| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * AES block cipher, optimized for ARM64 |
| * |
| * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org> |
| * Copyright 2026 Google LLC |
| */ |
| |
| #include <asm/neon.h> |
| #include <asm/simd.h> |
| #include <linux/unaligned.h> |
| #include <linux/cpufeature.h> |
| |
| static __ro_after_init DEFINE_STATIC_KEY_FALSE(have_aes); |
| |
| struct aes_block { |
| u8 b[AES_BLOCK_SIZE]; |
| }; |
| |
| asmlinkage void __aes_arm64_encrypt(const u32 rk[], u8 out[AES_BLOCK_SIZE], |
| const u8 in[AES_BLOCK_SIZE], int rounds); |
| asmlinkage void __aes_arm64_decrypt(const u32 inv_rk[], u8 out[AES_BLOCK_SIZE], |
| const u8 in[AES_BLOCK_SIZE], int rounds); |
| asmlinkage void __aes_ce_encrypt(const u32 rk[], u8 out[AES_BLOCK_SIZE], |
| const u8 in[AES_BLOCK_SIZE], int rounds); |
| asmlinkage void __aes_ce_decrypt(const u32 inv_rk[], u8 out[AES_BLOCK_SIZE], |
| const u8 in[AES_BLOCK_SIZE], int rounds); |
| asmlinkage u32 __aes_ce_sub(u32 l); |
| asmlinkage void __aes_ce_invert(struct aes_block *out, |
| const struct aes_block *in); |
| |
| /* |
| * Expand an AES key using the crypto extensions if supported and usable or |
| * generic code otherwise. The expanded key format is compatible between the |
| * two cases. The outputs are @rndkeys (required) and @inv_rndkeys (optional). |
| */ |
| static void aes_expandkey_arm64(u32 rndkeys[], u32 *inv_rndkeys, |
| const u8 *in_key, int key_len, int nrounds) |
| { |
| /* |
| * The AES key schedule round constants |
| */ |
| static u8 const rcon[] = { |
| 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, |
| }; |
| |
| u32 kwords = key_len / sizeof(u32); |
| struct aes_block *key_enc, *key_dec; |
| int i, j; |
| |
| if (!IS_ENABLED(CONFIG_KERNEL_MODE_NEON) || |
| !static_branch_likely(&have_aes) || unlikely(!may_use_simd())) { |
| aes_expandkey_generic(rndkeys, inv_rndkeys, in_key, key_len); |
| return; |
| } |
| |
| for (i = 0; i < kwords; i++) |
| rndkeys[i] = get_unaligned_le32(&in_key[i * sizeof(u32)]); |
| |
| scoped_ksimd() { |
| for (i = 0; i < sizeof(rcon); i++) { |
| u32 *rki = &rndkeys[i * kwords]; |
| u32 *rko = rki + kwords; |
| |
| rko[0] = ror32(__aes_ce_sub(rki[kwords - 1]), 8) ^ |
| rcon[i] ^ rki[0]; |
| rko[1] = rko[0] ^ rki[1]; |
| rko[2] = rko[1] ^ rki[2]; |
| rko[3] = rko[2] ^ rki[3]; |
| |
| if (key_len == AES_KEYSIZE_192) { |
| if (i >= 7) |
| break; |
| rko[4] = rko[3] ^ rki[4]; |
| rko[5] = rko[4] ^ rki[5]; |
| } else if (key_len == AES_KEYSIZE_256) { |
| if (i >= 6) |
| break; |
| rko[4] = __aes_ce_sub(rko[3]) ^ rki[4]; |
| rko[5] = rko[4] ^ rki[5]; |
| rko[6] = rko[5] ^ rki[6]; |
| rko[7] = rko[6] ^ rki[7]; |
| } |
| } |
| |
| /* |
| * Generate the decryption keys for the Equivalent Inverse |
| * Cipher. This involves reversing the order of the round |
| * keys, and applying the Inverse Mix Columns transformation on |
| * all but the first and the last one. |
| */ |
| if (inv_rndkeys) { |
| key_enc = (struct aes_block *)rndkeys; |
| key_dec = (struct aes_block *)inv_rndkeys; |
| j = nrounds; |
| |
| key_dec[0] = key_enc[j]; |
| for (i = 1, j--; j > 0; i++, j--) |
| __aes_ce_invert(key_dec + i, key_enc + j); |
| key_dec[i] = key_enc[0]; |
| } |
| } |
| } |
| |
| static void aes_preparekey_arch(union aes_enckey_arch *k, |
| union aes_invkey_arch *inv_k, |
| const u8 *in_key, int key_len, int nrounds) |
| { |
| aes_expandkey_arm64(k->rndkeys, inv_k ? inv_k->inv_rndkeys : NULL, |
| in_key, key_len, nrounds); |
| } |
| |
| /* |
| * This is here temporarily until the remaining AES mode implementations are |
| * migrated from arch/arm64/crypto/ to lib/crypto/arm64/. |
| */ |
| int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key, |
| unsigned int key_len) |
| { |
| if (aes_check_keylen(key_len) != 0) |
| return -EINVAL; |
| ctx->key_length = key_len; |
| aes_expandkey_arm64(ctx->key_enc, ctx->key_dec, in_key, key_len, |
| 6 + key_len / 4); |
| return 0; |
| } |
| EXPORT_SYMBOL(ce_aes_expandkey); |
| |
| static void aes_encrypt_arch(const struct aes_enckey *key, |
| u8 out[AES_BLOCK_SIZE], |
| const u8 in[AES_BLOCK_SIZE]) |
| { |
| if (IS_ENABLED(CONFIG_KERNEL_MODE_NEON) && |
| static_branch_likely(&have_aes) && likely(may_use_simd())) { |
| scoped_ksimd() |
| __aes_ce_encrypt(key->k.rndkeys, out, in, key->nrounds); |
| } else { |
| __aes_arm64_encrypt(key->k.rndkeys, out, in, key->nrounds); |
| } |
| } |
| |
| static void aes_decrypt_arch(const struct aes_key *key, |
| u8 out[AES_BLOCK_SIZE], |
| const u8 in[AES_BLOCK_SIZE]) |
| { |
| if (IS_ENABLED(CONFIG_KERNEL_MODE_NEON) && |
| static_branch_likely(&have_aes) && likely(may_use_simd())) { |
| scoped_ksimd() |
| __aes_ce_decrypt(key->inv_k.inv_rndkeys, out, in, |
| key->nrounds); |
| } else { |
| __aes_arm64_decrypt(key->inv_k.inv_rndkeys, out, in, |
| key->nrounds); |
| } |
| } |
| |
| #ifdef CONFIG_KERNEL_MODE_NEON |
| #define aes_mod_init_arch aes_mod_init_arch |
| static void aes_mod_init_arch(void) |
| { |
| if (cpu_have_named_feature(AES)) |
| static_branch_enable(&have_aes); |
| } |
| #endif /* CONFIG_KERNEL_MODE_NEON */ |