| // SPDX-License-Identifier: GPL-2.0+ | 
 | /* | 
 |  * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3 | 
 |  *                  I2C RTC / Alarm chip | 
 |  * | 
 |  * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org> | 
 |  * | 
 |  * Detailed datasheet of the chip is available here: | 
 |  * | 
 |  *  https://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf | 
 |  * | 
 |  * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c). | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/rtc.h> | 
 | #include <linux/i2c.h> | 
 | #include <linux/bcd.h> | 
 | #include <linux/of.h> | 
 | #include <linux/regmap.h> | 
 | #include <linux/interrupt.h> | 
 |  | 
 | #define DRV_NAME "rtc-ab-b5ze-s3" | 
 |  | 
 | /* Control section */ | 
 | #define ABB5ZES3_REG_CTRL1	   0x00	   /* Control 1 register */ | 
 | #define ABB5ZES3_REG_CTRL1_CIE	   BIT(0)  /* Pulse interrupt enable */ | 
 | #define ABB5ZES3_REG_CTRL1_AIE	   BIT(1)  /* Alarm interrupt enable */ | 
 | #define ABB5ZES3_REG_CTRL1_SIE	   BIT(2)  /* Second interrupt enable */ | 
 | #define ABB5ZES3_REG_CTRL1_PM	   BIT(3)  /* 24h/12h mode */ | 
 | #define ABB5ZES3_REG_CTRL1_SR	   BIT(4)  /* Software reset */ | 
 | #define ABB5ZES3_REG_CTRL1_STOP	   BIT(5)  /* RTC circuit enable */ | 
 | #define ABB5ZES3_REG_CTRL1_CAP	   BIT(7) | 
 |  | 
 | #define ABB5ZES3_REG_CTRL2	   0x01	   /* Control 2 register */ | 
 | #define ABB5ZES3_REG_CTRL2_CTBIE   BIT(0)  /* Countdown timer B int. enable */ | 
 | #define ABB5ZES3_REG_CTRL2_CTAIE   BIT(1)  /* Countdown timer A int. enable */ | 
 | #define ABB5ZES3_REG_CTRL2_WTAIE   BIT(2)  /* Watchdog timer A int. enable */ | 
 | #define ABB5ZES3_REG_CTRL2_AF	   BIT(3)  /* Alarm interrupt status */ | 
 | #define ABB5ZES3_REG_CTRL2_SF	   BIT(4)  /* Second interrupt status */ | 
 | #define ABB5ZES3_REG_CTRL2_CTBF	   BIT(5)  /* Countdown timer B int. status */ | 
 | #define ABB5ZES3_REG_CTRL2_CTAF	   BIT(6)  /* Countdown timer A int. status */ | 
 | #define ABB5ZES3_REG_CTRL2_WTAF	   BIT(7)  /* Watchdog timer A int. status */ | 
 |  | 
 | #define ABB5ZES3_REG_CTRL3	   0x02	   /* Control 3 register */ | 
 | #define ABB5ZES3_REG_CTRL3_PM2	   BIT(7)  /* Power Management bit 2 */ | 
 | #define ABB5ZES3_REG_CTRL3_PM1	   BIT(6)  /* Power Management bit 1 */ | 
 | #define ABB5ZES3_REG_CTRL3_PM0	   BIT(5)  /* Power Management bit 0 */ | 
 | #define ABB5ZES3_REG_CTRL3_BSF	   BIT(3)  /* Battery switchover int. status */ | 
 | #define ABB5ZES3_REG_CTRL3_BLF	   BIT(2)  /* Battery low int. status */ | 
 | #define ABB5ZES3_REG_CTRL3_BSIE	   BIT(1)  /* Battery switchover int. enable */ | 
 | #define ABB5ZES3_REG_CTRL3_BLIE	   BIT(0)  /* Battery low int. enable */ | 
 |  | 
 | #define ABB5ZES3_CTRL_SEC_LEN	   3 | 
 |  | 
 | /* RTC section */ | 
 | #define ABB5ZES3_REG_RTC_SC	   0x03	   /* RTC Seconds register */ | 
 | #define ABB5ZES3_REG_RTC_SC_OSC	   BIT(7)  /* Clock integrity status */ | 
 | #define ABB5ZES3_REG_RTC_MN	   0x04	   /* RTC Minutes register */ | 
 | #define ABB5ZES3_REG_RTC_HR	   0x05	   /* RTC Hours register */ | 
 | #define ABB5ZES3_REG_RTC_HR_PM	   BIT(5)  /* RTC Hours PM bit */ | 
 | #define ABB5ZES3_REG_RTC_DT	   0x06	   /* RTC Date register */ | 
 | #define ABB5ZES3_REG_RTC_DW	   0x07	   /* RTC Day of the week register */ | 
 | #define ABB5ZES3_REG_RTC_MO	   0x08	   /* RTC Month register */ | 
 | #define ABB5ZES3_REG_RTC_YR	   0x09	   /* RTC Year register */ | 
 |  | 
 | #define ABB5ZES3_RTC_SEC_LEN	   7 | 
 |  | 
 | /* Alarm section (enable bits are all active low) */ | 
 | #define ABB5ZES3_REG_ALRM_MN	   0x0A	   /* Alarm - minute register */ | 
 | #define ABB5ZES3_REG_ALRM_MN_AE	   BIT(7)  /* Minute enable */ | 
 | #define ABB5ZES3_REG_ALRM_HR	   0x0B	   /* Alarm - hours register */ | 
 | #define ABB5ZES3_REG_ALRM_HR_AE	   BIT(7)  /* Hour enable */ | 
 | #define ABB5ZES3_REG_ALRM_DT	   0x0C	   /* Alarm - date register */ | 
 | #define ABB5ZES3_REG_ALRM_DT_AE	   BIT(7)  /* Date (day of the month) enable */ | 
 | #define ABB5ZES3_REG_ALRM_DW	   0x0D	   /* Alarm - day of the week reg. */ | 
 | #define ABB5ZES3_REG_ALRM_DW_AE	   BIT(7)  /* Day of the week enable */ | 
 |  | 
 | #define ABB5ZES3_ALRM_SEC_LEN	   4 | 
 |  | 
 | /* Frequency offset section */ | 
 | #define ABB5ZES3_REG_FREQ_OF	   0x0E	   /* Frequency offset register */ | 
 | #define ABB5ZES3_REG_FREQ_OF_MODE  0x0E	   /* Offset mode: 2 hours / minute */ | 
 |  | 
 | /* CLOCKOUT section */ | 
 | #define ABB5ZES3_REG_TIM_CLK	   0x0F	   /* Timer & Clockout register */ | 
 | #define ABB5ZES3_REG_TIM_CLK_TAM   BIT(7)  /* Permanent/pulsed timer A/int. 2 */ | 
 | #define ABB5ZES3_REG_TIM_CLK_TBM   BIT(6)  /* Permanent/pulsed timer B */ | 
 | #define ABB5ZES3_REG_TIM_CLK_COF2  BIT(5)  /* Clkout Freq bit 2 */ | 
 | #define ABB5ZES3_REG_TIM_CLK_COF1  BIT(4)  /* Clkout Freq bit 1 */ | 
 | #define ABB5ZES3_REG_TIM_CLK_COF0  BIT(3)  /* Clkout Freq bit 0 */ | 
 | #define ABB5ZES3_REG_TIM_CLK_TAC1  BIT(2)  /* Timer A: - 01 : countdown */ | 
 | #define ABB5ZES3_REG_TIM_CLK_TAC0  BIT(1)  /*	       - 10 : timer	*/ | 
 | #define ABB5ZES3_REG_TIM_CLK_TBC   BIT(0)  /* Timer B enable */ | 
 |  | 
 | /* Timer A Section */ | 
 | #define ABB5ZES3_REG_TIMA_CLK	   0x10	   /* Timer A clock register */ | 
 | #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2)  /* Freq bit 2 */ | 
 | #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1)  /* Freq bit 1 */ | 
 | #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0)  /* Freq bit 0 */ | 
 | #define ABB5ZES3_REG_TIMA	   0x11	   /* Timer A register */ | 
 |  | 
 | #define ABB5ZES3_TIMA_SEC_LEN	   2 | 
 |  | 
 | /* Timer B Section */ | 
 | #define ABB5ZES3_REG_TIMB_CLK	   0x12	   /* Timer B clock register */ | 
 | #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6) | 
 | #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5) | 
 | #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4) | 
 | #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2) | 
 | #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1) | 
 | #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0) | 
 | #define ABB5ZES3_REG_TIMB	   0x13	   /* Timer B register */ | 
 | #define ABB5ZES3_TIMB_SEC_LEN	   2 | 
 |  | 
 | #define ABB5ZES3_MEM_MAP_LEN	   0x14 | 
 |  | 
 | struct abb5zes3_rtc_data { | 
 | 	struct rtc_device *rtc; | 
 | 	struct regmap *regmap; | 
 |  | 
 | 	int irq; | 
 |  | 
 | 	bool battery_low; | 
 | 	bool timer_alarm; /* current alarm is via timer A */ | 
 | }; | 
 |  | 
 | /* | 
 |  * Try and match register bits w/ fixed null values to see whether we | 
 |  * are dealing with an ABB5ZES3. | 
 |  */ | 
 | static int abb5zes3_i2c_validate_chip(struct regmap *regmap) | 
 | { | 
 | 	u8 regs[ABB5ZES3_MEM_MAP_LEN]; | 
 | 	static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00, | 
 | 						       0x80, 0xc0, 0xc0, 0xf8, | 
 | 						       0xe0, 0x00, 0x00, 0x40, | 
 | 						       0x40, 0x78, 0x00, 0x00, | 
 | 						       0xf8, 0x00, 0x88, 0x00 }; | 
 | 	int ret, i; | 
 |  | 
 | 	ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) { | 
 | 		if (regs[i] & mask[i]) /* check if bits are cleared */ | 
 | 			return -ENODEV; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Clear alarm status bit. */ | 
 | static int _abb5zes3_rtc_clear_alarm(struct device *dev) | 
 | { | 
 | 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
 | 	int ret; | 
 |  | 
 | 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, | 
 | 				 ABB5ZES3_REG_CTRL2_AF, 0); | 
 | 	if (ret) | 
 | 		dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Enable or disable alarm (i.e. alarm interrupt generation) */ | 
 | static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable) | 
 | { | 
 | 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
 | 	int ret; | 
 |  | 
 | 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1, | 
 | 				 ABB5ZES3_REG_CTRL1_AIE, | 
 | 				 enable ? ABB5ZES3_REG_CTRL1_AIE : 0); | 
 | 	if (ret) | 
 | 		dev_err(dev, "%s: writing alarm INT failed (%d)\n", | 
 | 			__func__, ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Enable or disable timer (watchdog timer A interrupt generation) */ | 
 | static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable) | 
 | { | 
 | 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
 | 	int ret; | 
 |  | 
 | 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, | 
 | 				 ABB5ZES3_REG_CTRL2_WTAIE, | 
 | 				 enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0); | 
 | 	if (ret) | 
 | 		dev_err(dev, "%s: writing timer INT failed (%d)\n", | 
 | 			__func__, ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Note: we only read, so regmap inner lock protection is sufficient, i.e. | 
 |  * we do not need driver's main lock protection. | 
 |  */ | 
 | static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm) | 
 | { | 
 | 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
 | 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * As we need to read CTRL1 register anyway to access 24/12h | 
 | 	 * mode bit, we do a single bulk read of both control and RTC | 
 | 	 * sections (they are consecutive). This also ease indexing | 
 | 	 * of register values after bulk read. | 
 | 	 */ | 
 | 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs, | 
 | 			       sizeof(regs)); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "%s: reading RTC time failed (%d)\n", | 
 | 			__func__, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* If clock integrity is not guaranteed, do not return a time value */ | 
 | 	if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) | 
 | 		return -ENODATA; | 
 |  | 
 | 	tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F); | 
 | 	tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]); | 
 |  | 
 | 	if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */ | 
 | 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f); | 
 | 		if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */ | 
 | 			tm->tm_hour += 12; | 
 | 	} else {						/* 24hr mode */ | 
 | 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]); | 
 | 	} | 
 |  | 
 | 	tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]); | 
 | 	tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]); | 
 | 	tm->tm_mon  = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */ | 
 | 	tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm) | 
 | { | 
 | 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
 | 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; | 
 | 	int ret; | 
 |  | 
 | 	regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */ | 
 | 	regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min); | 
 | 	regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */ | 
 | 	regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday); | 
 | 	regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday); | 
 | 	regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1); | 
 | 	regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100); | 
 |  | 
 | 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC, | 
 | 				regs + ABB5ZES3_REG_RTC_SC, | 
 | 				ABB5ZES3_RTC_SEC_LEN); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on | 
 |  * given number of seconds. | 
 |  */ | 
 | static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a) | 
 | { | 
 | 	*taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */ | 
 | 	*timer_a = secs; | 
 | } | 
 |  | 
 | /* | 
 |  * Return current number of seconds in Timer A. As we only use | 
 |  * timer A with a 1Hz freq, this is what we expect to have. | 
 |  */ | 
 | static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a) | 
 | { | 
 | 	if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */ | 
 | 		return -EINVAL; | 
 |  | 
 | 	*secs = timer_a; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Read alarm currently configured via a watchdog timer using timer A. This | 
 |  * is done by reading current RTC time and adding remaining timer time. | 
 |  */ | 
 | static int _abb5zes3_rtc_read_timer(struct device *dev, | 
 | 				    struct rtc_wkalrm *alarm) | 
 | { | 
 | 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
 | 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time; | 
 | 	u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1]; | 
 | 	unsigned long rtc_secs; | 
 | 	unsigned int reg; | 
 | 	u8 timer_secs; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Instead of doing two separate calls, because they are consecutive, | 
 | 	 * we grab both clockout register and Timer A section. The latter is | 
 | 	 * used to decide if timer A is enabled (as a watchdog timer). | 
 | 	 */ | 
 | 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs, | 
 | 			       ABB5ZES3_TIMA_SEC_LEN + 1); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "%s: reading Timer A section failed (%d)\n", | 
 | 			__func__, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* get current time ... */ | 
 | 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* ... convert to seconds ... */ | 
 | 	rtc_secs = rtc_tm_to_time64(&rtc_tm); | 
 |  | 
 | 	/* ... add remaining timer A time ... */ | 
 | 	ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* ... and convert back. */ | 
 | 	rtc_time64_to_tm(rtc_secs + timer_secs, alarm_tm); | 
 |  | 
 | 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, ®); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n", | 
 | 			__func__, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Read alarm currently configured via a RTC alarm registers. */ | 
 | static int _abb5zes3_rtc_read_alarm(struct device *dev, | 
 | 				    struct rtc_wkalrm *alarm) | 
 | { | 
 | 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
 | 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time; | 
 | 	unsigned long rtc_secs, alarm_secs; | 
 | 	u8 regs[ABB5ZES3_ALRM_SEC_LEN]; | 
 | 	unsigned int reg; | 
 | 	int ret; | 
 |  | 
 | 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, | 
 | 			       ABB5ZES3_ALRM_SEC_LEN); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "%s: reading alarm section failed (%d)\n", | 
 | 			__func__, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	alarm_tm->tm_sec  = 0; | 
 | 	alarm_tm->tm_min  = bcd2bin(regs[0] & 0x7f); | 
 | 	alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f); | 
 | 	alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f); | 
 | 	alarm_tm->tm_wday = -1; | 
 |  | 
 | 	/* | 
 | 	 * The alarm section does not store year/month. We use the ones in rtc | 
 | 	 * section as a basis and increment month and then year if needed to get | 
 | 	 * alarm after current time. | 
 | 	 */ | 
 | 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	alarm_tm->tm_year = rtc_tm.tm_year; | 
 | 	alarm_tm->tm_mon = rtc_tm.tm_mon; | 
 |  | 
 | 	rtc_secs = rtc_tm_to_time64(&rtc_tm); | 
 | 	alarm_secs = rtc_tm_to_time64(alarm_tm); | 
 |  | 
 | 	if (alarm_secs < rtc_secs) { | 
 | 		if (alarm_tm->tm_mon == 11) { | 
 | 			alarm_tm->tm_mon = 0; | 
 | 			alarm_tm->tm_year += 1; | 
 | 		} else { | 
 | 			alarm_tm->tm_mon += 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, ®); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n", | 
 | 			__func__, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * As the Alarm mechanism supported by the chip is only accurate to the | 
 |  * minute, we use the watchdog timer mechanism provided by timer A | 
 |  * (up to 256 seconds w/ a second accuracy) for low alarm values (below | 
 |  * 4 minutes). Otherwise, we use the common alarm mechanism provided | 
 |  * by the chip. In order for that to work, we keep track of currently | 
 |  * configured timer type via 'timer_alarm' flag in our private data | 
 |  * structure. | 
 |  */ | 
 | static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) | 
 | { | 
 | 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
 | 	int ret; | 
 |  | 
 | 	if (data->timer_alarm) | 
 | 		ret = _abb5zes3_rtc_read_timer(dev, alarm); | 
 | 	else | 
 | 		ret = _abb5zes3_rtc_read_alarm(dev, alarm); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Set alarm using chip alarm mechanism. It is only accurate to the | 
 |  * minute (not the second). The function expects alarm interrupt to | 
 |  * be disabled. | 
 |  */ | 
 | static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) | 
 | { | 
 | 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
 | 	struct rtc_time *alarm_tm = &alarm->time; | 
 | 	u8 regs[ABB5ZES3_ALRM_SEC_LEN]; | 
 | 	struct rtc_time rtc_tm; | 
 | 	int ret, enable = 1; | 
 |  | 
 | 	if (!alarm->enabled) { | 
 | 		enable = 0; | 
 | 	} else { | 
 | 		unsigned long rtc_secs, alarm_secs; | 
 |  | 
 | 		/* | 
 | 		 * Chip only support alarms up to one month in the future. Let's | 
 | 		 * return an error if we get something after that limit. | 
 | 		 * Comparison is done by incrementing rtc_tm month field by one | 
 | 		 * and checking alarm value is still below. | 
 | 		 */ | 
 | 		ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		if (rtc_tm.tm_mon == 11) { /* handle year wrapping */ | 
 | 			rtc_tm.tm_mon = 0; | 
 | 			rtc_tm.tm_year += 1; | 
 | 		} else { | 
 | 			rtc_tm.tm_mon += 1; | 
 | 		} | 
 |  | 
 | 		rtc_secs = rtc_tm_to_time64(&rtc_tm); | 
 | 		alarm_secs = rtc_tm_to_time64(alarm_tm); | 
 |  | 
 | 		if (alarm_secs > rtc_secs) { | 
 | 			dev_err(dev, "%s: alarm maximum is one month in the future (%d)\n", | 
 | 				__func__, ret); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Program all alarm registers but DW one. For each register, setting | 
 | 	 * MSB to 0 enables associated alarm. | 
 | 	 */ | 
 | 	regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f; | 
 | 	regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f; | 
 | 	regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f; | 
 | 	regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */ | 
 |  | 
 | 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, | 
 | 				ABB5ZES3_ALRM_SEC_LEN); | 
 | 	if (ret < 0) { | 
 | 		dev_err(dev, "%s: writing ALARM section failed (%d)\n", | 
 | 			__func__, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* Record currently configured alarm is not a timer */ | 
 | 	data->timer_alarm = 0; | 
 |  | 
 | 	/* Enable or disable alarm interrupt generation */ | 
 | 	return _abb5zes3_rtc_update_alarm(dev, enable); | 
 | } | 
 |  | 
 | /* | 
 |  * Set alarm using timer watchdog (via timer A) mechanism. The function expects | 
 |  * timer A interrupt to be disabled. | 
 |  */ | 
 | static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm, | 
 | 				   u8 secs) | 
 | { | 
 | 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
 | 	u8 regs[ABB5ZES3_TIMA_SEC_LEN]; | 
 | 	u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* Program given number of seconds to Timer A registers */ | 
 | 	sec_to_timer_a(secs, ®s[0], ®s[1]); | 
 | 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs, | 
 | 				ABB5ZES3_TIMA_SEC_LEN); | 
 | 	if (ret < 0) { | 
 | 		dev_err(dev, "%s: writing timer section failed\n", __func__); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* Configure Timer A as a watchdog timer */ | 
 | 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK, | 
 | 				 mask, ABB5ZES3_REG_TIM_CLK_TAC1); | 
 | 	if (ret) | 
 | 		dev_err(dev, "%s: failed to update timer\n", __func__); | 
 |  | 
 | 	/* Record currently configured alarm is a timer */ | 
 | 	data->timer_alarm = 1; | 
 |  | 
 | 	/* Enable or disable timer interrupt generation */ | 
 | 	return _abb5zes3_rtc_update_timer(dev, alarm->enabled); | 
 | } | 
 |  | 
 | /* | 
 |  * The chip has an alarm which is only accurate to the minute. In order to | 
 |  * handle alarms below that limit, we use the watchdog timer function of | 
 |  * timer A. More precisely, the timer method is used for alarms below 240 | 
 |  * seconds. | 
 |  */ | 
 | static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) | 
 | { | 
 | 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
 | 	struct rtc_time *alarm_tm = &alarm->time; | 
 | 	unsigned long rtc_secs, alarm_secs; | 
 | 	struct rtc_time rtc_tm; | 
 | 	int ret; | 
 |  | 
 | 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	rtc_secs = rtc_tm_to_time64(&rtc_tm); | 
 | 	alarm_secs = rtc_tm_to_time64(alarm_tm); | 
 |  | 
 | 	/* Let's first disable both the alarm and the timer interrupts */ | 
 | 	ret = _abb5zes3_rtc_update_alarm(dev, false); | 
 | 	if (ret < 0) { | 
 | 		dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__, | 
 | 			ret); | 
 | 		return ret; | 
 | 	} | 
 | 	ret = _abb5zes3_rtc_update_timer(dev, false); | 
 | 	if (ret < 0) { | 
 | 		dev_err(dev, "%s: unable to disable timer (%d)\n", __func__, | 
 | 			ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	data->timer_alarm = 0; | 
 |  | 
 | 	/* | 
 | 	 * Let's now configure the alarm; if we are expected to ring in | 
 | 	 * more than 240s, then we setup an alarm. Otherwise, a timer. | 
 | 	 */ | 
 | 	if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240)) | 
 | 		ret = _abb5zes3_rtc_set_timer(dev, alarm, | 
 | 					      alarm_secs - rtc_secs); | 
 | 	else | 
 | 		ret = _abb5zes3_rtc_set_alarm(dev, alarm); | 
 |  | 
 | 	if (ret) | 
 | 		dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__, | 
 | 			ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Enable or disable battery low irq generation */ | 
 | static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap, | 
 | 						       bool enable) | 
 | { | 
 | 	return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, | 
 | 				  ABB5ZES3_REG_CTRL3_BLIE, | 
 | 				  enable ? ABB5ZES3_REG_CTRL3_BLIE : 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Check current RTC status and enable/disable what needs to be. Return 0 if | 
 |  * everything went ok and a negative value upon error. | 
 |  */ | 
 | static int abb5zes3_rtc_check_setup(struct device *dev) | 
 | { | 
 | 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
 | 	struct regmap *regmap = data->regmap; | 
 | 	unsigned int reg; | 
 | 	int ret; | 
 | 	u8 mask; | 
 |  | 
 | 	/* | 
 | 	 * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It | 
 | 	 * is disabled here to prevent polluting the interrupt line and | 
 | 	 * uselessly triggering the IRQ handler we install for alarm and battery | 
 | 	 * low events. Note: this is done before clearing int. status below | 
 | 	 * in this function. | 
 | 	 * We also disable all timers and set timer interrupt to permanent (not | 
 | 	 * pulsed). | 
 | 	 */ | 
 | 	mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 | | 
 | 		ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 | | 
 | 		ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 | | 
 | 		ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM); | 
 | 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask, | 
 | 				 ABB5ZES3_REG_TIM_CLK_COF0 | | 
 | 				 ABB5ZES3_REG_TIM_CLK_COF1 | | 
 | 				 ABB5ZES3_REG_TIM_CLK_COF2); | 
 | 	if (ret < 0) { | 
 | 		dev_err(dev, "%s: unable to initialize clkout register (%d)\n", | 
 | 			__func__, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled | 
 | 	 * individually by clearing/setting MSB of each associated register. So, | 
 | 	 * we set all alarm enable bits to disable current alarm setting. | 
 | 	 */ | 
 | 	mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE | | 
 | 		ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE); | 
 | 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask); | 
 | 	if (ret < 0) { | 
 | 		dev_err(dev, "%s: unable to disable alarm setting (%d)\n", | 
 | 			__func__, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */ | 
 | 	mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE | | 
 | 		ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM | | 
 | 		ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP); | 
 | 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0); | 
 | 	if (ret < 0) { | 
 | 		dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n", | 
 | 			__func__, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set Control 2 register (timer int. disabled, alarm status cleared). | 
 | 	 * WTAF is read-only and cleared automatically by reading the register. | 
 | 	 */ | 
 | 	mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE | | 
 | 		ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF | | 
 | 		ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF | | 
 | 		ABB5ZES3_REG_CTRL2_CTAF); | 
 | 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0); | 
 | 	if (ret < 0) { | 
 | 		dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n", | 
 | 			__func__, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Enable battery low detection function and battery switchover function | 
 | 	 * (standard mode). Disable associated interrupts. Clear battery | 
 | 	 * switchover flag but not battery low flag. The latter is checked | 
 | 	 * later below. | 
 | 	 */ | 
 | 	mask = (ABB5ZES3_REG_CTRL3_PM0  | ABB5ZES3_REG_CTRL3_PM1 | | 
 | 		ABB5ZES3_REG_CTRL3_PM2  | ABB5ZES3_REG_CTRL3_BLIE | | 
 | 		ABB5ZES3_REG_CTRL3_BSIE | ABB5ZES3_REG_CTRL3_BSF); | 
 | 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0); | 
 | 	if (ret < 0) { | 
 | 		dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n", | 
 | 			__func__, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	/* Check oscillator integrity flag */ | 
 | 	ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, ®); | 
 | 	if (ret < 0) { | 
 | 		dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n", | 
 | 			__func__, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (reg & ABB5ZES3_REG_RTC_SC_OSC) { | 
 | 		dev_err(dev, "clock integrity not guaranteed. Osc. has stopped or has been interrupted.\n"); | 
 | 		dev_err(dev, "change battery (if not already done) and then set time to reset osc. failure flag.\n"); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check battery low flag at startup: this allows reporting battery | 
 | 	 * is low at startup when IRQ line is not connected. Note: we record | 
 | 	 * current status to avoid reenabling this interrupt later in probe | 
 | 	 * function if battery is low. | 
 | 	 */ | 
 | 	ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, ®); | 
 | 	if (ret < 0) { | 
 | 		dev_err(dev, "%s: unable to read battery low flag (%d)\n", | 
 | 			__func__, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF; | 
 | 	if (data->battery_low) { | 
 | 		dev_err(dev, "RTC battery is low; please, consider changing it!\n"); | 
 |  | 
 | 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false); | 
 | 		if (ret) | 
 | 			dev_err(dev, "%s: disabling battery low interrupt generation failed (%d)\n", | 
 | 				__func__, ret); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int abb5zes3_rtc_alarm_irq_enable(struct device *dev, | 
 | 					 unsigned int enable) | 
 | { | 
 | 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (rtc_data->irq) { | 
 | 		if (rtc_data->timer_alarm) | 
 | 			ret = _abb5zes3_rtc_update_timer(dev, enable); | 
 | 		else | 
 | 			ret = _abb5zes3_rtc_update_alarm(dev, enable); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data) | 
 | { | 
 | 	struct i2c_client *client = data; | 
 | 	struct device *dev = &client->dev; | 
 | 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); | 
 | 	struct rtc_device *rtc = rtc_data->rtc; | 
 | 	u8 regs[ABB5ZES3_CTRL_SEC_LEN]; | 
 | 	int ret, handled = IRQ_NONE; | 
 |  | 
 | 	ret = regmap_bulk_read(rtc_data->regmap, 0, regs, | 
 | 			       ABB5ZES3_CTRL_SEC_LEN); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "%s: unable to read control section (%d)!\n", | 
 | 			__func__, ret); | 
 | 		return handled; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check battery low detection flag and disable battery low interrupt | 
 | 	 * generation if flag is set (interrupt can only be cleared when | 
 | 	 * battery is replaced). | 
 | 	 */ | 
 | 	if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) { | 
 | 		dev_err(dev, "RTC battery is low; please change it!\n"); | 
 |  | 
 | 		_abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false); | 
 |  | 
 | 		handled = IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	/* Check alarm flag */ | 
 | 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) { | 
 | 		dev_dbg(dev, "RTC alarm!\n"); | 
 |  | 
 | 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); | 
 |  | 
 | 		/* Acknowledge and disable the alarm */ | 
 | 		_abb5zes3_rtc_clear_alarm(dev); | 
 | 		_abb5zes3_rtc_update_alarm(dev, 0); | 
 |  | 
 | 		handled = IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	/* Check watchdog Timer A flag */ | 
 | 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) { | 
 | 		dev_dbg(dev, "RTC timer!\n"); | 
 |  | 
 | 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); | 
 |  | 
 | 		/* | 
 | 		 * Acknowledge and disable the alarm. Note: WTAF | 
 | 		 * flag had been cleared when reading CTRL2 | 
 | 		 */ | 
 | 		_abb5zes3_rtc_update_timer(dev, 0); | 
 |  | 
 | 		rtc_data->timer_alarm = 0; | 
 |  | 
 | 		handled = IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	return handled; | 
 | } | 
 |  | 
 | static const struct rtc_class_ops rtc_ops = { | 
 | 	.read_time = _abb5zes3_rtc_read_time, | 
 | 	.set_time = abb5zes3_rtc_set_time, | 
 | 	.read_alarm = abb5zes3_rtc_read_alarm, | 
 | 	.set_alarm = abb5zes3_rtc_set_alarm, | 
 | 	.alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable, | 
 | }; | 
 |  | 
 | static const struct regmap_config abb5zes3_rtc_regmap_config = { | 
 | 	.reg_bits = 8, | 
 | 	.val_bits = 8, | 
 | }; | 
 |  | 
 | static int abb5zes3_probe(struct i2c_client *client) | 
 | { | 
 | 	struct abb5zes3_rtc_data *data = NULL; | 
 | 	struct device *dev = &client->dev; | 
 | 	struct regmap *regmap; | 
 | 	int ret; | 
 |  | 
 | 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C | | 
 | 				     I2C_FUNC_SMBUS_BYTE_DATA | | 
 | 				     I2C_FUNC_SMBUS_I2C_BLOCK)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config); | 
 | 	if (IS_ERR(regmap)) { | 
 | 		ret = PTR_ERR(regmap); | 
 | 		dev_err(dev, "%s: regmap allocation failed: %d\n", | 
 | 			__func__, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = abb5zes3_i2c_validate_chip(regmap); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); | 
 | 	if (!data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	data->regmap = regmap; | 
 | 	dev_set_drvdata(dev, data); | 
 |  | 
 | 	ret = abb5zes3_rtc_check_setup(dev); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	data->rtc = devm_rtc_allocate_device(dev); | 
 | 	ret = PTR_ERR_OR_ZERO(data->rtc); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "%s: unable to allocate RTC device (%d)\n", | 
 | 			__func__, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (client->irq > 0) { | 
 | 		ret = devm_request_threaded_irq(dev, client->irq, NULL, | 
 | 						_abb5zes3_rtc_interrupt, | 
 | 						IRQF_SHARED | IRQF_ONESHOT, | 
 | 						DRV_NAME, client); | 
 | 		if (!ret) { | 
 | 			device_init_wakeup(dev, true); | 
 | 			data->irq = client->irq; | 
 | 			dev_dbg(dev, "%s: irq %d used by RTC\n", __func__, | 
 | 				client->irq); | 
 | 		} else { | 
 | 			dev_err(dev, "%s: irq %d unavailable (%d)\n", | 
 | 				__func__, client->irq, ret); | 
 | 			goto err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	data->rtc->ops = &rtc_ops; | 
 | 	data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000; | 
 | 	data->rtc->range_max = RTC_TIMESTAMP_END_2099; | 
 |  | 
 | 	/* Enable battery low detection interrupt if battery not already low */ | 
 | 	if (!data->battery_low && data->irq) { | 
 | 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true); | 
 | 		if (ret) { | 
 | 			dev_err(dev, "%s: enabling battery low interrupt generation failed (%d)\n", | 
 | 				__func__, ret); | 
 | 			goto err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = devm_rtc_register_device(data->rtc); | 
 |  | 
 | err: | 
 | 	if (ret && data->irq) | 
 | 		device_init_wakeup(dev, false); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM_SLEEP | 
 | static int abb5zes3_rtc_suspend(struct device *dev) | 
 | { | 
 | 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); | 
 |  | 
 | 	if (device_may_wakeup(dev)) | 
 | 		return enable_irq_wake(rtc_data->irq); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int abb5zes3_rtc_resume(struct device *dev) | 
 | { | 
 | 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); | 
 |  | 
 | 	if (device_may_wakeup(dev)) | 
 | 		return disable_irq_wake(rtc_data->irq); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend, | 
 | 			 abb5zes3_rtc_resume); | 
 |  | 
 | #ifdef CONFIG_OF | 
 | static const struct of_device_id abb5zes3_dt_match[] = { | 
 | 	{ .compatible = "abracon,abb5zes3" }, | 
 | 	{ }, | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, abb5zes3_dt_match); | 
 | #endif | 
 |  | 
 | static const struct i2c_device_id abb5zes3_id[] = { | 
 | 	{ "abb5zes3" }, | 
 | 	{ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(i2c, abb5zes3_id); | 
 |  | 
 | static struct i2c_driver abb5zes3_driver = { | 
 | 	.driver = { | 
 | 		.name = DRV_NAME, | 
 | 		.pm = &abb5zes3_rtc_pm_ops, | 
 | 		.of_match_table = of_match_ptr(abb5zes3_dt_match), | 
 | 	}, | 
 | 	.probe = abb5zes3_probe, | 
 | 	.id_table = abb5zes3_id, | 
 | }; | 
 | module_i2c_driver(abb5zes3_driver); | 
 |  | 
 | MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>"); | 
 | MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver"); | 
 | MODULE_LICENSE("GPL"); |