| /* | 
 |  * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
 |  * All Rights Reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it would be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write the Free Software Foundation, | 
 |  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
 |  */ | 
 | #include "xfs.h" | 
 | #include "xfs_shared.h" | 
 | #include "xfs_format.h" | 
 | #include "xfs_log_format.h" | 
 | #include "xfs_trans_resv.h" | 
 | #include "xfs_mount.h" | 
 | #include "xfs_inode.h" | 
 | #include "xfs_trans.h" | 
 | #include "xfs_inode_item.h" | 
 | #include "xfs_alloc.h" | 
 | #include "xfs_error.h" | 
 | #include "xfs_iomap.h" | 
 | #include "xfs_trace.h" | 
 | #include "xfs_bmap.h" | 
 | #include "xfs_bmap_util.h" | 
 | #include "xfs_bmap_btree.h" | 
 | #include <linux/gfp.h> | 
 | #include <linux/mpage.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/writeback.h> | 
 |  | 
 | void | 
 | xfs_count_page_state( | 
 | 	struct page		*page, | 
 | 	int			*delalloc, | 
 | 	int			*unwritten) | 
 | { | 
 | 	struct buffer_head	*bh, *head; | 
 |  | 
 | 	*delalloc = *unwritten = 0; | 
 |  | 
 | 	bh = head = page_buffers(page); | 
 | 	do { | 
 | 		if (buffer_unwritten(bh)) | 
 | 			(*unwritten) = 1; | 
 | 		else if (buffer_delay(bh)) | 
 | 			(*delalloc) = 1; | 
 | 	} while ((bh = bh->b_this_page) != head); | 
 | } | 
 |  | 
 | STATIC struct block_device * | 
 | xfs_find_bdev_for_inode( | 
 | 	struct inode		*inode) | 
 | { | 
 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 |  | 
 | 	if (XFS_IS_REALTIME_INODE(ip)) | 
 | 		return mp->m_rtdev_targp->bt_bdev; | 
 | 	else | 
 | 		return mp->m_ddev_targp->bt_bdev; | 
 | } | 
 |  | 
 | /* | 
 |  * We're now finished for good with this ioend structure. | 
 |  * Update the page state via the associated buffer_heads, | 
 |  * release holds on the inode and bio, and finally free | 
 |  * up memory.  Do not use the ioend after this. | 
 |  */ | 
 | STATIC void | 
 | xfs_destroy_ioend( | 
 | 	xfs_ioend_t		*ioend) | 
 | { | 
 | 	struct buffer_head	*bh, *next; | 
 |  | 
 | 	for (bh = ioend->io_buffer_head; bh; bh = next) { | 
 | 		next = bh->b_private; | 
 | 		bh->b_end_io(bh, !ioend->io_error); | 
 | 	} | 
 |  | 
 | 	mempool_free(ioend, xfs_ioend_pool); | 
 | } | 
 |  | 
 | /* | 
 |  * Fast and loose check if this write could update the on-disk inode size. | 
 |  */ | 
 | static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) | 
 | { | 
 | 	return ioend->io_offset + ioend->io_size > | 
 | 		XFS_I(ioend->io_inode)->i_d.di_size; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_setfilesize_trans_alloc( | 
 | 	struct xfs_ioend	*ioend) | 
 | { | 
 | 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount; | 
 | 	struct xfs_trans	*tp; | 
 | 	int			error; | 
 |  | 
 | 	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); | 
 |  | 
 | 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0); | 
 | 	if (error) { | 
 | 		xfs_trans_cancel(tp); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	ioend->io_append_trans = tp; | 
 |  | 
 | 	/* | 
 | 	 * We may pass freeze protection with a transaction.  So tell lockdep | 
 | 	 * we released it. | 
 | 	 */ | 
 | 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); | 
 | 	/* | 
 | 	 * We hand off the transaction to the completion thread now, so | 
 | 	 * clear the flag here. | 
 | 	 */ | 
 | 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Update on-disk file size now that data has been written to disk. | 
 |  */ | 
 | STATIC int | 
 | xfs_setfilesize( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_trans	*tp, | 
 | 	xfs_off_t		offset, | 
 | 	size_t			size) | 
 | { | 
 | 	xfs_fsize_t		isize; | 
 |  | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	isize = xfs_new_eof(ip, offset + size); | 
 | 	if (!isize) { | 
 | 		xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 		xfs_trans_cancel(tp); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	trace_xfs_setfilesize(ip, offset, size); | 
 |  | 
 | 	ip->i_d.di_size = isize; | 
 | 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 |  | 
 | 	return xfs_trans_commit(tp); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_setfilesize_ioend( | 
 | 	struct xfs_ioend	*ioend) | 
 | { | 
 | 	struct xfs_inode	*ip = XFS_I(ioend->io_inode); | 
 | 	struct xfs_trans	*tp = ioend->io_append_trans; | 
 |  | 
 | 	/* | 
 | 	 * The transaction may have been allocated in the I/O submission thread, | 
 | 	 * thus we need to mark ourselves as being in a transaction manually. | 
 | 	 * Similarly for freeze protection. | 
 | 	 */ | 
 | 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); | 
 | 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); | 
 |  | 
 | 	/* we abort the update if there was an IO error */ | 
 | 	if (ioend->io_error) { | 
 | 		xfs_trans_cancel(tp); | 
 | 		return ioend->io_error; | 
 | 	} | 
 |  | 
 | 	return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); | 
 | } | 
 |  | 
 | /* | 
 |  * Schedule IO completion handling on the final put of an ioend. | 
 |  * | 
 |  * If there is no work to do we might as well call it a day and free the | 
 |  * ioend right now. | 
 |  */ | 
 | STATIC void | 
 | xfs_finish_ioend( | 
 | 	struct xfs_ioend	*ioend) | 
 | { | 
 | 	if (atomic_dec_and_test(&ioend->io_remaining)) { | 
 | 		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount; | 
 |  | 
 | 		if (ioend->io_type == XFS_IO_UNWRITTEN) | 
 | 			queue_work(mp->m_unwritten_workqueue, &ioend->io_work); | 
 | 		else if (ioend->io_append_trans) | 
 | 			queue_work(mp->m_data_workqueue, &ioend->io_work); | 
 | 		else | 
 | 			xfs_destroy_ioend(ioend); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * IO write completion. | 
 |  */ | 
 | STATIC void | 
 | xfs_end_io( | 
 | 	struct work_struct *work) | 
 | { | 
 | 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work); | 
 | 	struct xfs_inode *ip = XFS_I(ioend->io_inode); | 
 | 	int		error = 0; | 
 |  | 
 | 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { | 
 | 		ioend->io_error = -EIO; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For unwritten extents we need to issue transactions to convert a | 
 | 	 * range to normal written extens after the data I/O has finished. | 
 | 	 * Detecting and handling completion IO errors is done individually | 
 | 	 * for each case as different cleanup operations need to be performed | 
 | 	 * on error. | 
 | 	 */ | 
 | 	if (ioend->io_type == XFS_IO_UNWRITTEN) { | 
 | 		if (ioend->io_error) | 
 | 			goto done; | 
 | 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset, | 
 | 						  ioend->io_size); | 
 | 	} else if (ioend->io_append_trans) { | 
 | 		error = xfs_setfilesize_ioend(ioend); | 
 | 	} else { | 
 | 		ASSERT(!xfs_ioend_is_append(ioend)); | 
 | 	} | 
 |  | 
 | done: | 
 | 	if (error) | 
 | 		ioend->io_error = error; | 
 | 	xfs_destroy_ioend(ioend); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate and initialise an IO completion structure. | 
 |  * We need to track unwritten extent write completion here initially. | 
 |  * We'll need to extend this for updating the ondisk inode size later | 
 |  * (vs. incore size). | 
 |  */ | 
 | STATIC xfs_ioend_t * | 
 | xfs_alloc_ioend( | 
 | 	struct inode		*inode, | 
 | 	unsigned int		type) | 
 | { | 
 | 	xfs_ioend_t		*ioend; | 
 |  | 
 | 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); | 
 |  | 
 | 	/* | 
 | 	 * Set the count to 1 initially, which will prevent an I/O | 
 | 	 * completion callback from happening before we have started | 
 | 	 * all the I/O from calling the completion routine too early. | 
 | 	 */ | 
 | 	atomic_set(&ioend->io_remaining, 1); | 
 | 	ioend->io_error = 0; | 
 | 	ioend->io_list = NULL; | 
 | 	ioend->io_type = type; | 
 | 	ioend->io_inode = inode; | 
 | 	ioend->io_buffer_head = NULL; | 
 | 	ioend->io_buffer_tail = NULL; | 
 | 	ioend->io_offset = 0; | 
 | 	ioend->io_size = 0; | 
 | 	ioend->io_append_trans = NULL; | 
 |  | 
 | 	INIT_WORK(&ioend->io_work, xfs_end_io); | 
 | 	return ioend; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_map_blocks( | 
 | 	struct inode		*inode, | 
 | 	loff_t			offset, | 
 | 	struct xfs_bmbt_irec	*imap, | 
 | 	int			type, | 
 | 	int			nonblocking) | 
 | { | 
 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	ssize_t			count = 1 << inode->i_blkbits; | 
 | 	xfs_fileoff_t		offset_fsb, end_fsb; | 
 | 	int			error = 0; | 
 | 	int			bmapi_flags = XFS_BMAPI_ENTIRE; | 
 | 	int			nimaps = 1; | 
 |  | 
 | 	if (XFS_FORCED_SHUTDOWN(mp)) | 
 | 		return -EIO; | 
 |  | 
 | 	if (type == XFS_IO_UNWRITTEN) | 
 | 		bmapi_flags |= XFS_BMAPI_IGSTATE; | 
 |  | 
 | 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { | 
 | 		if (nonblocking) | 
 | 			return -EAGAIN; | 
 | 		xfs_ilock(ip, XFS_ILOCK_SHARED); | 
 | 	} | 
 |  | 
 | 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || | 
 | 	       (ip->i_df.if_flags & XFS_IFEXTENTS)); | 
 | 	ASSERT(offset <= mp->m_super->s_maxbytes); | 
 |  | 
 | 	if (offset + count > mp->m_super->s_maxbytes) | 
 | 		count = mp->m_super->s_maxbytes - offset; | 
 | 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); | 
 | 	offset_fsb = XFS_B_TO_FSBT(mp, offset); | 
 | 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, | 
 | 				imap, &nimaps, bmapi_flags); | 
 | 	xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
 |  | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	if (type == XFS_IO_DELALLOC && | 
 | 	    (!nimaps || isnullstartblock(imap->br_startblock))) { | 
 | 		error = xfs_iomap_write_allocate(ip, offset, imap); | 
 | 		if (!error) | 
 | 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | #ifdef DEBUG | 
 | 	if (type == XFS_IO_UNWRITTEN) { | 
 | 		ASSERT(nimaps); | 
 | 		ASSERT(imap->br_startblock != HOLESTARTBLOCK); | 
 | 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK); | 
 | 	} | 
 | #endif | 
 | 	if (nimaps) | 
 | 		trace_xfs_map_blocks_found(ip, offset, count, type, imap); | 
 | 	return 0; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_imap_valid( | 
 | 	struct inode		*inode, | 
 | 	struct xfs_bmbt_irec	*imap, | 
 | 	xfs_off_t		offset) | 
 | { | 
 | 	offset >>= inode->i_blkbits; | 
 |  | 
 | 	return offset >= imap->br_startoff && | 
 | 		offset < imap->br_startoff + imap->br_blockcount; | 
 | } | 
 |  | 
 | /* | 
 |  * BIO completion handler for buffered IO. | 
 |  */ | 
 | STATIC void | 
 | xfs_end_bio( | 
 | 	struct bio		*bio) | 
 | { | 
 | 	xfs_ioend_t		*ioend = bio->bi_private; | 
 |  | 
 | 	if (!ioend->io_error) | 
 | 		ioend->io_error = bio->bi_error; | 
 |  | 
 | 	/* Toss bio and pass work off to an xfsdatad thread */ | 
 | 	bio->bi_private = NULL; | 
 | 	bio->bi_end_io = NULL; | 
 | 	bio_put(bio); | 
 |  | 
 | 	xfs_finish_ioend(ioend); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_submit_ioend_bio( | 
 | 	struct writeback_control *wbc, | 
 | 	xfs_ioend_t		*ioend, | 
 | 	struct bio		*bio) | 
 | { | 
 | 	atomic_inc(&ioend->io_remaining); | 
 | 	bio->bi_private = ioend; | 
 | 	bio->bi_end_io = xfs_end_bio; | 
 | 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio); | 
 | } | 
 |  | 
 | STATIC struct bio * | 
 | xfs_alloc_ioend_bio( | 
 | 	struct buffer_head	*bh) | 
 | { | 
 | 	struct bio		*bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES); | 
 |  | 
 | 	ASSERT(bio->bi_private == NULL); | 
 | 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); | 
 | 	bio->bi_bdev = bh->b_bdev; | 
 | 	return bio; | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_start_buffer_writeback( | 
 | 	struct buffer_head	*bh) | 
 | { | 
 | 	ASSERT(buffer_mapped(bh)); | 
 | 	ASSERT(buffer_locked(bh)); | 
 | 	ASSERT(!buffer_delay(bh)); | 
 | 	ASSERT(!buffer_unwritten(bh)); | 
 |  | 
 | 	mark_buffer_async_write(bh); | 
 | 	set_buffer_uptodate(bh); | 
 | 	clear_buffer_dirty(bh); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_start_page_writeback( | 
 | 	struct page		*page, | 
 | 	int			clear_dirty, | 
 | 	int			buffers) | 
 | { | 
 | 	ASSERT(PageLocked(page)); | 
 | 	ASSERT(!PageWriteback(page)); | 
 |  | 
 | 	/* | 
 | 	 * if the page was not fully cleaned, we need to ensure that the higher | 
 | 	 * layers come back to it correctly. That means we need to keep the page | 
 | 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the | 
 | 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to | 
 | 	 * write this page in this writeback sweep will be made. | 
 | 	 */ | 
 | 	if (clear_dirty) { | 
 | 		clear_page_dirty_for_io(page); | 
 | 		set_page_writeback(page); | 
 | 	} else | 
 | 		set_page_writeback_keepwrite(page); | 
 |  | 
 | 	unlock_page(page); | 
 |  | 
 | 	/* If no buffers on the page are to be written, finish it here */ | 
 | 	if (!buffers) | 
 | 		end_page_writeback(page); | 
 | } | 
 |  | 
 | static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) | 
 | { | 
 | 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); | 
 | } | 
 |  | 
 | /* | 
 |  * Submit all of the bios for all of the ioends we have saved up, covering the | 
 |  * initial writepage page and also any probed pages. | 
 |  * | 
 |  * Because we may have multiple ioends spanning a page, we need to start | 
 |  * writeback on all the buffers before we submit them for I/O. If we mark the | 
 |  * buffers as we got, then we can end up with a page that only has buffers | 
 |  * marked async write and I/O complete on can occur before we mark the other | 
 |  * buffers async write. | 
 |  * | 
 |  * The end result of this is that we trip a bug in end_page_writeback() because | 
 |  * we call it twice for the one page as the code in end_buffer_async_write() | 
 |  * assumes that all buffers on the page are started at the same time. | 
 |  * | 
 |  * The fix is two passes across the ioend list - one to start writeback on the | 
 |  * buffer_heads, and then submit them for I/O on the second pass. | 
 |  * | 
 |  * If @fail is non-zero, it means that we have a situation where some part of | 
 |  * the submission process has failed after we have marked paged for writeback | 
 |  * and unlocked them. In this situation, we need to fail the ioend chain rather | 
 |  * than submit it to IO. This typically only happens on a filesystem shutdown. | 
 |  */ | 
 | STATIC void | 
 | xfs_submit_ioend( | 
 | 	struct writeback_control *wbc, | 
 | 	xfs_ioend_t		*ioend, | 
 | 	int			fail) | 
 | { | 
 | 	xfs_ioend_t		*head = ioend; | 
 | 	xfs_ioend_t		*next; | 
 | 	struct buffer_head	*bh; | 
 | 	struct bio		*bio; | 
 | 	sector_t		lastblock = 0; | 
 |  | 
 | 	/* Pass 1 - start writeback */ | 
 | 	do { | 
 | 		next = ioend->io_list; | 
 | 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) | 
 | 			xfs_start_buffer_writeback(bh); | 
 | 	} while ((ioend = next) != NULL); | 
 |  | 
 | 	/* Pass 2 - submit I/O */ | 
 | 	ioend = head; | 
 | 	do { | 
 | 		next = ioend->io_list; | 
 | 		bio = NULL; | 
 |  | 
 | 		/* | 
 | 		 * If we are failing the IO now, just mark the ioend with an | 
 | 		 * error and finish it. This will run IO completion immediately | 
 | 		 * as there is only one reference to the ioend at this point in | 
 | 		 * time. | 
 | 		 */ | 
 | 		if (fail) { | 
 | 			ioend->io_error = fail; | 
 | 			xfs_finish_ioend(ioend); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { | 
 |  | 
 | 			if (!bio) { | 
 |  retry: | 
 | 				bio = xfs_alloc_ioend_bio(bh); | 
 | 			} else if (bh->b_blocknr != lastblock + 1) { | 
 | 				xfs_submit_ioend_bio(wbc, ioend, bio); | 
 | 				goto retry; | 
 | 			} | 
 |  | 
 | 			if (xfs_bio_add_buffer(bio, bh) != bh->b_size) { | 
 | 				xfs_submit_ioend_bio(wbc, ioend, bio); | 
 | 				goto retry; | 
 | 			} | 
 |  | 
 | 			lastblock = bh->b_blocknr; | 
 | 		} | 
 | 		if (bio) | 
 | 			xfs_submit_ioend_bio(wbc, ioend, bio); | 
 | 		xfs_finish_ioend(ioend); | 
 | 	} while ((ioend = next) != NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Cancel submission of all buffer_heads so far in this endio. | 
 |  * Toss the endio too.  Only ever called for the initial page | 
 |  * in a writepage request, so only ever one page. | 
 |  */ | 
 | STATIC void | 
 | xfs_cancel_ioend( | 
 | 	xfs_ioend_t		*ioend) | 
 | { | 
 | 	xfs_ioend_t		*next; | 
 | 	struct buffer_head	*bh, *next_bh; | 
 |  | 
 | 	do { | 
 | 		next = ioend->io_list; | 
 | 		bh = ioend->io_buffer_head; | 
 | 		do { | 
 | 			next_bh = bh->b_private; | 
 | 			clear_buffer_async_write(bh); | 
 | 			/* | 
 | 			 * The unwritten flag is cleared when added to the | 
 | 			 * ioend. We're not submitting for I/O so mark the | 
 | 			 * buffer unwritten again for next time around. | 
 | 			 */ | 
 | 			if (ioend->io_type == XFS_IO_UNWRITTEN) | 
 | 				set_buffer_unwritten(bh); | 
 | 			unlock_buffer(bh); | 
 | 		} while ((bh = next_bh) != NULL); | 
 |  | 
 | 		mempool_free(ioend, xfs_ioend_pool); | 
 | 	} while ((ioend = next) != NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Test to see if we've been building up a completion structure for | 
 |  * earlier buffers -- if so, we try to append to this ioend if we | 
 |  * can, otherwise we finish off any current ioend and start another. | 
 |  * Return true if we've finished the given ioend. | 
 |  */ | 
 | STATIC void | 
 | xfs_add_to_ioend( | 
 | 	struct inode		*inode, | 
 | 	struct buffer_head	*bh, | 
 | 	xfs_off_t		offset, | 
 | 	unsigned int		type, | 
 | 	xfs_ioend_t		**result, | 
 | 	int			need_ioend) | 
 | { | 
 | 	xfs_ioend_t		*ioend = *result; | 
 |  | 
 | 	if (!ioend || need_ioend || type != ioend->io_type) { | 
 | 		xfs_ioend_t	*previous = *result; | 
 |  | 
 | 		ioend = xfs_alloc_ioend(inode, type); | 
 | 		ioend->io_offset = offset; | 
 | 		ioend->io_buffer_head = bh; | 
 | 		ioend->io_buffer_tail = bh; | 
 | 		if (previous) | 
 | 			previous->io_list = ioend; | 
 | 		*result = ioend; | 
 | 	} else { | 
 | 		ioend->io_buffer_tail->b_private = bh; | 
 | 		ioend->io_buffer_tail = bh; | 
 | 	} | 
 |  | 
 | 	bh->b_private = NULL; | 
 | 	ioend->io_size += bh->b_size; | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_map_buffer( | 
 | 	struct inode		*inode, | 
 | 	struct buffer_head	*bh, | 
 | 	struct xfs_bmbt_irec	*imap, | 
 | 	xfs_off_t		offset) | 
 | { | 
 | 	sector_t		bn; | 
 | 	struct xfs_mount	*m = XFS_I(inode)->i_mount; | 
 | 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); | 
 | 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); | 
 |  | 
 | 	ASSERT(imap->br_startblock != HOLESTARTBLOCK); | 
 | 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK); | 
 |  | 
 | 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + | 
 | 	      ((offset - iomap_offset) >> inode->i_blkbits); | 
 |  | 
 | 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); | 
 |  | 
 | 	bh->b_blocknr = bn; | 
 | 	set_buffer_mapped(bh); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_map_at_offset( | 
 | 	struct inode		*inode, | 
 | 	struct buffer_head	*bh, | 
 | 	struct xfs_bmbt_irec	*imap, | 
 | 	xfs_off_t		offset) | 
 | { | 
 | 	ASSERT(imap->br_startblock != HOLESTARTBLOCK); | 
 | 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK); | 
 |  | 
 | 	xfs_map_buffer(inode, bh, imap, offset); | 
 | 	set_buffer_mapped(bh); | 
 | 	clear_buffer_delay(bh); | 
 | 	clear_buffer_unwritten(bh); | 
 | } | 
 |  | 
 | /* | 
 |  * Test if a given page contains at least one buffer of a given @type. | 
 |  * If @check_all_buffers is true, then we walk all the buffers in the page to | 
 |  * try to find one of the type passed in. If it is not set, then the caller only | 
 |  * needs to check the first buffer on the page for a match. | 
 |  */ | 
 | STATIC bool | 
 | xfs_check_page_type( | 
 | 	struct page		*page, | 
 | 	unsigned int		type, | 
 | 	bool			check_all_buffers) | 
 | { | 
 | 	struct buffer_head	*bh; | 
 | 	struct buffer_head	*head; | 
 |  | 
 | 	if (PageWriteback(page)) | 
 | 		return false; | 
 | 	if (!page->mapping) | 
 | 		return false; | 
 | 	if (!page_has_buffers(page)) | 
 | 		return false; | 
 |  | 
 | 	bh = head = page_buffers(page); | 
 | 	do { | 
 | 		if (buffer_unwritten(bh)) { | 
 | 			if (type == XFS_IO_UNWRITTEN) | 
 | 				return true; | 
 | 		} else if (buffer_delay(bh)) { | 
 | 			if (type == XFS_IO_DELALLOC) | 
 | 				return true; | 
 | 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) { | 
 | 			if (type == XFS_IO_OVERWRITE) | 
 | 				return true; | 
 | 		} | 
 |  | 
 | 		/* If we are only checking the first buffer, we are done now. */ | 
 | 		if (!check_all_buffers) | 
 | 			break; | 
 | 	} while ((bh = bh->b_this_page) != head); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate & map buffers for page given the extent map. Write it out. | 
 |  * except for the original page of a writepage, this is called on | 
 |  * delalloc/unwritten pages only, for the original page it is possible | 
 |  * that the page has no mapping at all. | 
 |  */ | 
 | STATIC int | 
 | xfs_convert_page( | 
 | 	struct inode		*inode, | 
 | 	struct page		*page, | 
 | 	loff_t			tindex, | 
 | 	struct xfs_bmbt_irec	*imap, | 
 | 	xfs_ioend_t		**ioendp, | 
 | 	struct writeback_control *wbc) | 
 | { | 
 | 	struct buffer_head	*bh, *head; | 
 | 	xfs_off_t		end_offset; | 
 | 	unsigned long		p_offset; | 
 | 	unsigned int		type; | 
 | 	int			len, page_dirty; | 
 | 	int			count = 0, done = 0, uptodate = 1; | 
 |  	xfs_off_t		offset = page_offset(page); | 
 |  | 
 | 	if (page->index != tindex) | 
 | 		goto fail; | 
 | 	if (!trylock_page(page)) | 
 | 		goto fail; | 
 | 	if (PageWriteback(page)) | 
 | 		goto fail_unlock_page; | 
 | 	if (page->mapping != inode->i_mapping) | 
 | 		goto fail_unlock_page; | 
 | 	if (!xfs_check_page_type(page, (*ioendp)->io_type, false)) | 
 | 		goto fail_unlock_page; | 
 |  | 
 | 	/* | 
 | 	 * page_dirty is initially a count of buffers on the page before | 
 | 	 * EOF and is decremented as we move each into a cleanable state. | 
 | 	 * | 
 | 	 * Derivation: | 
 | 	 * | 
 | 	 * End offset is the highest offset that this page should represent. | 
 | 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) | 
 | 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and | 
 | 	 * hence give us the correct page_dirty count. On any other page, | 
 | 	 * it will be zero and in that case we need page_dirty to be the | 
 | 	 * count of buffers on the page. | 
 | 	 */ | 
 | 	end_offset = min_t(unsigned long long, | 
 | 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, | 
 | 			i_size_read(inode)); | 
 |  | 
 | 	/* | 
 | 	 * If the current map does not span the entire page we are about to try | 
 | 	 * to write, then give up. The only way we can write a page that spans | 
 | 	 * multiple mappings in a single writeback iteration is via the | 
 | 	 * xfs_vm_writepage() function. Data integrity writeback requires the | 
 | 	 * entire page to be written in a single attempt, otherwise the part of | 
 | 	 * the page we don't write here doesn't get written as part of the data | 
 | 	 * integrity sync. | 
 | 	 * | 
 | 	 * For normal writeback, we also don't attempt to write partial pages | 
 | 	 * here as it simply means that write_cache_pages() will see it under | 
 | 	 * writeback and ignore the page until some point in the future, at | 
 | 	 * which time this will be the only page in the file that needs | 
 | 	 * writeback.  Hence for more optimal IO patterns, we should always | 
 | 	 * avoid partial page writeback due to multiple mappings on a page here. | 
 | 	 */ | 
 | 	if (!xfs_imap_valid(inode, imap, end_offset)) | 
 | 		goto fail_unlock_page; | 
 |  | 
 | 	len = 1 << inode->i_blkbits; | 
 | 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), | 
 | 					PAGE_CACHE_SIZE); | 
 | 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; | 
 | 	page_dirty = p_offset / len; | 
 |  | 
 | 	/* | 
 | 	 * The moment we find a buffer that doesn't match our current type | 
 | 	 * specification or can't be written, abort the loop and start | 
 | 	 * writeback. As per the above xfs_imap_valid() check, only | 
 | 	 * xfs_vm_writepage() can handle partial page writeback fully - we are | 
 | 	 * limited here to the buffers that are contiguous with the current | 
 | 	 * ioend, and hence a buffer we can't write breaks that contiguity and | 
 | 	 * we have to defer the rest of the IO to xfs_vm_writepage(). | 
 | 	 */ | 
 | 	bh = head = page_buffers(page); | 
 | 	do { | 
 | 		if (offset >= end_offset) | 
 | 			break; | 
 | 		if (!buffer_uptodate(bh)) | 
 | 			uptodate = 0; | 
 | 		if (!(PageUptodate(page) || buffer_uptodate(bh))) { | 
 | 			done = 1; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (buffer_unwritten(bh) || buffer_delay(bh) || | 
 | 		    buffer_mapped(bh)) { | 
 | 			if (buffer_unwritten(bh)) | 
 | 				type = XFS_IO_UNWRITTEN; | 
 | 			else if (buffer_delay(bh)) | 
 | 				type = XFS_IO_DELALLOC; | 
 | 			else | 
 | 				type = XFS_IO_OVERWRITE; | 
 |  | 
 | 			/* | 
 | 			 * imap should always be valid because of the above | 
 | 			 * partial page end_offset check on the imap. | 
 | 			 */ | 
 | 			ASSERT(xfs_imap_valid(inode, imap, offset)); | 
 |  | 
 | 			lock_buffer(bh); | 
 | 			if (type != XFS_IO_OVERWRITE) | 
 | 				xfs_map_at_offset(inode, bh, imap, offset); | 
 | 			xfs_add_to_ioend(inode, bh, offset, type, | 
 | 					 ioendp, done); | 
 |  | 
 | 			page_dirty--; | 
 | 			count++; | 
 | 		} else { | 
 | 			done = 1; | 
 | 			break; | 
 | 		} | 
 | 	} while (offset += len, (bh = bh->b_this_page) != head); | 
 |  | 
 | 	if (uptodate && bh == head) | 
 | 		SetPageUptodate(page); | 
 |  | 
 | 	if (count) { | 
 | 		if (--wbc->nr_to_write <= 0 && | 
 | 		    wbc->sync_mode == WB_SYNC_NONE) | 
 | 			done = 1; | 
 | 	} | 
 | 	xfs_start_page_writeback(page, !page_dirty, count); | 
 |  | 
 | 	return done; | 
 |  fail_unlock_page: | 
 | 	unlock_page(page); | 
 |  fail: | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Convert & write out a cluster of pages in the same extent as defined | 
 |  * by mp and following the start page. | 
 |  */ | 
 | STATIC void | 
 | xfs_cluster_write( | 
 | 	struct inode		*inode, | 
 | 	pgoff_t			tindex, | 
 | 	struct xfs_bmbt_irec	*imap, | 
 | 	xfs_ioend_t		**ioendp, | 
 | 	struct writeback_control *wbc, | 
 | 	pgoff_t			tlast) | 
 | { | 
 | 	struct pagevec		pvec; | 
 | 	int			done = 0, i; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	while (!done && tindex <= tlast) { | 
 | 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); | 
 |  | 
 | 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) | 
 | 			break; | 
 |  | 
 | 		for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 			done = xfs_convert_page(inode, pvec.pages[i], tindex++, | 
 | 					imap, ioendp, wbc); | 
 | 			if (done) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_vm_invalidatepage( | 
 | 	struct page		*page, | 
 | 	unsigned int		offset, | 
 | 	unsigned int		length) | 
 | { | 
 | 	trace_xfs_invalidatepage(page->mapping->host, page, offset, | 
 | 				 length); | 
 | 	block_invalidatepage(page, offset, length); | 
 | } | 
 |  | 
 | /* | 
 |  * If the page has delalloc buffers on it, we need to punch them out before we | 
 |  * invalidate the page. If we don't, we leave a stale delalloc mapping on the | 
 |  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read | 
 |  * is done on that same region - the delalloc extent is returned when none is | 
 |  * supposed to be there. | 
 |  * | 
 |  * We prevent this by truncating away the delalloc regions on the page before | 
 |  * invalidating it. Because they are delalloc, we can do this without needing a | 
 |  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this | 
 |  * truncation without a transaction as there is no space left for block | 
 |  * reservation (typically why we see a ENOSPC in writeback). | 
 |  * | 
 |  * This is not a performance critical path, so for now just do the punching a | 
 |  * buffer head at a time. | 
 |  */ | 
 | STATIC void | 
 | xfs_aops_discard_page( | 
 | 	struct page		*page) | 
 | { | 
 | 	struct inode		*inode = page->mapping->host; | 
 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 	struct buffer_head	*bh, *head; | 
 | 	loff_t			offset = page_offset(page); | 
 |  | 
 | 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true)) | 
 | 		goto out_invalidate; | 
 |  | 
 | 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | 
 | 		goto out_invalidate; | 
 |  | 
 | 	xfs_alert(ip->i_mount, | 
 | 		"page discard on page %p, inode 0x%llx, offset %llu.", | 
 | 			page, ip->i_ino, offset); | 
 |  | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	bh = head = page_buffers(page); | 
 | 	do { | 
 | 		int		error; | 
 | 		xfs_fileoff_t	start_fsb; | 
 |  | 
 | 		if (!buffer_delay(bh)) | 
 | 			goto next_buffer; | 
 |  | 
 | 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); | 
 | 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); | 
 | 		if (error) { | 
 | 			/* something screwed, just bail */ | 
 | 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { | 
 | 				xfs_alert(ip->i_mount, | 
 | 			"page discard unable to remove delalloc mapping."); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | next_buffer: | 
 | 		offset += 1 << inode->i_blkbits; | 
 |  | 
 | 	} while ((bh = bh->b_this_page) != head); | 
 |  | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | out_invalidate: | 
 | 	xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE); | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * Write out a dirty page. | 
 |  * | 
 |  * For delalloc space on the page we need to allocate space and flush it. | 
 |  * For unwritten space on the page we need to start the conversion to | 
 |  * regular allocated space. | 
 |  * For any other dirty buffer heads on the page we should flush them. | 
 |  */ | 
 | STATIC int | 
 | xfs_vm_writepage( | 
 | 	struct page		*page, | 
 | 	struct writeback_control *wbc) | 
 | { | 
 | 	struct inode		*inode = page->mapping->host; | 
 | 	struct buffer_head	*bh, *head; | 
 | 	struct xfs_bmbt_irec	imap; | 
 | 	xfs_ioend_t		*ioend = NULL, *iohead = NULL; | 
 | 	loff_t			offset; | 
 | 	unsigned int		type; | 
 | 	__uint64_t              end_offset; | 
 | 	pgoff_t                 end_index, last_index; | 
 | 	ssize_t			len; | 
 | 	int			err, imap_valid = 0, uptodate = 1; | 
 | 	int			count = 0; | 
 | 	int			nonblocking = 0; | 
 |  | 
 | 	trace_xfs_writepage(inode, page, 0, 0); | 
 |  | 
 | 	ASSERT(page_has_buffers(page)); | 
 |  | 
 | 	/* | 
 | 	 * Refuse to write the page out if we are called from reclaim context. | 
 | 	 * | 
 | 	 * This avoids stack overflows when called from deeply used stacks in | 
 | 	 * random callers for direct reclaim or memcg reclaim.  We explicitly | 
 | 	 * allow reclaim from kswapd as the stack usage there is relatively low. | 
 | 	 * | 
 | 	 * This should never happen except in the case of a VM regression so | 
 | 	 * warn about it. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == | 
 | 			PF_MEMALLOC)) | 
 | 		goto redirty; | 
 |  | 
 | 	/* | 
 | 	 * Given that we do not allow direct reclaim to call us, we should | 
 | 	 * never be called while in a filesystem transaction. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(current->flags & PF_FSTRANS)) | 
 | 		goto redirty; | 
 |  | 
 | 	/* Is this page beyond the end of the file? */ | 
 | 	offset = i_size_read(inode); | 
 | 	end_index = offset >> PAGE_CACHE_SHIFT; | 
 | 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 	/* | 
 | 	 * The page index is less than the end_index, adjust the end_offset | 
 | 	 * to the highest offset that this page should represent. | 
 | 	 * ----------------------------------------------------- | 
 | 	 * |			file mapping	       | <EOF> | | 
 | 	 * ----------------------------------------------------- | 
 | 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       | | 
 | 	 * ^--------------------------------^----------|-------- | 
 | 	 * |     desired writeback range    |      see else    | | 
 | 	 * ---------------------------------^------------------| | 
 | 	 */ | 
 | 	if (page->index < end_index) | 
 | 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT; | 
 | 	else { | 
 | 		/* | 
 | 		 * Check whether the page to write out is beyond or straddles | 
 | 		 * i_size or not. | 
 | 		 * ------------------------------------------------------- | 
 | 		 * |		file mapping		        | <EOF>  | | 
 | 		 * ------------------------------------------------------- | 
 | 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond | | 
 | 		 * ^--------------------------------^-----------|--------- | 
 | 		 * |				    |      Straddles     | | 
 | 		 * ---------------------------------^-----------|--------| | 
 | 		 */ | 
 | 		unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1); | 
 |  | 
 | 		/* | 
 | 		 * Skip the page if it is fully outside i_size, e.g. due to a | 
 | 		 * truncate operation that is in progress. We must redirty the | 
 | 		 * page so that reclaim stops reclaiming it. Otherwise | 
 | 		 * xfs_vm_releasepage() is called on it and gets confused. | 
 | 		 * | 
 | 		 * Note that the end_index is unsigned long, it would overflow | 
 | 		 * if the given offset is greater than 16TB on 32-bit system | 
 | 		 * and if we do check the page is fully outside i_size or not | 
 | 		 * via "if (page->index >= end_index + 1)" as "end_index + 1" | 
 | 		 * will be evaluated to 0.  Hence this page will be redirtied | 
 | 		 * and be written out repeatedly which would result in an | 
 | 		 * infinite loop, the user program that perform this operation | 
 | 		 * will hang.  Instead, we can verify this situation by checking | 
 | 		 * if the page to write is totally beyond the i_size or if it's | 
 | 		 * offset is just equal to the EOF. | 
 | 		 */ | 
 | 		if (page->index > end_index || | 
 | 		    (page->index == end_index && offset_into_page == 0)) | 
 | 			goto redirty; | 
 |  | 
 | 		/* | 
 | 		 * The page straddles i_size.  It must be zeroed out on each | 
 | 		 * and every writepage invocation because it may be mmapped. | 
 | 		 * "A file is mapped in multiples of the page size.  For a file | 
 | 		 * that is not a multiple of the page size, the remaining | 
 | 		 * memory is zeroed when mapped, and writes to that region are | 
 | 		 * not written out to the file." | 
 | 		 */ | 
 | 		zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE); | 
 |  | 
 | 		/* Adjust the end_offset to the end of file */ | 
 | 		end_offset = offset; | 
 | 	} | 
 |  | 
 | 	len = 1 << inode->i_blkbits; | 
 |  | 
 | 	bh = head = page_buffers(page); | 
 | 	offset = page_offset(page); | 
 | 	type = XFS_IO_OVERWRITE; | 
 |  | 
 | 	if (wbc->sync_mode == WB_SYNC_NONE) | 
 | 		nonblocking = 1; | 
 |  | 
 | 	do { | 
 | 		int new_ioend = 0; | 
 |  | 
 | 		if (offset >= end_offset) | 
 | 			break; | 
 | 		if (!buffer_uptodate(bh)) | 
 | 			uptodate = 0; | 
 |  | 
 | 		/* | 
 | 		 * set_page_dirty dirties all buffers in a page, independent | 
 | 		 * of their state.  The dirty state however is entirely | 
 | 		 * meaningless for holes (!mapped && uptodate), so skip | 
 | 		 * buffers covering holes here. | 
 | 		 */ | 
 | 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) { | 
 | 			imap_valid = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (buffer_unwritten(bh)) { | 
 | 			if (type != XFS_IO_UNWRITTEN) { | 
 | 				type = XFS_IO_UNWRITTEN; | 
 | 				imap_valid = 0; | 
 | 			} | 
 | 		} else if (buffer_delay(bh)) { | 
 | 			if (type != XFS_IO_DELALLOC) { | 
 | 				type = XFS_IO_DELALLOC; | 
 | 				imap_valid = 0; | 
 | 			} | 
 | 		} else if (buffer_uptodate(bh)) { | 
 | 			if (type != XFS_IO_OVERWRITE) { | 
 | 				type = XFS_IO_OVERWRITE; | 
 | 				imap_valid = 0; | 
 | 			} | 
 | 		} else { | 
 | 			if (PageUptodate(page)) | 
 | 				ASSERT(buffer_mapped(bh)); | 
 | 			/* | 
 | 			 * This buffer is not uptodate and will not be | 
 | 			 * written to disk.  Ensure that we will put any | 
 | 			 * subsequent writeable buffers into a new | 
 | 			 * ioend. | 
 | 			 */ | 
 | 			imap_valid = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (imap_valid) | 
 | 			imap_valid = xfs_imap_valid(inode, &imap, offset); | 
 | 		if (!imap_valid) { | 
 | 			/* | 
 | 			 * If we didn't have a valid mapping then we need to | 
 | 			 * put the new mapping into a separate ioend structure. | 
 | 			 * This ensures non-contiguous extents always have | 
 | 			 * separate ioends, which is particularly important | 
 | 			 * for unwritten extent conversion at I/O completion | 
 | 			 * time. | 
 | 			 */ | 
 | 			new_ioend = 1; | 
 | 			err = xfs_map_blocks(inode, offset, &imap, type, | 
 | 					     nonblocking); | 
 | 			if (err) | 
 | 				goto error; | 
 | 			imap_valid = xfs_imap_valid(inode, &imap, offset); | 
 | 		} | 
 | 		if (imap_valid) { | 
 | 			lock_buffer(bh); | 
 | 			if (type != XFS_IO_OVERWRITE) | 
 | 				xfs_map_at_offset(inode, bh, &imap, offset); | 
 | 			xfs_add_to_ioend(inode, bh, offset, type, &ioend, | 
 | 					 new_ioend); | 
 | 			count++; | 
 | 		} | 
 |  | 
 | 		if (!iohead) | 
 | 			iohead = ioend; | 
 |  | 
 | 	} while (offset += len, ((bh = bh->b_this_page) != head)); | 
 |  | 
 | 	if (uptodate && bh == head) | 
 | 		SetPageUptodate(page); | 
 |  | 
 | 	xfs_start_page_writeback(page, 1, count); | 
 |  | 
 | 	/* if there is no IO to be submitted for this page, we are done */ | 
 | 	if (!ioend) | 
 | 		return 0; | 
 |  | 
 | 	ASSERT(iohead); | 
 |  | 
 | 	/* | 
 | 	 * Any errors from this point onwards need tobe reported through the IO | 
 | 	 * completion path as we have marked the initial page as under writeback | 
 | 	 * and unlocked it. | 
 | 	 */ | 
 | 	if (imap_valid) { | 
 | 		xfs_off_t		end_index; | 
 |  | 
 | 		end_index = imap.br_startoff + imap.br_blockcount; | 
 |  | 
 | 		/* to bytes */ | 
 | 		end_index <<= inode->i_blkbits; | 
 |  | 
 | 		/* to pages */ | 
 | 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 		/* check against file size */ | 
 | 		if (end_index > last_index) | 
 | 			end_index = last_index; | 
 |  | 
 | 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend, | 
 | 				  wbc, end_index); | 
 | 	} | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * Reserve log space if we might write beyond the on-disk inode size. | 
 | 	 */ | 
 | 	err = 0; | 
 | 	if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend)) | 
 | 		err = xfs_setfilesize_trans_alloc(ioend); | 
 |  | 
 | 	xfs_submit_ioend(wbc, iohead, err); | 
 |  | 
 | 	return 0; | 
 |  | 
 | error: | 
 | 	if (iohead) | 
 | 		xfs_cancel_ioend(iohead); | 
 |  | 
 | 	if (err == -EAGAIN) | 
 | 		goto redirty; | 
 |  | 
 | 	xfs_aops_discard_page(page); | 
 | 	ClearPageUptodate(page); | 
 | 	unlock_page(page); | 
 | 	return err; | 
 |  | 
 | redirty: | 
 | 	redirty_page_for_writepage(wbc, page); | 
 | 	unlock_page(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_vm_writepages( | 
 | 	struct address_space	*mapping, | 
 | 	struct writeback_control *wbc) | 
 | { | 
 | 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); | 
 | 	return generic_writepages(mapping, wbc); | 
 | } | 
 |  | 
 | /* | 
 |  * Called to move a page into cleanable state - and from there | 
 |  * to be released. The page should already be clean. We always | 
 |  * have buffer heads in this call. | 
 |  * | 
 |  * Returns 1 if the page is ok to release, 0 otherwise. | 
 |  */ | 
 | STATIC int | 
 | xfs_vm_releasepage( | 
 | 	struct page		*page, | 
 | 	gfp_t			gfp_mask) | 
 | { | 
 | 	int			delalloc, unwritten; | 
 |  | 
 | 	trace_xfs_releasepage(page->mapping->host, page, 0, 0); | 
 |  | 
 | 	xfs_count_page_state(page, &delalloc, &unwritten); | 
 |  | 
 | 	if (WARN_ON_ONCE(delalloc)) | 
 | 		return 0; | 
 | 	if (WARN_ON_ONCE(unwritten)) | 
 | 		return 0; | 
 |  | 
 | 	return try_to_free_buffers(page); | 
 | } | 
 |  | 
 | /* | 
 |  * When we map a DIO buffer, we may need to attach an ioend that describes the | 
 |  * type of write IO we are doing. This passes to the completion function the | 
 |  * operations it needs to perform. If the mapping is for an overwrite wholly | 
 |  * within the EOF then we don't need an ioend and so we don't allocate one. | 
 |  * This avoids the unnecessary overhead of allocating and freeing ioends for | 
 |  * workloads that don't require transactions on IO completion. | 
 |  * | 
 |  * If we get multiple mappings in a single IO, we might be mapping different | 
 |  * types. But because the direct IO can only have a single private pointer, we | 
 |  * need to ensure that: | 
 |  * | 
 |  * a) i) the ioend spans the entire region of unwritten mappings; or | 
 |  *    ii) the ioend spans all the mappings that cross or are beyond EOF; and | 
 |  * b) if it contains unwritten extents, it is *permanently* marked as such | 
 |  * | 
 |  * We could do this by chaining ioends like buffered IO does, but we only | 
 |  * actually get one IO completion callback from the direct IO, and that spans | 
 |  * the entire IO regardless of how many mappings and IOs are needed to complete | 
 |  * the DIO. There is only going to be one reference to the ioend and its life | 
 |  * cycle is constrained by the DIO completion code. hence we don't need | 
 |  * reference counting here. | 
 |  * | 
 |  * Note that for DIO, an IO to the highest supported file block offset (i.e. | 
 |  * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64 | 
 |  * bit variable. Hence if we see this overflow, we have to assume that the IO is | 
 |  * extending the file size. We won't know for sure until IO completion is run | 
 |  * and the actual max write offset is communicated to the IO completion | 
 |  * routine. | 
 |  * | 
 |  * For DAX page faults, we are preparing to never see unwritten extents here, | 
 |  * nor should we ever extend the inode size. Hence we will soon have nothing to | 
 |  * do here for this case, ensuring we don't have to provide an IO completion | 
 |  * callback to free an ioend that we don't actually need for a fault into the | 
 |  * page at offset (2^63 - 1FSB) bytes. | 
 |  */ | 
 |  | 
 | static void | 
 | xfs_map_direct( | 
 | 	struct inode		*inode, | 
 | 	struct buffer_head	*bh_result, | 
 | 	struct xfs_bmbt_irec	*imap, | 
 | 	xfs_off_t		offset, | 
 | 	bool			dax_fault) | 
 | { | 
 | 	struct xfs_ioend	*ioend; | 
 | 	xfs_off_t		size = bh_result->b_size; | 
 | 	int			type; | 
 |  | 
 | 	if (ISUNWRITTEN(imap)) | 
 | 		type = XFS_IO_UNWRITTEN; | 
 | 	else | 
 | 		type = XFS_IO_OVERWRITE; | 
 |  | 
 | 	trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap); | 
 |  | 
 | 	if (dax_fault) { | 
 | 		ASSERT(type == XFS_IO_OVERWRITE); | 
 | 		trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type, | 
 | 					    imap); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (bh_result->b_private) { | 
 | 		ioend = bh_result->b_private; | 
 | 		ASSERT(ioend->io_size > 0); | 
 | 		ASSERT(offset >= ioend->io_offset); | 
 | 		if (offset + size > ioend->io_offset + ioend->io_size) | 
 | 			ioend->io_size = offset - ioend->io_offset + size; | 
 |  | 
 | 		if (type == XFS_IO_UNWRITTEN && type != ioend->io_type) | 
 | 			ioend->io_type = XFS_IO_UNWRITTEN; | 
 |  | 
 | 		trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset, | 
 | 					      ioend->io_size, ioend->io_type, | 
 | 					      imap); | 
 | 	} else if (type == XFS_IO_UNWRITTEN || | 
 | 		   offset + size > i_size_read(inode) || | 
 | 		   offset + size < 0) { | 
 | 		ioend = xfs_alloc_ioend(inode, type); | 
 | 		ioend->io_offset = offset; | 
 | 		ioend->io_size = size; | 
 |  | 
 | 		bh_result->b_private = ioend; | 
 | 		set_buffer_defer_completion(bh_result); | 
 |  | 
 | 		trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type, | 
 | 					   imap); | 
 | 	} else { | 
 | 		trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type, | 
 | 					    imap); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * If this is O_DIRECT or the mpage code calling tell them how large the mapping | 
 |  * is, so that we can avoid repeated get_blocks calls. | 
 |  * | 
 |  * If the mapping spans EOF, then we have to break the mapping up as the mapping | 
 |  * for blocks beyond EOF must be marked new so that sub block regions can be | 
 |  * correctly zeroed. We can't do this for mappings within EOF unless the mapping | 
 |  * was just allocated or is unwritten, otherwise the callers would overwrite | 
 |  * existing data with zeros. Hence we have to split the mapping into a range up | 
 |  * to and including EOF, and a second mapping for beyond EOF. | 
 |  */ | 
 | static void | 
 | xfs_map_trim_size( | 
 | 	struct inode		*inode, | 
 | 	sector_t		iblock, | 
 | 	struct buffer_head	*bh_result, | 
 | 	struct xfs_bmbt_irec	*imap, | 
 | 	xfs_off_t		offset, | 
 | 	ssize_t			size) | 
 | { | 
 | 	xfs_off_t		mapping_size; | 
 |  | 
 | 	mapping_size = imap->br_startoff + imap->br_blockcount - iblock; | 
 | 	mapping_size <<= inode->i_blkbits; | 
 |  | 
 | 	ASSERT(mapping_size > 0); | 
 | 	if (mapping_size > size) | 
 | 		mapping_size = size; | 
 | 	if (offset < i_size_read(inode) && | 
 | 	    offset + mapping_size >= i_size_read(inode)) { | 
 | 		/* limit mapping to block that spans EOF */ | 
 | 		mapping_size = roundup_64(i_size_read(inode) - offset, | 
 | 					  1 << inode->i_blkbits); | 
 | 	} | 
 | 	if (mapping_size > LONG_MAX) | 
 | 		mapping_size = LONG_MAX; | 
 |  | 
 | 	bh_result->b_size = mapping_size; | 
 | } | 
 |  | 
 | STATIC int | 
 | __xfs_get_blocks( | 
 | 	struct inode		*inode, | 
 | 	sector_t		iblock, | 
 | 	struct buffer_head	*bh_result, | 
 | 	int			create, | 
 | 	bool			direct, | 
 | 	bool			dax_fault) | 
 | { | 
 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 	struct xfs_mount	*mp = ip->i_mount; | 
 | 	xfs_fileoff_t		offset_fsb, end_fsb; | 
 | 	int			error = 0; | 
 | 	int			lockmode = 0; | 
 | 	struct xfs_bmbt_irec	imap; | 
 | 	int			nimaps = 1; | 
 | 	xfs_off_t		offset; | 
 | 	ssize_t			size; | 
 | 	int			new = 0; | 
 |  | 
 | 	if (XFS_FORCED_SHUTDOWN(mp)) | 
 | 		return -EIO; | 
 |  | 
 | 	offset = (xfs_off_t)iblock << inode->i_blkbits; | 
 | 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); | 
 | 	size = bh_result->b_size; | 
 |  | 
 | 	if (!create && direct && offset >= i_size_read(inode)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Direct I/O is usually done on preallocated files, so try getting | 
 | 	 * a block mapping without an exclusive lock first.  For buffered | 
 | 	 * writes we already have the exclusive iolock anyway, so avoiding | 
 | 	 * a lock roundtrip here by taking the ilock exclusive from the | 
 | 	 * beginning is a useful micro optimization. | 
 | 	 */ | 
 | 	if (create && !direct) { | 
 | 		lockmode = XFS_ILOCK_EXCL; | 
 | 		xfs_ilock(ip, lockmode); | 
 | 	} else { | 
 | 		lockmode = xfs_ilock_data_map_shared(ip); | 
 | 	} | 
 |  | 
 | 	ASSERT(offset <= mp->m_super->s_maxbytes); | 
 | 	if (offset + size > mp->m_super->s_maxbytes) | 
 | 		size = mp->m_super->s_maxbytes - offset; | 
 | 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); | 
 | 	offset_fsb = XFS_B_TO_FSBT(mp, offset); | 
 |  | 
 | 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, | 
 | 				&imap, &nimaps, XFS_BMAPI_ENTIRE); | 
 | 	if (error) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* for DAX, we convert unwritten extents directly */ | 
 | 	if (create && | 
 | 	    (!nimaps || | 
 | 	     (imap.br_startblock == HOLESTARTBLOCK || | 
 | 	      imap.br_startblock == DELAYSTARTBLOCK) || | 
 | 	     (IS_DAX(inode) && ISUNWRITTEN(&imap)))) { | 
 | 		if (direct || xfs_get_extsz_hint(ip)) { | 
 | 			/* | 
 | 			 * xfs_iomap_write_direct() expects the shared lock. It | 
 | 			 * is unlocked on return. | 
 | 			 */ | 
 | 			if (lockmode == XFS_ILOCK_EXCL) | 
 | 				xfs_ilock_demote(ip, lockmode); | 
 |  | 
 | 			error = xfs_iomap_write_direct(ip, offset, size, | 
 | 						       &imap, nimaps); | 
 | 			if (error) | 
 | 				return error; | 
 | 			new = 1; | 
 |  | 
 | 		} else { | 
 | 			/* | 
 | 			 * Delalloc reservations do not require a transaction, | 
 | 			 * we can go on without dropping the lock here. If we | 
 | 			 * are allocating a new delalloc block, make sure that | 
 | 			 * we set the new flag so that we mark the buffer new so | 
 | 			 * that we know that it is newly allocated if the write | 
 | 			 * fails. | 
 | 			 */ | 
 | 			if (nimaps && imap.br_startblock == HOLESTARTBLOCK) | 
 | 				new = 1; | 
 | 			error = xfs_iomap_write_delay(ip, offset, size, &imap); | 
 | 			if (error) | 
 | 				goto out_unlock; | 
 |  | 
 | 			xfs_iunlock(ip, lockmode); | 
 | 		} | 
 | 		trace_xfs_get_blocks_alloc(ip, offset, size, | 
 | 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN | 
 | 						   : XFS_IO_DELALLOC, &imap); | 
 | 	} else if (nimaps) { | 
 | 		trace_xfs_get_blocks_found(ip, offset, size, | 
 | 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN | 
 | 						   : XFS_IO_OVERWRITE, &imap); | 
 | 		xfs_iunlock(ip, lockmode); | 
 | 	} else { | 
 | 		trace_xfs_get_blocks_notfound(ip, offset, size); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	if (IS_DAX(inode) && create) { | 
 | 		ASSERT(!ISUNWRITTEN(&imap)); | 
 | 		/* zeroing is not needed at a higher layer */ | 
 | 		new = 0; | 
 | 	} | 
 |  | 
 | 	/* trim mapping down to size requested */ | 
 | 	if (direct || size > (1 << inode->i_blkbits)) | 
 | 		xfs_map_trim_size(inode, iblock, bh_result, | 
 | 				  &imap, offset, size); | 
 |  | 
 | 	/* | 
 | 	 * For unwritten extents do not report a disk address in the buffered | 
 | 	 * read case (treat as if we're reading into a hole). | 
 | 	 */ | 
 | 	if (imap.br_startblock != HOLESTARTBLOCK && | 
 | 	    imap.br_startblock != DELAYSTARTBLOCK && | 
 | 	    (create || !ISUNWRITTEN(&imap))) { | 
 | 		xfs_map_buffer(inode, bh_result, &imap, offset); | 
 | 		if (ISUNWRITTEN(&imap)) | 
 | 			set_buffer_unwritten(bh_result); | 
 | 		/* direct IO needs special help */ | 
 | 		if (create && direct) | 
 | 			xfs_map_direct(inode, bh_result, &imap, offset, | 
 | 				       dax_fault); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this is a realtime file, data may be on a different device. | 
 | 	 * to that pointed to from the buffer_head b_bdev currently. | 
 | 	 */ | 
 | 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode); | 
 |  | 
 | 	/* | 
 | 	 * If we previously allocated a block out beyond eof and we are now | 
 | 	 * coming back to use it then we will need to flag it as new even if it | 
 | 	 * has a disk address. | 
 | 	 * | 
 | 	 * With sub-block writes into unwritten extents we also need to mark | 
 | 	 * the buffer as new so that the unwritten parts of the buffer gets | 
 | 	 * correctly zeroed. | 
 | 	 */ | 
 | 	if (create && | 
 | 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || | 
 | 	     (offset >= i_size_read(inode)) || | 
 | 	     (new || ISUNWRITTEN(&imap)))) | 
 | 		set_buffer_new(bh_result); | 
 |  | 
 | 	if (imap.br_startblock == DELAYSTARTBLOCK) { | 
 | 		BUG_ON(direct); | 
 | 		if (create) { | 
 | 			set_buffer_uptodate(bh_result); | 
 | 			set_buffer_mapped(bh_result); | 
 | 			set_buffer_delay(bh_result); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_unlock: | 
 | 	xfs_iunlock(ip, lockmode); | 
 | 	return error; | 
 | } | 
 |  | 
 | int | 
 | xfs_get_blocks( | 
 | 	struct inode		*inode, | 
 | 	sector_t		iblock, | 
 | 	struct buffer_head	*bh_result, | 
 | 	int			create) | 
 | { | 
 | 	return __xfs_get_blocks(inode, iblock, bh_result, create, false, false); | 
 | } | 
 |  | 
 | int | 
 | xfs_get_blocks_direct( | 
 | 	struct inode		*inode, | 
 | 	sector_t		iblock, | 
 | 	struct buffer_head	*bh_result, | 
 | 	int			create) | 
 | { | 
 | 	return __xfs_get_blocks(inode, iblock, bh_result, create, true, false); | 
 | } | 
 |  | 
 | int | 
 | xfs_get_blocks_dax_fault( | 
 | 	struct inode		*inode, | 
 | 	sector_t		iblock, | 
 | 	struct buffer_head	*bh_result, | 
 | 	int			create) | 
 | { | 
 | 	return __xfs_get_blocks(inode, iblock, bh_result, create, true, true); | 
 | } | 
 |  | 
 | static void | 
 | __xfs_end_io_direct_write( | 
 | 	struct inode		*inode, | 
 | 	struct xfs_ioend	*ioend, | 
 | 	loff_t			offset, | 
 | 	ssize_t			size) | 
 | { | 
 | 	struct xfs_mount	*mp = XFS_I(inode)->i_mount; | 
 |  | 
 | 	if (XFS_FORCED_SHUTDOWN(mp) || ioend->io_error) | 
 | 		goto out_end_io; | 
 |  | 
 | 	/* | 
 | 	 * dio completion end_io functions are only called on writes if more | 
 | 	 * than 0 bytes was written. | 
 | 	 */ | 
 | 	ASSERT(size > 0); | 
 |  | 
 | 	/* | 
 | 	 * The ioend only maps whole blocks, while the IO may be sector aligned. | 
 | 	 * Hence the ioend offset/size may not match the IO offset/size exactly. | 
 | 	 * Because we don't map overwrites within EOF into the ioend, the offset | 
 | 	 * may not match, but only if the endio spans EOF.  Either way, write | 
 | 	 * the IO sizes into the ioend so that completion processing does the | 
 | 	 * right thing. | 
 | 	 */ | 
 | 	ASSERT(offset + size <= ioend->io_offset + ioend->io_size); | 
 | 	ioend->io_size = size; | 
 | 	ioend->io_offset = offset; | 
 |  | 
 | 	/* | 
 | 	 * The ioend tells us whether we are doing unwritten extent conversion | 
 | 	 * or an append transaction that updates the on-disk file size. These | 
 | 	 * cases are the only cases where we should *potentially* be needing | 
 | 	 * to update the VFS inode size. | 
 | 	 * | 
 | 	 * We need to update the in-core inode size here so that we don't end up | 
 | 	 * with the on-disk inode size being outside the in-core inode size. We | 
 | 	 * have no other method of updating EOF for AIO, so always do it here | 
 | 	 * if necessary. | 
 | 	 * | 
 | 	 * We need to lock the test/set EOF update as we can be racing with | 
 | 	 * other IO completions here to update the EOF. Failing to serialise | 
 | 	 * here can result in EOF moving backwards and Bad Things Happen when | 
 | 	 * that occurs. | 
 | 	 */ | 
 | 	spin_lock(&XFS_I(inode)->i_flags_lock); | 
 | 	if (offset + size > i_size_read(inode)) | 
 | 		i_size_write(inode, offset + size); | 
 | 	spin_unlock(&XFS_I(inode)->i_flags_lock); | 
 |  | 
 | 	/* | 
 | 	 * If we are doing an append IO that needs to update the EOF on disk, | 
 | 	 * do the transaction reserve now so we can use common end io | 
 | 	 * processing. Stashing the error (if there is one) in the ioend will | 
 | 	 * result in the ioend processing passing on the error if it is | 
 | 	 * possible as we can't return it from here. | 
 | 	 */ | 
 | 	if (ioend->io_type == XFS_IO_OVERWRITE) | 
 | 		ioend->io_error = xfs_setfilesize_trans_alloc(ioend); | 
 |  | 
 | out_end_io: | 
 | 	xfs_end_io(&ioend->io_work); | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * Complete a direct I/O write request. | 
 |  * | 
 |  * The ioend structure is passed from __xfs_get_blocks() to tell us what to do. | 
 |  * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite | 
 |  * wholly within the EOF and so there is nothing for us to do. Note that in this | 
 |  * case the completion can be called in interrupt context, whereas if we have an | 
 |  * ioend we will always be called in task context (i.e. from a workqueue). | 
 |  */ | 
 | STATIC void | 
 | xfs_end_io_direct_write( | 
 | 	struct kiocb		*iocb, | 
 | 	loff_t			offset, | 
 | 	ssize_t			size, | 
 | 	void			*private) | 
 | { | 
 | 	struct inode		*inode = file_inode(iocb->ki_filp); | 
 | 	struct xfs_ioend	*ioend = private; | 
 |  | 
 | 	trace_xfs_gbmap_direct_endio(XFS_I(inode), offset, size, | 
 | 				     ioend ? ioend->io_type : 0, NULL); | 
 |  | 
 | 	if (!ioend) { | 
 | 		ASSERT(offset + size <= i_size_read(inode)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	__xfs_end_io_direct_write(inode, ioend, offset, size); | 
 | } | 
 |  | 
 | static inline ssize_t | 
 | xfs_vm_do_dio( | 
 | 	struct inode		*inode, | 
 | 	struct kiocb		*iocb, | 
 | 	struct iov_iter		*iter, | 
 | 	loff_t			offset, | 
 | 	void			(*endio)(struct kiocb	*iocb, | 
 | 					 loff_t		offset, | 
 | 					 ssize_t	size, | 
 | 					 void		*private), | 
 | 	int			flags) | 
 | { | 
 | 	struct block_device	*bdev; | 
 |  | 
 | 	if (IS_DAX(inode)) | 
 | 		return dax_do_io(iocb, inode, iter, offset, | 
 | 				 xfs_get_blocks_direct, endio, 0); | 
 |  | 
 | 	bdev = xfs_find_bdev_for_inode(inode); | 
 | 	return  __blockdev_direct_IO(iocb, inode, bdev, iter, offset, | 
 | 				     xfs_get_blocks_direct, endio, NULL, flags); | 
 | } | 
 |  | 
 | STATIC ssize_t | 
 | xfs_vm_direct_IO( | 
 | 	struct kiocb		*iocb, | 
 | 	struct iov_iter		*iter, | 
 | 	loff_t			offset) | 
 | { | 
 | 	struct inode		*inode = iocb->ki_filp->f_mapping->host; | 
 |  | 
 | 	if (iov_iter_rw(iter) == WRITE) | 
 | 		return xfs_vm_do_dio(inode, iocb, iter, offset, | 
 | 				     xfs_end_io_direct_write, DIO_ASYNC_EXTEND); | 
 | 	return xfs_vm_do_dio(inode, iocb, iter, offset, NULL, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Punch out the delalloc blocks we have already allocated. | 
 |  * | 
 |  * Don't bother with xfs_setattr given that nothing can have made it to disk yet | 
 |  * as the page is still locked at this point. | 
 |  */ | 
 | STATIC void | 
 | xfs_vm_kill_delalloc_range( | 
 | 	struct inode		*inode, | 
 | 	loff_t			start, | 
 | 	loff_t			end) | 
 | { | 
 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 | 	xfs_fileoff_t		start_fsb; | 
 | 	xfs_fileoff_t		end_fsb; | 
 | 	int			error; | 
 |  | 
 | 	start_fsb = XFS_B_TO_FSB(ip->i_mount, start); | 
 | 	end_fsb = XFS_B_TO_FSB(ip->i_mount, end); | 
 | 	if (end_fsb <= start_fsb) | 
 | 		return; | 
 |  | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb, | 
 | 						end_fsb - start_fsb); | 
 | 	if (error) { | 
 | 		/* something screwed, just bail */ | 
 | 		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { | 
 | 			xfs_alert(ip->i_mount, | 
 | 		"xfs_vm_write_failed: unable to clean up ino %lld", | 
 | 					ip->i_ino); | 
 | 		} | 
 | 	} | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_vm_write_failed( | 
 | 	struct inode		*inode, | 
 | 	struct page		*page, | 
 | 	loff_t			pos, | 
 | 	unsigned		len) | 
 | { | 
 | 	loff_t			block_offset; | 
 | 	loff_t			block_start; | 
 | 	loff_t			block_end; | 
 | 	loff_t			from = pos & (PAGE_CACHE_SIZE - 1); | 
 | 	loff_t			to = from + len; | 
 | 	struct buffer_head	*bh, *head; | 
 |  | 
 | 	/* | 
 | 	 * The request pos offset might be 32 or 64 bit, this is all fine | 
 | 	 * on 64-bit platform.  However, for 64-bit pos request on 32-bit | 
 | 	 * platform, the high 32-bit will be masked off if we evaluate the | 
 | 	 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is | 
 | 	 * 0xfffff000 as an unsigned long, hence the result is incorrect | 
 | 	 * which could cause the following ASSERT failed in most cases. | 
 | 	 * In order to avoid this, we can evaluate the block_offset of the | 
 | 	 * start of the page by using shifts rather than masks the mismatch | 
 | 	 * problem. | 
 | 	 */ | 
 | 	block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT; | 
 |  | 
 | 	ASSERT(block_offset + from == pos); | 
 |  | 
 | 	head = page_buffers(page); | 
 | 	block_start = 0; | 
 | 	for (bh = head; bh != head || !block_start; | 
 | 	     bh = bh->b_this_page, block_start = block_end, | 
 | 				   block_offset += bh->b_size) { | 
 | 		block_end = block_start + bh->b_size; | 
 |  | 
 | 		/* skip buffers before the write */ | 
 | 		if (block_end <= from) | 
 | 			continue; | 
 |  | 
 | 		/* if the buffer is after the write, we're done */ | 
 | 		if (block_start >= to) | 
 | 			break; | 
 |  | 
 | 		if (!buffer_delay(bh)) | 
 | 			continue; | 
 |  | 
 | 		if (!buffer_new(bh) && block_offset < i_size_read(inode)) | 
 | 			continue; | 
 |  | 
 | 		xfs_vm_kill_delalloc_range(inode, block_offset, | 
 | 					   block_offset + bh->b_size); | 
 |  | 
 | 		/* | 
 | 		 * This buffer does not contain data anymore. make sure anyone | 
 | 		 * who finds it knows that for certain. | 
 | 		 */ | 
 | 		clear_buffer_delay(bh); | 
 | 		clear_buffer_uptodate(bh); | 
 | 		clear_buffer_mapped(bh); | 
 | 		clear_buffer_new(bh); | 
 | 		clear_buffer_dirty(bh); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * This used to call block_write_begin(), but it unlocks and releases the page | 
 |  * on error, and we need that page to be able to punch stale delalloc blocks out | 
 |  * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at | 
 |  * the appropriate point. | 
 |  */ | 
 | STATIC int | 
 | xfs_vm_write_begin( | 
 | 	struct file		*file, | 
 | 	struct address_space	*mapping, | 
 | 	loff_t			pos, | 
 | 	unsigned		len, | 
 | 	unsigned		flags, | 
 | 	struct page		**pagep, | 
 | 	void			**fsdata) | 
 | { | 
 | 	pgoff_t			index = pos >> PAGE_CACHE_SHIFT; | 
 | 	struct page		*page; | 
 | 	int			status; | 
 |  | 
 | 	ASSERT(len <= PAGE_CACHE_SIZE); | 
 |  | 
 | 	page = grab_cache_page_write_begin(mapping, index, flags); | 
 | 	if (!page) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	status = __block_write_begin(page, pos, len, xfs_get_blocks); | 
 | 	if (unlikely(status)) { | 
 | 		struct inode	*inode = mapping->host; | 
 | 		size_t		isize = i_size_read(inode); | 
 |  | 
 | 		xfs_vm_write_failed(inode, page, pos, len); | 
 | 		unlock_page(page); | 
 |  | 
 | 		/* | 
 | 		 * If the write is beyond EOF, we only want to kill blocks | 
 | 		 * allocated in this write, not blocks that were previously | 
 | 		 * written successfully. | 
 | 		 */ | 
 | 		if (pos + len > isize) { | 
 | 			ssize_t start = max_t(ssize_t, pos, isize); | 
 |  | 
 | 			truncate_pagecache_range(inode, start, pos + len); | 
 | 		} | 
 |  | 
 | 		page_cache_release(page); | 
 | 		page = NULL; | 
 | 	} | 
 |  | 
 | 	*pagep = page; | 
 | 	return status; | 
 | } | 
 |  | 
 | /* | 
 |  * On failure, we only need to kill delalloc blocks beyond EOF in the range of | 
 |  * this specific write because they will never be written. Previous writes | 
 |  * beyond EOF where block allocation succeeded do not need to be trashed, so | 
 |  * only new blocks from this write should be trashed. For blocks within | 
 |  * EOF, generic_write_end() zeros them so they are safe to leave alone and be | 
 |  * written with all the other valid data. | 
 |  */ | 
 | STATIC int | 
 | xfs_vm_write_end( | 
 | 	struct file		*file, | 
 | 	struct address_space	*mapping, | 
 | 	loff_t			pos, | 
 | 	unsigned		len, | 
 | 	unsigned		copied, | 
 | 	struct page		*page, | 
 | 	void			*fsdata) | 
 | { | 
 | 	int			ret; | 
 |  | 
 | 	ASSERT(len <= PAGE_CACHE_SIZE); | 
 |  | 
 | 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); | 
 | 	if (unlikely(ret < len)) { | 
 | 		struct inode	*inode = mapping->host; | 
 | 		size_t		isize = i_size_read(inode); | 
 | 		loff_t		to = pos + len; | 
 |  | 
 | 		if (to > isize) { | 
 | 			/* only kill blocks in this write beyond EOF */ | 
 | 			if (pos > isize) | 
 | 				isize = pos; | 
 | 			xfs_vm_kill_delalloc_range(inode, isize, to); | 
 | 			truncate_pagecache_range(inode, isize, to); | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | STATIC sector_t | 
 | xfs_vm_bmap( | 
 | 	struct address_space	*mapping, | 
 | 	sector_t		block) | 
 | { | 
 | 	struct inode		*inode = (struct inode *)mapping->host; | 
 | 	struct xfs_inode	*ip = XFS_I(inode); | 
 |  | 
 | 	trace_xfs_vm_bmap(XFS_I(inode)); | 
 | 	xfs_ilock(ip, XFS_IOLOCK_SHARED); | 
 | 	filemap_write_and_wait(mapping); | 
 | 	xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
 | 	return generic_block_bmap(mapping, block, xfs_get_blocks); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_vm_readpage( | 
 | 	struct file		*unused, | 
 | 	struct page		*page) | 
 | { | 
 | 	return mpage_readpage(page, xfs_get_blocks); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_vm_readpages( | 
 | 	struct file		*unused, | 
 | 	struct address_space	*mapping, | 
 | 	struct list_head	*pages, | 
 | 	unsigned		nr_pages) | 
 | { | 
 | 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); | 
 | } | 
 |  | 
 | /* | 
 |  * This is basically a copy of __set_page_dirty_buffers() with one | 
 |  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them | 
 |  * dirty, we'll never be able to clean them because we don't write buffers | 
 |  * beyond EOF, and that means we can't invalidate pages that span EOF | 
 |  * that have been marked dirty. Further, the dirty state can leak into | 
 |  * the file interior if the file is extended, resulting in all sorts of | 
 |  * bad things happening as the state does not match the underlying data. | 
 |  * | 
 |  * XXX: this really indicates that bufferheads in XFS need to die. Warts like | 
 |  * this only exist because of bufferheads and how the generic code manages them. | 
 |  */ | 
 | STATIC int | 
 | xfs_vm_set_page_dirty( | 
 | 	struct page		*page) | 
 | { | 
 | 	struct address_space	*mapping = page->mapping; | 
 | 	struct inode		*inode = mapping->host; | 
 | 	loff_t			end_offset; | 
 | 	loff_t			offset; | 
 | 	int			newly_dirty; | 
 | 	struct mem_cgroup	*memcg; | 
 |  | 
 | 	if (unlikely(!mapping)) | 
 | 		return !TestSetPageDirty(page); | 
 |  | 
 | 	end_offset = i_size_read(inode); | 
 | 	offset = page_offset(page); | 
 |  | 
 | 	spin_lock(&mapping->private_lock); | 
 | 	if (page_has_buffers(page)) { | 
 | 		struct buffer_head *head = page_buffers(page); | 
 | 		struct buffer_head *bh = head; | 
 |  | 
 | 		do { | 
 | 			if (offset < end_offset) | 
 | 				set_buffer_dirty(bh); | 
 | 			bh = bh->b_this_page; | 
 | 			offset += 1 << inode->i_blkbits; | 
 | 		} while (bh != head); | 
 | 	} | 
 | 	/* | 
 | 	 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with | 
 | 	 * per-memcg dirty page counters. | 
 | 	 */ | 
 | 	memcg = mem_cgroup_begin_page_stat(page); | 
 | 	newly_dirty = !TestSetPageDirty(page); | 
 | 	spin_unlock(&mapping->private_lock); | 
 |  | 
 | 	if (newly_dirty) { | 
 | 		/* sigh - __set_page_dirty() is static, so copy it here, too */ | 
 | 		unsigned long flags; | 
 |  | 
 | 		spin_lock_irqsave(&mapping->tree_lock, flags); | 
 | 		if (page->mapping) {	/* Race with truncate? */ | 
 | 			WARN_ON_ONCE(!PageUptodate(page)); | 
 | 			account_page_dirtied(page, mapping, memcg); | 
 | 			radix_tree_tag_set(&mapping->page_tree, | 
 | 					page_index(page), PAGECACHE_TAG_DIRTY); | 
 | 		} | 
 | 		spin_unlock_irqrestore(&mapping->tree_lock, flags); | 
 | 	} | 
 | 	mem_cgroup_end_page_stat(memcg); | 
 | 	if (newly_dirty) | 
 | 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | 
 | 	return newly_dirty; | 
 | } | 
 |  | 
 | const struct address_space_operations xfs_address_space_operations = { | 
 | 	.readpage		= xfs_vm_readpage, | 
 | 	.readpages		= xfs_vm_readpages, | 
 | 	.writepage		= xfs_vm_writepage, | 
 | 	.writepages		= xfs_vm_writepages, | 
 | 	.set_page_dirty		= xfs_vm_set_page_dirty, | 
 | 	.releasepage		= xfs_vm_releasepage, | 
 | 	.invalidatepage		= xfs_vm_invalidatepage, | 
 | 	.write_begin		= xfs_vm_write_begin, | 
 | 	.write_end		= xfs_vm_write_end, | 
 | 	.bmap			= xfs_vm_bmap, | 
 | 	.direct_IO		= xfs_vm_direct_IO, | 
 | 	.migratepage		= buffer_migrate_page, | 
 | 	.is_partially_uptodate  = block_is_partially_uptodate, | 
 | 	.error_remove_page	= generic_error_remove_page, | 
 | }; |