|  | /* | 
|  | *  linux/mm/swap_state.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | *  Swap reorganised 29.12.95, Stephen Tweedie | 
|  | * | 
|  | *  Rewritten to use page cache, (C) 1998 Stephen Tweedie | 
|  | */ | 
|  | #include <linux/mm.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/swap_slots.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  |  | 
|  | /* | 
|  | * swapper_space is a fiction, retained to simplify the path through | 
|  | * vmscan's shrink_page_list. | 
|  | */ | 
|  | static const struct address_space_operations swap_aops = { | 
|  | .writepage	= swap_writepage, | 
|  | .set_page_dirty	= swap_set_page_dirty, | 
|  | #ifdef CONFIG_MIGRATION | 
|  | .migratepage	= migrate_page, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | struct address_space *swapper_spaces[MAX_SWAPFILES]; | 
|  | static unsigned int nr_swapper_spaces[MAX_SWAPFILES]; | 
|  |  | 
|  | #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0) | 
|  |  | 
|  | static struct { | 
|  | unsigned long add_total; | 
|  | unsigned long del_total; | 
|  | unsigned long find_success; | 
|  | unsigned long find_total; | 
|  | } swap_cache_info; | 
|  |  | 
|  | unsigned long total_swapcache_pages(void) | 
|  | { | 
|  | unsigned int i, j, nr; | 
|  | unsigned long ret = 0; | 
|  | struct address_space *spaces; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (i = 0; i < MAX_SWAPFILES; i++) { | 
|  | /* | 
|  | * The corresponding entries in nr_swapper_spaces and | 
|  | * swapper_spaces will be reused only after at least | 
|  | * one grace period.  So it is impossible for them | 
|  | * belongs to different usage. | 
|  | */ | 
|  | nr = nr_swapper_spaces[i]; | 
|  | spaces = rcu_dereference(swapper_spaces[i]); | 
|  | if (!nr || !spaces) | 
|  | continue; | 
|  | for (j = 0; j < nr; j++) | 
|  | ret += spaces[j].nrpages; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); | 
|  |  | 
|  | void show_swap_cache_info(void) | 
|  | { | 
|  | printk("%lu pages in swap cache\n", total_swapcache_pages()); | 
|  | printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", | 
|  | swap_cache_info.add_total, swap_cache_info.del_total, | 
|  | swap_cache_info.find_success, swap_cache_info.find_total); | 
|  | printk("Free swap  = %ldkB\n", | 
|  | get_nr_swap_pages() << (PAGE_SHIFT - 10)); | 
|  | printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, | 
|  | * but sets SwapCache flag and private instead of mapping and index. | 
|  | */ | 
|  | int __add_to_swap_cache(struct page *page, swp_entry_t entry) | 
|  | { | 
|  | int error; | 
|  | struct address_space *address_space; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | VM_BUG_ON_PAGE(PageSwapCache(page), page); | 
|  | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); | 
|  |  | 
|  | get_page(page); | 
|  | SetPageSwapCache(page); | 
|  | set_page_private(page, entry.val); | 
|  |  | 
|  | address_space = swap_address_space(entry); | 
|  | spin_lock_irq(&address_space->tree_lock); | 
|  | error = radix_tree_insert(&address_space->page_tree, | 
|  | swp_offset(entry), page); | 
|  | if (likely(!error)) { | 
|  | address_space->nrpages++; | 
|  | __inc_node_page_state(page, NR_FILE_PAGES); | 
|  | INC_CACHE_INFO(add_total); | 
|  | } | 
|  | spin_unlock_irq(&address_space->tree_lock); | 
|  |  | 
|  | if (unlikely(error)) { | 
|  | /* | 
|  | * Only the context which have set SWAP_HAS_CACHE flag | 
|  | * would call add_to_swap_cache(). | 
|  | * So add_to_swap_cache() doesn't returns -EEXIST. | 
|  | */ | 
|  | VM_BUG_ON(error == -EEXIST); | 
|  | set_page_private(page, 0UL); | 
|  | ClearPageSwapCache(page); | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  |  | 
|  | int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | error = radix_tree_maybe_preload(gfp_mask); | 
|  | if (!error) { | 
|  | error = __add_to_swap_cache(page, entry); | 
|  | radix_tree_preload_end(); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This must be called only on pages that have | 
|  | * been verified to be in the swap cache. | 
|  | */ | 
|  | void __delete_from_swap_cache(struct page *page) | 
|  | { | 
|  | swp_entry_t entry; | 
|  | struct address_space *address_space; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | VM_BUG_ON_PAGE(!PageSwapCache(page), page); | 
|  | VM_BUG_ON_PAGE(PageWriteback(page), page); | 
|  |  | 
|  | entry.val = page_private(page); | 
|  | address_space = swap_address_space(entry); | 
|  | radix_tree_delete(&address_space->page_tree, swp_offset(entry)); | 
|  | set_page_private(page, 0); | 
|  | ClearPageSwapCache(page); | 
|  | address_space->nrpages--; | 
|  | __dec_node_page_state(page, NR_FILE_PAGES); | 
|  | INC_CACHE_INFO(del_total); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * add_to_swap - allocate swap space for a page | 
|  | * @page: page we want to move to swap | 
|  | * | 
|  | * Allocate swap space for the page and add the page to the | 
|  | * swap cache.  Caller needs to hold the page lock. | 
|  | */ | 
|  | int add_to_swap(struct page *page, struct list_head *list) | 
|  | { | 
|  | swp_entry_t entry; | 
|  | int err; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | VM_BUG_ON_PAGE(!PageUptodate(page), page); | 
|  |  | 
|  | entry = get_swap_page(); | 
|  | if (!entry.val) | 
|  | return 0; | 
|  |  | 
|  | if (mem_cgroup_try_charge_swap(page, entry)) { | 
|  | swapcache_free(entry); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (unlikely(PageTransHuge(page))) | 
|  | if (unlikely(split_huge_page_to_list(page, list))) { | 
|  | swapcache_free(entry); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Radix-tree node allocations from PF_MEMALLOC contexts could | 
|  | * completely exhaust the page allocator. __GFP_NOMEMALLOC | 
|  | * stops emergency reserves from being allocated. | 
|  | * | 
|  | * TODO: this could cause a theoretical memory reclaim | 
|  | * deadlock in the swap out path. | 
|  | */ | 
|  | /* | 
|  | * Add it to the swap cache. | 
|  | */ | 
|  | err = add_to_swap_cache(page, entry, | 
|  | __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); | 
|  |  | 
|  | if (!err) { | 
|  | return 1; | 
|  | } else {	/* -ENOMEM radix-tree allocation failure */ | 
|  | /* | 
|  | * add_to_swap_cache() doesn't return -EEXIST, so we can safely | 
|  | * clear SWAP_HAS_CACHE flag. | 
|  | */ | 
|  | swapcache_free(entry); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This must be called only on pages that have | 
|  | * been verified to be in the swap cache and locked. | 
|  | * It will never put the page into the free list, | 
|  | * the caller has a reference on the page. | 
|  | */ | 
|  | void delete_from_swap_cache(struct page *page) | 
|  | { | 
|  | swp_entry_t entry; | 
|  | struct address_space *address_space; | 
|  |  | 
|  | entry.val = page_private(page); | 
|  |  | 
|  | address_space = swap_address_space(entry); | 
|  | spin_lock_irq(&address_space->tree_lock); | 
|  | __delete_from_swap_cache(page); | 
|  | spin_unlock_irq(&address_space->tree_lock); | 
|  |  | 
|  | swapcache_free(entry); | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are the only user, then try to free up the swap cache. | 
|  | * | 
|  | * Its ok to check for PageSwapCache without the page lock | 
|  | * here because we are going to recheck again inside | 
|  | * try_to_free_swap() _with_ the lock. | 
|  | * 					- Marcelo | 
|  | */ | 
|  | static inline void free_swap_cache(struct page *page) | 
|  | { | 
|  | if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { | 
|  | try_to_free_swap(page); | 
|  | unlock_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform a free_page(), also freeing any swap cache associated with | 
|  | * this page if it is the last user of the page. | 
|  | */ | 
|  | void free_page_and_swap_cache(struct page *page) | 
|  | { | 
|  | free_swap_cache(page); | 
|  | if (!is_huge_zero_page(page)) | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Passed an array of pages, drop them all from swapcache and then release | 
|  | * them.  They are removed from the LRU and freed if this is their last use. | 
|  | */ | 
|  | void free_pages_and_swap_cache(struct page **pages, int nr) | 
|  | { | 
|  | struct page **pagep = pages; | 
|  | int i; | 
|  |  | 
|  | lru_add_drain(); | 
|  | for (i = 0; i < nr; i++) | 
|  | free_swap_cache(pagep[i]); | 
|  | release_pages(pagep, nr, false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookup a swap entry in the swap cache. A found page will be returned | 
|  | * unlocked and with its refcount incremented - we rely on the kernel | 
|  | * lock getting page table operations atomic even if we drop the page | 
|  | * lock before returning. | 
|  | */ | 
|  | struct page * lookup_swap_cache(swp_entry_t entry) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | page = find_get_page(swap_address_space(entry), swp_offset(entry)); | 
|  |  | 
|  | if (page) { | 
|  | INC_CACHE_INFO(find_success); | 
|  | if (TestClearPageReadahead(page)) | 
|  | atomic_inc(&swapin_readahead_hits); | 
|  | } | 
|  |  | 
|  | INC_CACHE_INFO(find_total); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | 
|  | struct vm_area_struct *vma, unsigned long addr, | 
|  | bool *new_page_allocated) | 
|  | { | 
|  | struct page *found_page, *new_page = NULL; | 
|  | struct address_space *swapper_space = swap_address_space(entry); | 
|  | int err; | 
|  | *new_page_allocated = false; | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * First check the swap cache.  Since this is normally | 
|  | * called after lookup_swap_cache() failed, re-calling | 
|  | * that would confuse statistics. | 
|  | */ | 
|  | found_page = find_get_page(swapper_space, swp_offset(entry)); | 
|  | if (found_page) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Just skip read ahead for unused swap slot. | 
|  | * During swap_off when swap_slot_cache is disabled, | 
|  | * we have to handle the race between putting | 
|  | * swap entry in swap cache and marking swap slot | 
|  | * as SWAP_HAS_CACHE.  That's done in later part of code or | 
|  | * else swap_off will be aborted if we return NULL. | 
|  | */ | 
|  | if (!__swp_swapcount(entry) && swap_slot_cache_enabled) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Get a new page to read into from swap. | 
|  | */ | 
|  | if (!new_page) { | 
|  | new_page = alloc_page_vma(gfp_mask, vma, addr); | 
|  | if (!new_page) | 
|  | break;		/* Out of memory */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * call radix_tree_preload() while we can wait. | 
|  | */ | 
|  | err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL); | 
|  | if (err) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Swap entry may have been freed since our caller observed it. | 
|  | */ | 
|  | err = swapcache_prepare(entry); | 
|  | if (err == -EEXIST) { | 
|  | radix_tree_preload_end(); | 
|  | /* | 
|  | * We might race against get_swap_page() and stumble | 
|  | * across a SWAP_HAS_CACHE swap_map entry whose page | 
|  | * has not been brought into the swapcache yet. | 
|  | */ | 
|  | cond_resched(); | 
|  | continue; | 
|  | } | 
|  | if (err) {		/* swp entry is obsolete ? */ | 
|  | radix_tree_preload_end(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* May fail (-ENOMEM) if radix-tree node allocation failed. */ | 
|  | __SetPageLocked(new_page); | 
|  | __SetPageSwapBacked(new_page); | 
|  | err = __add_to_swap_cache(new_page, entry); | 
|  | if (likely(!err)) { | 
|  | radix_tree_preload_end(); | 
|  | /* | 
|  | * Initiate read into locked page and return. | 
|  | */ | 
|  | lru_cache_add_anon(new_page); | 
|  | *new_page_allocated = true; | 
|  | return new_page; | 
|  | } | 
|  | radix_tree_preload_end(); | 
|  | __ClearPageLocked(new_page); | 
|  | /* | 
|  | * add_to_swap_cache() doesn't return -EEXIST, so we can safely | 
|  | * clear SWAP_HAS_CACHE flag. | 
|  | */ | 
|  | swapcache_free(entry); | 
|  | } while (err != -ENOMEM); | 
|  |  | 
|  | if (new_page) | 
|  | put_page(new_page); | 
|  | return found_page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Locate a page of swap in physical memory, reserving swap cache space | 
|  | * and reading the disk if it is not already cached. | 
|  | * A failure return means that either the page allocation failed or that | 
|  | * the swap entry is no longer in use. | 
|  | */ | 
|  | struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | bool page_was_allocated; | 
|  | struct page *retpage = __read_swap_cache_async(entry, gfp_mask, | 
|  | vma, addr, &page_was_allocated); | 
|  |  | 
|  | if (page_was_allocated) | 
|  | swap_readpage(retpage); | 
|  |  | 
|  | return retpage; | 
|  | } | 
|  |  | 
|  | static unsigned long swapin_nr_pages(unsigned long offset) | 
|  | { | 
|  | static unsigned long prev_offset; | 
|  | unsigned int pages, max_pages, last_ra; | 
|  | static atomic_t last_readahead_pages; | 
|  |  | 
|  | max_pages = 1 << READ_ONCE(page_cluster); | 
|  | if (max_pages <= 1) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * This heuristic has been found to work well on both sequential and | 
|  | * random loads, swapping to hard disk or to SSD: please don't ask | 
|  | * what the "+ 2" means, it just happens to work well, that's all. | 
|  | */ | 
|  | pages = atomic_xchg(&swapin_readahead_hits, 0) + 2; | 
|  | if (pages == 2) { | 
|  | /* | 
|  | * We can have no readahead hits to judge by: but must not get | 
|  | * stuck here forever, so check for an adjacent offset instead | 
|  | * (and don't even bother to check whether swap type is same). | 
|  | */ | 
|  | if (offset != prev_offset + 1 && offset != prev_offset - 1) | 
|  | pages = 1; | 
|  | prev_offset = offset; | 
|  | } else { | 
|  | unsigned int roundup = 4; | 
|  | while (roundup < pages) | 
|  | roundup <<= 1; | 
|  | pages = roundup; | 
|  | } | 
|  |  | 
|  | if (pages > max_pages) | 
|  | pages = max_pages; | 
|  |  | 
|  | /* Don't shrink readahead too fast */ | 
|  | last_ra = atomic_read(&last_readahead_pages) / 2; | 
|  | if (pages < last_ra) | 
|  | pages = last_ra; | 
|  | atomic_set(&last_readahead_pages, pages); | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * swapin_readahead - swap in pages in hope we need them soon | 
|  | * @entry: swap entry of this memory | 
|  | * @gfp_mask: memory allocation flags | 
|  | * @vma: user vma this address belongs to | 
|  | * @addr: target address for mempolicy | 
|  | * | 
|  | * Returns the struct page for entry and addr, after queueing swapin. | 
|  | * | 
|  | * Primitive swap readahead code. We simply read an aligned block of | 
|  | * (1 << page_cluster) entries in the swap area. This method is chosen | 
|  | * because it doesn't cost us any seek time.  We also make sure to queue | 
|  | * the 'original' request together with the readahead ones... | 
|  | * | 
|  | * This has been extended to use the NUMA policies from the mm triggering | 
|  | * the readahead. | 
|  | * | 
|  | * Caller must hold down_read on the vma->vm_mm if vma is not NULL. | 
|  | */ | 
|  | struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, | 
|  | struct vm_area_struct *vma, unsigned long addr) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long entry_offset = swp_offset(entry); | 
|  | unsigned long offset = entry_offset; | 
|  | unsigned long start_offset, end_offset; | 
|  | unsigned long mask; | 
|  | struct blk_plug plug; | 
|  |  | 
|  | mask = swapin_nr_pages(offset) - 1; | 
|  | if (!mask) | 
|  | goto skip; | 
|  |  | 
|  | /* Read a page_cluster sized and aligned cluster around offset. */ | 
|  | start_offset = offset & ~mask; | 
|  | end_offset = offset | mask; | 
|  | if (!start_offset)	/* First page is swap header. */ | 
|  | start_offset++; | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | for (offset = start_offset; offset <= end_offset ; offset++) { | 
|  | /* Ok, do the async read-ahead now */ | 
|  | page = read_swap_cache_async(swp_entry(swp_type(entry), offset), | 
|  | gfp_mask, vma, addr); | 
|  | if (!page) | 
|  | continue; | 
|  | if (offset != entry_offset) | 
|  | SetPageReadahead(page); | 
|  | put_page(page); | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  |  | 
|  | lru_add_drain();	/* Push any new pages onto the LRU now */ | 
|  | skip: | 
|  | return read_swap_cache_async(entry, gfp_mask, vma, addr); | 
|  | } | 
|  |  | 
|  | int init_swap_address_space(unsigned int type, unsigned long nr_pages) | 
|  | { | 
|  | struct address_space *spaces, *space; | 
|  | unsigned int i, nr; | 
|  |  | 
|  | nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); | 
|  | spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL); | 
|  | if (!spaces) | 
|  | return -ENOMEM; | 
|  | for (i = 0; i < nr; i++) { | 
|  | space = spaces + i; | 
|  | INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN); | 
|  | atomic_set(&space->i_mmap_writable, 0); | 
|  | space->a_ops = &swap_aops; | 
|  | /* swap cache doesn't use writeback related tags */ | 
|  | mapping_set_no_writeback_tags(space); | 
|  | spin_lock_init(&space->tree_lock); | 
|  | } | 
|  | nr_swapper_spaces[type] = nr; | 
|  | rcu_assign_pointer(swapper_spaces[type], spaces); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void exit_swap_address_space(unsigned int type) | 
|  | { | 
|  | struct address_space *spaces; | 
|  |  | 
|  | spaces = swapper_spaces[type]; | 
|  | nr_swapper_spaces[type] = 0; | 
|  | rcu_assign_pointer(swapper_spaces[type], NULL); | 
|  | synchronize_rcu(); | 
|  | kvfree(spaces); | 
|  | } |