|  | /* | 
|  | * PCI Virtual Channel support | 
|  | * | 
|  | * Copyright (C) 2013 Red Hat, Inc.  All rights reserved. | 
|  | *     Author: Alex Williamson <alex.williamson@redhat.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/device.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/pci_regs.h> | 
|  | #include <linux/types.h> | 
|  |  | 
|  | /** | 
|  | * pci_vc_save_restore_dwords - Save or restore a series of dwords | 
|  | * @dev: device | 
|  | * @pos: starting config space position | 
|  | * @buf: buffer to save to or restore from | 
|  | * @dwords: number of dwords to save/restore | 
|  | * @save: whether to save or restore | 
|  | */ | 
|  | static void pci_vc_save_restore_dwords(struct pci_dev *dev, int pos, | 
|  | u32 *buf, int dwords, bool save) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < dwords; i++, buf++) { | 
|  | if (save) | 
|  | pci_read_config_dword(dev, pos + (i * 4), buf); | 
|  | else | 
|  | pci_write_config_dword(dev, pos + (i * 4), *buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pci_vc_load_arb_table - load and wait for VC arbitration table | 
|  | * @dev: device | 
|  | * @pos: starting position of VC capability (VC/VC9/MFVC) | 
|  | * | 
|  | * Set Load VC Arbitration Table bit requesting hardware to apply the VC | 
|  | * Arbitration Table (previously loaded).  When the VC Arbitration Table | 
|  | * Status clears, hardware has latched the table into VC arbitration logic. | 
|  | */ | 
|  | static void pci_vc_load_arb_table(struct pci_dev *dev, int pos) | 
|  | { | 
|  | u16 ctrl; | 
|  |  | 
|  | pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL, &ctrl); | 
|  | pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL, | 
|  | ctrl | PCI_VC_PORT_CTRL_LOAD_TABLE); | 
|  | if (pci_wait_for_pending(dev, pos + PCI_VC_PORT_STATUS, | 
|  | PCI_VC_PORT_STATUS_TABLE)) | 
|  | return; | 
|  |  | 
|  | dev_err(&dev->dev, "VC arbitration table failed to load\n"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pci_vc_load_port_arb_table - Load and wait for VC port arbitration table | 
|  | * @dev: device | 
|  | * @pos: starting position of VC capability (VC/VC9/MFVC) | 
|  | * @res: VC resource number, ie. VCn (0-7) | 
|  | * | 
|  | * Set Load Port Arbitration Table bit requesting hardware to apply the Port | 
|  | * Arbitration Table (previously loaded).  When the Port Arbitration Table | 
|  | * Status clears, hardware has latched the table into port arbitration logic. | 
|  | */ | 
|  | static void pci_vc_load_port_arb_table(struct pci_dev *dev, int pos, int res) | 
|  | { | 
|  | int ctrl_pos, status_pos; | 
|  | u32 ctrl; | 
|  |  | 
|  | ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF); | 
|  | status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF); | 
|  |  | 
|  | pci_read_config_dword(dev, ctrl_pos, &ctrl); | 
|  | pci_write_config_dword(dev, ctrl_pos, | 
|  | ctrl | PCI_VC_RES_CTRL_LOAD_TABLE); | 
|  |  | 
|  | if (pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_TABLE)) | 
|  | return; | 
|  |  | 
|  | dev_err(&dev->dev, "VC%d port arbitration table failed to load\n", res); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pci_vc_enable - Enable virtual channel | 
|  | * @dev: device | 
|  | * @pos: starting position of VC capability (VC/VC9/MFVC) | 
|  | * @res: VC res number, ie. VCn (0-7) | 
|  | * | 
|  | * A VC is enabled by setting the enable bit in matching resource control | 
|  | * registers on both sides of a link.  We therefore need to find the opposite | 
|  | * end of the link.  To keep this simple we enable from the downstream device. | 
|  | * RC devices do not have an upstream device, nor does it seem that VC9 do | 
|  | * (spec is unclear).  Once we find the upstream device, match the VC ID to | 
|  | * get the correct resource, disable and enable on both ends. | 
|  | */ | 
|  | static void pci_vc_enable(struct pci_dev *dev, int pos, int res) | 
|  | { | 
|  | int ctrl_pos, status_pos, id, pos2, evcc, i, ctrl_pos2, status_pos2; | 
|  | u32 ctrl, header, cap1, ctrl2; | 
|  | struct pci_dev *link = NULL; | 
|  |  | 
|  | /* Enable VCs from the downstream device */ | 
|  | if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT || | 
|  | pci_pcie_type(dev) == PCI_EXP_TYPE_DOWNSTREAM) | 
|  | return; | 
|  |  | 
|  | ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF); | 
|  | status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF); | 
|  |  | 
|  | pci_read_config_dword(dev, ctrl_pos, &ctrl); | 
|  | id = ctrl & PCI_VC_RES_CTRL_ID; | 
|  |  | 
|  | pci_read_config_dword(dev, pos, &header); | 
|  |  | 
|  | /* If there is no opposite end of the link, skip to enable */ | 
|  | if (PCI_EXT_CAP_ID(header) == PCI_EXT_CAP_ID_VC9 || | 
|  | pci_is_root_bus(dev->bus)) | 
|  | goto enable; | 
|  |  | 
|  | pos2 = pci_find_ext_capability(dev->bus->self, PCI_EXT_CAP_ID_VC); | 
|  | if (!pos2) | 
|  | goto enable; | 
|  |  | 
|  | pci_read_config_dword(dev->bus->self, pos2 + PCI_VC_PORT_CAP1, &cap1); | 
|  | evcc = cap1 & PCI_VC_CAP1_EVCC; | 
|  |  | 
|  | /* VC0 is hardwired enabled, so we can start with 1 */ | 
|  | for (i = 1; i < evcc + 1; i++) { | 
|  | ctrl_pos2 = pos2 + PCI_VC_RES_CTRL + | 
|  | (i * PCI_CAP_VC_PER_VC_SIZEOF); | 
|  | status_pos2 = pos2 + PCI_VC_RES_STATUS + | 
|  | (i * PCI_CAP_VC_PER_VC_SIZEOF); | 
|  | pci_read_config_dword(dev->bus->self, ctrl_pos2, &ctrl2); | 
|  | if ((ctrl2 & PCI_VC_RES_CTRL_ID) == id) { | 
|  | link = dev->bus->self; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!link) | 
|  | goto enable; | 
|  |  | 
|  | /* Disable if enabled */ | 
|  | if (ctrl2 & PCI_VC_RES_CTRL_ENABLE) { | 
|  | ctrl2 &= ~PCI_VC_RES_CTRL_ENABLE; | 
|  | pci_write_config_dword(link, ctrl_pos2, ctrl2); | 
|  | } | 
|  |  | 
|  | /* Enable on both ends */ | 
|  | ctrl2 |= PCI_VC_RES_CTRL_ENABLE; | 
|  | pci_write_config_dword(link, ctrl_pos2, ctrl2); | 
|  | enable: | 
|  | ctrl |= PCI_VC_RES_CTRL_ENABLE; | 
|  | pci_write_config_dword(dev, ctrl_pos, ctrl); | 
|  |  | 
|  | if (!pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_NEGO)) | 
|  | dev_err(&dev->dev, "VC%d negotiation stuck pending\n", id); | 
|  |  | 
|  | if (link && !pci_wait_for_pending(link, status_pos2, | 
|  | PCI_VC_RES_STATUS_NEGO)) | 
|  | dev_err(&link->dev, "VC%d negotiation stuck pending\n", id); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pci_vc_do_save_buffer - Size, save, or restore VC state | 
|  | * @dev: device | 
|  | * @pos: starting position of VC capability (VC/VC9/MFVC) | 
|  | * @save_state: buffer for save/restore | 
|  | * @name: for error message | 
|  | * @save: if provided a buffer, this indicates what to do with it | 
|  | * | 
|  | * Walking Virtual Channel config space to size, save, or restore it | 
|  | * is complicated, so we do it all from one function to reduce code and | 
|  | * guarantee ordering matches in the buffer.  When called with NULL | 
|  | * @save_state, return the size of the necessary save buffer.  When called | 
|  | * with a non-NULL @save_state, @save determines whether we save to the | 
|  | * buffer or restore from it. | 
|  | */ | 
|  | static int pci_vc_do_save_buffer(struct pci_dev *dev, int pos, | 
|  | struct pci_cap_saved_state *save_state, | 
|  | bool save) | 
|  | { | 
|  | u32 cap1; | 
|  | char evcc, lpevcc, parb_size; | 
|  | int i, len = 0; | 
|  | u8 *buf = save_state ? (u8 *)save_state->cap.data : NULL; | 
|  |  | 
|  | /* Sanity check buffer size for save/restore */ | 
|  | if (buf && save_state->cap.size != | 
|  | pci_vc_do_save_buffer(dev, pos, NULL, save)) { | 
|  | dev_err(&dev->dev, | 
|  | "VC save buffer size does not match @0x%x\n", pos); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP1, &cap1); | 
|  | /* Extended VC Count (not counting VC0) */ | 
|  | evcc = cap1 & PCI_VC_CAP1_EVCC; | 
|  | /* Low Priority Extended VC Count (not counting VC0) */ | 
|  | lpevcc = (cap1 & PCI_VC_CAP1_LPEVCC) >> 4; | 
|  | /* Port Arbitration Table Entry Size (bits) */ | 
|  | parb_size = 1 << ((cap1 & PCI_VC_CAP1_ARB_SIZE) >> 10); | 
|  |  | 
|  | /* | 
|  | * Port VC Control Register contains VC Arbitration Select, which | 
|  | * cannot be modified when more than one LPVC is in operation.  We | 
|  | * therefore save/restore it first, as only VC0 should be enabled | 
|  | * after device reset. | 
|  | */ | 
|  | if (buf) { | 
|  | if (save) | 
|  | pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL, | 
|  | (u16 *)buf); | 
|  | else | 
|  | pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL, | 
|  | *(u16 *)buf); | 
|  | buf += 2; | 
|  | } | 
|  | len += 2; | 
|  |  | 
|  | /* | 
|  | * If we have any Low Priority VCs and a VC Arbitration Table Offset | 
|  | * in Port VC Capability Register 2 then save/restore it next. | 
|  | */ | 
|  | if (lpevcc) { | 
|  | u32 cap2; | 
|  | int vcarb_offset; | 
|  |  | 
|  | pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP2, &cap2); | 
|  | vcarb_offset = ((cap2 & PCI_VC_CAP2_ARB_OFF) >> 24) * 16; | 
|  |  | 
|  | if (vcarb_offset) { | 
|  | int size, vcarb_phases = 0; | 
|  |  | 
|  | if (cap2 & PCI_VC_CAP2_128_PHASE) | 
|  | vcarb_phases = 128; | 
|  | else if (cap2 & PCI_VC_CAP2_64_PHASE) | 
|  | vcarb_phases = 64; | 
|  | else if (cap2 & PCI_VC_CAP2_32_PHASE) | 
|  | vcarb_phases = 32; | 
|  |  | 
|  | /* Fixed 4 bits per phase per lpevcc (plus VC0) */ | 
|  | size = ((lpevcc + 1) * vcarb_phases * 4) / 8; | 
|  |  | 
|  | if (size && buf) { | 
|  | pci_vc_save_restore_dwords(dev, | 
|  | pos + vcarb_offset, | 
|  | (u32 *)buf, | 
|  | size / 4, save); | 
|  | /* | 
|  | * On restore, we need to signal hardware to | 
|  | * re-load the VC Arbitration Table. | 
|  | */ | 
|  | if (!save) | 
|  | pci_vc_load_arb_table(dev, pos); | 
|  |  | 
|  | buf += size; | 
|  | } | 
|  | len += size; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In addition to each VC Resource Control Register, we may have a | 
|  | * Port Arbitration Table attached to each VC.  The Port Arbitration | 
|  | * Table Offset in each VC Resource Capability Register tells us if | 
|  | * it exists.  The entry size is global from the Port VC Capability | 
|  | * Register1 above.  The number of phases is determined per VC. | 
|  | */ | 
|  | for (i = 0; i < evcc + 1; i++) { | 
|  | u32 cap; | 
|  | int parb_offset; | 
|  |  | 
|  | pci_read_config_dword(dev, pos + PCI_VC_RES_CAP + | 
|  | (i * PCI_CAP_VC_PER_VC_SIZEOF), &cap); | 
|  | parb_offset = ((cap & PCI_VC_RES_CAP_ARB_OFF) >> 24) * 16; | 
|  | if (parb_offset) { | 
|  | int size, parb_phases = 0; | 
|  |  | 
|  | if (cap & PCI_VC_RES_CAP_256_PHASE) | 
|  | parb_phases = 256; | 
|  | else if (cap & (PCI_VC_RES_CAP_128_PHASE | | 
|  | PCI_VC_RES_CAP_128_PHASE_TB)) | 
|  | parb_phases = 128; | 
|  | else if (cap & PCI_VC_RES_CAP_64_PHASE) | 
|  | parb_phases = 64; | 
|  | else if (cap & PCI_VC_RES_CAP_32_PHASE) | 
|  | parb_phases = 32; | 
|  |  | 
|  | size = (parb_size * parb_phases) / 8; | 
|  |  | 
|  | if (size && buf) { | 
|  | pci_vc_save_restore_dwords(dev, | 
|  | pos + parb_offset, | 
|  | (u32 *)buf, | 
|  | size / 4, save); | 
|  | buf += size; | 
|  | } | 
|  | len += size; | 
|  | } | 
|  |  | 
|  | /* VC Resource Control Register */ | 
|  | if (buf) { | 
|  | int ctrl_pos = pos + PCI_VC_RES_CTRL + | 
|  | (i * PCI_CAP_VC_PER_VC_SIZEOF); | 
|  | if (save) | 
|  | pci_read_config_dword(dev, ctrl_pos, | 
|  | (u32 *)buf); | 
|  | else { | 
|  | u32 tmp, ctrl = *(u32 *)buf; | 
|  | /* | 
|  | * For an FLR case, the VC config may remain. | 
|  | * Preserve enable bit, restore the rest. | 
|  | */ | 
|  | pci_read_config_dword(dev, ctrl_pos, &tmp); | 
|  | tmp &= PCI_VC_RES_CTRL_ENABLE; | 
|  | tmp |= ctrl & ~PCI_VC_RES_CTRL_ENABLE; | 
|  | pci_write_config_dword(dev, ctrl_pos, tmp); | 
|  | /* Load port arbitration table if used */ | 
|  | if (ctrl & PCI_VC_RES_CTRL_ARB_SELECT) | 
|  | pci_vc_load_port_arb_table(dev, pos, i); | 
|  | /* Re-enable if needed */ | 
|  | if ((ctrl ^ tmp) & PCI_VC_RES_CTRL_ENABLE) | 
|  | pci_vc_enable(dev, pos, i); | 
|  | } | 
|  | buf += 4; | 
|  | } | 
|  | len += 4; | 
|  | } | 
|  |  | 
|  | return buf ? 0 : len; | 
|  | } | 
|  |  | 
|  | static struct { | 
|  | u16 id; | 
|  | const char *name; | 
|  | } vc_caps[] = { { PCI_EXT_CAP_ID_MFVC, "MFVC" }, | 
|  | { PCI_EXT_CAP_ID_VC, "VC" }, | 
|  | { PCI_EXT_CAP_ID_VC9, "VC9" } }; | 
|  |  | 
|  | /** | 
|  | * pci_save_vc_state - Save VC state to pre-allocate save buffer | 
|  | * @dev: device | 
|  | * | 
|  | * For each type of VC capability, VC/VC9/MFVC, find the capability and | 
|  | * save it to the pre-allocated save buffer. | 
|  | */ | 
|  | int pci_save_vc_state(struct pci_dev *dev) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(vc_caps); i++) { | 
|  | int pos, ret; | 
|  | struct pci_cap_saved_state *save_state; | 
|  |  | 
|  | pos = pci_find_ext_capability(dev, vc_caps[i].id); | 
|  | if (!pos) | 
|  | continue; | 
|  |  | 
|  | save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id); | 
|  | if (!save_state) { | 
|  | dev_err(&dev->dev, "%s buffer not found in %s\n", | 
|  | vc_caps[i].name, __func__); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ret = pci_vc_do_save_buffer(dev, pos, save_state, true); | 
|  | if (ret) { | 
|  | dev_err(&dev->dev, "%s save unsuccessful %s\n", | 
|  | vc_caps[i].name, __func__); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pci_restore_vc_state - Restore VC state from save buffer | 
|  | * @dev: device | 
|  | * | 
|  | * For each type of VC capability, VC/VC9/MFVC, find the capability and | 
|  | * restore it from the previously saved buffer. | 
|  | */ | 
|  | void pci_restore_vc_state(struct pci_dev *dev) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(vc_caps); i++) { | 
|  | int pos; | 
|  | struct pci_cap_saved_state *save_state; | 
|  |  | 
|  | pos = pci_find_ext_capability(dev, vc_caps[i].id); | 
|  | save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id); | 
|  | if (!save_state || !pos) | 
|  | continue; | 
|  |  | 
|  | pci_vc_do_save_buffer(dev, pos, save_state, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pci_allocate_vc_save_buffers - Allocate save buffers for VC caps | 
|  | * @dev: device | 
|  | * | 
|  | * For each type of VC capability, VC/VC9/MFVC, find the capability, size | 
|  | * it, and allocate a buffer for save/restore. | 
|  | */ | 
|  |  | 
|  | void pci_allocate_vc_save_buffers(struct pci_dev *dev) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(vc_caps); i++) { | 
|  | int len, pos = pci_find_ext_capability(dev, vc_caps[i].id); | 
|  |  | 
|  | if (!pos) | 
|  | continue; | 
|  |  | 
|  | len = pci_vc_do_save_buffer(dev, pos, NULL, false); | 
|  | if (pci_add_ext_cap_save_buffer(dev, vc_caps[i].id, len)) | 
|  | dev_err(&dev->dev, | 
|  | "unable to preallocate %s save buffer\n", | 
|  | vc_caps[i].name); | 
|  | } | 
|  | } |