
 | { | 
 | 	return hctr2_crypt(req, false); | 
 | } | 
 |  | 
 | static int hctr2_init_tfm(struct crypto_skcipher *tfm) | 
 | { | 
 | 	struct skcipher_instance *inst = skcipher_alg_instance(tfm); | 
 | 	struct hctr2_instance_ctx *ictx = skcipher_instance_ctx(inst); | 
 | 	struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); | 
 | 	struct crypto_skcipher *xctr; | 
 | 	struct crypto_cipher *blockcipher; | 
 | 	struct crypto_shash *polyval; | 
 | 	unsigned int subreq_size; | 
 | 	int err; | 
 |  | 
 | 	xctr = crypto_spawn_skcipher(&ictx->xctr_spawn); | 
 | 	if (IS_ERR(xctr)) | 
 | 		return PTR_ERR(xctr); | 
 |  | 
 | 	blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn); | 
 | 	if (IS_ERR(blockcipher)) { | 
 | 		err = PTR_ERR(blockcipher); | 
 | 		goto err_free_xctr; | 
 | 	} | 
 |  | 
 | 	polyval = crypto_spawn_shash(&ictx->polyval_spawn); | 
 | 	if (IS_ERR(polyval)) { | 
 | 		err = PTR_ERR(polyval); | 
 | 		goto err_free_blockcipher; | 
 | 	} | 
 |  | 
 | 	tctx->xctr = xctr; | 
 | 	tctx->blockcipher = blockcipher; | 
 | 	tctx->polyval = polyval; | 
 |  | 
 | 	BUILD_BUG_ON(offsetofend(struct hctr2_request_ctx, u) != | 
 | 				 sizeof(struct hctr2_request_ctx)); | 
 | 	subreq_size = max(sizeof_field(struct hctr2_request_ctx, u.hash_desc) + | 
 | 			  crypto_shash_descsize(polyval), | 
 | 			  sizeof_field(struct hctr2_request_ctx, u.xctr_req) + | 
 | 			  crypto_skcipher_reqsize(xctr)); | 
 |  | 
 | 	tctx->hashed_tweak_offset = offsetof(struct hctr2_request_ctx, u) + | 
 | 				    subreq_size; | 
 | 	crypto_skcipher_set_reqsize(tfm, tctx->hashed_tweak_offset + | 
 | 				    crypto_shash_statesize(polyval)); | 
 | 	return 0; | 
 |  | 
 | err_free_blockcipher: | 
 | 	crypto_free_cipher(blockcipher); | 
 | err_free_xctr: | 
 | 	crypto_free_skcipher(xctr); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void hctr2_exit_tfm(struct crypto_skcipher *tfm) | 
 | { | 
 | 	struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); | 
 |  | 
 | 	crypto_free_cipher(tctx->blockcipher); | 
 | 	crypto_free_skcipher(tctx->xctr); | 
 | 	crypto_free_shash(tctx->polyval); | 
 | } | 
 |  | 
 | static void hctr2_free_instance(struct skcipher_instance *inst) | 
 | { | 
 | 	struct hctr2_instance_ctx *ictx = skcipher_instance_ctx(inst); | 
 |  | 
 | 	crypto_drop_cipher(&ictx->blockcipher_spawn); | 
 | 	crypto_drop_skcipher(&ictx->xctr_spawn); | 
 | 	crypto_drop_shash(&ictx->polyval_spawn); | 
 | 	kfree(inst); | 
 | } | 
 |  | 
 | static int hctr2_create_common(struct crypto_template *tmpl, | 
 | 			       struct rtattr **tb, | 
 | 			       const char *xctr_name, | 
 | 			       const char *polyval_name) | 
 | { | 
 | 	struct skcipher_alg_common *xctr_alg; | 
 | 	u32 mask; | 
 | 	struct skcipher_instance *inst; | 
 | 	struct hctr2_instance_ctx *ictx; | 
 | 	struct crypto_alg *blockcipher_alg; | 
 | 	struct shash_alg *polyval_alg; | 
 | 	char blockcipher_name[CRYPTO_MAX_ALG_NAME]; | 
 | 	int len; | 
 | 	int err; | 
 |  | 
 | 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL); | 
 | 	if (!inst) | 
 | 		return -ENOMEM; | 
 | 	ictx = skcipher_instance_ctx(inst); | 
 |  | 
 | 	/* Stream cipher, xctr(block_cipher) */ | 
 | 	err = crypto_grab_skcipher(&ictx->xctr_spawn, | 
 | 				   skcipher_crypto_instance(inst), | 
 | 				   xctr_name, 0, mask); | 
 | 	if (err) | 
 | 		goto err_free_inst; | 
 | 	xctr_alg = crypto_spawn_skcipher_alg_common(&ictx->xctr_spawn); | 
 |  | 
 | 	err = -EINVAL; | 
 | 	if (strncmp(xctr_alg->base.cra_name, "xctr(", 5)) | 
 | 		goto err_free_inst; | 
 | 	len = strscpy(blockcipher_name, xctr_alg->base.cra_name + 5, | 
 | 		      sizeof(blockcipher_name)); | 
 | 	if (len < 1) | 
 | 		goto err_free_inst; | 
 | 	if (blockcipher_name[len - 1] != ')') | 
 | 		goto err_free_inst; | 
 | 	blockcipher_name[len - 1] = 0; | 
 |  | 
 | 	/* Block cipher, e.g. "aes" */ | 
 | 	err = crypto_grab_cipher(&ictx->blockcipher_spawn, | 
 | 				 skcipher_crypto_instance(inst), | 
 | 				 blockcipher_name, 0, mask); | 
 | 	if (err) | 
 | 		goto err_free_inst; | 
 | 	blockcipher_alg = crypto_spawn_cipher_alg(&ictx->blockcipher_spawn); | 
 |  | 
 | 	/* Require blocksize of 16 bytes */ | 
 | 	err = -EINVAL; | 
 | 	if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE) | 
 | 		goto err_free_inst; | 
 |  | 
 | 	/* Polyval ε-∆U hash function */ | 
 | 	err = crypto_grab_shash(&ictx->polyval_spawn, | 
 | 				skcipher_crypto_instance(inst), | 
 | 				polyval_name, 0, mask); | 
 | 	if (err) | 
 | 		goto err_free_inst; | 
 | 	polyval_alg = crypto_spawn_shash_alg(&ictx->polyval_spawn); | 
 |  | 
 | 	/* Ensure Polyval is being used */ | 
 | 	err = -EINVAL; | 
 | 	if (strcmp(polyval_alg->base.cra_name, "polyval") != 0) | 
 | 		goto err_free_inst; | 
 |  | 
 | 	/* Instance fields */ | 
 |  | 
 | 	err = -ENAMETOOLONG; | 
 | 	if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "hctr2(%s)", | 
 | 		     blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME) | 
 | 		goto err_free_inst; | 
 | 	if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, | 
 | 		     "hctr2_base(%s,%s)", | 
 | 		     xctr_alg->base.cra_driver_name, | 
 | 		     polyval_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME) | 
 | 		goto err_free_inst; | 
 |  | 
 | 	inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE; | 
 | 	inst->alg.base.cra_ctxsize = sizeof(struct hctr2_tfm_ctx) + | 
 | 				     polyval_alg->statesize * 2; | 
 | 	inst->alg.base.cra_alignmask = xctr_alg->base.cra_alignmask; | 
 | 	/* | 
 | 	 * The hash function is called twice, so it is weighted higher than the | 
 | 	 * xctr and blockcipher. | 
 | 	 */ | 
 | 	inst->alg.base.cra_priority = (2 * xctr_alg->base.cra_priority + | 
 | 				       4 * polyval_alg->base.cra_priority + | 
 | 				       blockcipher_alg->cra_priority) / 7; | 
 |  | 
 | 	inst->alg.setkey = hctr2_setkey; | 
 | 	inst->alg.encrypt = hctr2_encrypt; | 
 | 	inst->alg.decrypt = hctr2_decrypt; | 
 | 	inst->alg.init = hctr2_init_tfm; | 
 | 	inst->alg.exit = hctr2_exit_tfm; | 
 | 	inst->alg.min_keysize = xctr_alg->min_keysize; | 
 | 	inst->alg.max_keysize = xctr_alg->max_keysize; | 
 | 	inst->alg.ivsize = TWEAK_SIZE; | 
 |  | 
 | 	inst->free = hctr2_free_instance; | 
 |  | 
 | 	err = skcipher_register_instance(tmpl, inst); | 
 | 	if (err) { | 
 | err_free_inst: | 
 | 		hctr2_free_instance(inst); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static int hctr2_create_base(struct crypto_template *tmpl, struct rtattr **tb) | 
 | { | 
 | 	const char *xctr_name; | 
 | 	const char *polyval_name; | 
 |  | 
 | 	xctr_name = crypto_attr_alg_name(tb[1]); | 
 | 	if (IS_ERR(xctr_name)) | 
 | 		return PTR_ERR(xctr_name); | 
 |  | 
 | 	polyval_name = crypto_attr_alg_name(tb[2]); | 
 | 	if (IS_ERR(polyval_name)) | 
 | 		return PTR_ERR(polyval_name); | 
 |  | 
 | 	return hctr2_create_common(tmpl, tb, xctr_name, polyval_name); | 
 | } | 
 |  | 
 | static int hctr2_create(struct crypto_template *tmpl, struct rtattr **tb) | 
 | { | 
 | 	const char *blockcipher_name; | 
 | 	char xctr_name[CRYPTO_MAX_ALG_NAME]; | 
 |  | 
 | 	blockcipher_name = crypto_attr_alg_name(tb[1]); | 
 | 	if (IS_ERR(blockcipher_name)) | 
 | 		return PTR_ERR(blockcipher_name); | 
 |  | 
 | 	if (snprintf(xctr_name, CRYPTO_MAX_ALG_NAME, "xctr(%s)", | 
 | 		    blockcipher_name) >= CRYPTO_MAX_ALG_NAME) | 
 | 		return -ENAMETOOLONG; | 
 |  | 
 | 	return hctr2_create_common(tmpl, tb, xctr_name, "polyval"); | 
 | } | 
 |  | 
 | static struct crypto_template hctr2_tmpls[] = { | 
 | 	{ | 
 | 		/* hctr2_base(xctr_name, polyval_name) */ | 
 | 		.name = "hctr2_base", | 
 | 		.create = hctr2_create_base, | 
 | 		.module = THIS_MODULE, | 
 | 	}, { | 
 | 		/* hctr2(blockcipher_name) */ | 
 | 		.name = "hctr2", | 
 | 		.create = hctr2_create, | 
 | 		.module = THIS_MODULE, | 
 | 	} | 
 | }; | 
 |  | 
 | static int __init hctr2_module_init(void) | 
 | { | 
 | 	return crypto_register_templates(hctr2_tmpls, ARRAY_SIZE(hctr2_tmpls)); | 
 | } | 
 |  | 
 | static void __exit hctr2_module_exit(void) | 
 | { | 
 | 	return crypto_unregister_templates(hctr2_tmpls, | 
 | 					   ARRAY_SIZE(hctr2_tmpls)); | 
 | } | 
 |  | 
 | module_init(hctr2_module_init); | 
 | module_exit(hctr2_module_exit); | 
 |  | 
 | MODULE_DESCRIPTION("HCTR2 length-preserving encryption mode"); | 
 | MODULE_LICENSE("GPL v2"); | 
 | MODULE_ALIAS_CRYPTO("hctr2"); | 
 | MODULE_IMPORT_NS("CRYPTO_INTERNAL"); |